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ABSTRACT

Near-Field Radiative Heat Transfer in Linear Chains of Multilayered Spheres

Braden Czapla

Thermal radiation is ubiquitous to all matter at finite temperature and control-

ling the radiative nature of that matter has been a key enabling factor in the de-

velopment of several recent technologies, such as thermal diodes, thermal antennae,

thermophotovoltaics, heat-assisted magnetic recording, and contactless cooling in mi-

croelectromechanical systems. At the micro/nano-scale, thermal radiation does not

reliably behave in the way Planck’s blackbody law predicts, due to near-field effects

such as the diffraction, interference, and tunneling of light. In fact, the so-called

blackbody limit can routinely be broken by several orders of magnitude when objects

of dimensions or separation distances much smaller than the peak thermal wavelength

(approximately 10 µm at room temperature) exchange thermal radiation. A deeper

theory is required to understand near-field thermal radiation: Maxwell’s equations.

Maxwell’s equations allow for a direct connection between the thermally induced

current fluctuations and radiative transfer.

In this dissertation, I investigate radiative transfer among spherical bodies aligned

in a linear chain. The chain may be composed of any number of spheres, and the

spheres themselves may be composed of any linear isotropic material, may be of any

size and separation distance, and may each have any number of spherically symmetric

layers. Using a dyadic Green’s function formalism, I derive numerically exact formulas

for heat transfer between pairs of spheres in the chain and between any sphere in the



chain and its environment.

My work clearly demonstrates that adding coatings to spherical objects can dras-

tically impact the spectrum of radiative transfer, enhancing or diminishing it in var-

ious cases. This degree of tailoring makes coated spheres a flexible, yet unexplored,

platform for future experiments in near-field radiative heat transfer. My work also

demonstrates that, in an experiment measuring the distance dependent heat trans-

fer between two spheres, heat transfer from the spheres to their environment can

also have a strong distance dependence, which must be considered carefully when

designing an experiment and analyzing its results. This demonstrates a cautious

but optimistic outlook for the near-field radiative heat transfer community moving

beyond traditional plane-plane and sphere-plane experimental configurations.
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Chapter 1

Brief History of Radiative Heat Transfer

1.1 Introduction and History

In some sense, the theory of radiative heat transfer is complete, but in a broader

sense, there remains far more work to be done. From an engineering perspective,

radiative heat transfer between pairs of objects has long been considered a matter of

computing view factors and emissivities. Those quantities may then be plugged into

the Stefan-Boltzmann law or, for more complicated thermal systems, a linear system

determined by Gebhart factors or thermal circuits, to compute energy exchange.1

The aforementioned approach to characterizing thermal radiation was enabled by

Max Planck at the start of the 20th century when he proposed his blackbody law.2

Blackbodies are hypothetical objects which absorb all radiation incident upon their

surfaces. By Kirchhoff’s law, a perfect absorber like a blackbody is also a perfect

emitter.3 Thus, blackbodies should represent an upper bound on the amount of energy

which may be exchanged between objects radiatively.

Fast-forward nearly 60 years and the first signs that Planck’s law might not tell

the whole story started to appear. In 1953, in the Soviet Union, Dr. Sergei Rytov

published work connecting electric fluctuations and thermal radiation, which allowed

1



radiation heat transfer to be treated rigorously under the framework of Maxwell’s

equations using the fluctuation-dissipation theorem.4 His work remained largely un-

noticed in the western world until 1959 when it was translated to English.5 Just two

years later, a report was published in the United States predicting super-Planckian

radiative energy transfer (above that predicted for blackbodies) could occur between

the layers of radiation shields in spacecraft.6 This anomalous behavior was attributed

to two factors occurring within the vacuum gap separating layers of shielding: inter-

ference of propagating waves and tunneling of evanescent waves. Later in that decade,

pioneering work7–9 in the research group of Professor Chang-lin Tien at the University

of California, Berkeley helped improve the theoretical predictions predictions made

in Ref. 6.

The final nails in the coffin for the completeness of Planck’s theory came in 1970

and 1971. In 1970, further work from Professor Tien’s group experimentally confirmed

super-Planckian emission by taking measurements at cryogenic temperatures;10 de-

tails of their apparatus and some preliminary results were published in 1968.11 And

in 1971, Polder and Van Hove presented the first correct general formulation of what

would eventually be called near-field radiative heat transfer (NFRHT).12 Polder and

Van Hove built upon the work of Rytov and used the fluctuation-dissipation theorem

to predict NFRHT between two semi-infinite half-spaces separated by a vacuum gap

to unequivocally show that the contributions of evanescent waves tunneling through

the gap could result in heat transfer rates which exceeded Planck’s blackbody law

by several orders of magnitude. This effectively opened the door to a number of

new technologies such as contactless thermal management,13 heat-assisted magnetic

2



recording,14 thermal diodes,15,16 thermophotovoltaics,17,18 and thermal antennae,19

just to name a few.

As time passes and technology advances, these formerly fringe cases of anomalous

behavior are becoming increasingly common in real world applications, as advances

in microelectromechanical systems (MEMS) technology have put thermal systems,

such as the two closely-spaced planar surfaces Polder and Van Hove investigated, in

the sights of working engineers. The engineering perspective on thermal radiation

needs to change accordingly.

1.2 Limitations of Classical Radiative Heat

Transfer

By all accounts, classical radiative transfer (CRT) is an incredibly successful theory

for predicting radiative heat transfer in most everyday circumstances. So how is it

possible that its predictions could be off by orders of magnitude in the near-field?

The answer lies in Planck’s own words. In the introduction to his text The Theory

of Heat Radiation,2 Planck assumed that “the linear dimensions of all parts of space

considered, as well as the radii of curvature of all surfaces under consideration, are

large compared with the wave lengths of the rays considered.” In stating this, he

himself acknowledged that his approximation would not account for diffractive ef-

fects. Using CRT in scenarios with characteristic lengths comparable to the thermal

wavelength (approximately 10 µm at room temperature) is akin to applying Newto-

3



nian gravity to objects in the vicinity of a black hole: it is a limiting case of a larger,

more complicated reality. That begs a fundamental question, under what conditions

is CRT valid? At least three conditions must be met:

1. All separation gaps between objects must be greater much than the thermal

wavelength (negligible evanescent wave contributions and coherent interfer-

ence).

2. All dimensions of objects must be much greater than the thermal wavelength

(negligible diffraction).

3. All objects must emit radiation diffusely.

1.3 Near-Field Radiative Heat Transfer

The seminal work by Polder and Van Hove12 helped launch NFRHT as a field of study.

As is seen in Fig. 1.1, there was a lag between the publication of Ref. 12 in 1971 and

NFRHT taking off. This is likely due to the exponential rise of computational power

catching up to the numerical needs of their work. The heavy use of computational

resources is a common feature of many NFRHT theoretical works, and remains a

problem to this day. But since the explosive growth in computing capacity in the

mid-1990s, the citations to their work, which I use as a proxy for the field itself, have

grown dramatically.

NFRHT has been the subject of several recent reviews.20–28 In this section, I will

cover recent advances in the theory and experimental measurement of NFRHT. I will

use an inclusive definition of NFRHT, which considers any form of radiative transfer

4
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Figure 1.1: Timeline of citations of Polder and Van Hove’s seminal work.12

that violates one of the validity conditions of CRT.

1.3.1 Exact Theoretical Frameworks

Polder and Van Hove’s solution to NFRHT between half-spaces belongs to a class

of solutions which are numerically exact for isotropic linear media. That is to say,

no theoretical simplifications are required to derive their results and their method

converges to the exact value of heat transfer in the correct numerical limit (such as

increasing the number of terms in a truncated infinite sum or increasing the density of

a mesh). The most common numerically exact methods involve dyadic Green’s func-

tions (DGFs),20,21,29,30 spectral densities,31 fluctuating surface currents/boundary ele-

ment methods (BEM),32 or thermal discrete dipole approximations (T-DDA),33 each

with its own advantages and limitations. These methods can again be broken into

two classes of solutions: meshed and meshless solutions. DGF and spectral density

5



solutions are most commonly meshless. They are best applied to geometries such

as spheres, cylinders, and planes which have convenient bases in which to express

eigenfunction expansions. BEM and T-DDA typically require surface and volume

meshing, respectively. Their great advantage is that they are easily applied to ar-

bitrary geometries; however, their computational time is often significantly greater

than their meshless cousins.

Despite having a number of theoretical frameworks to choose from, the frame-

works themselves lack the immediately apparent insight that CRT can provide; their

governing formulas are very abstract. To that end, a great deal of research has been

directed towards determining explicit formulas for heat transfer in experimentally im-

portant thermal systems. Certain problems are best attacked using DGF and spectral

density methods such as NFRHT in plane-plane,12 sphere-sphere,31,34–36 and sphere-

plane37,38 configurations, where the electromagnetic fields are easily described by

vector wave eigenfunction expansions. Thermal systems which do not yield to those

methods often require meshed methods, such as BEM and T-DDA. Those methods

have allowed investigations of cone-plane39,40 and cube-cube33 configurations, among

others. See Fig. 1.3 for examples from the literature. In all cases presented, the

characteristic lengths of at least one object were less than the thermal wavelength.

1.3.2 Thermal Hyperbolic Metamaterials

Optical metamaterials are a class of artificial materials which exhibit electromagnetic

behavior not otherwise observed in nature, such as negative refractive index,41–44
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Figure 1.2: Selected NFRHT results from the literature. (A) Distance dependence of
NFRHT in the sphere-plane configuration using spectral densities (labeled full solu-
tion).37 (B) Frequency dependence of NFRHT in the sphere-plane configuration using
DGFs (labeled exact solution) and T-DDA.40 (C) Distance dependence of NFRHT in
the cone-cone and cone-plane configurations using BEM.39 (D) Frequency dependence
of NFRHT in the cube-cube configuration using T-DDA.33

cloaking,45–48 and superlensing.49–52 Of particular interest are hyperbolic metamate-

rials (HMMs), materials whose permissible wavevector components form a hyperbolic

isofrequency surface instead of the spherical surface found in typical isotropic mate-

rials. The simplest means of achieving HMM behavior is through layering different

isotropic materials. When the layer thicknesses are much smaller than the free-

space wavelength of light propagating through them, the entire nanocomposite can

be viewed as a homogeneous material with hyperbolic effective optical properties.53,54
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Hyperbolic metamaterials have found many uses in the field of near-field thermal

radiative transfer. Appropriately designed HMMs have demonstrated the ability to

tailor the spectrum of radiative transfer and to achieve super-Planckian heat trans-

fer.55–61 To date, this has mostly been achieved by using layered planar surfaces and

computing the NFRHT using a DGF formalism.62–64 That configuration is attractive

because the analytic solution to near-field thermal radiative transfer between two

semi-infinite half spaces is well known, relatively straightforward to compute, and

easily generalizes to include layered media.12,29,65,66

Figure 1.3 depicts a typical numerical study of thermal HMMs.60,67 Figure 1.3A

shows two common methods of creating HMMs from linear, isotropic media. In

this section, we focus on planar layered media. Figure 1.3B shows the spectrum

of radiative transfer between two semi-infinite half spaces composed of alternating

layers of silicon carbide and silicon dioxide. The left plot in Fig. 1.3B is obtained by

integrating over the values of kρ shown in the right plot. The main takeaway is that

the contributions from high values of kρ{k0, called high-k modes, are enabled by the

hyperbolic optical properties of the half-spaces.

HMMs composed of layered media are fundamentally limited in the extreme near-

field. Mulet et al. showed that a particle exchanging thermal radiation with an

object will only interact with the object to a depth comparable to the particle-object

separation distance.68 Considering any two layered objects to be made of an ensemble

of particles, should the outermost layers become thicker than the separation distance,

the near-field interaction should resemble NFRHT between two homogeneous objects

composed of the outermost materials. This effect can lead to non-monotonic heat
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Figure 1.3: (A) Schematic of two types of HMMs.67 (B) Heat transfer between two
layered semi-infinite half spaces composed of alternating layers of silicon carbide and
silicon dioxide. The high-k modes are made possible by effective HMM optical prop-
erties.60

transfer with respect to distance.69

1.3.3 Experiments

Compared to the great strides in theory made over the past decades, the experimental

measurement of NFRHT is relatively immature. The oldest experiments involving

NFRHT took place at between planar surfaces at cryogenic temperatures and rela-

tively large gaps (102
µm to 103

µm).10,11 Though some modern work is still done

at cryogenic temperatures70 and/or using planar surfaces70,71 (see Fig. 1.4C), most

modern experiments occur at room temperature, and often do not involve two planar

surfaces to avoid the difficulty in maintaining mutually parallel surfaces. Until the re-
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(A) (B) (C)

Figure 1.4: (A) NFRHT between a probe with a 300 nm radius spherical tip and a
plane.78 (B) NFRHT between a sphere with a 50 µm or 100 µm radius and a plane.79

(C) NFRHT between two planar surfaces.71

cent advances in NFRHT between MEMS devices66,72,73 (see Fig. 1.4A), experiments

measuring NFRHT in sub-micron gaps were performed in the microsphere-plane con-

figuration (see Fig. 1.4B), much like the configurations used in Casimir and van der

Waals force experiments.74–77 The rotational invariance of spheres, and to a lesser

degree the small rotational variance of probes with rounded tips, removes the ob-

stacle of maintaining parallel surfaces. A detailed critique of the microsphere-plane

experimental configuration will be provided in Chapter 5, based on the results of this

dissertation.
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1.4 Purpose and Outline of This Work

The goal of this work is simple: to provide explicit formulas which completely describe

a thermal system consisting of layered spheres in a linear chain. While this system

has been previously investigated for two spheres,31,34,35,80–83 light scattering,84–88 and

radiative transfer in the dipole limit,89–91 it has not yet been rigorously characterized

for NFRHT between spheres of arbitrary size, with or without spherical layers. The

key results of this work are numerically exact expressions for NFRHT between pairs

of spheres in a linear chain, and between any sphere in a chain and its environment.

The results of this dissertation allow for a rigorous critique of past sphere-plane

experiments, focusing on how sphere-environment heat transfer is typically handled.

Using the analysis, I provide a guidelines for designing future experiments between

two spheres which ensure accurate interpretation of results.

The outline of the dissertation is as follows: Chapter 2 builds up the basics of

electromagnetic theory necessary to solve this problem. Starting from Maxwell’s

equations, the vector Helmholtz (wave) equation is derived for electric and magnetic

fields in the Fourier domain. The Helmholtz equation is the governing equation for

this work, and must be inverted to solve for the electric and magnetic fields, and

ultimately radiative heat transfer. As part of that equation, knowledge of the optical

properties of materials is required. I present a simple derivation of the Lorentz model

for dielectric function and demonstrate how the model can be fit to a particular

material by looking at a case study involving polydimethylsiloxane. Chapter 3 covers

the DGF formalism which will be employed to solve the problem. A general geometry
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for the formalism is established for an arbitrary number of objects embedded in a

large free-space region. I show how DGFs can be used to isolate the contributions

of fluctuating charges in each object to the electric and magnetic field at any other

point. This will prove crucial to evaluating heat transfer between objects. I then go

on to define the Poynting vector and describe the fluctuation-dissipation theorem,

two important pieces to the puzzle. From there, I define a Landauer-like formula

for radiative transfer that separates the temperature dependence from the geometric

and configuration dependencies, which are contained in a transmissivity function for

energy transfer. Crucially, the volumetric processes of emission and absorption are

converted into surface integrals, which drastically simplifies computation. Finally,

as a demonstration, I use the DGF formalism to compute NFRHT between planar

media. Chapter 4 applies the DGF formalism to the case of coated spheres in a chain.

The necessary eigenfunctions, the vector spherical waves, are provided which allow

the DGFs of the system to be defined. The chain is analyzed and sphere-sphere and

sphere-environment heat transfer formulas are provided. Chapter 5 serves to validate

the results of this dissertation against BEM and T-DDA models before analyzing a

few interesting cases. Those cases are NFRHT between two dielectric coated metal

spheres and two dielectric coated dielectric spheres. I also propose a hypothetical

two sphere NFRHT experiment and analyze the thermal model required to achieve

accurate results. Chapter 6 summarizes my contributions to the field of NFRHT and

suggests future areas of research.

Additionally, I supply a number of appendices for convenience of reference. Ap-

pendix A discusses the Fresnel reflection coefficients and provides their formulas. Ap-
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pendix B is a brief summary of the common formulas used to compute CRT between

two engineering surfaces. Appendix C provides a number of mathematical formulas

and relations useful throughout this work. Appendix D provides formulas for the

effective Mie coefficients of layered media. Appendix E explains how to compute the

scattered field coefficients that arise in sphere-sphere NFRHT calculations. Appendix

F details the steps required to perform a NFRHT simulation using scuff-em.

13



Chapter 2

Fundamentals of Electromagnetism

2.1 Outline of Chapter

In this chapter, I will cover the fundamental concepts from electromagnetism which

will prove crucial for understanding this work. Starting from Maxwell’s equations, I

will derive the vector Helmholtz equation in the Fourier domain for linear isotropic

media; the vector Helmholtz equation is the governing equation for this work. Next,

I will derive a common model for the optical properties of dielectrics, the Lorentz

model, and will discuss my work using reflection measurements to fit the Lorentz

model for the polymer polydimethylsiloxane (PDMS).

2.2 Maxwell’s Equations

Maxwell’s equations describe the origin and evolution of electric and magnetic fields,

which are critical when determining radiative heat transfer. These fields can be

created by charges, currents, or changes in the fields themselves. In the time domain,
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the macroscopic set of equations at position r and time t are given by

∇ � pDpr, tq � pρepr, tq (2.1a)

∇ � pBpr, tq � pρmpr, tq (2.1b)

∇� pEpr, tq � �B
pBpr, tq
Bt � pJmpr, tq (2.1c)

∇� xHpr, tq � B pDpr, tq
Bt � pJ epr, tq (2.1d)

where ∇ � p�q and ∇�p�q denote the divergence and curl operators; pD, pE, pB, and xH
are the displacement, electric, magnetic flux density, and magnetic fields respectively;

pρe and pρm are the electric and magnetic current densities; and pJ e and pJm are the

electric and magnetic free current densities. The hat over various symbols indicates

the quantity is expressed in the time domain.

The version of Maxwell equations presented above has a number of magnetic terms

added to the traditionally presented equations.92 The terms are added to enforce

symmetry between the electric and magnetic equations, but ultimately have little

bearing on results, since the added terms can be set to zero later to recover the more

traditional form of the equations.

It will prove advantageous to work with Maxwell’s equations in their time har-

monic form, i.e. assume pF pr, tq � RerF prqe�iωts, where pF can be pD, pE, pB, or

xH , ω is the angular frequency, and Rep�q indicates the real component of a complex

number. Focusing now on Eqs. 2.1c and 2.1d and moving from the time domain to
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the Fourier domain, we get

∇�Eprq � iωBprq � Jmprq (2.2a)

∇�Hprq � �iωDprq � J eprq (2.2b)

In order to proceed, we will reduce the number of unknown fields in Maxwell’s

equations to two: E and H . The displacement and magnetic flux density fields are

given, by definition, as

Dprq � ε0

�
E � ε�1

0 P
�

(2.3a)

Bprq � µ0 pH �M q (2.3b)

where P and M are the polarization and magnetization fields and ε0 and µ0 are

the permittivity and permeability of free space. The free space permittivity and

permeability are constants which are related to the speed of light in vacuum, c, by

c � 1{?ε0µ0.

Rather annoyingly, at least in the my field, the polarization and magnetization

fields lack the apparent symmetry that Maxwell’s equations deserve. But all is not

lost. In this work, I will work exclusively with linear, isotropic medium which have

constitutive relations

ε�1
0 P � χeE (2.4a)

M � χmH (2.4b)
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Here, χe and χm are the electric and magnetic susceptibilities, which are them-

selves defined as

χe � ε� 1 (2.5a)

χm � µ� 1 (2.5b)

in linear media. ε and µ are the relative permittivity and permeability, respectively.

ε and µ are often written with an r subscript (to indicate relative) in other works.

The unsubscripted variables are then commonly used to denote the products of the

relative and free space variables. But in this work, because we will rarely need the

product of the relative and free space variables, that quantity will be given no symbol,

and the other quantities will be defined as described above. ε is also commonly called

the dielectric function, and is explored thoroughly in Section 2.3.

Now that all the groundwork has been laid, we can simplify Eqs. 2.2a and 2.2b

to include only the electric and magnetic fields. The simplification yields

∇�Eprq � iωµµ0Hprq � Jmprq (2.6a)

∇�Hprq � �iωεε0Eprq � J eprq (2.6b)

Finally, we can substitute Eqs. 2.6a and 2.6b into one another to achieve

∇�∇�Hprq � k2Hprq � iωεε0J
mprq �∇� J eprq (2.7a)

∇�∇�Eprq � k2Eprq � iωµµ0J
eprq �∇� Jmprq (2.7b)
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where k � pω{cq?εµ is the wavevector. Eqs. 2.7a and 2.7b are examples of the inho-

mogeneous vector Helmholtz equation. The challenge now is to invert the equations

to obtain E and H . This can be achieved using dyadic Green’s functions, which will

be discussed in Chapter 3.

2.3 Optical Properties of Materials

2.3.1 Overview

When discussing the optical properties of linear isotropic media, there are three cru-

cial unitless parameters: the dielectric function, relative permeability, and refractive

index. In general, all three quantities are complex-valued and frequency-dependent.

The dielectric function (relative permeability) is a measure of a material’s degree

of polarization (magnetization) under the influence of an externally applied elec-

tric (magnetic) field. The refractive index describes how light propagates through a

medium. Its real and imaginary parts correspond to speed and dissipation of light as

it passes through the medium, respectively. The three quantities are related to one

another by

nc � ?
εµ � n� iκ (2.8)

where nc is the complex refractive index and n and κ are the real and imaginary

components of nc. n is the refractive index and κ is the extinction coefficient. In the

infrared portion of the electromagnetic spectrum where this work is focused, most

materials do not exhibit magnetic behavior (µ � 1). Thus, the subsequent discussion
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Figure 2.1: Conceptual diagram of the spring-mass-damper system of an electron
bound to its nucleus.

in this section will focus on the dielectric function.

2.3.2 Dielectric Function

To derive a model for the dielectric function, we will examine the dynamics of a bound

electron around a nucleus, which can be approximated by a spring-mass-damper

system (see Fig. 2.1). In the time domain, the governing equation of such a system

is

pF � me
:px� cd 9px� kspx (2.9)

where a dot indicates a time derivative. Again assuming a time harmonic response

and moving into the Fourier domain, the equivalent equation is

F � ��ω2me � iωcd � ks
�
x (2.10)

Further simplification can be made by using insight from spring-mass damper
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systems. The undamped resonant frequency and damping factor, ω0 and ζ, are defined

as ω0 �
a
ks{me and ζ � cd{p2

?
ksmeq, respectively. Substituting in accordingly, we

get

F � me

��ω2 � i2ωω0ζ � ω2
0

�
x (2.11)

Next, we must use insight from electromagnetism. First, the force on a particle

in a uniform electric field is F � qeE, where qe is the charge of the particle. Further,

the polarization field is related to the displacement by P � Neqex, where Ne is the

average number of electrons in a unit volume. These facts, in conjunction with Eqs.

2.4a and 2.5a, yield

x � ε0 pε� 1q
Nqe

E (2.12)

Putting everything together and solving for ε, we arrive at

ε � 1� S

1�
�
ω
ω0

	2

� iΓ
�
ω
ω0

	 (2.13)

where Γ � 2ζ and S � Neq
2
e{pw2

0meε0q. This derived model is the simplest form

of the Lorentz oscillator model. In reality, not all materials are composed of only

identical nuclei and bound electrons like Fig. 2.1 depicts. Many common dielectrics

are composed of atoms arranged with multiple covalent bonds, each with its own

resonant frequency. Thus, its is not unreasonable to expect that such a material’s

dielectric function would reflect the multiple resonances. These multiple resonances
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Table 2.1: Oscillator parameters determined to reproduce the dielectric function of
PMMA.93 Unlisted is ε8 = 2.162.

j ~ω0 (eV) λ0 (µm) S Γ j ~ω0 (eV) λ0 (µm) S Γ

1 0.09327 13.29 3.18�10�3 0.01815 13 0.1688 7.345 1.09�10�3 0.03083

2 0.1002 12.37 6.94�10�4 0.01919 14 0.1720 7.207 1.07�10�3 0.01139

3 0.1023 12.12 1.13�10�4 0.005102 15 0.1779 6.970 1.34�10�3 0.007360

4 0.1045 11.86 2.86�10�3 0.02739 16 0.1799 6.894 4.11�10�3 0.01734

5 0.1133 10.94 1.68�10�3 0.03556 17 0.1837 6.748 2.12�10�3 0.01294

6 0.1197 10.36 3.94�10�3 0.02766 18 0.2145 5.7780 1.56�10�2 0.005433

7 0.1227 10.11 2.79�10�3 0.01483 19 0.3522 3.520 6.66�10�5 0.005393

8 0.1322 9.38 1.10�10�3 0.01272 20 0.3621 3.424 8.42�10�4 0.02086

9 0.1425 8.700 2.92�10�2 0.02708 21 0.3658 3.389 6.60�10�4 0.006372

10 0.1476 8.401 1.04�10�2 0.01858 22 0.3717 3.336 9.53�10�4 0.01224

11 0.1539 8.056 6.64�10�3 0.01722 23 0.4265 2.907 4.15�10�5 0.009852

12 0.1574 7.877 5.49�10�3 0.01942

are accounted for by summing over the necessary number of oscillators

ε � ε8 �
Nmax̧

j�1

��� Sj

1�
�

ω
ω0,j

	2

� iΓj

�
ω
ω0,j

	
��� (2.14)

The constant value of 1 was replaced by ε8 because researchers often look at only

a portion of the electromagnetic spectrum. Any oscillators with resonant frequen-

cies much higher than the portion of the spectrum being examined manifest as an

additional offset. For example, the parameters of a Lorentz model for polymethyl-

methacrylate (PMMA) are shown in Table. 2.1. The Lorentz oscillator model is just

one among many models for the dielectric function. Other common models are listed

in Table 2.2.
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Table 2.2: Common dielectric function models, presented in terms of angular fre-
quency. A, S, ω0, Γ, ε8, and ωp are model parameters that must be determined for
a given material.

Name Model Applicability

Cauchy εpωq �
�°Nmax

j�0 Ajω
2j
�2

Glassy Dielectrics

Sellmeier εpωq � ε8 �
°Nmax

j�1

�
Sj

1�pω{ω0,jq2

�
Glassy Dielectrics

Lorentz εpωq � ε8 �
°Nmax

j�1

�
Sj

1�pω{ω0,jq2�iΓjpω{ω0,jq

�
Crystalline Dielectrics

Brendel-Bormann See Ref. 94. Amorphous Dielectrics

Causal Voigt See Ref. 95. Amorphous Dielectrics

Drude εpωq � 1� ω2
p

pω2�iΓωq
Metals

2.3.3 Method of Determining Dielectric Function

Several methods of determining the dielectric function of a material exist in the liter-

ature, including as refractometry,96 ellipsometry,97 and reflectometry using Kramers-

Kronig analysis.98,99 In this section, I will explain my work, performed by Srinivasan,

Czapla, Mayo, and Narayanaswamy (henceforth Srinivasan et al.), which focused on

extracting the dielectric function of polydimethylsiloxane (PDMS) from reflection

measurements by fitting a Lorentz model.100 PDMS is a silicone elastomer which has

a diverse set of applications ranging from MEMS101 and microfluidic devices102–104 to

surfactant105 and antifoamer technologies.106 It is well-known that PDMS is highly

transmissive between 0.4 µm and 1.8 µm, making it attractive for optical waveguide

communication and optofluidic applications.107–111 At the time Ref. 100 was pub-

lished, the complex refractive index of the solid form of PDMS had previously been

reported only for visible to near-infrared wavelengths110–116 and for wavelengths in

the far-infrared or longer.117–120 A liquid form of PDMS was investigated by Querry in
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Figure 2.2: (a) Geometry of bulk PDMS samples prepared in aluminum dishes. (b)
PDMS thin film on top of gold coated silicon substrate. (c) Normal incidence FTIR
spectroscopy reflectance measurements.

the range from 0.8 µm to 55.6 µm.121 Since the publication of Ref. 100, Motaharifar

et al. also examined the infrared optical properties of PDMS.122

Srinivasan et al. determined the complex refractive index of PDMS between 2.5

µm and 16.7 µm by fitting a Lorentz model to Fourier transform infrared (FTIR)

reflectance measurements made on bulk PDMS and thin films of PDMS deposited

on gold coated silicon substrates. Henceforth, I will refer to these PDMS thin films

atop gold coated substrates as simply PDMS thin films. PDMS polymer was prepared

from a Sylgard R© 184 elastomer kit with a base to curing agent mass ratio of 10:1. The

solution was then de-gassed under low vacuum for an hour and poured into aluminum

dishes as shown in Fig. 2.2(a). The samples were subsequently cured in a furnace at

75�C for at least 1.5 hours and were approximately 8 mm thick. FTIR transmittance
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Table 2.3: Measurements of film thickness for PDMS thin film samples

Thin Film (TF) Mean (µm) Standard Deviation (µm)
TF1 11.7 2.51� 10�1

TF2 7.43 1.25� 10�1

measurements made on 8 mm samples showed an average transmittance of 0.2%,

confirming that they may be treated as bulk.

To create PDMS thin films, 50 nm of gold was deposited on silicon wafers using

an Edwards 306 R© Thermal Evaporator. This configuration is shown in Fig. 2.2(b).

The high value of κ for gold ensures that 50 nm is sufficiently thick to suppress

any potential backside reflections and to be treated as optically bulk.123 PDMS was

spin coated on top of the gold layer using a Laurel WS-650Sz-6NPP-Lite R© spinner.

The thin film PDMS samples were then cured at 75�C for 1 hour. The spin rates

and duration were adjusted to achieve films of different thicknesses. A Filmetrics

F20 R© instrument, which uses a spectral reflectance technique at normal incidence

in the wavelength range of 0.2 µm to 1.1 µm was used to measure the thickness of

PDMS thin films. The Sellmeier dispersion model for the refractive index of PDMS

in this wavelength range115 was used to calculate the thickness based on goodness-of-

fit between calculated and measured reflectance spectra. Table 2.3 shows the mean

and standard deviation of thickness measurements. The values are based on at least

three measurements taken at different locations on each sample. The variation in

thickness values between locations is due to non-uniformity of the PDMS surface

caused by factors such as eccentricity of the initial PDMS droplet on the wafer, rate

of shrinkage of PDMS after spin-coating, and dynamics of the spin coating motor.124
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Reflectance spectra were measured using a Bruker Hyperion FTIR microscope

with a 15x, 0.4 numerical aperture objective at normal incidence to the PDMS sam-

ples. The measurements were taken in reflection mode (reflected intensity from the

sample is normalized by the reflected intensity from clean gold) at 64 scans per record-

ing. Srinivasan et al. measured 50 reflectance spectra on 3 different locations for both

bulk PDMS and PDMS thin film samples.

Following the procedure outlined by Verleur,125 Srinivasan et al. extracted the op-

tical properties of PDMS by fitting the FTIR reflectance measurements to simulated

reflectance curves. The simulated curves were calculated using a Lorentz oscillator

model for the dielectric function of PDMS with an initial set of assumed trial pa-

rameters (i.e. ω0, S, Γ, and ε8). The relative permeability was assumed to be unity,

because PDMS is non-magnetic. Fresnel coefficients were then used to compute the

theoretical reflectance for samples with the trial parameters. The normal incidence

reflectance, Rcalcpωq, is given by

Rcalcpωq �

$''&''%
|r12pωq|2 for bulk samples��� r12�r23 exp p2ik2d2q
1�r12r23 exp p2ik2d2q

���2 for thin film samples

(2.15)

where rij is the Fresnel reflection coefficient (for either s or p polarization) at normal

incidence at the interface between materials i and j. A full description of the Fresnel

coefficients can be found in Appendix A. In this case, materials 1, 2, and 3 are

vacuum, PDMS, and gold respectively and d2 is the thickness of the PDMS thin film.

Srinivasan et al. used the complex refractive index for gold obtained from Ordal et
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al.123

A constrained nonlinear optimization function called fmincon in MATLAB R© was

used to fit the measured reflectance curves and produce a final set of dielectric function

parameters from the set of trial parameters. The fitting algorithm minimized the

value of error given by

e �
Nmeas¸
j�1

Nω̧

i�1

wj rRmeas,jpωiq �Rcalc,jpωiqs2 (2.16)

where Nmeas is total the number of measured FTIR reflectance spectra (including bulk

and thin film measurements); Nω is the number of frequency points in a measured

reflectance spectrum; Rmeas,jpωiq and Rcalc,jpωiq are the reflectance at ωi in the jth

measurement and jth calculation, respectively; and wj is a weight function.

Initially, Srinivasan et al. extracted the parameters of the Lorentz oscillator model

by fitting the reflectance measurements of the bulk sample alone. On noticing that the

extracted parameters could not accurately reproduce some features of the reflectance

spectra from thin films, Srinivasan et al. decided to include both bulk and thin film

reflectance spectra in our measure of error.

In order to account for the difference in magnitude between the bulk and thin film

reflectances, the weight function, wj, was introduced. For bulk reflectance spectra,

wj � 25 and for thin films reflectance spectra, wj � 1. The choice of wj for bulk and

thin film samples was made based on the maximum reflectance in each case.

Srinivasan et al. empirically determined that using a set of 15 oscillators produced

the best fit. To account for the sensitivity of final parameters to the initial trial
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Table 2.4: Oscillator parameters determined to reproduce the dielectric function of
PDMS. Unlisted is ε8 = 2.276.

j ~ω0 (eV) S Γ j ~ω0 (eV) S Γ

1 0.0737 0.0021 0.0211 9 0.1279 0.0288 0.0152

2 0.0821 0.0029 0.0146 10 0.1343 0.1181 0.0376

3 0.0846 0.0090 0.0307 11 0.1561 0.0087 0.0061

4 0.0870 0.0142 0.0453 12 0.1749 0.0005 0.0102

5 0.0938 0.0021 0.0097 13 0.1798 0.0005 0.0252

6 0.0994 0.0913 0.0238 14 0.3631 0.0006 0.0525

7 0.1046 0.0175 0.0184 15 0.3672 0.0006 0.0050

8 0.1077 0.0121 0.0137

parameters, 5000 sets of trial parameters were created by randomly varying their

values by 1% for resonant frequency and 5% for all remaining parameters. The set

of oscillator parameters that yielded the lowest total error (Eq. 2.16) is provided in

Table 2.4. As discussed by Verleur,125 one or more oscillators outside the frequency

range of the measurement spectrum may be needed to produce an accurate fit. The

optimization routine placed a single oscillator located at 0.0737 eV (16.8 µm) with

appropriate strength and damping values to minimize the error. This however, does

not imply that the fit is valid outside the measured 2.5 µm to 16.7 µm range.

Figure 2.4 shows the measured and fitted reflectance spectra. The gray shaded

bands in Fig. 2.4 are composed of spectra from the 5000 sets of final parameters.

The spectra from the set of oscillator parameters that yielded the lowest total error

over all bulk and thin film measurements is also shown as the solid line in Fig. 2.4.

The real and imaginary parts of the complex refractive index are shown in Fig.

2.3. The higher values of extinction coefficient beyond 8 µm correspond to high

absorption bands.110 Interestingly, these strong absorption bands show PDMS has
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Figure 2.3: Real (n, solid line, left y-axis) and imaginary (κ, dashed line, right y-axis)
parts of the complex refractive index of PDMS, respectively.

the potential to act as a passive radiative cooling device.126

28



0.00

0.05

0.10

0.15

0.20

Bulk

Measured
Fit

0.0

0.2

0.4

0.6

0.8

1.0

Re
fle

ct
an

ce

TF1

2 4 6 8 10 12 14 16 18
Wavelength ( m)

0.0

0.2

0.4

0.6

0.8

1.0

TF2

Figure 2.4: Reflectance spectra of bulk and thin film PDMS samples at normal
incidence obtained from FTIR reflectance measurements (circular markers); all 5000
sets of extracted oscillator parameters (gray shaded band); and the set of oscillator
parameters with the lowest total error over all measurements (solid line). For clar-
ity, only a representative number of measurement data points (circular markers) are
shown.
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Chapter 3

Dyadic Green’s Function Formalism for Radiative Heat

Transfer

3.1 Outline of Chapter

In this chapter, I will describe a method outlined in Ref. 30 by which radiative heat

transfer can determined between an arbitrary set of objects by using dyadic Green’s

functions. The method described is numerically exact, so long as the objects have

isotropic linear optical properties and are isothermal and stationary. A key advantage

of the method is that it relies on integration over the surfaces (not volumes) of the

objects, which is both computationally inexpensive and analytically advantageous for

composite bodies such as multilayered planes, cylinders, and spheres.

This chapter is structured as follows: in Section 3.2 I will describe the geometric

configuration for which the method is valid. Next, in Section 3.3, I will present

dyadic Green’s functions which can be used to solve for the electric and magnetic

fields which mediate radiation heat transfer. Then, in Section 3.4, I will show how

the information described in the previous sections can be used to develop a Landauer-

like formula for radiative energy transfer between arbitrary surfaces. The formalism

will require knowledge of the Poynting vector and the fluctuation-dissipation theorem.
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The key component of the formalism is a transmissivity function which is defined in

terms of the dyadic Green’s functions of the system alone. Last, in Section 3.5, I will

use the method developed to examine near-field radiative heat transfer between two

homogeneous semi-infinite half-spaces.

3.2 Geometry

A schematic of the system of objects that I will analyze is given in Fig. 3.1. N objects

are embedded in a free space region, labeled region f . Any object i (1 ¤ i ¤ N)

is bound by a surface Si which separates object i from region f . At every position

on Si, a unit normal vector, pni, can be defined which points outward into region f .

Within surface Si, object i has well defined volume, temperature, and electromagnetic

properties, which will be explored in great detail throughout this chapter. The free

space region f is itself bounded by surface SE (‘E’ subscript stands for environment).

Though I specify a boundary to the free space region, the size of that boundary is

allowed to grow such that region f is effectively infinitely large. Region f has a

specified temperature and optical properties (εf and µf ) which are dissipationless,

i.e. εf , µf P R. Finally, r and rr represent position vectors which indicate various

locations important to this work. They can be located anywhere within any object,

or anywhere in region f .
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Figure 3.1: Diagram of N objects, each with its own temperature, volume, permittiv-
ity, permeability, electric free current density, and magnetic free current density. The
objects are each bounded by a surface and embedded in free space region f , which
has its own bounding surface.

3.3 Dyadic Green’s Functions

Green’s functions are a powerful mathematical tool for solving boundary value prob-

lems. They represent the response of a linear differential equation at one location due

to an impulse at another. A dyadic Green’s function (DGF) is a Green’s function

which takes a vector input (for example a free current density) and produces a vector

output (such as the electric field). DGFs take the form Gpr; rrq where the arguments

r and rr are position vectors which indicate the source and response locations.
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3.3.1 Determining Electric and Magnetic Fields

Levine and Schwinger127 first used DGFs to solve an electromagnetic boundary value

problem, diffraction by an aperture in an infinite planar screen made of a conducting

material. Since then, they have proven to be an invaluable tool, especially in the field

of NFRHT. DGFs have been used to compute heat transfer between layered planar

surfaces,30,65 spheres,34,36,83 and point particles,89,128–130 just to name a few examples.

The DGFs used to solve electromagnetism problems must satisfy the inhomoge-

neous vector Helmholtz equation

∇�∇�Gpr; rrq � k2prqGpr; rrq � δpr � rrqI (3.1)

There are two variants of DGFs, electric and magnetic, which are writtenGepr; rrq
and Gmpr; rrq, respectively. The electric and magnetic variants of the DGFs can be

obtained from one another by substituting ε Ø µ. Additionally, define GEpr; rrq �
∇�Gepr; rrq and GMpr; rrq � ∇�Gmpr; rrq, where ∇ operates on functions involving

r alone.

The key advantage of DGFs is that they can isolate the contributions to the

electric and magnetic fields from individual sources or groups of sources, for example

sources contained within a single object, like those represented in Fig. 3.1. The

electric and magnetic fields themselves are superpositions of all such contributions.

Define the contribution to a field F (F is E or H) at location rr due to sources

in object i as F piqprrq. Then F prrq � °N
i�1 F

piqprrq. Obtaining F piqprrq requires the

inversion of Eqs. 2.7a and 2.7b. Further detail on that inversion is available in Ref.
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131. The results of the inversion, which are presented succinctly in Ref. 30, are

volume integrals involving products of sources and DGFs. The volume integrals in

essence calculate the net effect of all electromagnetic sources in object i. The volume

integrals are given by

Epiqprrq � »
Vi

�
iωµ0µiJ

e
i prq �Gepr; rrq � Jmi prq �GEpr; rrq� dr (3.2a)

Hpiqprrq � »
Vi

�
iωε0εiJ

m
i prq �Gmpr; rrq � J ei prq �GMpr; rrq� dr (3.2b)

where r lies within the volume of object i. The terms in the integrals should look

familiar; they are the right hand side source terms in Eqs. 2.7a and 2.7b.

3.3.2 Boundary Conditions

Solving the vector Helmholtz equation is essentially a boundary value problem, so

it should come as a surprise to no one that knowledge of the boundary conditions

of DGFs will prove vital. Maxwell’s equations, in their integral form, guarantee

continuity of the tangential components of the electric and magnetic fields across a

boundary. Written in terms of DGFs, we get

pnprq � ��µprqGepr; rrq�� � 0 (3.3a)

pnprq � ��GEpr; rrq�� � 0 (3.3b)

pnprq � ��εprqGmpr; rrq�� � 0 (3.3c)

pnprq � ��GMpr; rrq�� � 0 (3.3d)
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where pn � ��f�� � pn � �f� � f�	 denotes a jump condition across an interface

and pn is the unit outward normal pointing to the ‘+’ side of the interface.132,133

3.4 Radiative Heat Transfer Between Arbitrary

Surfaces

Now that we are able to determine electric and magnetic fields by using the DGFs of

the system, in conjunction with any sources of electromagnetic waves, we can move

on to computing the net radiative transfer between objects. The strategy to compute

the heat transfer using Maxwell’s equations is as follows: (1) Determine the Poynting

vector at the surface of an object to understand the flow of electromagnetic energy

into the object. (2) Determine the time-averaged behavior of electromagnetic sources

using the fluctuation-dissipation theorem. (3) Combine those results with the results

of the previous section to determine formulas which give the net radiative transfer.

3.4.1 Poynting Vector

The Poynting vector, P , is defined such that its magnitude and direction hold special

significance in electromagnetism; they represent the intensity and direction of flow of

electromagnetic energy at a given point. Its name is almost serendipitous, since it

can be said to point in the direction of the flow. But the Poynting vector is actually

named after the English physicist John Henry Poynting, who first published about it

in 1884.134
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The time-averaged contribution to the Poynting vector at a position rr due to

sources in object i given by

P piqprrq � 1

2π
Re

» 8

0

〈
Epiqprrq �Hpiq�prrq �Epiq�prrq �Hpiqprrq〉 dω (3.4)

where 〈�〉 denotes an ensemble average and p�q� is the complex conjugate. Due to

linearity, the same formula is true after the substitution P piq Ñ P , Epiq Ñ E, and

Hpiq Ñ H . As evident by the formula, P piq is related to the cross-spectral density

of the components of the electric and magnetic fields and has contributions from all

frequencies. It is important to note here that, despite not being written explictly, the

electric and magnetic fields both vary with frequency.

If Eqs. 3.2a and 3.2b are used to determine Epiqprrq and Hpiqprrq, the resulting

Poynting vector gives the flow of electromagnetic energy due to sources only within

the volume of object i. This is very useful when isolating thermal radiation between

pairs of objects.

From Eq. 3.4, we can see that we need to evaluate products of the electric and

magnetic fields. The products contain terms which are ensemble averages of the

products of the free current densities, J ei and Jmi . In order to evaluate those terms, we

must turn to the fluctuation-dissipation theorem to better understand the statistical

nature of the sources of electromagnetic radiation.
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3.4.2 Fluctuation-Dissipation Theorem

Any object at a finite temperature, even if at equilibrium, will experience random de-

viations from equilibrium due to its thermal energy. When these fluctuations involve

charges like electrons, the acceleration of the electrons will result in the radiation of

electromagnetic waves. Although the currents due to fluctuating charges will average

to zero overtime, the products of currents need not also average to zero. This is where

the fluctuation-dissipation theorem comes in.

The fluctuation-dissipation theorem relates the spectral density of random fluctu-

ations of a system to the system’s dissipation. Much of the preliminary work relating

fluctuation and dissipation was performed by Harry Nyquist, who investigated such

a relation for conductors.135 His work was only applicable in the low-frequency limit.

The first theory to connect fluctuations out of equilibrium and dissipation in a gen-

eral linear system was completed by Callen and Welton in 1951.136 In 1953, Rytov

connected thermal radiation to fluctuations currents using the fluctuation-dissipation

theorem.4,5 His work continues to motivate modern work in NFRHT, as well as work

on the van der Waals and Casimir forces.137,138

The spectral densities of the components of J ei prq and Jmi prq are related by the

fluctuation-dissipation theorem of the second kind139

〈
J ei,pprqJ e�i,q prrq〉 � 2ωε0ImpεqΘpω, T qδpr � rrq δpq (3.5a)〈
Jmi,pprqJm�i,q prrq〉 � 2ωµ0ImpµqΘpω, T qδpr � rrq δpq (3.5b)〈
J ei,pprqJm�i,q prrq〉 � 0 (3.5c)
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where p, q � 1, 2, 3 are the Cartesian components of the current densities, Imp�q

denotes the imaginary component, T is the thermodynamic temperature, and Θpω, T q

is the average energy of a harmonic oscillator of frequency ω at temperature T . In Eq.

3.5, J ei prq and Jmi prq represent the fluctuation and Impεq and Impµq represent the

dissipation. The delta function δpq makes clear there is no coupling between charge

fluctuations in orthogonal directions. The delta function δpr � rrq shows that there

is no spatial correlation in currents, and is known as the local approximation. This

work will assume the validity of such an approximation, though I direct authors to

Ref. 140 for work on NFRHT between non-local materials with spatial dispersion.

The average energy of a harmonic oscillator is given by

Θ � kbTX coth pX q

� kbTX
�

1� 2

exp p2X q � 1


 (3.6)

where X � ~ω{p2kbT q, ~ is the reduced Planck’s constant, and kb is Boltzmann’s

constant. The lone kbTX summand in the second line corresponds to the zero point

energy. Many works in NFRHT exclude the term when defining Θ because it does

not contribute to the net transfer of heat, but we keep it here for completeness.

3.4.3 Heat Transfer and Conductance

The goal of this chapter was to write a general formula for NFRHT in a Landauer-like

form, one in which the formulas for thermal transport are given in terms of modes and

probabilities of transmission of energy. Now that we can compute all the necessary
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terms to understand the electromagnetic fields and the flow of electromagnetic energy,

we can begin to address radiative transfer. The radiative transfer through surface Si

due to sources within object j is given by

Qt,jÑi � �
¾
Si

�pniprrq � P pjqprrq� drr, (3.7)

where rr points to positions on surface Si and the negative sign is required because

pni is unit outward normal of the surface and we require energy flow inward. Using

Eqs. 3.4 (Poynting vector), 3.2 (electric and magnetic fields), and 3.5 (fluctuation-

dissipation theorem), we can evaluate Eq. 3.7 and get a result in terms of only the

DGFs of the system, temperatures, and optical properties. We get

Qt,jÑi � 1

2π

» 8

0

rΘpω, Tjq �Θpω, TEqs τjÑipωqdω (3.8)

where τjÑipωq is a temperature-independent transmissivity function for energy trans-

fer between objects i and j. In some sense, it is a catch-all function for all the terms

you get when you evaluate Eq. 3.7. But the function has a number of convenient

features which will be discussed at length in the next subsection. The net radiative

transfer from object j to object i is given by

Q
pnetq
t,jÑi � Qt,jÑi �Qt,iÑj �

» 8

0

Q
pnetq
jÑi pωqdω

� 1

2π

» 8

0

rΘpω, Tjq �Θpω, Tiqs τjÑipωqdω
(3.9)

This simplification is enabled because τiÑj � τjÑi.
30 From Eq. 3.9, is it clear to
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see Q
pnetq
t,jÑi � �Qpnetq

t,iÑj, which fits with our expectation for radiative transfer.

An additional quantity useful to analyzing systems of objects exchanging radiation

is the conductance. Conductance is the proportionality constant between Q and ∆T ,

and can be used to linearize the temperature dependence of thermal radiation when

∆T is small. Define two conductances, a spectral (G) and a total conductance (Gt),

given by

GjÑipω, T q � lim
Tj ,TiÑT

Q
pnetq
jÑi pωq
Tj � Ti

� BΘ

BT τjÑi pωq (3.10)

Gt,jÑipT q � 1

2π

» 8

0

GjÑipω, T qdω (3.11)

Working with conductance has the advantage of reducing the number of temper-

atures variables to one. To calculate conductances, the temperature dependence is

captured by the temperature derivative of Θ

BΘ

BT � kbX 2 csch2 pX q

� kb p2X q2 exp p2X q
pexp p2X q � 1q2

(3.12)

Spectral conductance is often expressed in different units in different papers, but

changes of variable can be performed to transform between units. A definition of

spectral conductance is valid so long as the integral defintion of total conductance

computes to the same value, regardless of the units used. For example, in Fig. 5.1 I

present τjÑipλq in units of s�1
µm�1, where λ � 2πc{ω is the vacuum wavelength and

c is speed of light in vacuum. This version of spectral conductance is obtained from
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τjÑipλq � cλ�2τjÑipωq and the corresponding integral definition for total conductance

is

Gt,jÑipT q �
» 8

0

GjÑipλ, T qdλ

�
» 8

0

kbX 2 csch2 pX qτjÑipλqdλ
(3.13)

3.4.4 Transmissivity Function

As was stated earlier, DGFs take the form Gpr; rrq where the arguments r and rr
are position vectors which indicate the source and response locations. Depending on

which regions r and rr are located, both the DGFs themselves and the form of the

transmissivity function must change. The transmissivity function was derived using

Eq. 3.2 (volume integration) and Eq. 3.7 (surface integration). That asymmetry

has a number of disadvantages, primarily that it obscures the symmetry of radiative

heat transfer. Since emission and absorption of electromagnetic waves are volumetric

phenomena, it might seem intuitive to expect the expression for the transmissivity

function for energy transfer to contain two volume integrals, and thus to convert

the surface integral to a volume integral. Double volume integral was the approach

that allowed Polder and van Hove to derive their plane-plane NFRHT12 and for

Narayanaswamy and Chen to derive the first sphere-sphere NFRHT result.34 But that

approach is limited because any composite bodies would require volume integration

over each interior region separately. While that is not impossible, it is cumbersome.

If the volumes are isothermal, the properties of the vector Helmholtz equation

allow us to convert volume integrals into surface integrals. If the volume integral is
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converted to a surface integral, we get the approach called the “interior method” by

Narayanaswamy and Zheng in Ref. 30. When using the interior method, though the

integrations occur on the two surfaces, r and rr must approach the two surfaces from

the insides of the objects. The transmissivity function for such a situation is given

by

τjÑipωq � 2ReTr

¾
Si

dr

¾
Sj

drr
�����
�
ω
c

�2
ε�prqµprq

�pniprq �Gepr, rrq���pnjprrq �GT

mpr, rrq��
�
�pniprq �GMpr, rrq���pnjprrq �GT

Epr, rrq��
�����

(3.14)

In some ways, the double surface integral formula for the transmissivity function

appears similar to the formula for a view factor1 in classical radiative transfer. The

view factor, however, is a purely geometric property of just two objects, irrespective

of any other objects present, whereas the DGFs contained within the transmissivity

function automatically account for the effects of all objects present. Furthermore

classical approaches such as thermal circuits or Gebhart factors141, when using view

factors in their calculations, assume objects emit diffusly with well-defined emissiv-

ities. DGF approaches, and therefore the transmissivity function, are exact in all

situations where Maxwell’s equations are valid, which includes objects with super-

Planckian (greater than that of a blackbody) effective emissivities.

The boundary conditions given by Eq. 3.3 allow us to move from the interior

method to an “exterior method,” one for which r and rr must approach the two

surfaces from the outsides of the objects, in free-space region f . The advantage of
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this approach is that the same formalism can be used for homogeneous or composite

objects. The transmissivity function for that case is given by

τjÑipωq � 2ReTr

¾
Si

dr

¾
Sj

drr
�����

k2
f

�pniprq �Gepr, rrq� � �pnjprrq �GT

mpr, rrq��
�
�pniprq �GMpr, rrq� � �pnjprrq �GT

Epr, rrq��
�����
(3.15)

At first glance, the transmissivity function for the exterior method does not appear

very different than that of the interior method. The key difference between the

two is that the DGFs needed to use this formalism are different than those for the

interior method. The DGFs must be determined such that both of the position vector

arguments are located in free space region f , just outside the surfaces of objects i

and j. The exterior method will be the approach favored throughout this work.

3.5 Radiative Heat Transfer Between Planar

Bodies

The NFRHT between two planar half-spaces has been well-studied since Polder and

van Hove first published their work in 1971.12 In this section, I will present theoretical

and numerical results for plane-plane NFRHT. Using the exterior method (see Ref.

30 for the appropriate DGFs), the transmissivity (per unit area) between two semi-
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infinite half-spaces is given by

τ1Ñ2pωq
A

� 1

2π

» 8

0

�
T psqpkρq � T ppqpkρq

�
kρdkρ (3.16)

where

T pαqpkρq �

$'''&'''%
�

1�|rrpαq1 |2

�

1�|rrpαq2 |2



|1�rrpαq1 rrpαq2 exp p2ikz,0lq|2 if 0 ¤ kρ ¤ ω{c
4Imprrpαq1 qImprrpαq2 q exp p2ikz,0lq

|1�rrpαq1 rrpαq2 exp p2ikz,0lq|2 if ω{c   kρ

(3.17)

Here, kρ is the in-plane component of the wavevector, kz is the component of the

wavevector normal to the surface, l is the separation distance between the two half-

spaces, rrpαq is the effective Fresnel coefficient, and α is either the s or p polarization.

Information on computing the Fresnel reflection coefficients is found in Appendix A.

The transmissivity function between two planar media has a piecewise definition,

dependent on the value of kρ. For 0 ¤ kρ ¤ ω{c, radiation is exchanged by propa-

gating waves. These are the waves accounted for by CRT. For ω{c   kρ, evanescent

waves are responsible for radiative transfer. Evanescent waves are surface waves

that exponentially decrease in magnitude as the distance from the surface increases.

Evanescent waves are the result of total internal reflection and they are not able to

contribute to radiative transfer from a half-space to free space so they do not show

up in emissivity calculations. If a second object comes into close proximity to an

object with evanescent surface waves and the evanescent wave intersects the second

object, then energy may be transferred. This is referred to as frustrated total internal

reflection by the optics community and often called photon tunneling in the NFRHT

community due to the analogous math to quantum mechanical tunneling.142

44



Evanescent waves are essentially the secret sauce of NFRHT; they enable super-

Planckian radiative transfer by serving as a second channel to transfer heat. The most

important types of evanescent waves to NFRHT are those which couple to phonons

(lattice vibrations) within an object to form a resonant quasiparticle called a surface

phonon polariton (SPhP).143 This coupling can only occur for the p polarization when

Repεq   �1 and Impεq ! 1.144

3.5.1 Numerical Results

Numerical results for NFRHT between two half-spaces composed of polar dielectrics

(silicon dioxide and silicon carbide), polymer dielectrics (PDMS and PMMA), and

metals (gold and silver) are presented in Figs. 3.2 and 3.3. All conductances are com-

puted at T � 300 K and are normalized by the conductance between two blackbodies.

The spectral conductance between two blackbodies is given by

GjÑi,BBpλ, T q �

���
�

8π3c3~2
kbT 2λ6

	
exp

�
2π~c
kbTλ

	
�
exp

�
2π~c
kbTλ

	
� 1

�2

���AjFjÑi, (3.18)

and the total conductance is given by

Gt,jÑi,BBpT q �
» 8

0

GjÑi,BBpλ, T qdλ � 4σT 3AjFjÑi, (3.19)

where Aj is the surface area of object j, FjÑi is the radiative view factor from object

j to object i, and σ � π2k4
b{60c2~3 is the Stefan-Boltzmann constant. See Appendix

B for further details.
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Figure 3.2: Total conductance between two semi-infinite planar bodies. The con-
ductance is computed for polar dielectrics (SiO2 and SiC), polymers (PDMS and
PMMA), and metals (Au and Ag). The conductance is normalized in the plot by
that of two blackbodies (Gt,BB{A � 6.12 W m�2 K�1 where A is the surface area).
The solid black line lies at an ordinate of 1 (blackbody behavior) for all values of
abscissa.

Figure 3.3 shows the total conductance as a function of distance. In the near-field

(D   10 µm), all materials deviate from the constant behavior predicted by CRT

and begin to show higher heat transfer rates. The dielectric materials achieve a slope

of � D�2, which is a telltale sign of evanescent wave domination over NFRHT for

planar media. Polar materials, which support SPhP modes, show higher heat transfer

than polymers, which themselves outperform metals at almost all gaps. Metals tend

to level out in the extreme near-field, which indicates that high k-modes do not

contribute as heavily to heat transfer between metals as between dielectrics.

Figure 3.2 shows the spectral conductance at a fixed separation distance of 0.1

µm. This distance was chosen because it lies safely within the near-field. Dielectric

materials show mostly level behavior (indicating a graybody approximation is valid
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Figure 3.3: Spectral conductance between two semi-infinite planar bodies with a
separation distance of 0.1 µm. The conductance is computed for polar dielectrics
(SiO2 and SiC), polymers (PDMS and PMMA), and metals (Au and Ag). The
conductance is normalized in the plot by that of two blackbodies. The solid black
line lies at an ordinate of 1 (blackbody behavior) for all values of abscissa.

at those wavelengths), with some peaks seemingly superimposed on top. The peaks

correspond to the locations of resonances of the dielectric function of each mate-

rial.93,100,145 The three largest peaks present (two large peaks for silicon dioxide at

8.5 µm and 20 µm and one large peak at 10.5 µm for silicon carbide) correspond to

SPhP modes. The other peaks occur due to optical resonances that do not qualify as

SPhP modes. Those peaks, such as the numerous peaks in the spectra of PDMS and

PMMA, tend to be much smaller. Unsurprisingly, the metals act unlike any other

material and do not conform to the shape of a blackbody distribution.

Reviewing NFRHT between planar surfaces was meant to demonstrate some of the

common features of NFRHT in the simplest test-case. Many of these characteristics

will appear again when examining NFRHT between spheres. The details of that
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configuration are presented in Chapters 4 and 5.
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Chapter 4

Model for Near-Field Radiative Heat Transfer Between

Spherical Bodies

We choose to work with spheres not because they are easy, but because
they are hard; because that goal will serve to organize and measure the
best of our energies and skills, because that challenge is one that we are
willing to accept, one we are unwilling to postpone, and one we intend to
win, and the others, too. John F. Kennedy, probably

4.1 Introduction

In this chapter, we will develop a model for NFRHT between spherical objects, and

between a spherical object and its environment. Specifically, we will examine the

case of a linear chain of spheres, a chain in which the centers of every sphere lie on a

common axis. I published this work in Refs. 36 and 146. Spheres are an important

geometry to investigate because of their numerous useful properties: they are com-

pact objects with a convenient coordinate system, they have rotational symmetry, in

the limit as one sphere is much larger than the second you recover a sphere-plane

geometry, small spheres can approximate dipoles, etc. For these reasons and more, a

model of NFRHT involving spheres is an attractive tool to add to the the toolbox of

the NFRHT community.
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I will proceed as follows: first, I will provide the geometrical definitions required to

describe a linear chain of spheres. Next, I will mathematically define vector spherical

waves and demonstrate how to translate them between coordinate systems. After

that, I will use the vector spherical waves to construct the DGFs of the system.

Finally, I will use the DGFs to solve for the transmissivity which describes sphere-

sphere and sphere-environment NFRHT.

4.2 Geometry of Linear Chain

The configuration of the chain of spheres is shown in Fig. 4.1. In Fig. 4.1A, an

individual sphere, labeled sphere i, is depicted. Sphere i has an outer radius, ρi.

Internally, it may be homogeneous or composed of spherically symmetric layers. Co-

ordinate system i is fixed to the center of sphere i. Any position vector, r or rr, when

written in coordinate system i, is denoted ri or rri, respectively.

Figure 4.1B depicts a section of a linear chain of Ns spheres, which is embedded

in free space (referred to as region f). The z-axis of coordinate system i (1 ¤ i ¤ Ns)

is aligned down the central axis of the chain. The x-axes of all coordinate systems

are parallel, and similarly so are the y-axes.

The spheres are numbered 1 through Ns, such that their labels increase along

the positive z-direction (of any coordinate system). Any two spheres, i and j, are

separated by center-to-center distance di,j and the minimum separation between them

is Di,j � |di,j|�ρi�ρj (not depicted explicitly in Fig. 4.1). The sign of di,j is positive

if j ¡ i and negative if j   i.
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ෝ𝒙𝑖 ෝ𝒚𝑖

Figure 4.1: Configuration of spheres in chain. (A) Single sphere i and its associated
coordinate system. (B) Section from a linear chain of spheres embedded in region f .

4.3 Spherical Waves

4.3.1 Spherical Coordinate System

Throughout this chapter, we will be working extensively in spherical coordinates.

The convention used to define unit vectors in spherical coordinates varies by field, so

a depiction of the convention used henceforth is given as Fig. 4.2. In our system,

φ defines the azimuthal direction and θ defines the polar (zenith) angle. The radial

distance from the origin is given by r.

4.3.2 Vector Eigenfunctions

When expressed in a spherical coordinate system, the solutions to the homogeneous

vector Helmholtz equation are vector spherical waves (VSWs). Three such VSWs

exist: L
ppq
lmpkrq, M ppq

lm pkrq, and N
ppq
lm pkrq. The value of p gives the radial behavior

(to be discussed shortly) and pl,mq gives the order of a VSW. The divergence of
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Figure 4.2: Spherical coordinate system convention used in this work.

M
ppq
lm pkrq and N

ppq
lm pkrq is zero, while the curl of L

ppq
lmpkrq is zero. Because Maxwell’s

equations require divergence-free fields at source-free locations (see Eqs. 2.1a and

2.1b), only M
ppq
lm pkrq and N

ppq
lm pkrq are required to express the electric and magnetic

fields in the eigenfunction expansions in this work.

The requisite VSWs are defined as

M
ppq
lm pkrq �zppql pkrqV p2q

lm pθ, φq, (4.1)

N
ppq
lm pkrq �ζppql pkrqV p3q

lm pθ, φq �
a
lpl � 1q
kr

z
ppq
l pkrqV p1q

lm pθ, φq, (4.2)
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where r � |r|, zppql pkrq is the spherical Bessel (p � 1) or spherical Hankel (p � 3)

function of the first kind and ζ
ppq
l pkrq � 1

kr
d

dpkrq
pkrzppql pkrqq. V p1q

lm pθ, φq, V p2q
lm pθ, φq, and

V
p3q
lm pθ, φq are the vector spherical harmonics of order pl,mq for polar and azimuthal

angles θ and φ, respectively. They are defined as

V
p1q
lm pθ, φq � Ylmpθ, φqpr, (4.3)

V
p2q
lm pθ, φq � ra

lpl � 1q∇Ylmpθ, φq � pr, (4.4)

V
p3q
lm pθ, φq � ra

lpl � 1q∇Ylmpθ, φq, (4.5)

where Ylmpθ, φq is the scalar spherical harmonic of order pl,mq and pr, pθ, and pφ are

the unit vectors of the spherical coordinate system (see Fig. 4.2). Scalar spherical

harmonics are given by

Ylmpθ, φq �
d

2l � 1

4π

pl �mq!
pl �mq!P

m
l pcos θqeimφ, (4.6)

where Pm
l pxq is the associated Legendre polynomial.147 See Appendix C for selected

defintions and properties of the VSWs, spherical Bessel and Hankel functions, and

vector spherical harmonics.

Purely as a space-saving tactic, we introduce the notation

X
pγq
lm pkfrjq �Xp1q

lm pkfrjq � rRpγq
l pρjqXp3q

lm pkfrjq (4.7)

where X can be M or N and γ can be M or N . rRpγq
l is the effective Mie coefficient,
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which will be discussed further in Appendix D. This notation will prove vital to saving

space when defining DGFs for chains of spheres.

4.3.3 Vector Addition Translation Theorem

Each sphere in the chain has a coordinate system fixed to its center, and we will

need to occasionally transform VSWs expressed in one coordinate system to another.

That can be accomplished by the vector addition translation theorem.148–154 The

vector addition translation theorem is used to translate VSWs expressed in a given

coordinate system into a second coordinate system, defined by a second origin and

set of unit vectors. For our purposes, we will always translate VSWs with position

vectors located closer to the origin of the second coordinate system than the distance

between the origins of the two coordinate systems. In its most general form, the

vector addition translation theorem for that case is given by

M
p3q
lm pkrjq �

8̧

ν�1

ν̧

η��ν

�
Almνη pkdi,jqM p1q

νη pkriq �Blm
νη pkdi,jqN p1q

νη pkriq
�

(4.8a)

N
p3q
lm pkrjq �

8̧

ν�1

ν̧

η��ν

�
Blm
νη pkdi,jqM p1q

νη pkriq � Almνη pkdi,jqN p1q
νη pkriq

�
(4.8b)

where Almνη and Blm
νη are vector addition translation coefficients. This expression is

only valid for when |ri| ¤ |di,j|, as in our case. For other cases, the types of spherical

Bessel and Hankel functions occurring within the VSWs and translation coefficients

vary. See Ref. 153 for details. A further simplification can be made when the two

coordinate systems are merely translations along a common z-axis. In that case,
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the translation coefficients are nonzero for η � m only and we get the simplified

expressions

M
p3q
lm pkfrjq �

8̧

ν� rm
�
Almνmpkdi,jqM p1q

νmpkfriq �Blm
νmpkdi,jqN p1q

νmpkfriq
�
, (4.9a)

N
p3q
lm pkfrjq �

8̧

ν� rm
�
Blm
νmpkdi,jqM p1q

νmpkfriq � Almνmpkdi,jqN p1q
νmpkfriq

�
. (4.9b)

This simplification is the primary reason why we choose to pursue NFRHT in a

chain of spheres; it drastically reduces mathematical and computational complexity.

For anyone interested in NFRHT and/or light scattering in random clusters of spheres,

I direct readers to Refs. 155 and 156.

4.4 Dyadic Green’s Functions

A DGF gives the vectorial response at a location due to a vector source at another

location, the two positions being the arguments of the DGF. A convenient method

to obtain the DGFs is to expand them in terms of the eigenfunction solutions to the

vector Helmholtz equation. In spherical coordinates, the eigenfunctions of the vector

Helmholtz equation are the vector spherical waves M
ppq
lm pkrq and N

ppq
lm pkrq.

Each region (free-space, layer of a sphere, or core of a sphere) has a DGF com-

posed of two parts: a homogeneous DGF, G0pr; rrq, corresponding to waves which

travel directly from rr to r, and a scattered DGF corresponding to waves which have

experienced scattering at inhomogeneities. When expanding a DGF into its VSW

eigenfunctions, the choice of coordinate system for r and rr becomes important be-
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cause they appear in the arguments of vector spherical waves. Let’s examine the

DGFs for the free-space region f . Assuming that r, rr P f (so we may use the exterior

method), G0pr; rrq can be written in the j-coordinate system as

G0pr; rrq � ikf

8̧

m��8

8̧

l��m

p�1qm

$''''''''&
''''''''%

�
�� M

p3q
lm pkfrjqM

p1q
l,�mpkf rrjq

�N
p3q
lm pkfrjqN

p1q
l,�mpkf rrjq

�
�� for rj ¡ rrj

�
�� M

p1q
lm pkfrjqM

p3q
l,�mpkf rrjq

�N
p1q
lm pkfrjqN

p3q
l,�mpkf rrjq

�
�� for rj   rrj

(4.10)

where we define rm � max t|m| , 1u. With respect to the center of the j-coordinate

system, the homogeneous DGF for rj ¡ rrj (rj   rrj) corresponds to outgoing (incom-

ing) VSWs at rj. The double surface integral in Eq. 3.15 for computing τjÑi requires

ri P Si and rrj P Sj. Hence, we must choose the branch of G0pr; rrq for which rj ¡ rrj.
The scattered DGF captures the collective effect of all scattering events at in-

terfaces. The scattered DGF splits naturally into two parts: a part representing

waves scattered off of a single sphere only, G
pscq1

e pr; rrq, and a part representing waves

scattered off of both spheres, G
pscq2

e pr; rrq. Gpscq2

e pr; rrq obviously includes multiple

reflections between the two spheres. Because we chose to write Eq. 4.10 in the j-

coordinate system, we must also express G
pscq1

e pr; rrq, representing waves scattered by

sphere j only, in the j-coordinate system. That part of the scattered DGF is related

to the branch of G0pr; rrq for rj   rrj. In that case, G
pscq1

e pr; rrq can be thought of as

arising from VSWs emitted at rr which travel inward before reflecting off of sphere j
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and proceeding to r. It is given by

G
pscq1

e pr; rrq � ikf

8̧

m��8

8̧

l��m

p�1qm

$'&
'%

rRpMq
l pρjqM

p3q
lm pkfrjqM

p3q
l,�mpkf rrjq

� rRpNq
l pρjqN

p3q
lm pkfrjqN

p3q
l,�mpkf rrjq

,/.
/- (4.11)

where rRpMq
l pρjq and rRpNq

l pρjq are the effective Mie reflection coefficients (see Appendix

D) at the surface of sphere j for M
p1q
lm pkf rrjq and N

p1q
lm pkf rrjq waves, respectively.

Some waves may reflect off of both spheres multiple times on their journey from

rr to r. The DGF which takes into account those multiple scatterings is given by

G
pscq2

e pr; rrq � ikf

Nş

p�1

8̧

m��8

8̧

l��m

8̧

ν��m

p�1qm

$''''''''&
''''''''%

�
�� rRpMq

ν pρpqV
M,M,p,j
l,ν,m M

p3q
νmpkfrpq

� rRpNq
ν pρpqV

N,M,p,j
l,ν,m N

p3q
νmpkfrpq

�
��M

pMq
l,�mpkf rrjq

�

�
�� rRpMq

ν pρpqV
M,N,p,j
l,ν,m M

p3q
νmpkfrpq

� rRpNq
ν pρpqV

N,N,p,j
l,ν,m N

p3q
νmpkfrpq

�
��N

pNq
l,�mpkf rrjq

,////////.
////////-

(4.12)

where the coefficients V X,Y,i,j
l,ν,m (referred to henceforth as scattered field coefficients) are

unknowns to be determined from the boundary conditions, which will be discussed

shortly.

All DGFs of the form discussed in this work are composed of dyadic products157

of VSWs. In Eq. 4.12, the VSW to the right can be any of the VSWs to the right in

G0pr; rrq, i.e., M
p1q
l,�mpkf rrjq, N p1q

l,�mpkf rrjq, M p3q
l,�mpkf rrjq, or N

p3q
l,�mpkf rrjq (representing

all possible sources). The vector to the left has to be an outgoing VSW (in any

coordinate system) in order to satisfy the far-field boundary conditions. Hence, the

vector to the left can be a M
p3q
νmpkfrpq or N

p3q
νmpkfrpq for 1 ¤ p ¤ Ns. Eq. 4.12 takes

into account all these possibilities.
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The full electric DGF is obtained by summing Eq. 4.10-4.12. Doing so, we get

Gepr; rrq � ikf

8̧

m��8

8̧

l��m

p�1qm
!
M

p3q
lm pkfrjqM

pMq
l,�mpkf rrjq �N

p3q
lm pkfrjqN

pNq
l,�mpkf rrjq

)

� ikf

Nş

p�1

8̧

m��8

8̧

l��m

8̧

ν��m

p�1qm

$''''''''&
''''''''%

�
�� rRpMq

ν pρpqV
M,M,p,j
l,ν,m M

p3q
νmpkfrpq

� rRpNq
ν pρpqV

N,M,p,j
l,ν,m N

p3q
νmpkfrpq

�
��M

pMq
l,�mpkf rrjq

�

�
�� rRpMq

ν pρpqV
M,N,p,j
l,ν,m M

p3q
νmpkfrpq

� rRpNq
ν pρpqV

N,N,p,j
l,ν,m N

p3q
νmpkfrpq

�
��N

pNq
l,�mpkf rrjq

,////////.
////////-

(4.13)

I remind the reader that the magnetic DGF may be obtained from Eq. 4.13 by

substituting M Ø N in every superscript of the reflection and VSW coefficients.

Additionally, that we define GE � ∇ � Ge and GM � ∇ � Gm, where the curl

operates on the first term only in each dyadic product summand of the DGFs. Ge,

Gm, GE, andGM are the four DGFs required to evaluate the transmissivity function.

The scattered field coefficients are required for Eq. 4.13 to be useful. The linear

system of equations for scattered field coefficients is obtained by evaluating boundary

conditions between every core, layer, or free-space region f that share a boundary.

The linear system contains information on the optical properties and internal config-

urations of the spheres (encoded by the Mie reflection coefficients) and the geometric

configuration of the ensemble of spheres (encoded by the vector additional translation

coefficients).

For given values of m and j, V X,Y,i,j
l,ν,m may be obtained by solving the coupled set

of linear equations generated from all possible combinations of X �M or N , Y �M
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or N , and i � 1, 2, ..., or Ns using

V X,Y,i,jl,ν,m �
Nş

p�1

8̧

n��m

�
VM,Y,p,jl,n,m

rRpMq
n pρpqC

X,M,i,p
n,ν,m � V N,Y,p,jl,n,m

rRpNq
n pρpqC

X,N,i,p
n,ν,m

�
� CX,Y,i,jl,ν,m (4.14)

where

CX,Y,i,j
l,ν,m �

$''''''&''''''%
0 if i�j

Al,mν,m pkfdj,iq if i�j and X�Y

Bl,m
ν,m pkfdj,iq if i�j and X�Y

(4.15)

Further detail on how to solve this linear system is provided in Appendix E.

4.5 Analysis for Chain of Spheres

Just like in the plane-plane configuration, the sphere-sphere configuration allows us

to probe interobject NFRHT. But unlike the case of two semi-infinite half-spaces,

we may also probe sphere-environment NFRHT. In either case, the position vector

arguments of the DGFs must be located on each of the two surfaces over which the

surface integrals in the transmissivity function are computed. For ease of computa-

tion, it is important to express those position vectors in the coordinate system most

convenient to that goal. The choice of coordinate system therefore varies, depending

on the objects between which the transmissivity function is being computed.

To obtain heat transferred from sphere j to sphere i, rr must be written in the

j-coordinate system and be located just outside the surface of sphere j. Similarly, r

must be written in the i-coordinate system and be located just outside the surface of

sphere i. Hence, we choose to represent the DGFs as Gpri; rrjq. The DGFs may then
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be simplified by using Eq. 4.14 to remove explicit appearances of the vector addition

translation coefficients. The DGFs for that case simply to

Gepr; rrq � ikf

8̧

m��8

8̧

l��m

8̧

ν��m

p�1qm

$''''''''&
''''''''%

�
�� VM,M,i,jl,ν,m M

pMq
νm pkfriq

�V N,M,i,jl,ν,m N
pNq
νm pkfriq

�
��M

pMq
l,�mpkf rrjq

�

�
�� VM,N,i,jl,ν,m M

pMq
νm pkfriq

�V N,N,i,jl,ν,m N
pNq
νm pkfriq

�
��N

pNq
l,�mpkf rrjq

,////////.
////////-

(4.16)

To obtain heat transferred from a sphere j to its environment, rr must remain on

the surface of sphere j and r must lie on a large fictitious surface, whose size expands

to infinity. For ease of computation, we choose the fictitious surface to be spherical.

For any value of i, VSWs with arguments of kfri asymptotically become equal as

|r|{d1,Ns Ñ 8. For this reason, r may be written in the coordinate system of any

sphere. For ease, we will also write r in the j-coordinate system. Hence, we choose

to represent the DGFs as Gprj; rrjq.

Geprj ; rrjq � ikf

8̧

m��8

8̧

l��m

8̧

ν��m

p�1qm

$''''''''&
''''''''%

�
��
�
1� SM,M,jl,ν,m

�
M

p3q
νmpkfrjq

�SN,M,jl,ν,m N
p3q
νmpkfrjq

�
��M

pMq
l,�mpkf rrjq

�

�
�� SM,N,jl,ν,m M

p3q
νmpkfrjq

�
�
1� SN,N,jl,ν,m

�
N

p3q
νmpkfrjq

�
��N

pNq
l,�mpkf rrjq

,////////.
////////-

(4.17)

where SX,Y,jl,ν,m � °Ns
i�1

rRpXq
ν pρiqV X,Y,i,j

l,ν,m .

Using the simplified DGFs, the transmissivity function from sphere j to sphere i
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is given by

τjÑi pωq � pkfρiq2 pkfρjq2
8̧

m��8

8̧

l� rm
8̧

ν� rm

�

�����
�
ε
pMq
ν pρiq

���V M,M,i,j
l,ν,m

���2 � ε
pNq
ν pρiq

���V N,M,i,j
l,ν,m

���2� εpMq
l pρjq

�
�
ε
pMq
ν pρiq

���V M,N,i,j
l,ν,m

���2 � ε
pNq
ν pρiq

���V N,N,i,j
l,ν,m

���2� εpNql pρjq

�����
(4.18)

where

εpP qν pρiq � �2

pkfρiq2
�
Re
�
RpP q
ν pρiq

�� ��RpP q
ν pρiq

��2� (4.19)

and P � M or N . Repzq and |z| denote the real part and magnitude of complex

number z, respectively. This result was reported by Czapla and Narayanaswamy36

for the two sphere case but here I show that the same formula, with modified scattered

field coefficients, holds true for any number of spheres in a chain.

Similarly, using the appropriate DGFs, the transmissivity function from sphere j

to its environment is given by

τjÑEpωq � τ isojÑEpωq

� 4 pkfρjq2
8̧

m��8

8̧

l� rm
!

Re
�
SM,M,j
l,l,m

�
ε
pMq
l pρjq � Re

�
SN,N,jl,l,m

�
ε
pNq
l pρjq

)

� 2 pkfρjq2
8̧

m��8

8̧

l� rm
8̧

ν� rm

$'''&'''%
� ���SM,M,j

l,ν,m

���2 � ���SN,M,j
l,ν,m

���2 � εpMq
l pρjq

�
� ���SM,N,j

l,ν,m

���2 � ���SN,N,jl,ν,m

���2 � εpNql pρjq

,///.///-
(4.20)

where

τ isojÑEpωq � 2 pkfρjq2
8̧

m��8

8̧

l� rm
�
ε
pMq
l pρjq � ε

pNq
l pρjq

�
(4.21)
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is the transmissivity function for an isolated sphere emitting into its environment

(Ns � 1 implies V X,Y,1,1
l,n,m � 0 for all values of l, n, m, X, and Y ). Interestingly, there

is no apparent upper or lower bound on Eq. 4.20. This fits with recent theoretical

work that showed far-field emission by sub-wavelength objects can exceed Planck’s

blackbody limit by orders of magnitude.158 Fig. 5.5 in the next chapter will show

that τjÑE can become larger or smaller that τ isojÑE in different cases.

ε
pP q
ν pρiq is defined such that the spectral emissivity of an isolated sphere159 is given

by

ε pωq �
8̧

m��8

8̧

l� rm
�
ε
pMq
l pρiq � ε

pNq
l pρiq

�
(4.22)

The spectral emissivity of an isolated sphere in Ref. 159 can alternatively be derived

using the DGF formalism from this work. To do so, we first compute the transmis-

sivity function from a single blackbody sphere to a large fictitious spherical surface

surrounding it. τ isojÑE,BB is given by30

τ isojÑE,BBpωq �
k2
f

2π
AjFjÑE � 2 pkfρjq2 (4.23)

where Aj � 4πρ2
j is the surface area of sphere j and FjÑE is the view factor from

sphere j to its environment (FjÑE � 1 for an isolated sphere in a large enclosure).

Dividing the true amount of heat emitted Eq. 4.21 by the amount emitted by a

blackbody Eq. 4.23 yields the emissivity Eq. 4.22.

Equations 4.18 and 4.20 are the main results of this work. It is important to note

that these equations are valid, in principle, for spheres of any outer radii, number of
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coatings, separation gaps, and isotropic optical properties. This stands in contrast

to the many prior works where explicit results for sphere-sphere NFRHT are only

given for special cases such as small radii20,89,90,130, large separation gaps31, or small

skin depths80,160. Furthermore, Eq. 4.20 now allows us to probe sphere-environment

NFRHT, using the same scattered field coefficients that are necessary to compute for

sphere-sphere interactions. Essentially, a second useful quantity can now be deter-

mined for free, as a post-processing step. These formulas are numerically probed in

Chapter 5.
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Chapter 5

Cross-Validation and Results of Model

5.1 Validation of Model

In this section, I will compare the results of this work against existing methods in

the literature. Equations 4.18 and 4.20 were implemented in the Wolfram language

of Mathematica161 (see GitHub repository in Ref. 162) and validated against the

thermal discrete dipole approximation (T-DDA) and the boundary element method

(BEM). It is also important to state that the method outlined in this work reproduces

previous work on sphere-sphere NFRHT in Ref. 34 to 4 to 5 digits of accuracy, for

the case of two homogeneous spheres. Those results will not be presented below.

The Mathematica code is written to take the number, outer radii, and optical

properties of the spheres as inputs. Furthermore, the algorithm used to compute

vector addition translation coefficients is optimized for spheres of approximately equal

radii. Though the algorithm works, in principle, for any size spheres, the time required

grows rapidly for spheres with large size disparity. I direct readers interested in that

situation to Ref. 83 for asymptotic approximations which improve computation time.
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5.1.1 Validation Against Thermal Discrete Dipole

Approximation

T-DDA33,40,163 uses an ensemble of dipoles, described by the fluctuation-dissipation

theorem, to construct larger volumes in arbitrary geometries. T-DDA can be used

to solve for the heat transfer between finite objects and semi-infinite half-spaces.

Edalatpour et al.25 used T-DDA to simulate the NFRHT between three spheres in

a chain. In the notation of this work, Edalatpour et al. simulated three identical

spheres with ρ � 0.8 µm and D � 100 nm. They set T1 � 300 K and T2 � T3 � 0

K and simulated values of QjÑi for λ � 10 µm and two different values of the

relative permittivity: εres � �1.36� 1.36i and εnon�res � 9� 0.06i. εres and εnon�res

correspond to resonant and non-resonant dielectric functions, respectively.

T-DDA requires volume discretization of the spheres. Edalatpour et al. dis-

cretized the outer spheres (1 and 3) into 27,564 non-uniform subvolumes and the

middle sphere into 45,800 non-uniform subvolumes. The smallest subvolumes were

concentrated at locations nearest to other spheres, to achieve high resolution in the

areas which absorb most heavily. Although it is not mentioned in Ref. 25, the authors

have stated in other works that T-DDA computation time can be lengthy.40 Time,

of course, is the price paid for the ability to simulate any geometry.

A comparison of the results of the T-DDA method and this work (labeled DGF)

appears in Tables 5.1 and 5.2. This work shows excellent agreement with the results

of T-DDA. The maximum percent error of the T-DDA results is 2.82% compared to

our DGF results. Edalatpour et al. did not, however, report results for heat transfer
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Table 5.1: Comparison of results from current work (DGF) and the thermal discrete
dipole approximation (T-DDA) for a three sphere chain using a resonant value of
dielectric function. Values from T-DDA are taken from Ref. 25.

T-DDA (nW eV�1) DGF (nW eV�1) Percent Error

Q1Ñ2 197.2 193.8 1.75%

Q1Ñ3 2.41 2.48 2.82%

Table 5.2: Comparison of results from current work (DGF) and the thermal discrete
dipole approximation (T-DDA) for a three sphere chain using a non-resonant value
of dielectric function. Values from T-DDA are taken from Ref. 25.

T-DDA (pW eV�1) DGF (pW eV�1) Percent Error

Q1Ñ2 0.425 0.430 1.16%

Q1Ñ3 0.0285 0.0287 0.70%

to the environment.

5.1.2 Validation Against Boundary Element Method

To compare results for larger spheres and conductance to the environment, numerical

computations were performed using scuff-em, a free, open-source software imple-

mentation of the boundary-element method164,165 which models fluctuating-surface-

currents as the source of thermal radiation. The steps required to perform NFRHT

simulations using scuff-em are outlined in Appendix F. Three identical spheres of

ρ � 10 µm and D � 1 µm were simulated. These sizes were chosen specifically to be

comparable to the thermal wavelength. The spheres were simulated to be amorphous

silicon dioxide, using the built-in Lorentz oscillator model of dielectric function found

in scuff-em. All the parameters of the Lorentz model are given in Table 5.3.

The scuff-em software can compute both sphere-sphere and sphere-environment
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Table 5.3: Lorentz oscillator model parameters for the dielectric function of amor-
phous silicon dioxide, as given by scuff-em. Unlisted is ε8 � 2.03843.

k ~ω0,k (eV) λ0,k (µm) Sk Γk

1 0.05624 22.04432 0.93752 0.09906

2 0.09952 12.45818 0.05050 0.05511

3 0.13355 9.28364 0.60642 0.05246

heat transfer rates. Figure 5.1A shows the transmissivity between each pair of spheres

and between each sphere and its environment. Due to the symmetry of the three

spheres, redundant curves are suppressed. Solid lines are computed using the DGF

formulas outlined in this work and markers are from scuff-em calculations. For

most wavelengths, there is fairly good agreement between the two methods, with

approximately 10% error (see Fig. 5.1B). Sphere-sphere errors tend to be lower than

sphere-environment errors. Additionally, a large error tail is apparent for shorter

wavelengths. This may be due to an insufficiently dense mesh. Each sphere’s outer

surface was meshed into 442 roughly equal triangular areas. Shorter wavelengths

should be more sensitive to the deviations from a spherical shape that a mesh intro-

duces. A preliminary convergence analysis shows a reduction in the relative error for

short wavelengths, but the source of the deviant behavior should be explored further

in future work. Fortunately, the kbX 2 csch2 pX q term in Eq. 3.13 is small for short

wavelengths, tempering potential error in total conductance.
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Figure 5.1: Cross-validation of DGF and BEM methods. (A) Transmissivity function
for energy transfer from source to destination (j Ñ i) between three identical silicon
dioxide spheres with ρ � 10 µm and D � 1 µm. Values were computed by the DGF
(present work) and BEM methods. (B) Magnitude of percent error between two
methods in (A).
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5.2 Coated Sphere Results

In this section, all numerical results will be shown for T � 300 K. Simulated values

of spectral and total conductance will be normalized by the conductance between

the same two spheres, assuming them to be blackbodies. The spectral conductance

between two blackbodies is given by

GjÑi,BBpλ, T q �

���
�

8π3c3~2
kbT 2λ6

	
exp

�
2π~c
kbTλ

	
�
exp

�
2π~c
kbTλ

	
� 1

�2

���AjFjÑi, (3.18 revisited)

and the total conductance is given by

Gt,jÑi,BBpT q �
» 8

0

GjÑi,BBpλ, T qdλ � 4σT 3AjFjÑi, (3.19 revisited)

where Aj is the surface area of object j, FjÑi is the radiative view factor from object

j to object i, and σ � π2k4
B{60c2~3 is the Stefan-Boltzmann constant.

5.2.1 Dielectric coating atop metal core

Planar stratified HMMs have previously been investigated for heat transfer appli-

cations due to their broadband super-Planckian thermal emission properties.59,60

Though use of non-planar layered media is relatively rare in the study of near-field

heat transfer, a thermal MEMS device with a layer of polar material atop a curved

chromium sensor has been used in extreme near-field experiments by Kim et al.78

It is important to note that a single layer of material does not make the device an

HMM. Regardless, our work may still give insight into the behavior of the device.
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Despite their device having coatings, Kim et al. modeled their curved probe as ho-

mogeneous, composed of the polar material only. The authors provided only a post

hoc justification of this assumption: the seeming agreement between modeled and

measured results.

Numerical investigation of heat transfer can shed light on the validity of such

an assumption. The simplest test case is to simulate the heat transfer between two

identical single-coated spheres. For the simulations here we use a metallic core and

a dielectric coating, composed of silver166 and silica,167 respectively. Varying the

spheres’ dimensions, the position of the metal/dielectric interface and the separation

gap allows for characterization of the impact of dielectric coatings atop metallic cores.

Figure 5.2 shows the effect of altering the position of the metal/dielectric interface

on the spectrum of radiative heat transfer. The coated spheres have an outer radius,

coating thickness, and core radius of ρ, t, and ρ � t, respectively. Their geometries

are fixed such that ρ � 10 µm and the minimum separation gap is D � 1 µm.

The spectral conductance is shown in Fig. 5.2(A). For the case of a homogeneous

silica sphere (t{ρ � 1), the result is a relatively wideband distribution of frequencies

contributing to the radiative transfer which exactly reproduces the results of previous

work.34 The two well-known surface phonon polariton (SPhP) peaks are present at

8.75 µm and 20.3 µm [labeled in Fig. 5.2(A)]. As the silver core is allowed to grow,

the spectrum incrementally changes into the case of two bare silver spheres. Spheres

with t{ρ � 0.1, 0.05, and 0.01 exhibit spectral conductances, which appear to be

roughly scaled versions of each other, the scaling proportional to the thickness of the

coating.
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Figure 5.2: (A) Spectral conductance between sets of identical coated spheres
with varying core/coating interface positions (normalized by that of two blackbody
spheres). Spheres have a silver core and silica layer with outer radii of 10 µm and
minimum separation gap of 1 µm. Surface phonon polariton (SPhP), Fabry-Perot
(FP), and epsilon near zero (ENZ) peaks are labeled. Legend appearing in (C) also
applies to curves appearing in (A). (B) Real (n) and imaginary (κ) components and
magnitude (|n�iκ|) of the complex refractive index of silica. (C) Cumulative spectral
contribution to conductance for the curves depicted in (A).
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The sequence in which the spectrum of radiative transfer for silica spheres tran-

sitions to that of silver spheres is not uniform across the spectrum. Although the

magnitude of the spectral conductance of silver is always lower than that of silica,

increasing the proportion of silver to silica may actually increase the spectral conduc-

tance for some wavelengths at some intermediate coating thicknesses. This is evident

in the spectrum of spheres with t{ρ � 0.2 at 12.5 µm and 23.5 µm and t{ρ � 0.1 at

the wavelength of 10 µm, where a broad super-Planckian peak, not associated with

an SPhP, manifests. At these wavelengths, the conductance of the coated spheres

exceeds that of pure silica spheres.

When a thin layer of polar material (or any material with narrow absorption

bands) is coated on a metallic substrate, the wavelength at which the magnitude

of the dielectric function (or equivalently the complex refractive index) of the polar

material reaches a minimum, λENZ (ENZ denoting epsilon near zero), takes spe-

cial significance.168 At this wavelength alone, the interface between the coating and

vacuum behaves as a highly reflective mirror. The interface between the metallic sub-

strate and the thin film is highly reflective at all wavelengths considered here because

of the high dielectric function of metals for mid-infrared wavelengths.

Near λENZ , electromagnetic waves experience reflective conditions at both inter-

faces, leading to a larger number of reflections than at other wavelengths, if the thin

film is not too absorptive. The result of a greater number of reflections is the ap-

pearance of an optically thicker film. Because amorphous silica has a relatively high

damping, these interesting effects manifest themselves in the near field only when the

thickness becomes very small. Amorphous silica has a λENZ point at 7.95 µm [see
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Fig. 5.2(B)]. Hence, the stand-alone peak in Fig. 5.2(A) for t{ρ � 0.01 at 8.06 µm is

an epsilon near zero mode. As the thickness is increased, this peak can no longer be

resolved because of its proximity to a SPhP peak.

Another class of peaks which appears in the spectrum of thermal radiative trans-

fer of coated structures is the Fabry-Perot–like resonance. This type of resonance

results from the interference of the multiple reflections of waves within a thin film.

Because Fabry-Perot-like resonances require the constructive interference of waves,

the location of the peak will drift as the thickness of the coating changes. This type

of peak is evident in Fig. 5.2(A) for t{ρ � 0.1 at 10.0 µm and t{ρ � 0.05 at 9.55 µm.

The cumulative spectral contribution to conductance is shown in Fig. 5.2(C). The

cumulative contribution at wavelength λ is given by

CSCpλq �
³λ
0
dλ1Gpλ1, T q³8

0
dλ1Gpλ1, T q , (5.1)

where λ1 is a dummy integration variable. The slopes of the cumulative contribution

curves indicate how relatively dominant a wavelength is in contributing to the total

conductance. A greater slope indicates a greater relative contribution to the total

conductance and vice versa.

The curves for spheres with t{ρ ¥ 0.2 have relatively small slopes across most

wavelengths. This is consistent with the fairly wideband behavior demonstrated in

Fig. 5.2(A). As t{ρ decreases, however, wavelengths differentiate into two categories:

those with nearly zero slope and those with a very steep slope. For t{ρ � 0.10 and

t{ρ � 0.05, the curves become nearly vertical at the SPhP wavelengths. In the most
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extreme case, for t{ρ � 0.01, the curve is nearly vertical at 7.95 µm and 19.79 µm

and nearly horizontal elsewhere. These wavelengths correspond to ENZ points of the

silica layer. If the minimum separation gap between the spheres is decreased, SPhP

peaks grow and eventually dominate over ENZ peaks. The dominance of SPhP modes

in the extreme near field is made clear in the discussion of Fig. 5.3.

As we have shown, adding a very thin layer of a material supporting surface

polaritons to a metallic substrate creates a selective near-field emitter. (This was

already known to be true in the far field.168,169) Experimental measurement of spheres

with very thin coatings would allow for probing of resonant heat transfer, some of

which may be due to SPhPs, while suppressing heat transfer at other wavelengths.

Because SPhPs are known to dominate heat transfer between polar materials in the

extreme near field, isolating the contributions from SPhPs by using a coated sphere

would serve as a superior experimental method compared to measuring the effects of

SPhPs with homogeneous spheres as in past experiments.13,79,170

Figure 5.3 shows the effect of varying the separation gap between spheres with

outer radii of 5 µm on total conductance. According to classical radiative transfer,

the distance dependence in the far field is due to changes in view factor. Indeed, for

gaps such that D{ρ ¥ 2, all cases are well approximated as graybodies, as indicated

by the curves’ near-zero slopes. In that regime, the total conductance of spheres of

constant radius increases as the fraction of silica increases.

As the separation gap decreases, the conductance between spheres with a silica

coating begins to be dominated by the SPhP contributions. At a separation gap such

that D{ρ � 0.004, a coating of just 50 nm of silica can achieve 70% of the conductance
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Figure 5.3: Distance dependence of total conductance between two identical coated
spheres. Spheres have a silver core and silica layer with outer radii of 5 µm. Total
conductance is normalized by that of two blackbodies, and the minimum separation
gap is normalized by the outer radii of the spheres.

of a fully silica sphere. This allows for the creation of spheres with silica-like behavior

in the near-field but tunable radiative transfer behavior in the far-field. As a simple

rule of thumb, the conductance between two silica coated silver spheres exceeds 70%

of that between two homogeneous silica spheres for D{t À 1{4. For larger gaps, the

conductance is more like that of silver.

This observation partially validates the assumption made by Kim et al.78 Their

device had a 100 nm silica coating atop an optically opaque chromium thermocouple.

Their measurements were performed in the extreme near-field, at gaps ranging from

1 nm to 50 nm. For the smallest gaps, we have shown that the SPhP contributions

will be dominant and modeling the whole body as homogeneous silica is a reasonable

approximation. However, should the gaps of interest be larger or the materials not

be dominated by SPhPs, more care must be taken to properly approximate near-field
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thermal radiative transfer of coated bodies.

5.2.2 Dielectric coating atop dielectric core

We observed that the total conductance of the two spheres with dielectric coatings

and metallic cores is effectively capped at that of two homogeneous spheres composed

of the same dielectric material. A natural question is whether or not two coated

spheres can ever exceed the total conductance of two homogeneous spheres which are

composed of any of the coated spheres’ constitutive materials. Because of the im-

portance of SPhPs in near-field radiative heat transfer, we simulate the conductance

between two coated spheres whose cores and coatings both support SPhPs. As shown

in Fig. 5.4(A), we simulate identical spheres with beryllia167 cores and alumina167

coatings, or vice versa, with outer radii of 5 µm and a minimum separation gap of

100 nm. Those spheres simulated with an alumina coating and a beryllia core such

that 0.01 ¤ t{ρ ¤ 0.5 all exceed the total conductance between two homogeneous alu-

mina spheres (which themselves exceed that of two homogeneous beryllia spheres).

The maximum occurs at t{ρ � 0.05. Although spheres with beryllia coatings and

alumina cores never exceed the total conductance of homogeneous alumina spheres,

they too exhibit a slight local maximum at the same value of t{ρ. The maximum

total conductance of the coated spheres outperforms homogeneous alumina spheres

by 8.5%.

When looking at the spectral conductance of the homogeneous spheres and the

coated sphere with the maximum conductance, it becomes apparent how the coated
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spheres are able to outperform the homogeneous spheres. As shown in Fig. 5.4(B),

the coated spheres exhibit spectral features similar to features found in the spectra of

their components. Most importantly, the coated spheres strongly reproduce the SPhP

peaks of homogeneous alumina at 12.2 µm and 20.8 µm while capturing a portion of

the enhancement due to the SPhP peak of homogeneous beryllia at 10.0 µm (SPhP

peaks labeled in Fig. 5.4). This suggests that it may be possible to “stack” the effect

of SPhPs at multiple wavelengths by choosing coatings of materials with spectrally

spread SPhP peaks.

5.3 Implications for NFRHT Experiments

Until the recent advances in NFRHT between MEMS devices,66,72,73 experiments

measuring NFRHT with sub-micron gaps were performed in the microsphere-plane

configuration, much like the configurations used in Casimir and van der Waals force

experiments.74–77 Recent experimental work investigating the Casimir force171 demon-

strates that sphere-sphere geometries are also a feasible configuration to investigate

NFRHT. To better understand how such a sphere-sphere NFRHT experiment would

work, we must first understand how sphere-plane experiments have been performed.

In past sphere-plane NFRHT experiments,79,172 experimenters attached the sphere

to a bimaterial microcantilever. Bimaterial cantilevers, such as atomic force mi-

croscopy cantilevers, are extremely sensitive calorimeters which deflect with any

change in temperature. The planar substrate was fixed at a temperature, either

passively to the ambient or heated to a temperature above ambient. If the substrate
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Figure 5.4: (A) Total conductance between two identical coated spheres (normalized
by that of two blackbody spheres) as a function of the core/coating interface position.
Spheres have a beryllia core and an alumina coating, or vice versa. The spheres have
outer radii of 5 µm and a minimum separation gap of 100 nm. Dashed lines represent
the total conductance of homogeneous beryllia and alumina spheres of the same
geometry. Surface phonon polaritonic peaks (SPhP) for the homogeneous spheres
are labeled. (B) Spectral conductance of spheres from (A) for homogeneous beryllia,
homogeneous alumina, and the coated sphere with the maximum total conductance
(alumina coating and beryllia core with t{ρ � 0.05).

78



was fixed at ambient temperature, then the sphere was heated using a laser to create

a temperature difference between the two objects. Otherwise, the heated substrate

supplied the temperature difference.

The sphere was initially located at some distance above the substrate, typically be-

tween 2.5 µm and 10 µm. The separation between the sphere and substrate was then

decreased until contact was made. Due to surface imperfections and the resolution

of the system controlling the separation distance, the minimum distance achievable

was approximately 30 nm in Refs. 79 and 172.

As a sphere lowers, its temperature changes, which results in a change in deflection

angle of the cantilever. The change in deflection angle, unlike the temperature, is the

experimental parameter which can actually be measured. Change in deflection angle

must be related to the change in conductance between the two objects by using a

thermal model. Because the measurement can only measure changes in deflection

angle, the experiment is sensitive only to changes in total conductance from its value

at the initial (maximum) separation distance to its value at its some later time.

The thermal model used to infer sphere-plane conductance must account for all

means of heat transfer occurring. Critically, it must reflect the fact that the sphere-

plane system is really a sphere-plane-environment system with exchanges of thermal

energy between both objects and their environment. Prior works employing sphere-

plane geometries have used a variety of approaches to account for heat transfer to

the environment. For example, some works have used Mie theory to compute sphere-

environment conductances,170 assumed a constant but unnamed value,79 ignored en-

vironmental heat transfer effects all together,13,172 or not reported their treatment of
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Figure 5.5: Total conductance in a system of two identical silicon dioxide spheres
with outer radii of 10 µm. The legend in (A) is common to both subfigures. (A)
Sphere-sphere conductances determined by DGF method. (B) Sphere-environment
conductances (normalized by the maximum value of each curve) predicted by the DGF
method. The oscillations present for the smallest spheres are signs of diffraction.

far-field radiation at all.78 Any improper treatment of the sphere-environment con-

ductance will introduce a systematic error.

To investigate the magnitude of that error in a potential sphere-sphere experiment,

we simulate the NFRHT for two identical silicon dioxide spheres with outer radii

of 1, 2.5, 5, and 10 µm. Figure 5.5A shows sphere-sphere conductances and Fig.

5.5B shows normalized sphere-environment conductances. The legend in Fig. 5.5A is
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common to the entire figure. As expected, the sphere-sphere conductances determined

by the DGF method show a super-Planckian monotonic increase in the near-field.

More interestingly, it is readily apparent from Fig. 5.5B that the character of the

sphere-environment conductances has a strong size dependence. The smallest spheres

show strong signs of diffraction for large separation distances, reminiscent of recent

work involving point particles (see Fig. 8 of Ref. 129). The smallest sphere (ρ = 1

µm) actually shows a decrease in sphere-environment conductance with decreasing

distance. The next smallest (ρ = 2.5 µm) shows an eventual increase over its far-field

value, though it has a global maximum at an intermediate gap. The largest spheres

(ρ = 5 µm and 10 µm) show near-monotonic increases and a maximum value at the

smallest gap simulated. This demonstrates that the intense electric and magnetic

fields between objects which contribute to NFRHT can dampen or enhance far-field

emission, with a seeming size dependence. The one common trend is that all sphere-

environment conductances eventually level off for sufficiently small D{ρ.

The fact that the curves level off is key to taking a valid measurement of sphere-

sphere conductance using a cantilever. Since cantilevers are sensitive to changes of

conductance from the initial point to the final, starting an experiment at a sufficiently

small initial separation gap should result in no change in the sphere-environment

conductance and an isolation of the sphere-sphere conductance. The value of D{ρ

required by each silicon dioxide sphere to have a maximum relative error of approx-

imately 5% are given in Table 5.4. Further work must be devoted to determining a

universal criterion. The current results suggests that smaller spheres will allow for a

larger range of separation distances to be probed. This is contrary to the many large
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Table 5.4: Initial values of D{ρ which will ensure a relative error of approximately
5% or less in a hypothetical sphere-sphere experiment.

ρ (µm) D0{ρ
1 1.00

2.5 0.40

5 0.10

10 0.06

spheres used in sphere-plane experiments.79,172

It is my hope that this work may spur other researchers to modify their method-

ologies and reporting practices to reflect the importance of heat transfer to the en-

vironment in NFRHT experiments. Additionally, by better quantifying far-field heat

transfer, the possibility is left open of closely studying other phenomena that cause

NFRHT to deviate from idealized behavior, for example surface roughness.173,174
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Chapter 6

Summary and Future Work

6.1 Main Contributions

1. NFRHT Between Layered Spheres: I developed the first numerically exact

model for NFRHT between two coated spheres and used it to investigate

the impact of coatings on the spectrum of NFRHT. I observed a number

of interference-based peaks in the spectrum of NFRHT between two metallic

spheres with polar material coatings. The peaks were reminiscent of my earliest

work involving NFRHT between two homogeneous silicon carbide spheres.175

These similarities were due to silicon carbide’s low absorption allowing waves

to enter into each sphere, reflect off the backside and constructively/destruc-

tively interfere with other waves, in a similar fashion to waves entering a thin

coating and reflecting off the metallic core. I also showed that layered spheres

composed of different materials which support SPhPs can result in enhanced

NFRHT, above that of either material alone. (See Refs. 36, 175, and 176.)

2. NFRHT in Chains of Spheres: I extended my two sphere work to include any

number of coated spheres in a linear chain. I can simulate both sphere-sphere

and sphere-environment radiative transfer. Using this work, I was able to is-
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sue a warning regarding the distance-dependence of sphere-environment heat

transfer to any experimentalist who wishes to conduct sphere-sphere NFRHT

experiments using a microcantilever. I also proposed a solution to mitigate the

potential risk. Furthermore, I moved software development to GitHub162 to

lower the barrier of entry for other researchers. (See Ref. 146.)

3. New Optical Properties: I published the first broadband optical data for PDMS

in the mid-infrared portion of the electromagnetic spectrum. I used those prop-

erties to explore the potential of PDMS for radiative cooling applications, an-

other situation that requires tailoring the spectrum of radiative transfer, and

demonstrated numerically that PDMS thin films atop aluminum substrates

could theoretically reach equilibrium temperatures of 12�C below ambient when

exposed to the night sky. (See Refs. 100 and 126.)

6.2 Future Work

1. Sphere-Plane Heat Transfer: Otey et al.38 computed the NFRHT between a

homogeneous sphere and substrate using a method analogous to the interior

method. In doing so, they translated back and forth between vector spherical

and cylindrical (required for the plane) waves. It would be interesting to see

if the same result could be obtained using an exterior method approach and

asymptotic expressions for the spherical Bessel and Hankel functions in the

limit as one sphere gets very large. Previous work in the Swamy Group by

Sasihithlu and Narayanaswamy83 considered only homogeneous spheres with
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large size disparity (ρ2 À 40ρ1), not a true ρ2{ρ1 Ñ 8 case, and requires a

convergence analysis to prove that the sphere-sphere NFRHT reaches a steady

value which can approximate sphere-plane NFRHT. By taking the approach of

Ref. 83, we should get accurate sphere-environment heat transfer but perhaps

not an accurate plane-environment heat transfer. My proposed method should

bypass those shortcomings and give access to NFRHT between coated objects

in the process.

2. Higher-Order Discrete Dipole Approximations: The method outlined in this

work should reproduce the discrete dipole approximation (DDA) for two spheres

when their radii are small and lmax � νmax � 1. Firstly, this should be verified.

Secondly, the linear system of scattered field coefficients should be solved ex-

plicitly in the case of lmax � νmax � 2, 3, 4, ... until it is no longer feasible.

This would provide higher order corrections which could yield DDA models

applicable to larger spheres.

3. Scattered Field Coefficient Bottleneck: The greatest bottleneck in calculating

NFRHT between closely-spaced wavelength-sized spheres is solving for the scat-

tered field coefficients using their linear system. The number of terms for conver-

gence is too great when the spheres are large, very close, or very far. Examining

the results of the higher-order DDA could shed insight into a solution to the

linear system which doesn’t require matrix inversion. Richardson extrapolation

also has the potential to accelerate the convergence of the infinite series.

4. Experimental Validation: As of yet, no two sphere NFRHT experiments have

taken place, let alone multiple-body experiments. Experimental NFRHT has
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lagged behind theoretical NFRHT, and that mismatch should be corrected, both

to validate my models and to innovate on existing experimental techniques so

we can move toward producing devices which exploit NFRHT phenomena.
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Appendix A

Fresnel Coefficients

A.1 Background

The Fresnel coefficients, r
pαq
ij (where α is the polarization), give the ratio of electric

field before and after the reflection off a planar interface. The Fresnel coefficients

depend on wavelength (through the optical properties), the angle of incidence, and

the polarization of light. The polarization (essentially orientation) of light is said

to either be s (also called transverse electric, TE, or K) or p (also called transverse

magnetic, TM, or ‖). In some sense, the orientation of the fields is arbitrary and

two main conventions exist in the literature for the p polarization. In this work, we

will follow the convention of Hecht.177 The main difference is that, for the convention

used in this work, rppq � �rpsq at normal incidence. In the opposing convention, the

two quantities are equal. A diagram of the convention used here appears in Fig. A.1.

One difference between the present treatment and that of Hecht is that we will

not use angles directly when examining angles of incidence. For complex refractive

indices, Snell’s law predicts complex angles, which I find distasteful. Instead, we

will use the in-plane component of the wavevector, kρ, to indicate angles. The main

advantage is that kρ stays constant and real in all media. It may be related to

the angle of incidence by kρ � p2π{λq cos θ. A diagram of the components of the

wavevector can be seen in Fig. A.1A.
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Figure A.1: (A) Diagram of wavevector components and optical properties. (B) Dia-
gram showing orientation of electric and magnetic fields for reflection of s polarization
light. (C) Diagram showing orientation of electric and magnetic fields for reflection
of p polarization light.

A.2 Reflection Coefficients

The Fresnel coefficients between media i and j are given by

r
psq
i,j �

kz,i
µi
� kz,j

µj

kz,i
µi
� kz,j

µj

(A.1a)

r
ppq
i,j �

kz,i
εi
� kz,j

εj

kz,i
εi
� kz,j

εj

(A.1b)

A.2.1 Reflectance

Commonly in optics problems, the ratio of electric fields is not a directly useful

quantity. Instead, the ratio of electric field intensities is more useful. That ratio is

called the reflectance, and is given by

R
pαq
i,j �

���rpαqi,j

���2 (A.2)
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where α � s or p.

A.2.2 Stratified Media

When a planar medium has multiple planar layers, an effective Fresnel coefficient

can be determined. This is typically done using a transfer matrix method178,179 or

using the Airy formula,180–183 which is commonly determined by counting partial wave

contributions to reflection. The Airy formula can be used recursively to account for

an arbitrary number of layers. It is given by

rrpαqi,i�1 �
r
pαq
i,i�1 � rrpαqi�1,i�2 exp p2ikz,i�1di�1q

1� r
pαq
i,i�1rrpαqi�1,i�2 exp p2ikz,i�1di�1q

(A.3)

where di is the thickness of layer i. The recursion is terminated when a semi-infinite

half-space is encountered by using a regular Fresnel coefficient in place of the effective

one.
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Appendix B

Classical Radiative Transfer

B.1 Emissive Power of a Blackbody

Define the quantity eλ as the monochromatic emissive power (with units of

W m�2 m�1), which gives the flux of energy radiated from a surface at a given wave-

length and temperature. Then

epT q �
» 8

0

eλpλ, T qdλ (B.1)

gives the total energy flux emitted by the surface at a given temperature. Planck’s

blackbody law gives eλ,BB, the monochromatic emissive power of a blackbody, as

eλ,BBpT, λq � 2πhc2

λ5

1

exp
�

hc
λkBT

	
� 1

(B.2)

where h is Planck’s constant, c is the speed of light in vacuum, λ is the wavelength

in vacuum, kB is Boltzmann’s constant, and T is the thermodynamic temperature.

Integrating to get the total emitted power yields

eBBpT q �
» 8

0

eλ,BBpλ, T qdλ � σT 4 (B.3)

where σ � 2π5k4
B{p15c2h3q is the Stefan-Boltzmann constant. This is the Stefan-

Boltzmann law.
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B.2 Emissivity

Real objects do not emit exactly like blackbodies, so it is useful to benchmark a real

object’s emission against that of a blackbody. The ratio of a real object’s monochro-

matic emissive power to that of a blackbody is called the object’s spectral emissivity,

ελ. It is given by ελ � eλ{eλ,BB. Another useful quantity is the total emissivity, which

gives the ratio of an object’s total emitted power to that of a black body, and is given

by

ε � epT q
eBBpT q �

³8
0
eλpT qdλ³8

0
eλ,BBpT qdλ

�
³8
0
ελeλ,BBpT qdλ³8

0
eλ,BBpT qdλ

�
³8
0
ελeλ,BBpT qdλ

σT 4
(B.4)

B.3 View Factor

The view factor, FiÑj, is the proportion of rays of light that are emitted diffusely

(isotropically) from surface i that strike surface j. It is given by the double integral

AiFiÑj �
»
Ai

»
Aj

cos θi cos θj
πS2

dAidAj (B.5)

where A is the surface area of an object and θ and S are configuration parameters

which are defined in Fig. B.1. The view factor has two very important properties:

AiFiÑj � AjFjÑi (which becomes readily apparent by swapping instances of i and

j in Eq. B.5) and
°
j FiÑj � 1 (which is a mathematical statement that that all

emitted rays must go somewhere).
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Figure B.1: Diagram of geometric parameters necessary to compute a view factor.

B.4 Radiative Heat Transfer

If objects i and j are blackbodies, the total radiative power emitted by object i that

strikes object j is given by

QiÑj,BB � σT 4
i AiFiÑj (B.6)

A similar quantity for emission by object j can be obtained by swapping i and i

in Eq. B.7. Their net power exchange is

Q
pnetq
iÑj,BB � QiÑj,BB �QjÑi,BB � σAiFiÑj

�
T 4
i � T 4

j

�
(B.7)

If objects i and j are not blackbodies, then not all radiation which is emitted

by object i will be absorbed by object j when it strikes its surface. Instead, some

will reflect off object i and potentially be reabsorbed by object i, which would not

contribute to the net radiative transfer. Accounting for these reflections,

QiÑj �
�
εiσT

4
i Ai

�
FiÑjαj
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� �εiσT 4
i Ai

�
FiÑj pρjFjÑiρiFiÑjqαj

� �εiσT 4
i Ai

�
FiÑj pρjFjÑiρiFiÑjρjFjÑiρiFiÑjqαj

� ...

� �
εiσT

4
i Ai

�
FiÑjαj

8̧

n�0

pρjFjÑiρiFiÑjqn

� εiαjσT
4
i AiFiÑj

1� ρiρjFiÑjFjÑi

� εiεjσT
4
i AiFiÑj

1� p1� εiqp1� εjqFiÑjFjÑi

and

Q
pnetq
iÑj �

�
εiεj

1� p1� εiqp1� εjqFiÑjFiÑj



Q
pnetq
iÑj,BB (B.8)

where α � ε is the absorptivity and ρ � 1� ε is the reflectivity.
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Appendix C

Potpourri of Mathematical Relations

Below I include a number of mathematical relations which have proven useful to the

work contained within this document, mostly uncited. Proof, as they say, is left as

an exercise to the reader.

C.1 Vector Spherical Waves

C.1.1 Definitions

M
ppq
lm pkrq �zppql pkrqV p2q

lm pθ, φq, (C.1a)

N
ppq
lm pkrq �ζppql pkrqV p3q

lm pθ, φq �
a
lpl � 1q
kr

z
ppq
l pkrqV p1q

lm pθ, φq, (C.1b)

C.1.2 Surface Integral Relations

¾
S

pr � �M puq
lm pkfrq �M pvq�

pq pkfrq
�
dr � 0, (C.2a)

¾
S

pr � �N puq
lm pkfrq �N pvq�

pq pkfrq
�
dr � 0, (C.2b)

¾
S

pr � �M puq
lm pkfrq �N pvq�

pq pkfrq
�
dr � r2z

puq
l pkfrqζpvq�p pkfrqδlpδmq, (C.2c)

¾
S

pr � �N pvq
lm pkfrq �M pvq�

pq pkfrq
�
dr � �r2ζ

puq
l pkfrqzpvq�p pkfrqδlpδmq, (C.2d)
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C.2 Vector Spherical Harmonics

C.2.1 Definitions

V
p1q
lm pθ, φq � Ylmpθ, φqpr (C.3a)

V
p2q
lm pθ, φq � ra

lpl � 1q∇Ylmpθ, φq � pr
� 1a

lpl � 1q

�
im

sin θ
Ylmpθ, φqpθ � B

BθYlmpθ, φq
pφ
 (C.3b)

V
p3q
lm pθ, φq � ra

lpl � 1q∇Ylmpθ, φq

� 1a
lpl � 1q

� B
BθYlmpθ, φq

pθ � im

sin θ
Ylmpθ, φq pφ
 (C.3c)

C.2.2 Properties

�
V

p1q
lm pθ, φq

	�
� p�1q�mV p1q

l,�mpθ, φq (C.4a)�
V

p2q
lm pθ, φq

	�
� p�1q�mV p2q

l,�mpθ, φq (C.4b)�
V

p3q
lm pθ, φq

	�
� p�1q�mV p3q

l,�mpθ, φq (C.4c)

pr � V p1q
lm pθ, φq � 0 (C.5a)

pr � V p2q
lm pθ, φq � V p3q

lm pθ, φq (C.5b)

pr � V p3q
lm pθ, φq � �V p2q

l,�mpθ, φq (C.5c)

C.2.3 Surface Integral Relations

¾
Ω

pr � �V psq
lm pθ, φq � V psq�

pq pθ, φq
�
dΩ � 0 (C.6a)
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¾
Ω

pr � �V p2q
lm pθ, φq � V p3q�

pq pθ, φq
�
dΩ � δlpδmq (C.6b)

¾
Ω

pr � �V p3q
lm pθ, φq � V p2q�

pq pθ, φq
�
dΩ � �δlpδmq (C.6c)

C.3 Spherical Bessel Functions

C.3.1 Definitions

zp1qn pxq �
c

π

2x
Jn� 1

2
pxq (C.7a)

zp2qn pxq �
c

π

2x
Yn� 1

2
pxq (C.7b)

zp3qn pxq �
c

π

2x
H

p1q

n� 1
2

pxq � zp1qn pxq � izp2qn pxq (C.7c)

zp4qn pxq �
c

π

2x
H

p2q

n� 1
2

pxq � zp1qn pxq � izp2qn pxq (C.7d)

ζppqn pxq � 1

x

d

dx

�
xzppqn pxq� (C.8)

C.3.2 Recurrence Relations

zppqn pxq � x

2n� 1

�
z
ppq
n�1pxq � z

ppq
n�1pxq

	
(C.9)

zppq1n pxq � n

2n� 1
z
ppq
n�1pxq �

n� 1

2n� 1
z
ppq
n�1pxq

� z
ppq
n�1pxq �

n� 1

x
zppqn pxq

� n

x
zppqn pxq � z

ppq
n�1pxq

(C.10)
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ζ
ppq
n pxq
z
ppq
n pxq

� z
ppq1
n pxq
z
ppq
n pxq

� 1

x

� z
ppq
n�1pxq
z
ppq
n pxq

� n

x

� �z
ppq
n�1pxq
z
ppq
n pxq

� n� 1

x

(C.11)

C.3.3 Continued Fraction Expansions

Continued fractions are defined as

8

K
m�1

�
am
bm

�
� a1

b1 � a2
b2�

a3
b3�...

(C.12)

Continued fraction expansions for the spherical Bessel184 and Hankel185 functions

are

z
p1q
n�1pxq
z
p1q
n pxq

� 2n� 1

x
�

8

K
m�1

�
1

p�1qm2pm� n� 1{2qx�1

�
(C.13a)

z
p3q
n�1pxq
z
p3q
n pxq

� n� 1� ix

x
� 1

x

8

K
m�1

�pn� 1{2q2 � p2m� 1q2{4
2pix�mq

�
(C.13b)

C.3.4 Wronskians

The Wronskian of two functions, f and g, is defined as

W pf, gq � fg1 � gf 1 (C.14)

Wronskians can be used to determine if functions are linearly independent. If f

and g are analytic, a vanishing Wronskian implies that f and g are linearly dependent.
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Wronskians have the properties

W pf, fq � 0 (C.15)

W pf, gq � �W pg, fq (C.16)

W pf, g1 � g2q � W pf, g1q �W pf, g2q (C.17)

The Wronskians of spherical Bessel and Hankel functions allow for useful simpli-

fications. They are given by

W pzppqn pxq, zpqqn pxqq � zppqn pxqζpqqn pxq � ζppqn pxqzpqqn pxq (C.18)

and have values147

W pzp1qn pxq, zp2qn pxqq � x�2. (C.19a)

W pzp1qn pxq, zp3qn pxqq � ix�2 (C.19b)

W pzp1qn pxq, zp4qn pxqq � �ix�2 (C.19c)

W pzp2qn pxq, zp3qn pxqq � �x�2 (C.19d)

W pzp2qn pxq, zp4qn pxqq � �x�2 (C.19e)

W pzp3qn pxq, zp4qn pxqq � �2ix�2 (C.19f)

C.3.5 Asymptotic Approximations

lim
xÑ8

zp3qn pxq � i�n�1x�1eix (C.20a)

lim
xÑ8

ζp3qn pxq � i�nx�1eix (C.20b)

lim
xÑ8

�
zp3qn pxqζp3q�n pxq� � �ix�2 (C.21)

120



C.4 Miscellaneous

C.4.1 Properties of Complex Numbers

z�1 � z�

|z|2 (C.22)

z � z� � 2iImpzq (C.23)

Repizq � �Impzq (C.24)

Repiz�q � Impzq (C.25)

C.4.2 Vector and Dyad Identities

p∇�Aq �B �A �∇�B �∇
�
A�B

	
(C.26)

A � n
�
n �A

	
� n� n�A (C.27)»

V

�
p∇�Aq �B �A �∇�B

�
dV �

¾
S

n �
�
A�B

�
dS (C.28)

121



Appendix D

Mie Coefficients

The Mie coefficients describe electromagnetic scattering by a sphere and are often

used for computing quantities such as the absorption, extinction, and scattering cross

sections.159,186–189 The Mie coefficients are known by many names (scattering coef-

ficients, field coefficients, reflection coefficients, Lorentz-Mie coefficients) and many

symbols (an and bn, αn and βn, vn and un, or R
pMq
n and R

pNq
n ) across the literature.

In this work, we will refer to the effective Mie coefficients for layered spheres as rRpMq
n

and rRpNq
n and the Mie coefficients for homogeneous spheres as R

pMq
n and R

pNq
n .

In this appendix, we will consider a layered sphere with Nl layers (Nl ¥ 0). See

Fig. D.1. Any layer i has outer radius xi. The outer radius of the outermost layer is

also referred to as ρ, to remain consistent with in the chapters of this document. A

homogeneous sphere is simply the special case of Nl � 0.

The expressions for the effective Mie coefficients of uncoated and single-coating

spheres are well known from the literature.188,190? –192 The full, multilayered Mie

coefficients can be determined recursively in a manner similar to that of Fresnel

reflection coefficients for planar stratified media.183 The recurrence relation is given

by

rRpMq
n pxiq � R

pMq
n pxiq � rRpMq

n pxi�1qαpMq
n pxiq

1� rRpMq
n pxi�1qβpMq

n pxiq
(D.1a)

rRpNq
n pxiq � R

pNq
n pxiq � rRpNq

n pxi�1qαpNqn pxiq
1� rRpNq

n pxi�1qβpNqn pxiq
(D.1b)
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… …

𝑥𝑁𝑙 = 𝜌

𝑥𝑁𝑙−1

𝑥𝑖
𝑥𝑖−1

𝑥1

𝑥0

Figure D.1: Configuration of a layered sphere. The layered sphere is composed of
a core and Nl spherically symmetric layers. Each component of the sphere has an
outer radius xi where i � 0 for the core or i takes the label of the layer, counting
outward from the core. The radius of the outermost layer is also denoted ρ, to match
the notation in the rest of this document.

where

RpMq
n pxiq � �z

p1q
n pki�1xiq
z
p3q
n pki�1xiq

��� 1
Zi�1

ζ
p1q
n pki�1xiq
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ζ
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RpNq
n pxiq � �ζ

p1q
n pki�1xiq
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ζ
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p3q
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βpMq
n pxiq � z
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ζ
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In Eqs. (D.2)-(D.4), Z � Z0

a
µ{ε is the electromagnetic impedance for a di-

electric material and Z0 �
a
µ0{ε0 is the impedance of free space. ki refers to the

value of k within the core (i � 0), layer i (1   i ¤ Nl), or in the free-space region

f (i � Nl � 1). The recursion relation is terminated by rRpMq
n px0q � R

pMq
n px0q andrRpNq

n px0q � R
pNq
n px0q. The the case of a homogeneous sphere can be recovered from

the recursion relations if the core and layers all have the same optical properties. In

that case, Eq. D.1 simply to

rRpMq
n pρq � RpMq

n pρq (D.5a)

rRpNq
n pρq � RpNq

n pρq (D.5b)
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Appendix E

Solution to Linear System

At first glance, the coupled system of equations given by Eq. 4.14 is not simple to

solve for the scattered field coefficients, V X,Y,i,j
l,ν,m . To clarify the necessary approach,

we start by unpacking Eq. 4.14 into all the equations it provides. We fix values of

m, i, and j and generate equations from all possible combinations of X � M or N ,

Y �M or N . We obtain

V M,M,i,j
l,ν,m �

Nş

p�1

8̧

n� rm

��� V M,M,p,j
l,n,m

rRpMq
n pρpqCM,M,i,p

n,ν,m

�V N,M,p,j
l,n,m

rRpNq
n pρpqCM,N,i,p

n,ν,m

��� � CM,M,i,j
l,ν,m (E.1a)

V N,M,i,j
l,ν,m �

Nş

p�1

8̧

n� rm

��� V M,M,p,j
l,n,m

rRpMq
n pρpqCN,M,i,p

n,ν,m

�V N,M,p,j
l,n,m

rRpNq
n pρpqCN,N,i,p

n,ν,m

��� � CN,M,i,j
l,ν,m (E.1b)

V M,N,i,j
l,ν,m �

Nş

p�1

8̧

n� rm

��� V M,N,p,j
l,n,m

rRpMq
n pρpqCM,M,i,p

n,ν,m

�V N,N,p,j
l,n,m

rRpNq
n pρpqCM,N,i,p

n,ν,m

��� � CM,N,i,j
l,ν,m (E.1c)

V N,N,i,j
l,ν,m �

Nş

p�1

8̧

n� rm

��� V M,N,p,j
l,n,m

rRpMq
n pρpqCN,M,i,p

n,ν,m

�V N,N,p,j
l,n,m

rRpNq
n pρpqCN,N,i,p

n,ν,m

��� � CN,N,i,j
l,ν,m (E.1d)

In order to solve the linear system numerically, we must truncate the infinite sum

to a finite number of terms, which we will denote Nmax. Additionally, we define

Nterms � Nmax� rm�1. Now, we define four Nterms�Nterms matrices of scattered field

coefficients: V
M,M,i,j

m , V
M,N,i,j

m , V
N,M,i,j

m , and V
N,N,i,j

m . Each element in the matrices

is a value of V X,Y,i,j
l,ν,m with l P rrm,Nmaxs and ν P rrm,Nmaxs. The l index increases
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across rows, and ν increases down columns. For example, for m � 0 and Nmax � 2

V
X,Y,i,j

m�0 �

��� V X,Y,i,j
l�1,ν�1,m�0 V X,Y,i,j

l�2,ν�1,m�0

V X,Y,i,j
l�1,ν�2,m�0 V X,Y,i,j

l�2,ν�2,m�0

��� (E.2)

Next we define a p2Ntermsq� p2Ntermsq block matrix of coefficients for a given pair

of spheres

V
i,j

m �

��� V
M,M,i,j

m V
M,N,i,j

m

V
N,M,i,j

m V
N,N,i,j

m

��� (E.3)

and an even greater p2NsNtermsq � p2NsNtermsq block matrix for all pairs of spheres,

V m, where the rows of the block matrix have increasing values of i and the rows have

increasing values of j. For example, for a two sphere system

V m �

��� V
i�1,j�1

m V
i�1,j�2

m

V
i�2,j�1

m V
i�2,j�2

m

��� (E.4)

Now that the organization of the scattered field coefficients is clear, we move on to

the organization of the Mie coefficients. Define a column vector, Rj
ν , whose entries arerRpMq

ν pρjq and then rRpMq
ν pρjq, appended together. Only terms for which ν P rrm,Nmaxs

are included. For example, for m � 0 and Nmax � 2

Rj
m�0 �

���������

rRpMq
ν�1pρjqrRpMq
ν�2pρjqrRpNq
ν�1pρjqrRpNq
ν�2pρjq

���������
(E.5)
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Next, define a Mie coefficient matrix

Rm � I

���������

Rj�1
m

Rj�2
m

...

Rj�Ns
m

���������
(E.6)

where I is an identity matrix with dimensions p2NsNtermsq � p2NsNtermsq.
The vector addition translation coefficients are first organized into Nterms�Nterms

matrices. Each element in the matrices is a value of the translation coefficient with

l P rrm,Nmaxs and ν P rrm,Nmaxs. The l index increases across rows, and ν increases

down columns. For example, given a pair of spheres i and j and for m � 0 and

Nmax � 2

C
X,Y,i,j

m�0 �

��� CX,Y,i,j
l�1,ν�1,m�0 CX,Y,i,j

l�2,ν�1,m�0

CX,Y,i,j
l�1,ν�2,m�0 CX,Y,i,j

l�2,ν�2,m�0

��� (E.7)

Next we define a p2Ntermsq� p2Ntermsq block matrix of coefficients for a given pair

of spheres

C
i,j

m �

��� C
M,M,i,j

m C
M,N,i,j

m

C
N,M,i,j

m C
N,N,i,j

m

��� (E.8)

and an even greater p2NsNtermsq � p2NsNtermsq block matrix for all pairs of spheres,

Cm, where the rows of the block matrix have increasing values of i and the rows have

increasing values of j. For example, for a two sphere system

Cm �

��� C
i�1,j�1

m C
i�1,j�2

m

C
i�2,j�1

m C
i�2,j�2

m

��� (E.9)

It is good to note here that, due to the definition of CX,Y,i,j
l,ν,m in Eq. 4.15, all the

matrices on the main diagonal of Cm are identically zero.
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The solution to the linear system is given by

V m � R�1

m

�
I �RmCm

��1

RmCm

�
�
I �CmRm

��1

Cm

(E.10)

The second line of Eq. E.10 is the most compact solution for the unknown scat-

tered field coefficients, as defined in this work. The first line is presented in recogni-

tion of the fact that other works on light scattering by spheres sometimes define their

scattered field coefficients proportional to RmV m
34,35.
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Appendix F

Basics of SCUFF-EM Software

F.1 Introduction

In this appendix, instructions are provided to perform NFRHT simulations using

scuff-em, which is short for Surface CUrrent/Field Formulation of ElectroMag-

netism. scuff-em is a free, open-source software implementation of the boundary-

element method164,165 which models fluctuating-surface-currents as the source of ther-

mal radiation. The source code for scuff-em is available at https://github.com/

HomerReid/scuff-em/.

Instructions will be provided assuming installation on a computer running Ubuntu

14.04 locally. Some modification may be required when using other systems. These

instructions are meant to be supplemental to the existing scuff-em documentation

and will not cover all features of the software. They will, however, cover all steps

required to perform the NFRHT calculations completed in this dissertation. Broadly

speaking, there are three main steps: (1) Create and mesh each object. (2) Define

the configuration of all objects. (3) Feed the appropriate files to scuff-em to run a

simulation. These steps are described below.

F.2 Creating the Mesh

scuff-em requires meshed surfaces, and the free software Gmsh is recommended to

create the meshes. The first step is to create a Gmsh geometry file for each unique
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object. For a sphere, such a file looks like Listing F.1. The value of R given in line 8

should be given in micrometers. The meshing finenesses given in lines 13-15 should

be adjusted depending on the geometry being investigated. For a uniform mesh, set

l1 � l2 � l3. In this appendix, I will show an example for NFRHT between two

spheres. In that situation, it is advantageous for increase the density of the mesh

at a single pole only, in this case the north pole. The point, circle, line loop, ruled

surface, and physical surface commands on lines 20-55 are used to build a boundary

representation of a sphere from primitive objects like points and arcs. For further

information, I direct readers to the Gmsh documentation. The file given in Listing

F.1 may be used for any sphere by altering the values on lines 8, 13, 14, and 15.

1 //
2 // Gmsh geometry s p e c i f i c a t i o n f o r a sphere o f rad iu s R
3 //
4

5 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6 //∗ input parameters
7 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8 R = 10 . 0 ; // rad iu s
9

10 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 //∗ meshing f i n e n e s s e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
13 l 3 = 0 . 1 0 ; // f i n e n e s s at north po le
14 l 2 = 1 . 0 0 ; // f i n e n e s s at equator
15 l 1 = 1 . 0 0 ; // f i n e n e s s at south po le
16

17 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18 //∗ d e f i n t i o n o f sphere ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
20 Point (1 ) = { 0 , 0 , 0 . 0 , l 2 } ;
21 Point (2 ) = { R, 0 , 0 . 0 , l 2 } ;
22 Point (3 ) = { 0 , R, 0 . 0 , l 2 } ;
23 Ci r c l e (1 ) = {2 ,1 , 3} ;
24 Point (4 ) = { �R, 0 , 0 . 0 , l 2 } ;
25 Point (5 ) = { 0 , �R, 0 . 0 , l 2 } ;
26 Ci r c l e (2 ) = {3 ,1 , 4} ;
27 Ci r c l e (3 ) = {4 ,1 , 5} ;
28 Ci r c l e (4 ) = {5 ,1 , 2} ;
29 Point (6 ) = { 0 , 0 , 0.0+R, l 3 } ;
30 Point (7 ) = { 0 , 0 , 0.0�R, l 1 } ;
31 Ci r c l e (5 ) = {3 ,1 , 6} ;
32 Ci r c l e (6 ) = {6 ,1 , 5} ;
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33 Ci r c l e (7 ) = {5 ,1 , 7} ;
34 Ci r c l e (8 ) = {7 ,1 , 3} ;
35 Ci r c l e (9 ) = {2 ,1 , 7} ;
36 Ci r c l e (10) = {7 ,1 , 4} ;
37 Ci r c l e (11) = {4 ,1 , 6} ;
38 Ci r c l e (12) = {6 ,1 , 2} ;
39 Line Loop (13) = {2 ,8 ,�10} ;
40 Ruled Sur face (14) = {13} ;
41 Line Loop (15) = {10 ,3 , 7} ;
42 Ruled Sur face (16) = {15} ;
43 Line Loop (17) = {�8 ,�9 ,1};
44 Ruled Sur face (18) = {17} ;
45 Line Loop (19) = {�11 ,�2 ,5};
46 Ruled Sur face (20) = {19} ;
47 Line Loop (21) = {�5,�12,�1};
48 Ruled Sur face (22) = {21} ;
49 Line Loop (23) = {�3 ,11 ,6} ;
50 Ruled Sur face (24) = {23} ;
51 Line Loop (25) = {�7 ,4 ,9} ;
52 Ruled Sur face (26) = {25} ;
53 Line Loop (27) = {�4 ,12 ,�6};
54 Ruled Sur face (28) = {27} ;
55 Phys i ca l Sur face (1 ) = {28 ,26 ,16 ,14 ,20 ,24 ,22 ,18} ;
56

57 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
58 //∗ r e f e r e n c e po int to get outward�po in t ing su r f a c e normals r i g h t
59 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
60 Phys i ca l Point (1 ) = {1} ;

Listing F.1: Gmsh geometry file for a sphere.

Next, Gmsh must be used to generate a mesh file from the geometry file. This

can be done through the terminal window. If the geometry file given in Listing F.1 is

saved as Geometry.geo in the current working directory, a mesh file, called Mesh.msh,

is generated by the command

1 gmsh �2 �c l s c a l e 5 . 0 Geometry . geo �format msh2 �o Mesh .msh

where the -clscale parameter controls the fineness of the mesh. Its value can be

decreased to create a finer mesh, or increased to create a less dense mesh. The same

mesh may be used for two identical objects; separate mesh files must be generated

for any unique objects.
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F.3 Defining the Configuration

Now that the mesh file has been created, the scuff-em geometry file is next. scuff-

em geometry files carry the extension .scuffgeo and define the orientation, location,

mesh file, and optical properties of each object. An example of a scuff-em geometry

file is given in Listing F.2 for two silicon dioxide spheres separated by a center-to-

center distance of 15 µm.

1 # d i e l e c t r i c model f o r s i l i c o n d iox ide
2 MATERIAL SIO2
3 A1 = 8.2736 e+13;
4 w01 = 8.54484 e+13;
5 G1 = 8.46448 e+12;
6 A2 = 1.58004 e+14;
7 w02 = 2.029 e+14;
8 G2 = 1.06449 e+13;
9 A3 = 3.39786 e+13;

10 w03 = 1.51198 e+14;
11 G3 = 8.33205 e+12;
12 EpsInf = 2 . 03843 ;
13

14 Eps (w) = EpsInf + A1∗A1/(w01∗w01 � w∗w � i ∗w∗G1) + A2∗A2/(w02∗w02 � w∗
w � i ∗w∗G2) + A3∗A3/(w03∗w03 � w∗w � i ∗w∗G3) ;

15 ENDMATERIAL
16

17 OBJECT Sphere1
18 MESHFILE Mesh .msh
19 MATERIAL SIO2
20 ENDOBJECT
21

22 OBJECT Sphere2
23 MESHFILE Mesh .msh
24 MATERIAL SIO2
25 ROTATED 180 ABOUT 1 0 0
26 DISPLACED 0 0 25 .0
27 ENDOBJECT

Listing F.2: scuff-em geometry file.

There are two main components to the scuff-em geometry file: material decla-

rations and object declarations. Material declarations provide the dielectric function

of a given material and should appear first in a scuff-em geometry file. Multiple

materials may be defined sequentially. Advanced users may also choose to locate
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their material declarations in a central repository. scuff-em has two built-in mate-

rials: vacuum and perfect electrical conductor (PEC). The dielectric function must

be calculated in units of u � ω{ω0 where ω0 � 3 � 1014 rad s�1. To convert from

wavelength λ (in micrometers) to u, use λ � 2π{u
Object declarations are used for finite objects, bounded by finite surfaces, which

are not touching any other objects. They specify the mesh file, material, and configu-

ration using the MESHFILE, MATERIAL, and ROTATED/DISPLACED keywords,

respectively. MESHFILE refers to a previously created mesh, which should be stored

in the current working directory or in a central repository. MATERIAL refers to the

previously discussed material declaration. Failure to provide MATERIAL results in

an object being treated as a PEC. ROTATED refers to the orientation of the object’s

intrinsic coordinate axes relative to the global axes. ROTATED has arguments d

ABOUT ax ay az, where d is the rotation (in degrees) and ax, ay, az correspond to

the x, y, and z-axes. The ROTATED command in Listing F.2 produces a rotation

about the x-axis of 180 degrees. DISPLACED refers to the Cartesian translation

of an object’s intrinsic origin relative to the global coordinate system’s origin. For

the sphere defined above, the intrinsic origin lies at the sphere’s center. Failure to

provide values for DISPLACED results in the object’s axes and origin to be aligned

with a global set of axes and a global origin. The DISPLACED keyword takes three

arguments: x y z. For example in Listing F.2, Sphere2 is translated 25 µm in the

positive z-direction. Since Sphere1 and Sphere2 have radii of 10 µm, they are sepa-

rated by a minimum separation distance of 5 µm. The ROTATED and DISPLACED

commands are read sequentially, so care must be taken to ensure they are given in

the intended order. For example, if lines 25 (ROTATED) and 26 (DISPLACED) are

reversed in Listing F.2, the translation and rotation of Sphere2 will result in its origin

being located at p0, 0,�25q instead of p0, 0, 25q.
It is important to note that there are many other more advanced features which
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Figure F.1: Visualization of the scuff-em geometry file, created using Gmsh.

may be included in a scuff-em geometry file. I direct readers to http://homerreid.

github.io/scuff-em-documentation/reference/Geometries/ for further details.

Once a scuff-em geometry file is created, I advise visually checking the resulting

geometry using Gmsh. To do so, use the terminal command

1 s cu f f�ana lyze ��geometry Geometry . s c u f f g e o ��WriteGMSHFiles

and then open the resulting file with the extension .pp using Gmsh. For the example

presented above, the result is shown in Fig. F.1. The bottom sphere is Sphere1 and

the top sphere is Sphere2. Sphere1 clearly shows the denser mesh at its northern

pole; the underside of Sphere2 is identical.

F.4 Running a Simulation

To run a single NFRHT simulation, we will call upon the code for non-equilibrium

(NEQ) fluctuation-induced phenomena. It can handle both NFRHT and Casimir
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force calculations. We are interested in calculating the transmissivity function be-

tween objects. In the parlance of SCUFF-EM, it is called the generalized flux,

ΦsÑdpuq. The generalized flux output by SCUFF-EM is exactly equal to τsÑdpωq
from Eq. 3.9. The command to compute NFRHT is

1 s cu f f�neq ��geometry Geometry . s c u f f g e o ��OmegaFile OmegaFile

where OmegaFile is a file of values of u at which ΦsÑdpuq will be evaluated.

Each value of u in OmegaFile should occupy its own line. The example showed

is the most basic NFRHT calculation. Several customizations are available,

and I direct readers to http://homerreid.github.io/scuff-em-documentation/

applications/scuff-neq/scuff-neq/ for all of them.

There is one special option to which I will draw attention: transformations. Many

elements of the scattering matrix used to compute NFRHT require properties of the

individual bodies alone, and thus can be reused if a heat transfer-distance is desired.

In order to save computational time, a transformation file can be supplied which

details all the translations (or rotations) desired. The transformation file should give

all translations and rotations relative to the configuration given in the scuff-em

geometry file. For example, a file which takes our spheres and also computes NFRHT

with minimum separation gaps of 10, 15, and 20 µm would read

1 TRANS 5 OBJECT Sphere2 DISP 0 0 0
2 TRANS 10 OBJECT Sphere2 DISP 0 0 5
3 TRANS 15 OBJECT Sphere2 DISP 0 0 10
4 TRANS 20 OBJECT Sphere2 DISP 0 0 15

Listing F.3: scuff-em transformation file.

where the second column is a label, the fourth column is the object being transformed,

and the sixth, seventh, and eighth columns are the Cartesian translations (relative

to the scuff-em geometry file). There are a number of more sophisticated trans-

formation methods allowed, which are covered extensively in http://homerreid.
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github.io/scuff-em-documentation/reference/Transformations/. The com-

mand to execute a NFRHT simulation using a transformation file is

1 s cu f f�neq ��geometry Geometry . s c u f f g e o ��TransFi l e Transformation ��

OmegaFile OmegaFile

where Transformation is the scuff-em transformation file.

The result of such a command is a file called Geometry.SIFlux.EMTPFT where

SI refers to the result being spatially integrated and EMTPFT (energy-momentum

transfer, power force torque) refers to the method of integration (EMTPFT is the

default method). An example output file is given in Listing F.4 for two objects

and two frequencies. The columns of the file are the (1) transformation label (0.0

if no transformation file is provided), (2) non-dimensional frequency u, (3) source

and destination objects, (4) flux spectral density of absorbed power (ΦsÑd), (5) flux

spectral density of radiated power, (6-8) x, y, and z components of force flux spectral

density, and (9-11) x, y, and z components of torque flux spectral density.

1 # scu f f�neq run on Lab127 ( 0 8/29/18 : : 1 8 : 3 3 : 3 0 )
2 # data f i l e columns :
3 # 1 transform tag
4 # 2 omega
5 # 3 ( sourceSur face , de s tSur f a c e )
6 # 4 PAbs f l ux s p e c t r a l dens i ty
7 # 5 PRad f l ux s p e c t r a l dens i ty
8 # 6 XForce f l u x s p e c t r a l dens i ty
9 # 7 YForce f l u x s p e c t r a l dens i ty

10 # 8 ZForce f l u x s p e c t r a l dens i ty
11 # 9 XTorque f l ux s p e c t r a l dens i ty
12 # 10 YTorque f l ux s p e c t r a l dens i ty
13 # 11 ZTorque f l ux s p e c t r a l dens i ty
14 0 .0 1 .256637 e+00 11 �7.90281126e�03 +7.90281126e�03 +2.69890579e�09

+8.84873807e�09 +5.63661446e�06 +3.61864629e�07 �3.84970743e�07
+1.83454544e�07

15 0 .0 1 .256637 e+00 12 +3.13534531e�07 �3.13534531e�07 �2.31817174e�10
�8.73833724e�10 +3.15096081e�06 +7.15556954e�09 �1.58668386e�07
+3.72063847e�09

16 0 .0 1 .256637 e+00 21 +3.13534530e�07 �3.13534530e�07 +3.49548060e�10
+8.71691790e�10 �3.15110593e�06 �8.50545313e�09 �1.70369659e�08
+1.50823996e�09
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17 0 .0 1 .256637 e+00 22 �7.90281156e�03 +7.90281156e�03 +3.03177834e�09
+8.33691980e�09 �5.65780382e�06 �8.43395835e�05 +3.44041141e�05
+1.84850281e�07

18 0 .0 1 .231997 e+00 11 �8.12161225e�03 +8.12161225e�03 +2.33929940e�09
+8.21665833e�09 �1.23062421e�06 +3.92032030e�07 �4.11282818e�07
+1.79000346e�07

19 0 .0 1 .231997 e+00 12 +3.44786515e�07 �3.44786515e�07 �2.21137091e�10
�8.30112384e�10 +2.79435617e�06 +4.43090059e�09 �1.52735690e�07
+3.57295128e�09

20 0 .0 1 .231997 e+00 21 +3.44786514e�07 �3.44786514e�07 +3.41479370e�10
+8.37460786e�10 �2.79450235e�06 +4.12857975e�09 �2.13249109e�08
�6.37395124e�10

21 0 .0 1 .231997 e+00 22 �8.12161250e�03 +8.12161250e�03 +2.99997828e�09
+7.74714497e�09 +1.21073213e�06 �8.33215031e�05 +3.39882913e�05
+1.82055594e�07

Listing F.4: Sample output file from scuff-em.

For NFRHT calculations, columns 6 through 11 may be ignored. τsÑdpωq, defined

in Eq. 3.9, is exactly equal to the value of ΦsÑdpuq located in column 4 for s � d.

τsÑEpωq, the transmissivity function defined between an object and its environment,

is not given directly by SCUFF-EM. Instead, it must be obtained using quantities

from column 4 and

τsÑEpωq � �
¸
α

ΦsÑα (F.1)

where α is an index over all objects, including α � s. The self-contribution to the

transmissivity is negative and has a large magnitude, so τsÑE ¡ 0. For an isolated

object, τsÑE � ΦsÑs.
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