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Abstract

Computational studies and algorithmic resear of
strongly correlated materials

Zhuoran He

Strongly correlated materials are an important class of materials for research in
condensed maer physics. Other than ordinary solid-state physical systems, which
can be well described and analyzed by the energy band theory, the electron-electron
correlation effects in strongly correlated materials are far more significant. So it is
necessary to develop theories and methods that are beyond the energy band theory to
describe their rich and varied behaviors. Not only are there electron-electron correlations,
typically the multiple degrees of freedom in strongly correlated materials, such as
charge distribution, orbital occupancies, spin orientations, and laice structure exhibit
cooperative or competitive behaviors, giving rise to rich phase diagrams and sensitive
or non-perturbative responses to changes in external parameters such as temperature,
strain, electromagnetic fields, etc.

is thesis is divided into two parts. In the first part, we use the density functional
theory (DFT) plus U correction, i.e., the DFT+U method, to calculate the equilibrium
and nonequilibrium phase transitions of LuNiO3 and VO2. e effect of adding U is
manifested in both materials as the change of band structure in response to the change
of orbital occupancies of electrons, i.e., the so band effect. is effect bring about
competitions of electrons between different orbitals by lowering the occupied orbitals
and raising the empty orbitals in energy, giving rise to multiple metastable states. In
the second part, we study the dynamic mean field theory (DMFT) as a beyond band-
theory method. is is a Green’s function based theory for open quantum systems. By
selecting one laice site of an interacting laice model as an open system, the other
laice sites as the environment are equivalently replaced by a set of non-interaction
orbitals according to the hybridization function, so the whole system is transformed into
an Anderson impurity model. We studied how to use the density matrix renormalization
group (DMRG) method to perform real-time evolutions of the Anderson impurity model
to study the non-equilibrium dynamics of a strongly correlated laice system.

We begin in Chapter 1 with an introduction to strongly correlated materials, density
functional theory (DFT) and dynamical mean-field theory (DMFT). e Kohn-Sham
density functional theory and its plus U correction are discussed in detail. We also



demonstrate how the DMFT reduces the laice sites other than the impurity site as a
set of non-interacting bath orbitals.

en in Chapters 2 and 3, we show material-related studies of LuNiO3 as an example
of rare-earth nickelates under substrate strain, and VO2 as an example of a narrow-gap
Mo insulator in a pump-probe experiment. ese are two types of strongly correlated
materials with localized 3d orbitals (for Ni and V). We use the DFT+U method to calculate
their band structures and study the structural phase transitions in LuNiO3 and metal-
insulator transitions in both materials. e competition between the charge-ordered and
Jahn-Teller distorted phases of LuNiO3 is studied at various substrate laice constants
within DFT+U. A Landau energy function is constructed based on group theory to
understand the competition of various distortion modes of the NiO6 octahedra. VO2

is known for its metal-insulator transition at 68 ◦C, above which temperature it’s a
metal and below which it’s an insulator with a doubled unit cell. For VO2 in a pump-
probe experiment, a metastable metal phase was found to exist in the crystal structure
of the equilibrium insulating phase. Our work is to understand this novel metastable
phase from a so-band picture. We also use quantum Boltzmann equation to justify
the prethermalization of electrons over the lifetime of the metastable metal, so that the
photoinduced transition can be understood in a hot electron picture.

Finally, in Chapters 4 and 5, we show a focused study of building a real-time solver
for the Anderson impurity model out of equilibrium using the density matrix renor-
malization group (DMRG) method, towards the goal of building an impurity solver for
nonequilibrium dynamical mean-field theory (DMFT). We study both the quenched and
driven single-impurity Anderson models (SIAM) in real time, evolving the wave function
wrien in a form with 4 matrix product states (MPS) in DMRG. For the quenched model,
we find that the computational cost is polynomial time if the bath orbitals in the MPSs are
ordered in energy. e same energy-ordering scheme works for the driven model in the
short driving period regime in which the Floquet-Magnus expansion converges. In the
long-period regime, we find that the computational time grows exponentially with the
physical time, or the number of periods reached. e computational cost reduces in the
long run when the bath orbitals are quasi-energy ordered, which is discussed in further
detail in the thesis.
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Chapter 1

Introduction

In this thesis, we study the strongly correlated materials with localized electron orbitals,
which show up in the Hubbard model or Anderson impurity model as an intra-orbital
Hubbard U term between opposite spins on the same atomic site. A Hunds coupling J is
oen introduced to describe anisotropies of the interactions between multiple orbitals.
In this introductory chapter, we will discuss the main challenges encountered and
techniques employed in the research works of this dissertation. ese will include the
density functional theory (DFT), Wannier orbitals, Hartree-Fock corrections of localized
Wannier orbitals (oen called DFT+U), and dynamical mean-field theory (DMFT), which
are state of the art for understanding strongly correlated materials.

1.1 Density functional theory

In most textbooks on solid state physics, the band theory is an important topic to
cover because of its conceptual simplicity and computational efficiency. Yet its main
limitation is assuming that electrons are noninteracting or that the electron-electron
interactions can be treated on a mean-field level. e density-functional theory (DFT)
(Hohenberg and Kohn 1964), especially the Kohn-Sham DFT (Kohn and Sham 1965)
is a mapping of the interacting many-electron system into an effective noninteracting
system that reproduces the electron density exactly if the exact exchange-correlation
functional is known. In practice, approximations of the functional are developed such
as the local density approximation (LDA), generalized gradient approximation (GGA),
and meta-GGA, etc., and generalizations of the theoretical framework are proposed to
reproduce not only the density, but also the spin-density, one-body density matrix and
even pairing amplitudes in superconducting systems with an effective noninteracting
model. e density functional theory is thus a non-perturbative justification of how
well one can approximate an interacting many-electron system by studying an auxiliary
noninteracting system in a self-consistent loop. e challenge is, of course, that the
more quantities to be reproduced by the noninteracting system, the more complicated
the exchange-correlation functional becomes as it can depend on more quantities in a
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non-local way. Here we give a theoretical formulation of the density functional theory
following the Levy-Lieb constrained search formalism proposed in (Levy 1982; Lieb 1983).
Consider an N-electron system

Ĥ =
N

∑
i=1

p2
i

2me︸ ︷︷ ︸
T̂

+
N

∑
i=1

V(ri)︸ ︷︷ ︸
V̂

+
1
2

N

∑
i=1

N

∑′

j=1

e2

4πϵ0|ri − rj|︸ ︷︷ ︸
Ŵ

, (1.1)

where we will use T̂, V̂, Ŵ to refer to the kinetic energy, potential energy in external field
due to the ions, and the electron-electron interaction energy. We notice that the T̂ + Ŵ
part of the Hamiltonian is universal in all materials, which differ only in the potential
energy V̂ due to the crystal field. We also notice that the crystal field V(r) only couples
to the density n̂(r) via the one-body potential

V̂ =
∫

d3rV(r)n̂(r), n̂(r) ≡
N

∑
i=1

δ(r − ri). (1.2)

erefore, the ground-state energy can be found by

E0 ≡ min
|ΨN⟩

⟨ΨN|Ĥ|ΨN⟩ = min
|ΨN⟩

[
⟨ΨN|T̂ + Ŵ|ΨN⟩+

∫
d3rV(r)n(r)

]
, (1.3)

where |ΨN⟩ is a normalized N-electron state satisfying ⟨ΨN|ΨN⟩ = 1. It gives the
density n(r) = ⟨ΨN|n̂(r)|ΨN⟩. e idea of Levy-Lieb constrained search is to break the
minimization into two steps:

E0 = min
n(r)

[
min

|ΨN⟩→n(r)
⟨ΨN|T̂ + Ŵ|ΨN⟩︸ ︷︷ ︸

F[n(r)]

+
∫

d3rV(r)n(r)
]

, (1.4)

where the first step is to minimize over the wave functions |ΨN⟩ that give the density
n(r), and then the second step is to minimize over n(r) to find the ground-state density.
e big triumph of the density-functional theory is that the functional F[n(r)] is universal,
i.e., independent of the crystal field V(r) that is material specific. It only depends
on T̂ + Ŵ, i.e., the electron kinetic energy and electron-electron interactions. Both
the ground-state energy and the ground-state density can be found by minimizing the
universal functional F[n(r)] plus a linear coupling term

∫
d3rV(r)n(r) of the crystal field

V(r)with the density n(r). e grand potential minimization formalism generalizes DFT
to finite temperatures and fractional occupancies.
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Eq. (1.4) is of course only a reformulation of the many-electron problem. e universal
functional F[n(r)] is as hard to find as solving a general many-electron problem with
electron-electron interactions. It therefore requires approximations to be put to work in
practice. We consider the difference of F[n(r)] between an interacting system T̂ + Ŵ
and a noninteracting system T̂, subtract off the classical electrostatic potential energy,
and define the remaining difference as the exchange-correlation energy Exc[n(r)], i.e.,

F[n(r)] = min
|ΨN⟩→n(r)

⟨ΨN|T̂|ΨN⟩+
1
2

e2

4πϵ0

∫∫
d3rd3r′

n(r)n(r′)
|r − r′| + Exc[n(r)], (1.5)

hoping that the non-local structure of F[n(r)] can be made short-range in Exc[n(r)] to be
more easily approximable. e local-density approximation (LDA), for example, assumes
that the exchange-correlation functional takes the form

Exc[n(r)] ≈
∫

d3r n(r) ϵxc(n(r)), (1.6)

where ϵxc(n(r)) is the exchange-correlation energy per electron at r that only depends
on n(r) at the same position. e formula of ϵxc(n) is oen determined by calculations
or simulations of the electron gas with uniform density. e generalized gradient
approximation (GGA) takes into account gradient effects of the density so onewouldwork
with ϵxc(n,∇n) and meta-GGAwould allow the exchange-correlation energy density ϵxc

to depend on higher-order gradients of the density n allowed by rotational symmetry,
because Exc[n(r)] is a universal functional that only depends on T̂ + Ŵ.

Once an LDA/GGA type exchange-correlation energy Exc[n(r)] is given, the mini-
mization of Eq. (1.4) can be done by solving an auxiliary noninteracting many-electron
system, known as the Kohn-Sham system. Let us rewrite the energy functional as

E[n(r)] ≡ F[n(r)] +
∫

d3rV(r)n(r) = min
|ΨN⟩→n(r)

⟨ΨN|T̂|ΨN⟩

+
1
2

e2

4πϵ0

∫∫
d3rd3r′

n(r)n(r′)
|r − r′| + Exc[n(r)] +

∫
d3rV(r)n(r). (1.7)

e energy functional contains a kinetic energy that involvesminimizing amany-electron
wave function |ΨN⟩ subject to a given density n(r) plus other terms that are directly
calculable from the density n(r) via some analytic or empirical formulas. By taking the
first-order variation of the total energy E[n(r)], we obtain

δE[n(r)] = δT[n(r)] +
∫

d3rVKS(r)δn(r), (1.8)
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where the (noninteracting) kinetic energy functional is defined by

T[n(r)] ≡ min
|ΨN⟩→n(r)

⟨ΨN |T̂|ΨN⟩, (1.9)

and the Kohn-Sham effective potential is given by

VKS(r) = V(r) +
e2

4πϵ0

∫
d3r′

n(r′)
|r − r′| +

δExc[n(r)]
δn(r)

. (1.10)

Minimizing the energy functional E[n(r)] is locally equivalent to minimizing an auxiliary
Kohn-Sham noninteracting system Ĥ0 = T̂ + V̂KS, where the Kohn-Sham potential
VKS(r) depends on the density n(r) which must be determined self-consistently. If
the exchange-correlation energy Exc[n(r)] is known, the ground-state densities of Ĥ =

T̂ + V̂ + Ŵ and Ĥ0 = T̂ + V̂KS would be the same. e density functional theory then
allows us to calculate the density n(r) of the interacting system Ĥ by doing the self-
consistent loops of the auxiliary noninteracting system Ĥ0.

1.2 Wannier orbitals

Aer doing a DFT calculation, we obtain the energy bands and Bloch waves over a k-point
mesh of the first Brillouin zone (BZ). We sometimes want to build a minimum model
that involves as few orbitals as possible that would reproduce the DFT band structure.
e maximally localized Wannier functions (orbitals) wm(r − R) are the basis for such a
construction. e Bloch waves ψnk(r) can be superposed from them via

ψnk(r) = unk(r)eik·r = ∑
Rm

eik·RUnm(k)wm(r − R), (1.11)

where unk(r) is cell-periodic and the matrix Unm(k) is unitary. e Wannier functions
wm(r − R) play the role of orthogonalized atomic orbitals. ey are superposed into
“molecular orbitals” by the unitary matrix Unm(k) and then form the Bloch wave ψnk(r)
via the sum over the laice sites R, which is similar to the linear combination of atomic
orbitals (LCAO) method in the solid-state physics textbooks. One may invert the Fourier
transform and unitary matrix using

wm(r − R) =
∫

BZ

d3k
(2π)3 eik·(r−R) ∑

n
U∗

nm(k)unk(r), (1.12)
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where “BZ” is the first Brillouin zone [−π, π]3 in the reciprocal laice basis (need not
be orthogonal). In our unit system, the laice vector R ∈ Z3 is an integer vector in the
Bravais laice basis. e metric between k · r is still identity. Since unk(r) = unk(r−R)

is cell-periodic, the wm(r − R) calculated from Eq. (1.12) is indeed only a function of
r − R. is ensures that we choose a translationally invariant basis.

In the definition of the multi-band Wannier functions in Eq. (1.12), the unitary matrix
Unm(k) is a gauge freedom, which in the single-band case becomes a single k-dependent
phase. e multi-band case allows more freedom, which we can use to narrow the spread
of the Wannier functions. We first consider the Wannier center defined by

rm ≡ ⟨wm|r|wm⟩ =
∫

d3r w∗
m(r) r wm(r), (1.13)

and then the second-order moment defined by

⟨r2⟩m ≡ ⟨wm|r2|wm⟩ =
∫

d3r w∗
m(r) r2 wm(r). (1.14)

e spread Ωm ≡ ⟨r2⟩m − r2
m of the mth Wannier function can then be calculated and

minimized by tuning the unitary matrices Unm(k). e technical details of this part are
handled by Wannier90 (Mostofi et al. 2014). e spread is calculated in k-space using

rm = i
∫

BZ

d3k
(2π)3

∫
Cell

d3r ũ∗
mk(r)∇kũmk(r), (1.15)

⟨r2⟩m =
∫

BZ

d3k
(2π)3

∫
Cell

d3r ∇kũ∗
mk(r) · ∇kũmk(r), (1.16)

where we have introduced the decoupled cell-periodic functions

ũmk(r) ≡ ∑
n

U∗
nm(k)unk(r), (1.17)

with ũmk(r)eik·r having the meaning of the LCAO wave function formed by the mth
“atomic orbital” wm(r − R). A derivation is given in Appendix A to obtain Eqs. (1.15)–
(1.16) using the mathematically elegant formula r 7→ i∇k.

1.3 e DFT+U method

e density functional theory (DFT) is a highly successful method for calculating the
electronic band structures of real materials. e auxiliary Kohn-Sham system in practice
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Figure 1.1: Fundamental gaps of sp compounds from LDA (squares) and GLDAWLDA

(circles). e spin-orbit coupling was subtracted by hand from the calculations. e
GLDAWLDA gaps improve on the LDA, but are still systematically underestimated. is
figure is from (Schilfgaarde, Kotani, and Faleev 2006).

oen not only gives a good description of the electron density, but also provides a
reasonably good picture of the band structure. For some strongly correlated materials
with localized orbitals (typically d and f orbitals), however, the DFT method suffers from
the band gap problem (see Fig. 1.1), meaning that the band gap given by the method is
systematically too small. Some insulators are incorrectly calculated by DFT to be metals.
e DFT+U method is a computationally cheap solution (compared with e.g. the GW
method used in Fig. 1.1 or other more expensive Feynman diagram based method) to the
band gap problem by introducing a Hartree-Fock correction term to the localized orbitals.
e magnitude of the correction is controlled by the Hubbard U (and sometimes also
Hund’s coupling J) as adjustable parameters to fit with the experimental band structure.
ere are also methods that can give a reasonable estimation of the range of U as a
guideline, such as the constrained RPA (Kotani 2000; Springer and Aryasetiawan 1998)
and self-consistent linear response theory (Cococcioni and Gironcoli 2005), etc. Here we
will not go into the details of how to estimate the parameters U and J, but will mainly
focus on the general idea of DFT+U, with some detailed discussions on parameterizing
the rotationally invariant interaction matrix elements in terms of U and J following
(Liechtenstein, Anisimov, and Zaanen 1995).
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Hartree-Fo approximation for localized orbitals

eband gap problem of Kohn-ShamDFT is due to the fact that the effects of the two-body
interactions on localized orbitals are not well reproduced by the one-body Kohn-Sham
potential. e locality of the orbital increases the correlation effects (repulsiveness) of
electron occupancy in that once an electron occupies the orbital, it becomes very difficult
to get occupied by another electron. is effect of reduced double occupancy can be
reproduced by the Hartree-Fock energy of the two-body interactions on the localized
orbitals. e energy functional of DFT+U is given by

EDFT+U[n, n] = EDFT[n] + ⟨ĤU⟩HF[n]− Edc[n], (1.18)

with the two-body Hamiltonian

ĤU =
1
2 ∑
{m}

∑
σσ′

Umm′m′′m′′′ c†
mσ c†

m′σ′ cm′′′σ′ cm′′σ . (1.19)

Here σ and σ′ sum over the spin directions ↑ and ↓, and {m} ≡ (m, m′, m′′, m′′′) sums
over localized orbitals on the same site. e Hartree-Fock energy

⟨ĤU⟩HF =
1
2 ∑
{m}

∑
σσ′

Umm′m′′m′′′
(
nm′′σ,mσ nm′′′σ′,m′σ′ − nm′′′σ′,mσ nm′′σ,m′σ′

)
(1.20)

is determined by the on-site one-particle spin-density matrix nmσ,m′σ′ = ⟨c†
m′σ′cmσ⟩. e

last term Edc[n] is the double-counting energy, which subtracts off the interaction effects
already considered in EDFT[n] via the real-space local density n(r).

Depending on the magnetic order (i.e. spin symmetry) of the system, we have 3
types of DFT+U theories commonly used in energy band solvers for real materials
calculations. For example, in the Vienna Ab-initio Simulation Package (VASP), (see
http://cms.mpi.univie.ac.at/wiki/index.php/LDAUTYPE) the parameter seings
are listed in the table below. e U(1) gauge symmetry corresponds to the conservation

Magnetic order Symmetry Form of nmσ,m′σ′ ISPIN LDAUTYPE
None U(1)× SU(2) nmm′δσσ′ 1 –

Collinear U(1)× U(1) nσ
mm′δσσ′ 2 4

Non-collinear U(1) General 2 1

Table 1.1: Choice of VASP parameters for different magnetic orders
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of total number of electrons. e SU(2) symmetry is the spin symmetry, which is fully
preserved in paramagnetic (or diamagnetic) materials, partially spontaneously broken to
U(1) in collinear spin systems (including ferromagnetic, antiferromagnetic, ferrimagnetic
orders, etc), and fully broken in non-collinear spin systems (e.g. frustrated systems). e
U(1) gauge symmetry may be broken as well for aractive interactions, which would
open the paring channels. Such DFT+U calculations with paring effects are not yet
supported in VASP formaterials calculations, but are extensively studied inmodel systems
(Moreo and Scalapino 1991; Sarker and Lair 2005).

Hubbard U and Hund’s coupling J

In materials calculations, the many interaction parameters Umm′m′′m′′′ in Eq. (1.19) are
oen determined by only two parameters: the Hubbard U and Hund’s coupling J, by
considering the rotational symmetry of an isolated atom. Even though in a crystal, the
symmetry is lowered due to other atoms, a rotationally invariant interaction is still found
to be a good starting point. In an isolated atom, the on-site occupation matrix nmσ,m′σ′ =

nmσδmm′δσσ′ is diagonal in both spin and orbital angular momenta. e Hartree-Fock
energy in Eq. (1.20) then reduces to

⟨HU⟩HF =
1
2 ∑

mσ
∑

m′σ′
(Umm′ − Jmm′δσσ′) nmσnm′σ′ , (1.21)

where we have introduced the short-hand notations Umm′ ≡ Umm′mm′ and Jmm′ ≡
Umm′m′m, which are the direct and exchange interaction matrices. e Hartree-Fock
energy between two electrons |mσ⟩ and |m′σ′⟩ is Umm′ − Jmm′δσσ′ . e Hubbard U and
Hund’s coupling J are defined by averaging the interaction over the orbitals, i.e.,

U ≡ 1
(2l + 1)2 ∑

mm′
Umm′ , U − J ≡ 1

2l(2l + 1) ∑
mm′

(Umm′ − Jmm′). (1.22)

On average, the repulsion between electrons of opposite spins is the Hubbard U, while the
average repulsion between electrons of the same spin is U − J, weaker than the Hubbard
U by the Hund’s coupling J due to the exchange effect.

A rotationally invariant Hamiltonian

If the interactions Umm′m′′m′′′ in Eq. (1.19) arise from a rotationally invariant two-body
potential V(|r1 − r2|) between equivalent electrons (with the same n and l) on the same
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atomic site, the matrix elements

Umm′m′′m′′′ =
∫

d3r1d3r2 ϕ∗
m(r1)ϕ

∗
m′(r2)V(|r1 − r2|) ϕm′′(r1)ϕm′′′(r2), (1.23)

can be parameterized by a few radial parameters due to the rotational symmetry. Let us
expand the two-body potential V(|r1 − r2|) in terms of Legendre polynomials

V(|r1 − r2|) =
∞

∑
k=0

Vk(r1, r2)Pk(r̂1 · r̂2), (1.24)

where Pk denotes the kth-degree Legendre polynomial, and write the orbital wave
functions into the form

ϕm(r) = Rnl(r)Ylm(r̂), m = 0,±1, . . . ,±l. (1.25)

Note that all 4 orbitals m, m′, m′′, m′′′ in Eq. (1.23) have the same radial function Rnl(r)
and only differ by the angular part Ylm(r̂). If the above assumptions hold approxi-
mately true for the on-site Wannier orbitals, then we can parameterize the interactions
Umm′m′′m′′′ in terms of the radial integral parameters

Fk =
∫

d3r1d3r2 r2
1r2

2|Rnl(r1)|2|Rnl(r2)|2Vk(r1, r2), (1.26)

via the universal Wigner 3j-symbols

Umm′m′′m′′′ = (2l + 1)2
l

∑
k=0

F2k

(
l 2k l
0 0 0

)2 2k

∑
q=−2k

(−1)m+m′+q

×
(

l 2k l
−m q m′′

)(
l 2k l

−m′ −q m′′′

)
. (1.27)

We will give a detailed derivation in Appendix B. Only even-degree radial integrals F2k

enter into Umm′m′′m′′′ because of the parity selection rule. e conservation of angular
momentum is also implied by the selection rule q = m − m′′ = m′′′ − m′ of the Wigner
3j-symbols. We also show in Appendix B the sum rules of F2k in terms of the Hubbard U
and Hund’s J parameters in Eq. (1.22) given by

U = F0, J =
2l + 1

2l

l

∑
k=1

F2k

(
l 2k l
0 0 0

)2

. (1.28)
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So the Hubbard U and Hund’s J are also called the isotropic and anisotropic interactions,
respectively. To parameterize a rotationally invariant interaction between s electrons, we
need only one parameter F0. To parameterize interactions between p electrons, we need
F0 and F2. For d electrons we need F0, F2, and F4, and so on.

Empirically F0(=U) (typically a few eVs) is most significantly affected by screening
and other renormalization effects, so it needs to be specified for every material. e
anisotropies F2, F4, F6, . . . of the interaction are specified proportional to one parameter J
via the sum rule, with the ratios of different F2k’s kept constant and specified empirically.
A common choice for anisotropy is J = 0.5— 1 eV for 3d orbitals, with no strong
dependence on materials (Pavarini et al. 2011).

e double-counting term

e double-counting correction Edc is constructed by the same idea as Eq. (1.22).
Assuming EDFT[n] looking at only the local density cannot distinguish between different
on-site orbitals, the interaction energy between electrons of opposite spins is U and the
interaction energy between electrons of the same spin is U − J. erefore, the double-
counting energy to be subtracted off from EDFT+U is given by

Edc[n] = UN↑N↓ +
1
2
(U − J)∑

σ

Nσ(Nσ − 1),

=
1
2

UN(N − 1)− 1
2

J ∑
σ

Nσ(Nσ − 1) (1.29)

with Nσ = ∑m nmσ,mσ is the number of electrons with spin σ and N = ∑σ Nσ is the total
number of electrons. is is the form of double-counting energy used in VASP called the
fully localized limit (FLL). ere are other forms of double-counting energy as well, such
as the around mean-field (AMF) form. Some recent work to make the double-counting
correction more rigorous is given in (Haule 2015).

1.4 Dynamical mean-field theory

e density function theory (DFT) and DFT+U theory map an interacting electron
system into an effective non-interacting system with a self-consistently determined band
structure. e dynamical mean-field theory (DMFT) is a beyond band theory method
formulated based on Green’s functions. e main idea is to choose one site of an
interacting laice model as an open system, and then based on the local Green’s function
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of the chosen site, we simplify the other environmental laice sites into an equivalent
non-interacting bath. e laice model is then mapped into an Anderson impurity model
with only the chosen site (the impurity) having on-site interactions (Hubbard U or U and
J for multi-orbital impurities) and other orbitals non-interacting.

e idea can be formulated in the situation of a general open quantum system, with
the total Hamiltonian of the system and the environment (bath) given by

H = HS + HE + Hmix, (1.30)

where HS and HE only act on the system and the environment respectively and Hmix

acts on both. In the case of DMFT, HS includes the on-site orbital energy and on-site
interactions of the impurity, HE includes the cavity laice of all other sites, and Hmix

refers to the hopping terms between the impurity and the bath. e whole Hilbert space
H = HS ⊗HE is a direct product of that of the system HS and that of the environment
HE. In general, the nonequilibrium Green’s function of the system S defined on the
Keldysh contour C is given by

GS(t1, t2) = − i
Z

Tr TC
[
e−i

∫
C dt[HS(t)+HE(t)+Hmix(t)]c(t1)c†(t2)

]
. (1.31)

e Keldysh contour is a trajectory on the complex plane of time to go from t = 0 on the
real axis to t = +∞ and then back to t = 0 and then down the imaginary axis to t = −iβ.
For more details of the nonequilibrium Green’s functions, see e.g. (Aoki et al. 2014). e
partition function Z = Tr e−βH(0). All operators with a time label for contour ordering
TC are still in the Schrödinger picture. Hamiltonians are allowed to physically change
with time t. e operators c and c† only act on the system S. Subscripts are dropped to
keep the notation simple. Let’s split the trace Tr = TrSTrE into partial traces over HS

and HE. Since operators in Eq. (1.31) are ordered by TC , it is permissible to factorize the
exponential and permute the operators to obtain

GS(t1, t2) = − i
Z

TrSTC
[
e−i

∫
C dt HS(t)c(t1)c†(t2)TrETC

(
e−i

∫
C dt[HE(t)+Hmix(t)]

)]
.

Now we define an effective action

TC eSeff[c,c†] ≡ 1
ZE

TrETC
(

e−i
∫
C dt[HE(t)+Hmix(t)]

)
≡ ⟨TC e−i

∫
C dt Hmix(t)⟩E, (1.32)

with the partition function ZE = TrE e−βHE(0). e action Seff[c, c†] contains c, c† at all
times like a “functional” of operators. Protected by the contour-ordering TC , the operators
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c, c† at different times behave like the anticommuting Grassmann numbers (for fermionic
system S). We have omied lots ofmathematical details to show that the exponential form
exists and is well-defined over the ring of Grassmann numbers. e Green’s function of
the system S is then wrien as

GS(t1, t2) = − i
ZS

TrSTC
[
e−i

∫
C dt HS(t)+Seff[c,c†]c(t1)c†(t2)

]
, (1.33)

with ZS ≡ Z/ZE defined as the partition function of the open system S. All of the
environmental degrees of freedom have been traced out by TrE to give rise to an effective
action Seff[c, c†] of the system’s degrees of freedom.

We have formulated very conceptually the effective action theory for open quantum
systems. e action contains richer physics than Hamiltonians. For example, in systems
with electron-phonon coupling, Seff[c, c†] in terms of the electronic degrees of freedom
gives rise to a time-delayed aractive two-body (four operator) interaction mediated
by the noninteracting phonons. Similarly, the effective action Seff[c, c†] produced by a
noninteracting fermionic bath in the situation of DMFT is a time-delayed one-body (two
operator) hopping term

Seff[c, c†] = −i
∫∫

C
dtdt′c†(t)∆(t, t′)c(t′) (1.34)

governed by a hybridization function ∆(t, t′). We will give a detailed derivation of (1.34)
and a specific expression for the hybridization function ∆(t, t′) in terms of the bath
spectrum and impurity-bath coupling strengths in Appendix C. Review papers of DMFT
(Eckstein 2009; Georges et al. 1996; Gramsch et al. 2013) show that the Seff[c, c†] of an
interacting cavity laice also reduces to the form in Eq. (1.34) in the infinite dimension
(or infinite coordination number) limit, justifying the approximation of DMFT in high
spatial dimensions.

1.5 Summary and conclusion

We have given brief introductions to state-of-the-art techniques used for calculating the
electronic states of strongly correlated systems with significant on-site interactions for
localized orbitals. e density functional theory in its Kohn-Sham self-consistent field
formulation has proved to be highly successful for many types of real materials. For
materials with localized (typically d or f ) orbitals, the Coulomb repulsion of electrons
on these orbitals are significant and cannot be well approximated by a local Kohn-Sham
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field that couples to the local density. e computationally cheap solution is to use
DFT+U, which includes the Hartree-Fock energy of the localized orbitals to construct a
nonlocal potential that couples to the orbital occupancy, or the on-site occupation matrix.
Depending on the magnetic order of the system, different types of+U corrections can be
included. Amore accurate but computationally expensive solution is to use the dynamical
mean-field theory (DMFT), which keeps the full interactions on the localized orbitals
treated as impurities and only aempt to map the delocalized orbitals into an effective
noninteracting bath. Other interesting topics such as the self-consistency conditions of
DMFT, generalizations of DMFT to clusters of laice sites, and the DFT+DMFT method
for real materials calculations are not discussed in this thesis.

In the following chapters, we use the DFT+U method to study strongly correlated
materials in Chaps. 2 and 3, and do a focused study towards building a nonequilibrium
DMFT impurity solver in Chaps. 4 and 5. We study the equilibrium phase transitions in
LuNiO3, out-of-equilibrium phase transitions of VO2 in a pump-probe experiment, and
use the density matrix renormalization group (DMRG) method as an impurity solver for
real-time DMFT with quench and periodically driven Hamiltonians.

13



Chapter 2

Strain control of electronic phase in rare-earth nickelates

In this work, we study the structural phase transitions and metal-insulator transitions of
LuNiO3 as an example of the rare-earth nickelates RNiO3 induced by a compressive or
tensile substrate strain using the DFT+U method. e rare-earth nickelates crystallize
in variants of the ABO3 perovskite structure, with the R ion on the A site and Ni ion
on the B site. e basic structural motif is a corner-shared BO6 octahedron, which can
have bond-length distortions and tilts that give rise to competing electronic phases with
different charge and orbital orders. We use group theory to construct a Landau energy
function in terms of the distortion modes based on the calculations of DFT+U, to study
the competition between different electronic phases on a phenomenological level. e
calculation shows that under ±4% compressive or tensile strain, the insulating charge-
ordered phase destabilizes to a metallic Jahn-Teller distorted phase. e long Ni-O bonds
point out of plane under compressive strain and form an in-plane checker-board paern
under tensile strain. e two Jahn-Teller phases are smoothly connected due to the
octahedral tilts, while the jump from the charge-ordered phase to the Jahn-Teller phase
is a discontinuous first-order transition at both critcal strains. It is interesting that the
magnitude of the critical strains are of the order of strains accessible by epitaxial growth
on substrates. Our work in this part was published in (He and Millis 2015).

2.1 Crystal structure of rare-earth nielates

e rare-earth nickelates have been of substantial research interest for many years. eir
chemical formula is RNiO3, with R standing for a rare-earth element, including Sc, Y,
and the lanthanide series from La to Lu. e crystal structure of the material for R = Lu
in its ground state is shown in Fig. 2.1. e structure is characterized by corner-shared
and tilted NiO6 octahedra with Ni-O bond lengths alternating in a checkerboard paern.
is bond disproportionation is sometimes referred to as “charge ordering” based on the
idea that the ionic charge of the Ni ion with longer Ni-O bond lengths should be larger
than that of the Ni ions with shorter Ni-O bonds. Although the actual charge difference
between the sites is very small (Han et al. 2011; Park, Millis, and Marianei 2012), for
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Figure 2.1: Charge-ordered structure of LuNiO3 at vanishing external strain calculated
using DFT + U. NiO6 octahedra are indicated as gray cubes; the darker cubes have mean
Ni-O bond length 0.10 Å smaller than that of the lighter ones. e calculated laice
constants |a1| = 5.12 Å, |a2| = 5.52 Å, |a3| = 7.36 Å are in close agreement with
experiment (Alonso et al. 2001).

simplicity we will refer to the disproportionated state as “charge ordered”. e unit cell
has four inequivalent NiO6 octahedra. In the absence of charge ordering, the octahedra
differ only by rotations; the charge ordering creates two classes of octahedrawith different
mean Ni-O bond lengths. Figure 2.1 also shows the laice constants. e Ni-Ni distance
in the basal (xy) plane is 3.76 Å, and there is a slight rhombic distortion, so the Ni-Ni
bond angles are 86◦ and 94◦.

We use the DFT+U calculation as our numerical experimental apparatus to simulate
the effects of placing LuNiO3 on a substrate, which will typically have a square symmetry.
We therefore neglect the rhombic distortion and consider square structures with |a1| =
|a2| and 90◦ Ni-Ni bond angles in the xy plane. We define the xy-plane laice constant
|a1| = |a2| = a. e equilibrium laice constant is a⋆ = 5.3 Å at which the energy
is minimum. We will be interested in the consequences of a uniform compression or
expansion of the laice a in the xy plane with the z direction free to adjust.

2.2 DFT+U calculation

Our calculations use the Vienna Ab initio Simulation Package (VASP) (Kresse and
Furthmüller 1996, Kresse and Joubert 1999). e DFT+U algorithm we use in VASP is the
rotationally invariant local spin-density approximation + U that follows (Liechtenstein,
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Anisimov, and Zaanen 1995). e Hubbard U of the Ni 3d orbitals in LuNiO3 can
be obtained with various methods, e.g., constrained local-density approximation (Gun-
narsson et al. 1989, Gunnarsson 1990), self-consistent linear response (Cococcioni and
Gironcoli 2005), constrained random-phase approximation (Springer and Aryasetiawan
1998, Kotani 2000), etc. ey all give values of U within U = (5 ± 1) eV. e Hund’s
coupling J is estimated to be 0.5–1 eV. We finally chose U = 5 eV and J = 1 eV, as they
gave a structure in Fig. 2.1 that was closest to the experimental results. Slight changes of
U and J within their errors were tried, and no qualitative difference was found.

We did a spin-polarized calculation using the Projector augmented-wave Perdew,
Burke, and Ernzerhof (PAW-PBE) pseudopotential provided by VASP. e k-point mesh
we used was 6 × 6 × 6, and the energy cutoff of the plane-wave basis was set to 600 eV.
We found twomagnetic states in the charge-ordered structure: ferromagnetic (FM) and A-
type antiferromagnetic (A-AFM) states with magnitudes of magnetic moments essentially
on Ni 3d orbitals modulated by octahedral sizes. e FM state is lower in energy than the
A-AFM state at all values of laice constant a in our DFT+U calculation. All results are
obtained in the FM state.

e computational unit cell was chosen to contain four LuNiO3 formula units.
Defining the basal plane as the one in which strain is applied, we take two formula units
in the basal plane and two displaced vertically. To mimic the effects of a substrate, the in-
plane laice constants |a1| = |a2| = a are fixed to preset and equal values (so any in-plane
rhombic distortion is neglected). |a3| and all of the intra-unit-cell degrees of freedom are
allowed to relax. We slightly modified the conjugate gradient code in VASP to do this.
e minimum energy of the substrate-constrained system is obtained at a = a⋆ ≈ 5.3
Å. e structure obtained is almost identical to the free structure in Fig. 2.1, except that
|a1| and |a2| are made equal (the small rhombic distortion is suppressed). We then adjust
the substrate laice constant a, our control parameter, away from a⋆ and see how the
structure changes.

2.3 Landau energy function based on group theory

emain technical part of this work is using group theory to analyze the distortionmodes
observed in the DFT+U crystal structures. We begin with the Landau energy function of
a single NiO6 octahedron to demonstrate how group theory works in our situation. en
we consider an array of NiO6 octahedra with no tilts (rotations) and study the bond-length
distortion modes. Finally, we include the effects of octahedral tilts perturbatively and see
what symmetries they break.
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An isolated NiO6 octahedron

To define notation we begin by considering one isolated NiO6 octahedron. e unstrained
structure is perfectly cubic (point symmetry Oh) with six mutually perpendicular Ni-O
bonds, which we take to lie in the±x,±y, and±z directions. All six bonds have the same
length, l0 ≈ 2 Å. e distortions of interest here preserve the inversion symmetry about
the Ni ion and the orthogonality of the Ni-O bonds, so that minimally a D2h symmetry is
preserved. e distortions may be expressed in terms of three modes, defined in terms of
the changes δlx, δly, δlz in the x, y, and z bond lengths as

Q0

Q1

Q3

 =


1√
3

1√
3

1√
3

1√
2

− 1√
2

0

− 1√
6

− 1√
6

2√
6


δlx

δly
δlz

 . (2.1)

Here Q0 is the volume expansion mode, Q1 is the (volume-preserving) xy-plane square-
to-rhombic distortion, and Q3 is the (volume-preserving) cubic-to-tetragonal Jahn-Teller
distortion in the z direction. In general, the energy function E(δlx, δly, δlz) of an
isolated NiO6 octahedron needs to be invariant under Oh/D2h, which is isomorphic to
the permutation group S3 of the three directions x, y, z. It should therefore be a linear
combination of the permutation-symmetric polynomials

E = a(δl2
x + δl2

y + δl2
z) + b(δlxδly + δlyδlz + δlzδlx)

+ c(δl3
x + δl3

y + δl3
z ) + d[δlxδly(δlx + δly) + δlyδlz(δly + δlz)

+ δlxδlz(δlx + δlz)] + eδlxδlyδlz + · · · , (2.2)

Figure 2.2: e distortion modes of a single NiO6 octahedron. e vertical direction is
along z, and the substrate plane is xy. e modes in the subfigures are Q0 in (a), Q1 in
(b), and Q3 in (c), respectively.
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where we have Taylor expanded to 3rd order. e linear terms vanish because we are
expanding around the equilibrium length l0. In terms of the modes Q0, Q1, Q3, the
quadratic terms decouple and we obtain

E = (a + b) Q2
0 +

(
a − b

2

)
(Q2

1 + Q2
3) +

c + 2d + e/3√
3

Q3
0

+
√

3
(

c − e
6

)
Q0 (Q2

1 + Q2
3)−

3(c − d) + e√
6

(
Q2

1 −
Q2

3
3

)
Q3 + · · ·

= A(Q0) + B(Q0)(Q2
1 + Q2

3) + C(Q0)

(
Q2

1 −
Q2

3
3

)
Q3 + · · · , (2.3)

e Q0 mode is invariant under S3 and can be arbitrarily coupled to other modes. We
absorb it into the coefficients of the Taylor expansion of Q1 and Q3, which together form a
two-dimensional irreducible representation of S3. We highlight the cubic coupling Q2

1Q3

in the last term with coefficient C(Q0). In the laice system, this part will give rise to an
important coupling between the distortion QΓ

3 and the staggered Jahn-Teller order QM
1 ,

which we will define later.

A corner-shared NiO6 array

We next consider an infinite three-dimensional array of NiO6 octahedra, still with the Oh

symmetry in the unstrained structure at each Ni site. We must now aach a momentum
label to each mode. In addition, because the octahedra are corner shared, there are
constraints on the allowed momenta for each distortion. e momenta of interest are
Γ = (0, 0, 0), R = (π, π, π), M = (π, π, 0). Note that these momenta are defined in
the unit cell of the ideal cubic structure with one octahedron per unit cell. Of primary
interest in interpreting the numerical results are the two-sublaice charger-order and the
in-plane staggered Jahn-Teller modes, wrien as q0 = QR

0 and q1 = QM
1 , respectively.

In addition, it will be useful to consider Q0 = QΓ
0 , Q3 = QΓ

3 , and q3 = QR
3 , which are the

volume change, uniform Jahn-Teller, and two-sublaice Jahn-Teller modes, respectively,
which describe the response to a uniform strain and its coupling to a two-sublaice charge
order. Modes q0, q1, and q3 are visualized in Fig. 2.3. e DFT+U calculation shows that
there are no other modes to consider than these five.

e energy function E(Q0, Q3, q0, q1, q3) of the five modes is, in general, very
complicated. A group theoretical analysis is given in Appendix D. e variables Q0 and
Q3 are controlled by the laice constant a, which induces a Q3 distortion and, via Poisson-
ratio effects, a nonzero volume change Q0 of opposite sign to Q3. Both Q0 and Q3 are
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Figure 2.3: e distortion modes (a) q0 = QR
0 , (b) q1 = QM

1 , and (c) q3 = QR
3 of a corner-

shared NiO6 octahedron array. e vertical direction is along z, and the substrate plane
is xy. e uniform modes Q0 = QΓ

0 and Q3 = QΓ
3 are not ploed.

coupled to the order parameters q0, q1, and q3, and these couplings will drive the phase
transitions of interest. Based on the results of Appendix D, if we express Q0 and Q3

as smooth functions of a, then the Landau energy function in terms of the non-uniform
distortions q0, q1, and q3 as order parameters is given by

E =
∞

∑
n=0

2n

∑
j=0

∞

∑
m=0

Cnjm(a)q2n−j
0 qj

3q2m
1 . (2.4)

e smoothness assumptions Q0 = Q0(a) and Q3 = Q3(a) are justified by the results
of DFT+U calculations ploed in Fig. 2.4. e jumps in Q0 and Q3 at the critical laice
constants a are much smaller than the jumps of the non-uniform modes q0, q1, and q3.

A further simplification can be made by noticing in Fig. 2.4 that the order parameters
q0 and q3, both at the k point R = (π, π, π), are always simultaneously nonzero, as in the
charge-ordered structure, or simultaneously zero when the order vanishes under a large
enough compressive or tensile strain. e fact that q0 and q3 always coexist suggests that
we may combine them into one order parameter. is can be done by treating the ratio
q3/q0 = λ(a) as a smooth function of a. e Landau function is now further reduced to
one with only two order parameters:

E =
∞

∑
n=0

∞

∑
m=0

A2n,2n(a)q2n
0 q2m

1 , (2.5)
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Figure 2.4: (a) Strain dependence of spatially uniform volume-changing (Q0) and even-
parity volume-preserving cubic-tetragonal (Q3) octahedral modes. (b) Strain dependence
of staggered volume-changing (q0) and two different even-parity volume-preserving
cubic-tetragonal (q1 and q3) octahedral modes. Solid lines: results obtained from energy
minimization. Dashed lines: results obtained from metastable states obtained by forcing
staggered charge order (q0) modes to be zero.

where the coefficients

A2n,2m(a) =
2n

∑
j=0

Cnjm(a)λj(a) (2.6)

are independent and smooth functions of a. Equation (2.5) gives the general form of
the symmetry-based Landau energy function of RNiO3 without considering perovskite
octahedral rotations and nonorthogonal Ni-O bond angles.
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Including octahedral rotations

We have been ignoring octahedral tilts in the previous sections. e actual structure
of the material involves a GdFeO3-type rotational distortion that may be symbolically
wrien as α+z β−

x β−
y . e notation means that starting from the ideal cubic perovskite

structure, there is a rotation by angle α about the z axis and by angle β about the x and
y axes. e superscript plus sign means the α rotations in neighboring octahedra along
the rotational axis of α (the z axis) are in the same direction, while the minus sign means
the β rotations in neighboring octahedra along the rotational axis of β (x or y axis) are
in opposite directions. e displacement field of the rotational paern in the xy plane is
shown in Fig. 2.5. Since angles α and β are small (< 15◦ in LuNiO3), we may neglect the
non-Abelian aspect of rotations and treat them as an additive displacement field.

e important feature of the octahedral rotations is a breaking of the q1 ↔ −q1

symmetry while preserving the q0 ↔ −q0 symmetry of Eq. (2.5). e symmetry-allowed
energy function of variables αz, βx, βy, q0 and q1 is given by

E = Aα2
z + B(β2

x + β2
y) + Cq2

0 + Dq2
1 + Fαzβxβyq1 + · · · . (2.7)

e omied terms include other quartic terms that are products of the quadratic ones
and higher-order terms. e leading-order term that breaks the q1 ↔ −q1 symmetry is

Figure 2.5: e octahedral tilts in LuNiO3 break the q1 ↔ −q1 symmetry. e blue arrows
are due to the α+z rotations. e dots and crosses are due to the β−

x and β−
y rotations. e

red arrows are due to the q1 distortion at k = (π, π, 0). e le and right structures have
the same rotational paern α+z β−

x β−
y but q1 distortions differing by a negative sign.
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αzβxβyq1 = αβ2q1, which is linear in q1. e coefficient is of order αβ2 ≃ 10−2 rad3.
e derivation is using group theory similar to Appendix D. e symmetry group for
the energy function E(αz, βx, βy, q0, q1) at fixed laice constant a is D4h. Since all axial
vectors α+z , β−

x , β−
y of the rotations and bond-length modes q0, q1 are invariant under

spatial inversion I , only D4h/{E, I} = D4, which contains 8 symmetry operations, is
effective in actually transforming the 5 modes. In addition to D4, the translations can
generate 4 possible ways of sign change according to the k points of the 5 modes, among
which α+z and q1 are at M = (π, π, 0) and β−

x , β−
y , and q0 are at R = (π, π, π).

erefore, we have totally 8 × 4 = 32 symmetries to satisfy. Following again the
rearrangement theorem based algorithm in Appendix D, we get the general form of the
symmetry-allowed Taylor expansion of the energy function in Eq. (2.7). e q0 ↔ −q0

symmetry is strictly preserved order by order. Switching the sizes of the larger and
smaller NiO6 octahedra of the charge-ordered structure is still a symmetry of the system
even in the presence of the GdFeO3-type octahedral tilts.

We therefore add the leading-order symmetry-breaking term Fαzβxβyq1 to the
original Landau function E in Eq. (2.5) as a perturbation to get the symmetry right. e
new Landau function is given by

E =
∞

∑
n=0

∞

∑
m=0

A2n,2m(a)q2n
0 q2m

1 + F(a)αβ2q1. (2.8)

e added term should be small because αβ2 ≪ 1 for small rotations α and β. It
should therefore be ineffective unless the even-power coefficients A2n,2m(a) make the
q1 = 0 state unstable or nearly unstable. Aside from octahedral rotations, nonorthogonal
Ni-O bond angles can also break the q1 ↔ −q1 symmetry if the Ni-O bond that is
approximately along the z direction forms different angles with the x and y bonds. e
leading-order symmetry-breaking term should also be small and linear in q1 and can
therefore be addressed on the same footing as octahedral tilts.

Minimum model construction

In Eq. (2.8), the effects of octahedral tilts are considered perturbatively with only the
leading order term αβ2q1 included. To understand the phase transitions in Fig. 2.4, the
even-power terms can be truncated to some highest order as well. In this section, we
construct a Landau energy function with the minimum number of terms in the expansion
of Eq. (2.8) and the simplest strain dependence of the expansion coefficients. Based on
the observations in Fig. 2.4, the model needs to have the following 3 features:
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1. In the charge-ordered phase (solid lines) with essentially q1 = 0, the energy E as
a function of q0 has a first-order transition at both critical strains. Since E(q0) can only
contain even powers of q0 due to symmetry, we have

E(q0) = A20q2
0 + A40q4

0 + A60q6
0, (2.9)

with A20, A60 > 0 and A40 < 0 near the transition. us, E(q0) has three local minima
at q0 = 0 and q0 = ±q⋆. A model with A60 = 0 and A40 > 0 that is bounded below and
truncated at 4th degree can only exhibit second-order transitions.

2. In the Jahn-Teller phase (dashed line) with charge order q0 = 0 suppressed, the
energy E as a function of q1 has an avoided second-order transition structure. We have

E(q1) = A01q1 + A02q2
1 + A04q4

1. (2.10)

e A01q1 term comes from the symmetry-breaking octahedral tilts, which is a small
perturbation and gets strongly suppressed if A02 > 0 under compressive strain, but
becomes important and allows q1 to smoothly grow from small to large values when
A02 < 0 changes sign under tensile strain. e term A01q1 has an effect similar to that
of an external magnetic field on a system near a ferromagnetic transition.

3. Since the charge order q0 strongly suppresses the Jahn-Teller mode q1 (as can be
seen by the jump up of q1 at the critical tensile strain), there is a big competition term
between q0 and q1 that should be allowed by the cubic symmetry. e simplest form is a
biquadratic term, so the full energy function is constructed as

E(q0, q1) = E(q0) + E(q1) + A22q2
0q2

1. (2.11)

e last term A22q2
0q2

1 with A22 > 0 stabilizes the q1 = 0 state when the charge order
q0 is present and vice versa. We infer its presence as we see almost no coexistence of the
two modes q0 and q1 in Fig. 2.4.

2.4 Analysis of numerical results

Based on the Landau energy model constructed in §2.3, we can now interpret and
understand the phase transitions in Fig. 2.4. We have also done some corroborative
calculations using DFT+U for the statements in the previous section, which are shown in
this section alongside our interpretations of Fig. 2.4.
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Structural transitions and energy difference

e most significant findings of Fig. 2.4 are the discontinuous jumps of the order
parameters q0, q1, and q3 at the critical compressive and tensile strains. e transitions
being first-order are corroborated by the energy difference of the stable charge-ordered
(CO) and metastable Jahn-Teller distorted (JT) phases ploed in Fig. 2.6. At zero strain
a = a⋆ ≈ 5.3 Å, the charge-ordered structure is lower in energy than the Jahn-Teller
structure by 82 meV per unit cell (with 4 Ni ions). Under either a compressive strain
(a < a⋆) or a tensile strain (a > a⋆), the Jahn-Teller structure is favored, and ∆E is
reduced. At both transition points, the curve overshoots a lile bit to below zero and
endswhere the charge-ordered structure becomes locally unstable and relaxes to the Jahn-
Teller structure. Both the overshoot and the linear ∆E − a relation near the transitions
confirm that the transitions are first order.

e transition at compressive strain does not involve the q1 mode. e long bonds of
the Jahn-Teller phase are out of plane in the z direction (as indicated by the uniform Q3

mode in Fig. 2.4). We did DFT+U calculations of a series of linearly interpolated structures
between the charge-ordered and Jahn-Teller distorted phases at various laice constants
a close to the critical compressive strain at around 5.1 Å, to reproduce the Landau energy
function E(q0) that gives the first-order phase transition. Results are ploed in Fig. 2.7.

Figure 2.6: e energy difference ∆E = EJT − ECO at different laice constants a,with
EJT and ECO denoting the energies of the metastable Jahn-Teller distorted structure
(dashed lines in Fig. 2.4) and the stable charge-ordered structure (solid lines in Fig. 2.4)
between the transition points a ≈ 5.1 Å and a ≈ 5.5 Å. Outside the transition points
∆E = 0 because the charge-ordered structure does not exist and relaxes to the only
stable Jahn-Teller structure.
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Figure 2.7: Energy plots of linearly interpolated structures between the Jahn-Teller
(q0 = 0) and charge-ordered (minimum at q0 = q⋆) states under compressive strains.
e energy of the Jahn-Teller structure with q0 = 0 is used as a reference point,
and the energies of other structures are measured relative to it. e data points are
fied to Eq. (2.9), with A60 > 0 for all three curves. e other coefficients satisfy
A20 > 0, A40 < 0 for a = 5.115 Å and a = 5.125 Å and A20 < 0, A40 > 0 for
a = 5.150 Å.

We see that the energy function has two locally stable minima crossing in energy as the
laice constant a is changed. When the laice constant a is way above the transition
point, the Jahn-Teller phase with the charge-ordering mode q0 = 0 suppressed is locally
unstable and relaxes to the charge-ordered ground state.

e transition at the critical tensile strain (≈ 5.5 Å) involves the dying off of the
charge-ordering mode q0 and the jump up of the in-plane staggered Jahn-Teller mode q1.
e first-order transition of q0 is the same story as the compressive strain case. e sudden
jump up of the q1 mode is the result of the biquadratic coupling A22q2

0q2
1, which reduces

the quadratic coefficient of q2
1 from A02 + A22q2

0 to A02 and triggers the instability of the
q1 = 0 state. To remove the suppressive effect of q0 to q1, we did DFT+U calculations
with the symmetry q0 = 0 enforced (see dashed lines in Fig. 2.4) to study the evolution
of the Jahn-Teller phase as laice constant a changes in the next section.

Evolution of the Jahn-Teller structure

e Jahn-Teller structure with charge-ordering mode q0 = 0 enforced numerically is
ploed as dashed lines in Fig. 2.4. Here we focus on the evolution of the q1 mode as
laice constant a changes. e nonzero q1 is a consequence of the GdFeO3 octahedral
tilts, which, as previously discussed, couple linearly to the staggered component q1 of
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Figure 2.8: Dependence of amplitude q1 of staggered in-plane Jahn-Teller distortions on
applied strain. Points are calculated values. e solid line is the result of fiing calculated
points to Eq. (2.12). e solid line is the best-fit line, and the dashed line is obtained by
seing the linear coefficients A(0)

01 = A(1)
01 = 0 in Eq. (2.12) to recover the ideal case of a

second-order phase transition. e parameters of the best-fit line are A(0)
01 = 5.89 × 103,

A(1)
01 = 5.61 × 102, A(0)

02 = 0.388, A(1)
02 = 1.253, A04 = 1, and a⋆ = 5.30 Å.

the Jahn-Teller distortions. We do some parameter fiing in this section to understand
the avoided second-order phase transition of q1 going from very small values to suddenly
very large values as laice constant a increases.

A minimum model to understand this evolution of the Jahn-Teller structure from
Eq. (2.10) with strain dependence is given by

E(q1) = −(A(0)
01 + A(1)

01 δa)q1 + (A(0)
02 − A(1)

02 δa)q2
1 + A04q4

1, (2.12)

where A04 is assumed to be constant for simplicity, and δa = a − a⋆ is the deviation of
the laice constant a from its equilibrium value a⋆ = 5.30 Å. Equation (2.12) is formally
similar to the equation describing a ferromagnet in a magnetic field. e coefficients A(0)

01

and A(1)
01 are like an external magnetic field in the ferromagnetic case and arise from the

breaking of q1 ↔ −q1 symmetry due to the GdFeO3 rotations. e need to allow for a
strain dependence of the coefficients is shown by the zero crossing of q1 at a = a1 = 5.20
Å. e dependence of A02 on strain reflects the tendency of tensile strain to favor the
staggered Jahn-Teller order q1. Minimizing Eq. (2.12) leads to

dE
dq1

= −(A(0)
01 + A(1)

01 δa) + 2(A(0)
02 − A(1)

02 δa)q1 + 4A04q3
1 = 0. (2.13)
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Because we have kept δa dependence only to linear order, it is easy to express δa in terms
of the equilibrium Jahn-Teller amplitude q1 via

−A(0)
01 + 2A(0)

02 q1 + 4A04q3
1

A(1)
01 + 2A(1)

02 q1

= δa. (2.14)

We have fit Eq. (2.14) to the data points shown in Fig. 2.8, and from the fit parameters we
extracted the critical laice constant a = a2 = 5.61(4) Å at which the hypothetical cubic
structure would be unstable to staggered Jahn-Teller order in the absence of charge order
or GdFeO3 rotations. We observe that while the uncertainties involved in fiing a four-
parameter function to the data mean that individual coefficients cannot be determined
with high accuracy, the estimated a2 is robust. It is interesting that this value is not very
much larger than the value of 5.5 Å at which the charge order vanishes.

e competition between q0 and q1

Comparison of the solid and dashed lines in Fig. 2.4 shows that the staggered charge order
q0 strongly suppresses the staggered Jahn-Teller order q1. In the notation of Eq. (2.11),
the biquadratic term A22q2

0q2
1 is large and repulsive. In terms of the analysis of Eq. (2.12),

in the presence of the charge-ordering mode q0, the quadratic coefficient A02 becomes
A02 + A22q2

0, i.e.,

A02 7→ A02 + A22q2
0, (2.15)

and is so much more positive that until the charge order collapses at a first-order
transition, the staggered Jahn-Teller order cannot develop. ere is therefore a strong
competition between the two staggered orders, q0 and q1.

2.5 Insulator-to-metal transitions

e structural phase transitions of LuNiO3 from its charge-ordered phase with q0 mode
into its Jahn-Teller distorted phases with the out-of-plane Q3 and in-plane staggered q1

modes are accompanied by the collapse of band gap, i.e., insulator-to-metal transitions.
is makes the structural phase transitions very interesting to study. In Fig. 2.9, we plot
the energy gap as a function of the laice constant a to showhow the energy gap collapses.
We have slightly varied the interaction parameters U and J within their reasonable ranges
to test the numerical sensitivity of the band gap plot. Within DFT+U, the charge-ordered
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Figure 2.9: Energy gap of LuNiO3 as a function of the substrate laice constant a within
DFT+U. e laice constant along z (perpendicular to the substrate xy plane) and all ions
in the unit cell are free to relax.

phase is insulating with an energy gap of about 0.45 eV while the Jahn-Teller phases
under both compressive and tensile strains are found to be metallic with no gap at the
Fermi level. e effects of electron-electron correlations modeled as the+U terms couple
through laice relaxation to the distortion modes q0, q3 and q1, which in turn determine
the electron orbital energies and whether or not a band gap opens.

2.6 Summary and conclusion

We have used DFT+U and Landau theory methods to consider the effects of strain
(induced by growth on a substrate with different laice constants) on the charge-ordered
state of LuNiO3. We find that the charge-ordered state plays a primary role in controlling
the physics. It is the leading instability under ambient conditions, and its presence
suppresses any other instabilities. However, with sufficient applied strain (within the
DFT+U method, of the order of ±4%) the system undergoes a first-order transition a
non-charge-ordered state. Interestingly, for tensile strain, the non-charge-ordered state
is characterized by a staggered Jahn-Teller order. In the actual crystals, the symmetry
breaking induced by the GdFeO3 rotational distortion means that the staggered Jahn-
Teller order does not break any additional symmetry of the system.

e actual magnitude of the strain needed to destabilize the charge order and allow
other states is an important open question. While we imagine the strain as being produced
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by epitaxial growth on a substrate, we have not included any quantum confinement effects
in our model. Also, the DFT+U method we have used is known to overestimate the
tendency to charge order (Park, Millis, and Marianei 2014). e charge-order phase
boundary also depends on how the double-counting correction is implemented. More
refined calculations, perhaps based on DFT+DMFT methods, should be employed to
obtain beer estimates for the strain needed to destabilize the charge order. But it is
interesting that the magnitude of strain we have found is of the order of strains accessible
by epitaxial growth on substrates.
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Chapter 3

Photoinduced phase transitions in narrow-gap Mo insulators

In this chapter, we study the nonequilibrium dynamics of photoexcited electrons in the
narrow-gap Mo insulator VO2. e material is famous for its metal-insulator transition
at 68 ◦C, above which temperature it is metallic in a rutile (R) crystal structure and below
which temperature it is insulating in a monoclinic (M1) crystal structure with a doubled
unit cell (Wu et al. 2006). In a recent pump-probe experiment (Morrison et al. 2014), a
metastable M1 metal phase of VO2 is found to exist for > 100 ps within an intermediate
fluence range of the pump laser, as measured by ultrafast electron diffraction (UED) to
have no crystal structural transition, and measured by infrared (IR) absorption to have
a complete insulator-to-metal transition, while the temperature was kept at 37 ◦C below
the transition temperature of the equilibrium phases. As a follow up work, it is found

Figure 3.1: Resistance of a suspended VO2 nano beammeasurred in a four-probe geometry
as a function of temperature. Red and blue curves are taken during heating and cooling,
respectively. Upper inset, SEM image of the device with a VO2 nanobeam suspended by
200 nm from the SiO2 surface. Schematic cartoons indicate the crystal structures of the
low-temperature, monoclinic (le), and high-temperature, tetragonal (right) phases. Blue
indicates V atoms, and magenta indicates O atoms. e unit cell is shaded in each case.
is figure is cited from (Wu et al. 2006).
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in (Yang et al. 2016) that the metastable M1 metal phase of VO2 could be stabilized by
applying an epitaxial strain.

In ourwork, we build a so-bandmodel usingDFT+U+V to understand themetastable
metal phase of VO2 in (Morrison et al. 2014). Here the “soness” of the band structure
means that the self-consistent field depends on the density and orbital occupation matrix
of the electronic state, which is the crucial driving force of the photoinduced phase
transition. Both the on-site +U interactions as in DFT+U reviewed in Chap. 1 and
intersite +V interactions between the V-V dimers of the M1 crystal structure of VO2 are
included on the Hartree-Fock level. e initial stages of relaxation are treated using the
quantum Boltzmann equation (QBE), which reveals a rapid (∼fs time scale) relaxation to a
pseudothermal state characterized by a few parameters that vary slowly in time (∼ 102 fs).
We have established a momentum-averaged QBE that significantly reduces the number
of dynamical variables but still captures the time scales of the main physical processes.
e long-time limit is then studied by the DFT+U+V phase diagram, which reveals the
possibility of nonequilibrium excitation to a new metastable M1 metal phase that is
qualitatively consistent with Morrison’s experiment. e general physical picture of
photoexcitation driving a correlated electronic system to a new state that is not accessible
in equilibriummay be applicable in similar materials. is part of our work was published
in (He and Millis 2016).

3.1 e DFT+U+V method for VO2

Following (Campo and Cococcioni 2010), we construct an electronic band structure for
VO2 using the density functional theory (DFT)+U+V method, in which the basic density
functional theory is supplemented by a Hartree-Fock treatment of the on-site (“+U”) and
intersite (“+V”) d-d interactions. Belozerov et al. have constructed a DFT+DMFT+V
theory with very similar physics (Belozerov et al. 2012). e effects of the +V term
are a reasonable representation of the intersite self-energy terms found in the cluster
DMFT calculations of (Biermann et al. 2005). Note that in the correct orbital basis,
these intersite self-energy terms have only a weak frequency dependence (Tomczak and
Biermann 2007). Let us write the Kohn-ShamHamiltonian of the electrons in their ground
state as (Liechtenstein, Anisimov, and Zaanen 1995, Campo and Cococcioni 2010)

H0 = HDFT + VHF − Hdc, (3.1)
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where HDFT comes from a density functional band calculation, VHF is the Hartree-Fock
approximation to the electron-electron interactions V involving the vanadium 3d orbitals,
and Hdc is the double-counting correction. In the M1 phase of VO2, the unit cell contains
four vanadium ions, which form two dimerized pairs. We only consider interactions
within one unit cell. ese may be generally wrien as

V =
1
2 ∑

R⃗σσ′
∑
{m}

Um1...m4c†
R⃗m1σ

c†
R⃗m2σ′cR⃗m4σ′cR⃗m3σ. (3.2)

Here R⃗ labels the unit cells, m1 . . . m4 run over the correlated orbitals in a unit cell, and
σ, σ′ label the spins. We consider two contributions toV : the on-site intra-3d interactions,
which we take to be the rotationally invariant form (Liechtenstein, Anisimov, and Zaanen
1995) including both t2g and eg orbitals parameterized by the Hubbard U and Hund’s
coupling J, and intersite interactions between the two vanadium ions in each dimer. e
Hartree-Fock approximation VHF of the electron-electron interactions V takes the form

VHF = ∑
R⃗

∑
m1m2σ

Vm1m2c†
R⃗m1σ

cR⃗m2σ, (3.3)

where in a non-spin-polarized system (like VO2)

Vm1m2 = ∑
m3m4σ′

(Um1m3m2m4 − Um1m3m4m2δσσ′)nm4m3

= ∑
m3m4

(2Um1m3m2m4 − Um1m3m4m2)nm4m3 (3.4)

and the occupation matrix

nm4m3 = ⟨c†
R⃗m3σ′cR⃗m4σ′⟩ (3.5)

are independent of both spin and unit cell coordinate R⃗. In Eq. (3.4), Vm1m2 has both the
on-site and intersite intradimer terms. e on-site terms are the usual ones treated in
standard DFT+U calculations discussed in §1.3. e intersite terms are parameterized by
a single parameter V and their contributions in VHF take the form

HV = −V ∑
R⃗σ

∑
⟨m1,m2⟩

nm1m2c†
R⃗m1σ

cR⃗m2σ, (3.6)

which contains only the Fock terms of the density-density interaction VnR⃗m1σnR⃗m2σ.
e intersite Hartree terms are assumed to be already included in HDFT and are not

32



Figure 3.2: Projected density of states (PDOS) of the M1 phase of VO2 onto the maximally
localized Wannier orbitals in DFT+U+V (a) in the whole p − d subspace and (b) near the
Fermi level, with U = 4 eV, J = 0.65 eV, V = 1 eV. e three d orbitals in (b) span the
t2g subspace because of the crystal structure of VO2. See e.g. Fig. 5 in (Eyert 2002).

included again in HV (Campo and Cococcioni 2010). e Fock terms are orbitally
diagonal, meaning that the m1 and m2 sum over only d orbitals of the same type (e.g.,
dx2−y2 − dx2−y2 , dxz − dxz, etc.) in the two vanadium ions in a dimer. e intersite
matrix element nm1m2 (hybridization) between different types of d orbitals is typically
small. In the ground-state insulating M1 phase, only the hybridization of dx2−y2 orbitals
makes an appreciable contribution to HV , but in the nonequilibrium metastable states,
hybridizations of other d orbitals may be also important, so we will keep the terms of all
five d orbitals in the Hamiltonian HV .
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We first performed a non-spin-polarized DFT+U calculation using the Vienna Ab
initio Simulation Package (VASP) with the atomic positions fixed in the experimental
M1 structure (Andersson 1956). We used a k-point mesh of 10 × 10 × 10, an energy
cutoff of 600 eV, and the projector-augmented wave Perdew-Burke-Ernzerhof (PAW-PBE)
pseudopotential (Perdew, Burke, and Ernzerhof 1996) in the VASP library. e on-site
interactions are parameterized by U = 4 eV and J = 0.65 eV (Miyake, Aryasetiawan,
and Imada 2009). e HDFT in Eq. (3.1) is then defined as the projection of the DFT+U
Hamiltonian onto a basis obtained from a Wannier fit to the 24 O-2p and 20 V-3d orbitals
using Wannier90 (Mostofi et al. 2008) but with the on-site contributions to Vm1m2 and the
double-counting terms removed. ese on-site contributions plus the intersite Fock terms
HV in Eq. (3.6) make up the remaining terms in Eq. (3.1).

e DFT+U+V band structure for VO2 is ploed in Fig. 3.2 for V = 1 eV. e
results are in good agreement with preexisting results obtained using the GW method
(Continenza, Massidda, and Posternak 1999) and cluster dynamical mean-field theory
(CDMFT) (Biermann et al. 2005). e validity of modeling VO2 in a renormalized band
picture is corroborated in (Tomczak and Biermann 2007). e optical gap at the Fermi
level is 0.62 eV in good agreement with experiment (Ladd and Paul 1969). e indirect
gap between the highest occupied and lowest unoccupied Bloch states (the HOMO-
LUMO gap) is 0.45 eV. e lower gap separating the V-3d and O-2p dominant bands
below the Fermi level is 0.55 eV. e bonding-antibonding spliing of the dx2−y2 orbitals
arising from the dimerization of the crystal structure and enhanced by the intersite Fock
interaction V is ∼ 2 eV in agreement with optical conductivity data (Qazilbash et al.
2008). e optical gap and the bonding-antibonding spliing are our main experimental
evidences for determining U and V. But since the laer measurement is less accurate,
the range of parameters U = 3.5 – 4.5 eV and correspondingly V = 1.4 – 0.6 eV provide
equally reasonable descriptions of the material.

3.2 Initial absorption of laser energy

Next we estimate the energy range and number of electrons photoexcited in Morrison’s
pump-probe experiment (Morrison et al. 2014). e wavelength of the pump laser is λ =

800 nm (hc/λ = 1.55 eV). Solving the optics problem for the experimental geometry
specified in the experiment reveals that the laser fluence of 3.7–9 mJ/cm2 that yielded an
M1 metal initially generates N0

eh = 0.048–0.12 electron-hole pairs per unit cell (4 VO2),
corresponding to an energy increase per unit cell of ∆Etot = 0.074–0.18 eV. e details
of the calculation are given below.
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e complex dielectric constant ϵ̃ = 8.2 + 2.5i of VO2 to the λ = 800 nm laser is
given in (Verleur, Barker, and Berglund 1968), which yields a complex index of refraction
ñ =

√
ϵ̃ = 2.90 + 0.43i. e index of refraction of the Si3N4 substrate is ns = 1.9962 to

λ = 800 nm. e thicknesses of the VO2 sample and the Si3N4 substrate d1 = 70 nm and
d2 = 50 nm are given in the Supplemental Material of (Morrison et al. 2014). ese data
allow us to reconstruct the experimental setup in Fig. 3.3. Since the duration of the laser
pulses used in the experiment is 35 fs, which is equivalent to over 13 oscillation periods
of the 800 nm laser, the absorption of energy from the laser pulse can be obtained to
adequate approximation by solving steady-state wave equations. Nonlinear optical effects
are neglected a posteriori because the density of excited particle-hole pairs is small. We
may then use the formulas given in (Tomlin 1968), assuming normal incidence (< 10◦

according to he Supplemental Material of the experiment). e formula can be derived
using the matrix equation

(
1 1
1 −1

)(
t̃
0

)
=

(
1 1
ns −ns

)(
eik0nsd2 0

0 e−ik0nsd2

)(
1 1
ns −ns

)−1

×
(

1 1
ñ −ñ

)(
eik0ñd1 0

0 e−ik0ñd1

)(
1 1
ñ −ñ

)−1(
1 1
1 −1

)(
1
r̃

)
, (3.7)

which is obtained from the boundary conditions of the continuity of E and B fields and
the propagation of waves in each medium. Here k0 = 2π/λ is the wave number in
vacuum, and r̃ and t̃ are the reflectivity and transmissivity of the complex amplitudes of
the E fields. e numerical result of solving Eq. (3.7) is that R = |r̃|2 = 43% of the
incident fluence gets reflected, T = |t̃|2 = 38% gets transmied, and the remaining
∆ = 1 − R − T = 19% gets absorbed. en we use the density ρ = 4.571 g/cm3 of VO2

in M1 phase to calculate the unit cell volume to obtain ∆Etot and N0
eh per unit cell.

Figure 3.3: Setup of Morrison’s pump-probe experiment of a VO2 thin
film on top of a Si3N4 substrate.
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3.3 Fixed-band QBE dynamics

In this section, we use the quantum Boltzmann equation (QBE) to study the relaxation
of electrons aer the laser pulse energy is initially absorbed by them to create some
electron-hole pairs in the band structure of Fig. 3.2. For simplicity, we assume that the
band structure is fixed, i.e., we forget about the so-band effect due to the dependence
of the self-consistent field on electron density and orbital occupancies, to estimate the
relaxation time scale. We make another simplification by constructing a momentum-
averaged QBE to significantly reduce the number of dynamical variables. We find that
the energy gap is the main boleneck of the relaxation dynamics, and electrons would
equilibrate to a thermal state over a time scale ≫ 102 fs. Since the so-band effect would
close or narrow the energy gap as electron-hole pairs are created (to be discussed in the
next section), we expect the real electrons to reach the thermal state even faster. is
allows us to understand the metastable M1 metal phase in a hot electron picture in the
next section (§3.4).

Formalism of the k-averaged QBE

We begin with the formalism of the quantum Boltzmann equation (QBE) (Snoke 2010)
to study the relaxation of the photoexcited electrons before energy dissipates into other
slower degrees of freedom such as phonons. e quantum Boltzmann equation is a
dynamical equation for the occupancies nkνσ of the Bloch states |kνσ⟩ in an electronic
band structure, e.g.,

H0 = ∑
k⃗νσ

ϵ⃗kν
c†

k⃗νσ
c⃗kνσ

. (3.8)

Here H0 is the DFT+U+V Hamiltonian in Eq. (3.1), k⃗ sums over k-points in the first
Brillouin zone, ν is the band index, and σ labels the spin. e Kohn-Sham eigenvalues
ϵ⃗kν

do not carry a spin index σ in a non-spin-polarized system like VO2. e quantum
Boltzmann equation treats electron-electron interactions V as in Eq. (3.2) via Fermi’s
golden rule, which gives the transition rates due to the two-body Hamiltonian V
between different Slater-determinant eigenstates of one-body Hamiltonian H0. While
this perturbative golden rule basedmethod fails to capture important aspects of correlated
electrons, we believe that the orders of magnitude of the relaxation time scales and the
qualitative features of the resulting orbital distributions should be reasonably reproduced
by this simplified dynamical model.
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In a non-spin-polarized system, the quantum Boltzmann equation (QBE) is given by

dn⃗k1ν1

dt
=

2π

h̄
1

N2 ∑
k⃗2⃗k3⃗k4

∑
ν2ν3ν4

|Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2δ(ϵ⃗k1ν1
+ ϵ⃗k2ν2

− ϵ⃗k3ν3
− ϵ⃗k4ν4

)

× δ⃗k1+⃗k2 ,⃗k3+⃗k4

[
(1 − n⃗k1ν1

)(1 − n⃗k2ν2
)n⃗k3ν3

n⃗k4ν4
− n⃗k1ν1

n⃗k2ν2
(1 − n⃗k3ν3

)(1 − n⃗k4ν4
)
]

,

(3.9)

where N is the total number of k-points, and the matrix element |Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2

is a short-hand symbol for ⟨⃗k1ν1σ, k⃗2ν2σ′|V |⃗k3ν3σ, k⃗4ν4σ′⟩|2 summed over the σ = σ′

and σ ̸= σ′ cases. e occupancies n⃗kν
= n⃗kν↑ = n⃗kν↓ are single-spin quantities. e

k-variables sum over only the first Brillouin zone and the Kronecker δ⃗k1+⃗k2 ,⃗k3+⃗k4
is to be

interpreted as implying equivalence up to a reciprocal laice vector to correctly impose
the conservation of crystal momentum.

A direct simulation of Eq. (3.9) in a general band structure is numerically difficult.
e main problem comes from the energy δ function, which requires ϵ⃗k1ν1

+ ϵ⃗k2ν2
=

ϵ⃗k3ν3
+ ϵ⃗k4ν4

. To ensure the conservation of energy in each scaering process to the
needed accuracy, one has to choose a very dense k-point mesh, which then leads to
too many degrees of freedom to handle in a practical simulation. In order to obtain a
computationally tractable model that still captures the important physics, we construct a
momentum-averaged quantum Boltzmann equation, whose key variables are the energy
distributions of electrons in different bands without any k-point information.

Let us begin the derivation by averaging the matrix elements |Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2

over the four k-variables to introduce

|U|2ν1ν2ν3ν4
=

∑{⃗k}

∣∣∣Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)
∣∣∣2 δ⃗k1+⃗k2 ,⃗k3+⃗k4

δ
(

ϵ⃗k1ν1
+ ϵ⃗k2ν2

− ϵ⃗k3ν3
− ϵ⃗k4ν4

)
1
N ∑{⃗k} δ

(
ϵ⃗k1ν1

+ ϵ⃗k2ν2
− ϵ⃗k3ν3

− ϵ⃗k4ν4

) ,

(3.10)

which are the k-averaged matrix elements that only depend on the four band indices
ν1 . . . ν4. e motivation for the k-averaging comes from the local nature of the
interaction V defined in Eq. (3.2). e k-dependence of |Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2 comes
purely from the Blochwave functions and tends to be complicated, and effectively random
in real materials, so averaging over the momentum variables is reasonable. Next, we
assume that the occupation numbers of the Bloch states

n⃗kν
≈ nν(ϵ⃗kν

) (3.11)
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are only functions of band index ν and energy ϵ⃗kν
. en defining the single-spin density

of states of band ν

Dν(E) =
1
N ∑

k⃗

δ(ϵ⃗kν
− E), (3.12)

and the densities of occupied and empty states

Nν(E) = Dν(E)nν(E), (3.13)

N̄ν(E) = Dν(E) [1 − nν(E)] , (3.14)

we derive a k-averaged QBE

dNν1(E1)

dt
=

2π

h̄ ∑
ν2ν3ν4

|U|2ν1ν2ν3ν4

∫
dE2dE3dE4δ(E1 + E2 − E3 − E4)

× [N̄ν1(E1)N̄ν2(E2)Nν3(E3)Nν4(E4)− Nν1(E1)Nν2(E2)N̄ν3(E3)N̄ν4(E4)] . (3.15)

e band indices are kept in full. e ab-initio rate constants |Ũ|21234 are obtained from
Eq. (3.9) using Monte Carlo methods on a Wannier interpolated k-point mesh of 20 ×
20 × 20. We will give a detailed derivation of Eq. (3.15) in Appendix E.

Simulation and analysis of numerical results

To run the simulation using Eq. (3.15), we need to specify the initial conditions, i.e., how
the initially generated N0

eh electron-hole pairs as calculated in §3.2 are distributed over the
energies. We assume for simplicity that the laser absorption is proportional to the product
of densities of states at energy separation h̄ω = 1.55 eV. en at t = 0, immediately aer
the laser pulse, we have the distributions of holes and electrons given by

N̄tot(E) = Ntot ∝ Dtot(E)Dtot(E + h̄ω), (3.16)

where E satisfies E < EF and E + h̄ω − EF > 0.45 eV, the HOMO-LUMO gap. Here
the subscript “tot” means to sum over all bands ν. e total number of electron-hole pairs
N0

eh is determined by the experimental laser fluence, as discussed in §3.2. enwe assume
that the initially excited electrons and holes are randomly distributed over band states,
i.e., for all energy E, the density of occupied states in band ν,

Nν(E) =
Dν(E)

Dtot(E)
Ntot(E), (3.17)
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Figure 3.4: Hole distribution N̄tot(E) (E < EF) and electron distribution Ntot(E) (E >
EF) per spin at (a) t = 0 fs, (b) t = 0.5 fs, (c) t = 2 fs, and (d) t = 5 fs. Laser fluence =
3.7 mJ/cm2. e distribution is fied to a Fermi distribution with a common temperature
T but two chemical potentials µe and µh for the electrons and holes based on the energy
and the number of electron-hole pairs at every instant.

is directly proportional to the density of states Dν(E) in band ν. We then evolve the
distribution according to Eq. (3.15). We find that the equilibration process comes in
basically two steps: the fast prethermalization (Fig. 3.4) that establishes a pseudothermal
distribution characterized by a common temperature T but different chemical potentials
µe and µh for the electrons and holes, and then the slow evolution of thermal parameters
T, µe, µh (Fig. 3.5) to the final thermal state.

Figure 3.4 shows the initial stages of relaxation for laser fluence = 3.7 mJ/cm2,
comparing the calculated distribution to the distribution expected if the electrons and
holes have thermalized. In the first ∼ 0.5 fs aer the laser pulse, the distribution of
photoexcited electrons develops a tail to both high and low energies. en in the next
1–2 fs, the electron and hole distributions thermalize. At the same time, the number
of electrons and holes begins to increase due to the inverse Auger process, in which
a high-energy electron scaers to a low-energy state while creating an electron-hole
pair, thereby increasing the electron and hole densities and shiing the main weight
in the conduction band to lower energies (a similar effect was noted in the Hubbard
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Figure 3.5: Time evolution of (a) the number of electron-hole pairs Neh per unit cell, (b)
temperature T, (c) chemical potentials µe and µh under laser fluence = 3.7 mJ/cm2, and
(d) 9 mJ/cm2.

model by Eckstein and Werner 2011). However, as the electrons thermalize, the inverse
Auger scaering rate decreases rapidly since only electrons far out in the tail of the
pseudothermal distribution have enough energy to down-scaer to create an electron-
hole pair while still remaining in the conduction band. By t = 5 fs, the electron and hole
distributions are fully thermalized and the subsequent evolution can be described by the
evolution of thermal parameters. For higher laser fluence = 9 mJ/cm2 (not shown) the
time evolution of electron and hole distributions is qualitatively the same as shown in
Fig. 3.4 and takes roughly the same time, but produces more electron-hole pairs (Fig. 3.5).

e evolution of thermal parameters, i.e., the temperature T, the chemical potential
µe of the electrons, and µh of the holes, is much slower as noted above. Figure 3.5
shows the results for both the low fluence = 3.7 mJ/cm2 and the high fluence = 9 mJ/cm2.
e equilibration time constant approximately scales as the inverse of the square of the
number of electron-hole pairs Neh at equilibrium, which is a signature of the three-particle
Auger and inverse Auger scaering processes.

Much of what happens in the simulation are explained by the rate constants
|U|2ν1ν2ν3ν4

. e largest rate constants are those of the hole-hole, electron-hole, and
electron-electron scaering processes that do not change Neh. e pair creation and
recombination processes that change Neh are comparatively slow. is separation of
time scales has two origins: (a) the gap, which means that the processes must involve
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electrons in the tail of the distribution, and (b) the different orbital characters of the top of
the valence band (dx2−y2) and the boom of the conduction band (dxz and dyz) in Fig. 3.2,
which means that changes in Neh must come from orbital-changing interactions, i.e., the
pair hopping and exchange terms∼ J, which are much smaller than the orbitally diagonal
interactions ∼ U.

Even though the density relaxation of Neh is much slower than prethermalization,
due to the combination of small matrix element and kinetic boleneck, our QBE-based
simulation still finds that electrons in VO2 will equilibrate in hundreds of femtoseconds.
e higher the laser fluence, the more electron-hole pairs are generated, and the faster the
electrons equilibrate, as is shown in Fig. 3.5. Based on the qualitative picture described
in §3.4 that photoexcitation generally narrows or closes the gap, reducing the boleneck
effect of electron relaxation, we expect that the beyond-fixed-band effects will lead to even
faster relaxation, and to a larger final number of excited particle-hole pairs.

3.4 So bands in Hartree-Fo theory

In density function theory, the electronic potential is a self-consistently determined
functional of the electron density, so that changes in the electron distribution will lead
to changes in the band structure. is effect is greatly enhanced in extended DFT
theories such as DFT+U and DFT+U+V because, in particular, the relative energetics
of the different d orbitals depends strongly on the orbital occupation matrix. is strong
dependence may lead to photoinduced phase transitions if photoexcitation changes the
occupancy sufficiently.

In the specific case of VO2, since the wavelength of the pump laser is typically 800 nm
(Ephoton = 1.55 eV), the pump laser typically changes the electron distribution among
the V-3d orbitals (see Fig. 1), but does not change the total d-count or the real-space
charge density n(r) significantly. We therefore argue that we may analyze the effects of
photoexcitation using Eq. (3.1) with HDFT and Hdc le unchanged, but with VHF now
determined by the nonequilibrium distribution of electrons over orbitals, i.e., the Kohn-
Sham Hamiltonian becomes

H = H0 + ∆VHF, (3.18)

where ∆VHF is the change of VHF due to the change of the orbital occupation matrix
[see Eqs. (3.2)–(3.4)] under photoexcitation. Equation (3.18) implies that the electronic
band structure becomes so in the sense that the conduction band floats down when its
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occupancy increases and the valence band floats up when its occupancy decreases under
photoexcitation. is general picture shows that photoexcitation has the potential of
closing the Mo gap and driving an insulator-metal transition, thus giving rise to new
electronic phases. e total energies of different electronic states can be compared using

Etot = ⟨H⟩ − 1
2
⟨VHF⟩+ const, (3.19)

where the expectation value is now taken using the nonequilibrium distribution. We will
later use Eq. (3.19) to construct an energy landscape for nonequilibrium VO2 that will be
used to interpret the experiments of (Morrison et al. 2014).

Nonequilibrium phase transition to a metastable metallic state

In §3.3, we showed that electrons in VO2 relax on a sub-picosecond time scale to a thermal
state with a well-defined instantaneous temperature. Here, we investigate whether the
changes in orbital occupancies due to photoexcitation can lead to significant changes
in the band structure, in particular the HOMO-LUMO gap. Because the system relaxes
rapidly to a thermal state, we can avoid solving a dynamical Hartree-Fock equation and
consider a Hartree-Fock theory in thermal states only.

We note at the outset that obtaining an insulating state in VO2 requires two effects.
First, the dimerization (enhanced by an intersite correlation effect) splits the dx2−y2

band into bonding and antibonding portions. Second, the on-site interaction produces
a level spliing between dx2−y2 and the dxz/dyz orbitals. e dimerization gives the
possibility of having a filled band, and the level spliing ensures that the dx2−y2 band
lies far enough below the other bands that it is indeed fully occupied. e equilibrium
phase transition from the insulating to the metallic state involves a change in the crystal
structure, removing the dimerization. An alternative possibility is that at fixed structure
a population inversion of the dx2−y2 and the dxz/dyz bands, driven by photoexcitation,
would lead to a reversal of the energy ordering, so that the non- (weakly) dimerized
dxz/dyz bands would lie lowest, creating an M1 metal phase.

To investigate the possibility of this M1 metal phase, we first apply the so-band
Hartree-Fock theory at temperature T = 0 by calculating the shi of the bands using
Eq. (3.18). We start from an occupation matrix with a high dxz occupancy, and find at
U = 4 eV, V = 1 eV, and J = 0.65 eV that our system relaxes back to the conventional
M1 insulator phase shown in Fig. 3.2 in the Hartree-Fock iterations. However, at slightly
increased values of U, i.e., U = 4.5 eV and 5 eV, the iterations bring us to a new self-
consistent state with a high dxz (low dx2−y2) occupancy and no gap at the Fermi level: an
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Figure 3.6: Projected density of states (PDOS) of the M1 metal phase of VO2 onto the
maximally localizedWannier orbitals in DFT+U+V in (a) the whole p − d subspace and
(b) the near-Fermi-level regime, with U = 4.5 eV, J = 0.65 eV, and V = 1 eV.

M1 metal phase is found! e projected density of states of the M1 metal phase is ploed
in Fig. 3.6. We see that the density of states at the Fermi level is nonzero, so within a
band picture the state is metallic. Also, the dx2−y2 orbitals are now substantially above
the Fermi level, and the bonding-antibonding spliing of the orbitals is less, reflecting the
decrease in the intersite Fock terms HV due to the depletion of the dx2−y2 band.

We next construct a cut across the energy landscape in Fig. 3.7 as a function of orbital
occupancies with the M1 insulator and metal phases as its local minima. To do this, we
first determine for U = 4.5 and 5 eV the 44 × 44 (full p − d basis) real-space density
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Figure 3.7: Energy landscape at different values of U with J = 0.65 eV and V = 1 eV.
e insulating phase is used as an energy reference point. e occupancy n(dxz) is that
per V ion per spin, and 8n(dxz) gives the number of V-dxz electrons per unit cell. ∆Etot
is the total energy change per unit cell.

matrix of an intermediate state as a linear interpolation between the density matrices
of the two local minima. en we introduce k-independent Lagrange multipliers to the
Kohn-Sham Hamiltonian H, which are adjusted so that the band occupancies reproduce
this interpolated density matrix. e states obtained are the minimum energy states
subject to the constraint of a linearly interpolated real-space density matrix. e energy
is then evaluated by Eq. (3.19) using H without the Lagrange multipliers. e resulting
curve, although not necessarily the minimum energy path between the M1 insulator and
metal phases, should give a reasonable representation of the energy barrier between them.
For U = 4 eV, the metal phase is a state in the ghost region of the iterative Hartree-
Fock dynamics with the slowest evolution, and the energy curve is ploed following
the evolution to the insulating ground state. e extrapolated states at any value of U
cannot be obtained by linear extrapolation of real-space density matrices, as these can
have occupancy eigenvalues not between 0 and 1. Instead, the states are obtained by
tuning the orbital energies of dxz and dyz with respect to dx2−y2 using the Lagrange
multipliers to further raise or lower the dxz occupancy.

While Fig. 3.7 shows that the M1 metal phase has higher energy at T = 0, we find
that at T > 0 the state may be favored. Figure 3.8 plots the calculated HOMO-LUMO
gap as a function of the energy deposited by the pump laser into the sample for realistic
range of parameter values. Because the electrons equilibrate rapidly, this is equivalent to
ploing against temperature, although the temperature-energy relationship is not quite
linear and depends on which phase the system is in.
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Figure 3.8: Energy gap Egap vs temperature T and energy ∆Etot injected per unit cell by
the laser pulse under different values U and V. e Hund’s coupling J = 0.65 eV is kept
constant. Both the optical gap (0.62 eV, not ploed) and the HOMO-LUMO gap (0.45 eV)
at T = 0 are approximately kept constant under the simultaneous change of U and V.

Two qualitatively different behaviors are seen in Fig. 3.8. For U = 4 eV, V = 1 eV,
there is no phase transition. e bonding dx2−y2 band in Fig. 3.2 shis up and the dxz and
dyz bands shi down as temperature rises, and eventually the band gap between them is
closed. But there is always a unique stable state at every temperature T or energy ∆Etot.
Similar effects are seen for U = 3.5 eV, V = 1.4 eV except that the curve drops more
slowly and the gap closes at a slightly higher temperature. e behavior is very different
for U = 4.5 eV, V = 0.6 eV. When the overlap of the dx2−y2 band with dxz and dyz bands
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Figure 3.9: U-V phase diagram. At every blue diamond point, the Egap-T curve is
smooth, indicating a reversible insulator-metal transition. At every red square point, a
discontinuity in Egap occurs as temperature T rises above a threshold and the system
irreversibly jumps into a metal phase. e metal phase survives at T = 0 in regions II
and III but relaxes to the conventional insulating phase if parameters go back to region I.

(indicated by a negative gap in Fig. 3.8) exceeds a certain threshold (the small circle on the
green curve), the band structure undergoes a first-order phase transition to a state with an
inverted population and thus a negative HOMO-LUMO gap (metallic state) occurs. Near
the discontinuity, the Egap-T curve in Fig. 3.8(a) shows a (Tc − T)1/2 singularity, but the
Egap-∆Etot curve in Fig. 3.8(b) is not singular.

e M1 metal phase may be metastable (correspond to a local energy minimum) even
if it is not thermally reachable. Figure 3.9 summarizes the situation, showing by red
squares (blue diamonds) the region where a thermally driven transition to the M1 metal
phase occurs (or not), and by Roman numerals (II and III) the regions where the M1 metal
phase is locally stable and (I) where only the M1 insulator phase is locally stable. Region
II is the hysteretic range in which a thermally excited metal phase could survive but the
insulator-to-metal transition would require U and V to reach Region III.

Compared with the input energy ∆Etot = 0.074–0.18 eV per unit cell (4 VO2)
estimated in §3.2 for the experiment in (Morrison et al. 2014), the transition point in
Fig. 3.8(b) corresponds to a fluence about four times larger than that at which the putative
M1 metal phase was observed. At the experimental fluence level, the theory indicates that
the HOMO-LUMO gap is only slightly reduced from 0.45 eV in the insulating ground state
to 0.35–0.40 eV [Fig. 3.8(b), U = 4 eV, V = 1 eV]. is discrepancy with experiment may
be due to limitations of the Hartree-Fock theory, which does not calculate the energy of
correlated electrons or locate phase boundaries accurately.
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3.5 Summary and conclusion

is chapter presents a theoretical study of photoexcited VO2 motivated by Morrison’s
experiment of a long-lived metallic phase created by photoexcitation in a material with
a crystal structure associated with insulating equilibrium behavior. We used a band-
theory-based Hartree-Fock mean-field methodology combined with quantum Boltzmann
equation treatment of excited-state kinetics. e key findings of our study were (a) very
rapid (∼fs) relaxation of the photoexcited carriers to a pseudothermal state characterized
by a common temperature but different chemical potentials for the electron and hole
distributions, (b) a rapid (∼ 102 fs) relaxation to a thermal state with a well-defined
common temperature and chemical potential, and (c) the existence of a metallic phase
which is metastable at temperature T = 0 and can become favored at higher temperatures
(or laser fluence levels). A recent experimental report (Wegkamp et al. 2014) of rapid
(∼ 102 fs) collapse of the electronic gap is consistent with our calculations.

e key approximations of our work are the Hartree-Fock plus Fermi’s golden rule
treatment of the electron-electron interactions, and neglect of electron-phonon coupling
beyond thermal energy exchange. We believe that these approximations are not crucial.
e important conclusion of the quantum Boltzmann and Fermi’s golden rule studies
of the dynamics is that thermalization of the excited particles proceeds much faster
than experimental time scales, so that experimentally relevant issues, in particular the
existence of a metastable metallic state, can be addressed using steady-state arguments.
Further, the local stability of the metallic M1 phase means that as phonons take energy
out of the electronic system, the system may simply remain in this phase over a long
time determined by nucleation kinetics. e conclusion seems very likely to survive
the inclusion of higher order effects in the dynamics. Hartree-Fock theory is normally
reliable for the identification of phases, although the estimates of the locations of phase
boundaries may be inaccurate. e results presented here should be viewed as indicating
the theoretical possibility of a metastable metallic phase for reasonable parameters.
Further investigations of this metallic phase, including more reliable determination of
the phase boundaries, investigation of the processes by which the metastable state might
decay, and the study of the evolution of the laice structure, would be of considerable
interest for future research.
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Chapter 4

Towards a real-time impurity solver: quench dynamics

e out-of-equilibrium simulation of a quantum many-body system can be treated
semiclassically as in Chap. 3 using the quantum Boltzmann equation based on Fermi’s
golden rule, or fully quantummechanically using somemany-bodywave function evolved
in real time. Here in Chaps. 4 and 5, we will study the methods of simulating the out-of-
equilibrium dynamics of the Anderson impurity model (AIM) (Anderson 1961), a single
spin-degenerate orbital with an intra-orbital Hubbard interaction U coupled to a bath of
noninteracting orbitals. is model is of fundamental importance both in its own right
as a solvable (Tsvelick and Wiegmann 1983; Wiegmann and Tsvelick 1983) interacting
electron model and, as discussed in §1.4, as an auxiliary problem for the dynamical
mean-field theory (Georges et al. 1996; Kotliar et al. 2006). While a lot of work has
been done to develop imaginary-time solvers (Gull et al. 2008; Wolf et al. 2015) for the
Anderson impurity model to study its equilibrium properties at finite temperatures, it
has been a long-standing challenge to develop efficient real-time impurity solvers for
doing out-of-equilibrium simulations. ere are various candidate methods towards this
goal, including wave function based methods such as exact diagonalization (ED) (Go and
Millis 2017; Lu and Haverkort 2017) and density matrix renormalization group (DMRG)
(Wolf, McCulloch, and Schollwöck 2014), and Green’s function based methods such as the
quantum Monte Carlo algorithm (Dong et al. 2017).

In our work presented in Chaps. 4 and 5, we use the density matrix renormalization
group (DMRG) method (Schollwöck 2005), a powerful numerical technique for solving
one-dimensional electron problems. In DMRG, the wave function of the system is
represented by a matrix product state (MPS). Every matrix in the MPS corresponds to
a local degree of freedom in some single-electron basis. e main challenge is to find
the right basis of the bath orbitals so as to slow down the growth of the entanglement
entropy of the MPS. Here in Chap. 4, we use DMRG to represent the noninteracting
bath orbitals in energy space to study the quenched Anderson impurity model starting
from a nonequilibrium direct-product state. In Chap. 5, we generalize our method to
the periodically driven Anderson impurity model. e work of this chapter has been
published in (He and Millis 2017).
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4.1 eory and formalism

Our theoretical studies are focused on the single-impurity Anderson model (SIAM) with
one impurity d-orbital coupled to a noninteracting bath. e Hamiltonian is given by

H = Hd + Hbath + Hmix, (4.1)

Hd = ∑
σ

ϵdd†
σdσ + Ud†

↑d↑d†
↓d↓, (4.2)

Hbath = ∑
kσ

ϵkc†
kσckσ, (4.3)

Hmix = ∑
kσ

Vkd†
σckσ + h.c.. (4.4)

e d orbital has a Hubbard U interaction in its Hamiltonian Hd and the bath Hbath

has N → ∞ noninteracting bath orbitals. e two systems hybridize via the one-body
hopping terms in Hmix. e bath orbitals are labeled by k and the two spins ↑ and ↓ of
electrons are labeled by σ. For simplicity, we take the impurity-bath coupling amplitudes
Vk = V/

√
N to be k-independent. We define the bath density of states as DOS(ϵ) =

1
N ∑k δ(ϵ − ϵk) and consider a semicircle DOS with a half band width E. e initial state
that we consider is a direct-product state

|Ψt=0⟩ = |Ψ0⟩d ⊗ |FS⟩bath, (4.5)

where the Fermi-sea state |FS⟩bath of the bath is initially half-filled. e d-orbital energies
ϵd and ϵd + U are chosen to be symmetric about the Fermi level at 0. e situation is
depicted in Fig. 4.1. e formalism generalizes to amixed initial statewith a direct-product
density matrix ρt=0 = (ρ0)d ⊗ (ρ0)bath, where (ρ0)bath satisfies the Wick’s theorem, but
we will focus on a pure initial state here. Our numerical method requires a truncation of
the bath to a finite number N of bath orbitals. To choose the best truncation, we calculate
the hybridization function

∆σ(t, t′) = −i ∑
k
|Vk|2⟨TC ckσ(t)c†

kσ(t
′)⟩bath (4.6)

on the Keldysh contour (Aoki et al. 2014). One may refer to Appendix C for a derivation of
∆σ(t, t′). Here the contour C goes from t = 0 to a sufficiently late time tmax > max(t, t′)
and then back to t = 0 without the imaginary-time part. TC is the contour-ordering
symbol. e mean value ⟨. . .⟩bath is taken with respect to |FS⟩bath. With our choice
of the semicircular DOS and constant Vk, the hybridization function can be analytically
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Figure 4.1: e density of states of the bath orbitals. We consider a semicircle DOS with a
half band width E. e bath is initially half-filled, and the d-orbital energy ϵd and ϵd +U
are symmetric about the Fermi level at 0.

found for N → ∞ to be

∆σ(t, t′) =


−V2

Eτ
[H1(Eτ) + i J1(Eτ)] , t ≻C t′,

−V2

Eτ
[H1(Eτ)− i J1(Eτ)] , t ≺C t′,

(4.7)

where τ = t − t′, H1 is the 1st-order Struve function and J1 is the 1st-order Bessel
function. e symbols ≻C and ≺C refer to Keldysh-contour ordering. en we fit the
hybridization function to that of a finite bath with only N orbitals, i.e.,

∆σ(t, t′) ≈ −i
N

∑
j=1

V2
j ⟨TC cjσ(t)c†

jσ(t
′)⟩bath

= −i
N

∑
j=1

V2
j

[
ΘC(t, t′)− n0

jσ

]
e−iϵj(t−t′), (4.8)

where ΘC(t, t′) = 1 if t ≻C t′ and 0 if t ≺C t′. In fiing Eq. (4.7) with Eq. (4.8), all 2N
real parameters ϵj and Vj are varied to minimize the least-square error up to a maximum
time. e occupancies n0

j are chosen to be either 0 or 1 to fit the t ≻C t′ and t ≺C t′

parts independently and to make the initial state of the finite bath a Slater determinant.
is is possible even if the original bath was at a nonzero temperature. Since our bath is
particle-hole symmetric, we choose N to be even to preserve this symmetry. e number
of bath orbitals controls the maximum time tN . 2πN/|Emax − Emin| = πN/E up to
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which the exact hybridization function is reproduced with good accuracy. For example,
N = 40 bath orbitals are enough to reach Et . 100 and N = 170 orbitals can reach
Et . 500. Adding more orbitals increases the maximal time that can be reached, but
does not significantly improve the accuracy of the fit at shorter times.

4.2 Numerical method

We use DMRG/MPS methods to carry out the time evolution. We represent the wave
function |Ψ(t)⟩ as an entangled state between the impurity d orbital and the bath, i.e.,

|Ψ(t)⟩ = ∑
i

ci(t)|i⟩d ⊗ |Ψi(t)⟩bath, (4.9)

where i sums over the 4 impurity states |0⟩, |↑⟩, |↓⟩, and |↑↓⟩. Every bath state |Ψi(t)⟩bath

is a normalizedmatrix product state (MPS).e coefficients ci(t) are real and nonnegative.
Eq. (4.9) is a Schmidt decomposition of |Ψ(t)⟩ between the d orbital and the bath if |Ψ(t)⟩
is a simultaneous eigenstate of N↑ and N↓, the total numbers of spin-up and spin-down
electrons. is representation differs from the conventional DMRG in that it removes the
d orbital from the MPS, enabling analysis of the entanglement among the bath orbitals.
We evolve the wave function |Ψ(t)⟩ in the interaction picture of H0 = Hd + Hbath using

|Ψ(t)⟩ = T e−i
∫ t

0 dt′Ĥmix(t′)|Ψt=0⟩, (4.10)

where T is the time-ordering symbol and

Ĥmix(t) = eiH0tHmix e−iH0t = ∑
jσ

Vjei(Undσ̄+ϵd−ϵj)td†
σcjσ + h.c., (4.11)

where σ̄ is the opposite spin of σ. e main advantage of the interaction picture is that
Ĥmix(t) typically has a narrower spectral radius than H0 (bath bandwidth ∼ E large
compared with impurity level width∼ V2/E), so one can choose bigger time steps in the
simulation. We evaluate Eq. (4.10) by discretizing the time evolution into time steps ∆t.
e Hamiltonian used during the time step centered at t is

H̃mix(t) =
1

∆t

∫ t+∆t/2

t−∆t/2
Ĥmix(t′)dt′ = ∑

jσ
Ṽjσ(t)d†

σcjσ + h.c., (4.12)
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with the coupling amplitudes

Ṽjσ(t) = Vjei(Undσ̄+ϵd−ϵj)tsinc
(

Undσ̄+ϵd−ϵj
2

)
. (4.13)

e errors of both the mid-point Hamiltonian Ĥmix(t) and the time-averaged Hamilto-
nian H̃mix(t) are O(∆t2). e laer choice is preferred if the bath bandwidth is large
compared with the d-level width, because the very high and very low-energy bath orbitals
are suppressed by the sinc function.

To apply the Hamiltonian H̃mix(t) to the wave function |Ψ(t)⟩ in Eq. (4.9), we work
in the Jordan-Wigner transformed representation with the d orbital being the first orbital
(d and d† having no Jordan-Wigner signs). e Hamiltonian in Eq. (4.12) is rewrien as

H̃mix(t) = ∑
σ

(−1)ndσ̄ d†
σ c̃σ(t) + h.c., (4.14)

c̃σ(t) = ∑
j

Ṽjσ(t)(−1)n1+···+nj−1 c̃jσ, (4.15)

where the c̃jσ is the Jordan-Wigner transform of cjσ. e two operators are related by

cjσ = (−1)nd+n1+···+nj−1 c̃jσ, (4.16)

so that the operators c̃jσ and c̃j′σ′ with j ̸= j′ commute. We do the same Jordan-Wigner
transform for the two spins of the same orbital, so that c̃j↑ and c̃j↓ still anticommute. But
this is easy to handle with a local 4 × 4 matrix. e bath operators c̃σ(t) in Eq. (4.15) is
then represented by a matrix-product operator (MPO)

c̃σ(t) =
[
0, 1

] N

∏
j=1

[
I 0

Ṽjσ(t)c̃jσ (−1)nj

] [
1
0

]
, (4.17)

where the j = 1 matrix is le-multiplied by [0, 1] to pick the second row, and the j =

N matrix is right-multiplied by [1, 0]T to pick the first column. e MPO has a bond
dimension of 2. We can similarly express c̃†

σ(t) in terms of c̃†
jσ. e Hamiltonian H̃mix(t)

can then act on |Ψ(t)⟩ following DMRG routines (Schollwöck 2005). e final evolution
scheme is given by

|Ψ(t + ∆t)⟩ ≈ e−iH̃mix(t+∆t
2 )∆t|Ψ(t)⟩, (4.18)

with the exponential Taylor expanded into a 4th-order polynomial of H̃mix(t + ∆t/2).
e narrow spectral radius ∥H̃mix∆t∥ ensures good unitarity of the 4th-order truncation.
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Since the bath operators c̃σ and c̃†
σ are long-range, we cannot locally exponentiate the

Hamiltonian as in the time-evolving block decimation (TEBD) (Vidal 2003) method and
have to Taylor expand the exponential.

We adjust the truncation error tolerance of the singular value decomposition (SVD) in
DMRG according to the MPS norm so that the higher-order terms of e−iH̃mix∆t do not take
much time to calculate. e error tolerance in our code for a norm-1MPS is set to 10−6/N
(in terms of probability loss) per SVD truncation. is number is multiplied by (norm)−2

forMPSswith smaller norms (coefficients). If the adjusted error tolerance becomes greater
than 1 (which happens if the MPS norm is very small), the MPS is truncated to a product
state. e coefficients ci(t) in |Ψ(t)⟩ in Eq. (4.9) are normalized at the end of every time
step. e d-occupancy produced for U = 0 is found to agree in 3 ∼ 4 decimal places
with a Slater-determinant based noninteracting code.

We parallelize the calculations of the 4 MPSs in Eq. (4.9) on 4 processors and also use
the total numbers N↑ and N↓ of spin-up and spin-down electrons as symmetries to further
speed up the calculation.

4.3 Physical results compared with analytical theories

In this section we show some results obtained for the interacting SIAM with U/E = 1
using the method and other model parameters described in previous sections. e
impurity-bath coupling V/E = 0.1 ∼ 0.5. is is the parameter range of interest.
e impurity level width V2/E remains smaller than the band width ∼ E while the
Kondo temperature TK ≈ 0.4Ve−πE2/16V2 (Wang et al. 2008) can change by orders
of magnitudes. e Kondo temperature TK is a Hubbard U induced energy scale that
measures the spin relaxation rate in the near-equilibrium regime of the SIAM in the small
V/E (or Kondo) limit.

Fig. 4.2 (a) shows the charge relaxation dynamics, obtained by starting from an initially
empty d orbital |Ψ0⟩d = |0⟩d and a half-filled Fermi-sea state |FS⟩bath for the bath. Our
choice of particle-hole symmetric parameters ensures that nd = ⟨nd⟩ + ⟨nd⟩ always
equilibrates to 1 so long as the impurity-bath coupling V is not big enough to form a
bound state on the impurity. We see in agreement with previous work (Eckstein, Kollar,
and Werner 2009; Wolf, McCulloch, and Schollwöck 2014) that the charge equilibration
proceeds relatively rapidly. e reciprocal of the time t0.5 it takes to reach nd = 0.5
is ploed in Fig. 4.3 (a). At small V/E . 0.1, t0.5 ∼ V−2 is inversely proportional to
the d-level width ∼ V2/E. For V/E & 0.15, the rate 1/t0.5 of equilibration crosses
over to approximately linear in V and the equilibration process in Fig. 4.2 (a) becomes

53



Figure 4.2: e charge and spin dynamics of the SIAM. (a) e occupancy nd v.s. t starting
from |Ψ0⟩d = |0⟩d with impurity-bath coupling V/E = 0.2, 0.25, 0.3, 0.35, 0.4 from
boom to top; (b) e magnetic moment md v.s. t starting from |Ψ0⟩d = |↑⟩d with the
same values of V/E from top to boom. Dashed lines show the linear fits used to obtain
the long-time relaxation rates in Fig. 3b. Hubbard U/E = 1. e number of bath orbitals
we used was N = 20 in (a) and N = 130 in (b).

more oscillatory as we are approaching the formation of a bound state on the impurity.
e variation of charge equilibration rates with V can be seen in calculations performed
for a noninteracting SIAM (U = 0), suggesting that the charge relaxation physics is
essentially due to hybridization. e Hubbard U does not change the behavior of the
model qualitatively.

Fig. 4.2 (b) shows the spin relaxation dynamics obtained by starting from |↑⟩d ⊗
|FS⟩bath, a fully spin-polarized d orbital and the same half-filled Fermi-sea state |FS⟩bath

of the bath. e magnetization md = ⟨nd↑⟩ − ⟨nd↓⟩ relaxes much more slowly than
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Figure 4.3: e charge equilibration rate 1/t0.5 in (a) and the spin relaxation rate Γ∞ ≡
d ln md/dt|t→∞ in (b) obtained from nd(t) and md(t) (partly shown in Figs. 4.2 (a) and
4.2 (b)). Γ∞ is estimated using md(t) up to Et . 600. Hubbard interaction U/E = 1.

the charge, again in agreement with previous results (Cohen et al. 2013; Rostami,
Moghaddam, and Asgari 2016). e asymptotic behavior of md v.s. t shows approximately
an exponential tail, with the relaxation rate Γ∞ ≡ d ln md/dt|t→∞ ploed in Fig. 4.3 (b).
Γ∞ is estimated by fiing ln md(t) v.s. t to a straight line for tmax/2 < t < tmax, where
tmax is the maximum time reached in the simulation. e solid red line is a trend line.
We also show as the dashed green line the analytical result — the Kondo temperature TK

calculated using the formula in (Wang et al. 2008) and interpreted as a relaxation rate.
e Kondo result has a similar magnitude and V dependence to the calculated

results. e numerical differences at large V arise from relaxation processes associated
with valence fluctuations not included in the Kondo limit, while the more pronounced
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differences at small V are an intermediate asymptotics effect. For small V, even at the
very long times (Et ≤ 600) accessible to our method, the magnetization md is still
substantial, so the Kondo-limit expression, which gives the linear response relaxation
for small magnetization (md → 0), is not applicable. Evidently, the nonlinear response
(relaxation of a finite md) is stronger than the linear response. Developing a theory
of the relaxation in the small V and intermediate md regime is an interesting open
question. For intermediate V/E ≃ 0.25, the theoretical result is within a factor of 2
of the numerical one with the differences likely arising from the convention used for the
Kondo temperature TK.

4.4 Logarithmic growth of entanglement entropy

A remarkable feature of the simulations reported here is the long time scales that can be
reached; these time scales are necessary to reveal, for example, the magnetization decay.
As we show in this section, this is possible because the maximum entanglement entropy
of the 4 bath MPSs in Eq. (4.9) grows only logarithmically during the simulation, which
means the long times are not exponentially hard to reach, but are of only polynomial-time
complexity.

Entanglement entropy growth in SIAM

In this section, we compare the maximum entanglement entropy of the interacting SIAM
(U/E = 1) with a noninteracting SIAM (U = 0) with ϵd = 0 at the Fermi level. Both
models start from the same initial condition |0⟩d ⊗ |FS⟩bath with an empty d orbital and
a half-filled bath in Fig. 1. Results of the entanglement entropy are shown in Fig. 4. e
entropy growth starting from a spin-polarized impurity |↑⟩d ⊗ |FS⟩bath is also logarithmic
but takes smaller values.

e curves in Figs. 4.4 (a) and 4.4 (b) are obtained in slightly different ways. Fig. 4.4 (a)
shows the results obtained in a noninteracting simulation (using a Slater-determinant
based code) of N = 1000 bath orbitals all coupled to one empty d orbital at the Fermi
level. We then plot the entanglement entropy between the 500 bath orbitals below the
Fermi level with the other 501 orbitals up to Et = 1000. e Fermi level is found to be
close to the maximum entropy cut of the system. e data shows a logarithmic growth
of entanglement entropy at all values of the impurity-bath coupling V. e slopes of the
curves at long times are the same; only the offset and the transient growth depend on V.
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Figure 4.4: e logarithmic growth of entanglement entropy. (a) e entanglement
entropy of the initially occupied part of the bath with the rest of the system at U = 0
and V/E = 0.1, 0.2, . . . , 0.6 from boom to top. (b) e maximum entanglement
entropy encountered in the interacting SIAM simulation v.s. time t at U/E = 1 and
V/E = 0.15, 0.2, 0.25, 0.3, 0.35 from boom to top.

Fig. 4.4 (b) shows the results of the interacting SIAM (U/E = 1, ϵd = −U/2)
simulated using the method of Sec. 4.2. Every point on a curve is obtained in a different
simulation with a different bath size N. In a simulation up to time t, the hybridization
function is first fied up to t with the minimal number of bath orbitals N (typically
between 10 ∼ 200) needed to keep the root-mean-square error (RMSE) of the fit under
3× 10−4. en the maximum entanglement entropy Smax seen on all bonds of the 4 bath
MPSs encountered during the simulation from 0 to t is ploed v.s. t. Notice that Smax may
be encountered before t due to the finite bath effect. So Fig. 4.4 (b) takes into account the
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possibility of using the finite bath effect to limit entropy growth. But still the logarithmic
growth of entropy and the independence of the steady-state slope of S v.s. log t on the
impurity-bath coupling V are the same as in the non-interacting SIAM in Fig. 4.4 (a). ese
two properties mean S ≤ c ln t, and therefore the bond dimension D ∼ eS ≤ tc. Hence,
the interacting SIAM can be simulated in polynomial time O(D3) = O(t3c) of t.

Analysis of entropy growth

To understand the logarithmic growth of entropy, we consider a noninteracting chain
model, as is shown in Fig. 4.5. In this model, the impurity is coupled to two semi-infinite
chains. We choose a constant hopping amplitude between the bath sites in each chain.
By adjusting the on-site energy difference of the two chains, we can vary the densities of
states, obtaining either overlapping, gapped or just touching spectra. Our computation of
the entanglement entropy Socc across the impurity site shows that we have linear growth,
logarithmic growth, and saturation, respectively. In the numerical test we did, chain a
was initially empty and chain b was initially full. But the conclusion is found to hold
for randomized initial occupancies, too. A similar noninteracting model with two chains
directly connected via a modified hopping amplitude was studied in (Eisler and Peschel
2012; Peschel and Eisler 2012) in the formalism of conformal field theory.

e logarithmic growth of Socc is seen at a critical E = Va + Vb, at which the density
of states (DOS) of the two semi-infinite chains touch at only one energy point. When
E > Va + Vb, the system is gapped and entropy growth saturates. is can be explained
by the lack of energy eigenstates that are extended in both regions a and b, which then
means that particles (or holes) that are originally in a cannot go into b and vice versa
beyond a penetration depth determined by the gap, which then puts an upper bound on
the entanglement entropy between a and b. is energy barrier works for a general initial
occupancy. Starting from any product state, so long as the semi-chains a and b are gapped,
the entropy must saturate.

When E < Va +Vb, there is a finite overlap of the DOS of the two semi-infinite chains
and we see a linear growth of entanglement entropy in Fig. 4.5. In rare cases this does
not happen. For example, for a uniform chain Va = Vb = Vc and E = ϵd = 0, the
entropy growth is logarithmic rather than linear. But this behavior depends on the initial
occupancy. If the occupied sites are randomized, or if the model parameters are slightly
modified to deviate from a uniform chain, the expected behavior of a linear growth of
the entanglement entropy is seen between a and b. e energy criterion guarantees that
particles do not enter the forbidden regions of a noninteracting bath. But once the energy
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Figure 4.5: e two semi-infinite chainmodel (lower panel) and its critical behavior at E =
Va + Vb (upper panel) with d = 0, Va = Vb ≡ V, Vc = 0.5V and E/V = 1, 1.5, 2, 2.5, 3
from top to boom. Socc is the entanglement entropy between chain b (initially occupied)
with the rest of the system (initially empty impurity and chain a).

barrier is not at work, it is difficult in general, though not impossible, to organize the
migrated particles into a low entanglement entropy state to make the MPSmatrices small.

e logarithmic growth of entropy in Fig. 4.4 (b) can be understood as the result of
arranging the bath orbitals in the MPS in energy order, so that at any bond of the MPS, the
le and right parts of the bath degrees of freedom always have touching energy spectra.
is argument applies to an interactingmodel, too, because the bath is still noninteracting,
and the Hubbard U only reduces the chance for the impurity – the only bridge via which
the bath orbitals can indirectly hop to one another – to be doubly occupied, thus reducing
its bridging efficiency. e bath entanglement entropy of an interacting SIAM is therefore
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upper bounded by that of a noninteracting SIAM from this picture.

Bath in ain geometry

So far we have been working in the star geometry of the bath. Bath orbitals do not hop to
each other directly. ey only do so via the impurity. e diagonalization of bath orbitals
in energy space leads to a logarithmic growth of entanglement entropy, according to the
energy criterion in the previous section. In this section, we would like to emphasize
again that the energy criterion is a sufficient but not necessary condition for the entropy
to grow slowly. e example to give here is the evolution of the quenched SIAM in the
chain geometry of the bath. e impurity is the head of the chain, which is directly
connected to only one bath orbital, which in turn is connected to another bath orbital,
and so on so forth. One can go from the star geometry to the chain geometry via Lanczos
tridiagonalization starting from the impurity orbital, and from the chain back to the star
by diagonalizing the bath. More details of the two geometries can be found in (Wolf,
McCulloch, and Schollwöck 2014).

Starting from the initial state |0⟩d ⊗ |FS⟩bath with |FS⟩bath being the same filled
Fermi-sea state as in Fig. 5.1 transformed to the chain geometry, the maximum entropy
on the chain (the entanglement entropy between the le and right parts of the chain
at the maximum entropy cut) is still found to grow logarithmically. Fig. 4.6 shows the

Figure 4.6: e entropy profiles at different times Et = 0, 20, 40, . . . 300 in the chain
geometry starting from |0⟩d ⊗ |FS⟩bath with |FS⟩bath given in Fig. 5.1. Hubbard U = 0
and impurity-bath coupling V/E = 0.25. e number of bath orbitals N = 2000. Sn is
the entanglement entropy of the bath orbitals 1, 2 . . . n with the rest of the system.
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result of a noninteracting calculation. e initial occupancies on the chain are spatially
uniform. Every site has an occupancy of 0.5 per spin except the empty impurity. e
entanglement entropy Sn between sites 1, 2, . . . n and n + 1, . . . N on the chain are then
ploed in Fig. 5.1 as a function of n at equal intervals of time. On top of the logarithmic
background of Sn of the equilibrium state |FS⟩bath, an entropy peak propagates like a
soliton from the impurity down the chain at a speed ∝ E. e maximum entanglement
entropy (height of the peak) therefore increases with time logarithmically, even though
there is no separation of energy spectrum on the chain, i.e., partition of the bath into
different regions with different energies like in the star geometry.

Starting from an inverted half-filled Fermi-sea state with the highest energies initially
occupied, the same logarithmic growth of entropy in the chain geometry is seen due
to particle-hole symmetry. But starting from a product state with random 0 − 1
initial occupancies of the bath orbitals in the star geometry, the entanglement profile
transformed to the chain geometry becomes very high (max(Sn)/N) even at t = 0. Also,
a linear growth of entropy is seen starting from a product state in the chain geometry with
randomized 0 − 1 initial bath occupancies (see Fig. 4.7, blue line), while in the energy-
ordered star geometry, the entropy growth (green line) is still logarithmic under the same

Figure 4.7: Entanglement entropy of the noninteracting SIAM in the chain and star
geometries. e impurity-bath coupling V/E = 0.25. At t = 0, the impurity is empty
and the bath is half-filled. e initial occupancy is ordered if the occupied bath orbitals are
n = 1, 2, . . . , N/2, and random if the N/2 occupied bath orbitals are randomly shuffled.
e bath orbital energies in the star geometry are ordered if they are in ascending order of
n and random if they are randomly shuffled. SN/2 is the entanglement entropy between
the n ≤ N/2 bath orbitals and the rest of the system. e number of bath orbitals is
N = 2000. e random results are averaged over 10 simulations.
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condition. ese results demonstrate that the logarithmic entropy growth in Fig. 4.6 is
not guaranteed by the MPS basis, but is due to the initial filled Fermi-sea state. For such
a special initial state, the star geometry does not have a big advantage over the chain
geometry, as they both give a logarithmic growth of maximum entanglement entropy.
e benefit of the star geometry is its good behavior for more general initial states.

It is important to point out, as is shown in Fig. 4.7, that the star geometry alone
does not guarantee a logarithmic entropy growth. e order of the bath orbitals in the
MPS maers. e initial occupancies affect the transient growth of entropy, while the
asymptotic entropy growth is determined by the ordering of the bath orbital energies.
e steady-state growth of SN/2 is logarithmic if the bath orbitals in the MPS are energy-
ordered and linear if the bath orbital energies are randomly shuffled.

4.5 Double-impurity model

In this section, we show that the logarithmic growth of entanglement entropy is not
limited to the single-impurity Anderson model by doing a noninteracting simulation of
a double-impurity Anderson model. e most general noninteracting double-impurity
Anderson model can be pictorially represented in Fig. 4.8. Fig. 4.8 (a) is in the basis in
which the 2 impurity orbitals and all bath orbitals are diagonal, which is the double-

Figure 4.8: e general noninteracting double-impurity Anderson model in (a) the star
geometry and (b) the chain geometry. Every orbital energy and every hopping line is an
independent parameter. Panel (c) shows the double-impurity generalization of the model
in Fig. 4.5.
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impurity version of the star geometry. Fig. 4.8 (b) shows the double-impurity version of
the chain geometry by Lanczos tridiagonalizing the star geometry in Fig. 4.8 (a) starting
from the two impurities. One can also tridiagonalize the bath orbitals above and below the
Fermi level separately (Fig. 4.8c) to obtain the double-impurity generalization of the two
semi-infinite chain model in Fig. 4.5. Since the le and right semi-chains have touching
energy spectra, a logarithmic growth of entropy is expected as a critical behavior between
linear growth and saturation of entropy, as is discussed previously.

Figure 4.9 shows a sample result. We chose a half-filled bath with a semicircle DOS
the same as Fig. 5.1, and put two d orbitals at±0.2E (E is the half band width) with d − d
hopping 0.15E to mimic typical crystal field spliing. e two d orbitals are equally
coupled to all bath orbitals. In the basis in which the two d orbitals are diagonalized, their
orbital energies are 0.25E and the original d − d hopping makes the two d orbitals now
couple to the bath differently, which is more realistic. en we plot the entanglement
entropy Socc between the initially occupied bath orbitals and the rest of the system.

e double-impurity model has a richer dynamics than SIAM. Since both impurities
are initially empty, the one below the Fermi level leaks a hole into the bath, leading to
a short-term entropy peak. e steady-state growth of Socc is still logarithmic, but the
slope of Socc v.s. log t is not constant. is is because the two d orbitals are not at the
Fermi level (one is above and one is below). eir distances in energy to the Fermi level

Figure 4.9: e logarithmic growth of entanglement entropy in a noninteracting double-
impurity Anderson model. e bath DOS and filling are the same as Fig. 5.1. e two d
orbital energies ϵd1,2/E = 0.2 and d1 − d2 hopping Vd1,d2/E = 0.15. Both d1 and d2 are
uniformly coupled to all bath orbitals with coupling amplitude V/

√
N each. e coupling

V/E = 0.1, 0.15, . . . , 0.4 from boom to top. Number of bath orbitals N = 1000.
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|ϵd1,2| relative to the impurity-bath coupling V determine the slope, which approaches a
maximum for the case of a d-orbital at the Fermi level (ϵd = 0) as V gets large.

e logarithmic growth of entropy again shows that the quenched multi-impurity
model is not exponentially hard in DMRG simulations, but is of only polynomial-time
complexity. Whether the conclusion still holds for interacting models needs further
investigation in DMRG, especially for those multi-impurity models with non-density-
density (spin flipping and pair-hopping) terms, whose entanglement entropies need not
be bounded by the corresponding noninteracting models.

4.6 Summary and conclusion

We have studied the growth of entanglement entropy in quenched Anderson impurity
models. It is found that the entropy growth is determined by the representation of the bath
orbitals in the matrix product state (MPS). e Hubbard U on the impurity orbital does
not change the qualitative behavior of the steady-state growth of entanglement entropy
of the bath MPSs. e crucial feature controlling the entropy growth is the overlap in
energy of the density of states of the two parts of the bath at the maximum entanglement
entropy cut. In the star geometry of energy-ordered bath orbitals, the touching-spectra
condition is satisfied at every bond, so the maximum bond dimension is power law in t.
e power is upper bounded by the case of a half-filled d-orbital at the Fermi level and
does not grow with the impurity-bath coupling, which allows a simulation of the long-
time dynamics of the quenched impurity models in polynomial time. e conclusion is
likely to generalize to multi-impurity models.

e growth of entanglement entropy of an interacting quantum system and the
associated computational cost has been studied previously (Pizorn et al. 2014; Prosen and
Znidaric 2007) in terms of the integrability of the quantum model. Our study looks at
the problem from a different perspective. We focus on a special class of quantum models
— the impurity models — and think of the growth of entanglement entropy among the
bath orbitals. Because of the sparsity of interactions in the model, the entropy growth
in the noninteracting bath is controlled by the energy partitioning of the bath and the
localization of bath electrons to the energies they belong to. Since the new criterion of
energy-partitioning the bath is not related in obvious ways to the integrability of the
whole model (bath + impurity), hopefully this new view of entropy growth of complexity
can help us find new polynomial-time solvable models, parameter ranges, and/or special
initial conditions that are not covered by the integrability criterion.
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Chapter 5

Towards a real-time impurity solver: driven dynamics

With the development of experimental technology, manipulating strongly correlated
electrons using a laser-induced oscillating field is becoming possible. is makes it
interesting to study the driven dynamics of strongly correlated systems, i.e., evolution
of systems with time-dependent Hamiltonians. In Chap. 4, we have studied the quenched
Anderson impurity model and have found that the star geometry with energy-ordered
bath orbitals in the matrix product state (MPS) proves to be an efficient solver that
simulates the system in polynomial time due to the logarithmic growth of maximum
entanglement entropy over the MPS. In this chapter, we consider an Anderson impurity
model with an oscillating d-orbital energy. We let the d-orbital energy oscillate in a
square wave across the Fermi level of the half-filled noninteracting bath. It is found that
when the driving period T is short so that the Floquet-Magnus expansion converges,
the energy-ordered bath MPS works as well as it does for the quenched model. But
when the critical period is exceeded to make the Floquet-Magnus expansion diverge, the
original algorithm of using energy-ordered MPS exhibits linear growth of entanglement
entropy and therefore exponential time complexity. To overcome this problem, we tried
the quasi-energy-ordering algorithm and found that the long-term entropy growth gets
slowed down, but at the cost of a faster short-term entropy growth for not arranging the
bath orbitals in the MPS in energy order. So there is a tradeoff between the short-term
and long-term computational costs. Long driving periods would favor energy ordering
while short driving periods above and comparable to the critical periodwould favor quasi-
energy ordering. Below the critical period the two methods become identical, as there is
no energy aliasing effect.

5.1 eory and method

We begin with the general formalism of a single-impurity Anderson model (SIAM) with
general time-dependent model parameters. As is pointed out in (Gramsch et al. 2013),
this is the type of Hamiltonian that could arise in a nonequilibrium single-site dynamical
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mean-field theory (DMFT). e time-dependent Hamiltonian is given by

H(t) = Hd(t) + Hbath(t) + Hmix(t), (5.1)

Hd(t) = ∑
σ

ϵd(t)ndσ + U(t)(nd↑− 1
2)(nd↓− 1

2), (5.2)

Hbath(t) = ∑
kσ

ϵk(t) c†
kσckσ, (5.3)

Hmix(t) = ∑
kσ

Vk(t) d†
σckσ + h.c., (5.4)

where ndσ = d†
σdσ and σ = ↑, ↓ is the spin label. We go to the interaction picture of

H0(t) ≡ Hd(t) + Hbath(t). e Hmix(t) part in the interaction picture becomes

Ĥmix(t) = U0(0, t) Hmix(t)U0(t, 0) = ∑
kσ

Vk(t)d̂†
σ(t)ĉkσ(t) + h.c., (5.5)

where U0(t, 0) = T e−i
∫ t

0 H0(t′)dt′ is the time-ordered unitary evolution from 0 to t and
U0(0, t) = [U0(t, 0)]†. Since H0(t) does not couple the d orbital to the bath, each bath
orbital evolves independently in the interaction picture as given by

ĉkσ(t) = ckσ e−i
∫ t

0 ϵk(t′)dt′ , (5.6a)

and the d orbital evolves according to

d̂σ(t) = dσ e−i
∫ t

0 [ϵd(t′)+U(t′)(ndσ̄− 1
2 )]dt′ , (5.6b)

with σ̄ denoting the opposite spin of σ. Notice that n̂dσ̄(t) = ndσ̄ does not evolve in
the interaction picture of H0(t) and that ndσ̄ commutes with dσ, which together lead to
Eq. (5.6b). e 4-MPS scheme developed in Chap. 4 can be applied to the general time-
dependent SIAM with only one modification: in every time step ∆t, the time-averaged
Hamiltonian is

H̃mix(t) ≡
1

∆t

∫ t+∆t/2

t−∆t/2
Ĥmix(t′)dt′ = ∑

kσ

Ṽkσ(t)d†
σckσ + h.c., (5.7)

with the effective hopping amplitudes given by

Ṽkσ(t) ≈ Vk ei
∫ t

0 [ϵd(t′)+U(t′)(ndσ̄− 1
2 )−ϵk(t′)]dt′sinc

(
ϵd(t)+U(t)(ndσ̄−1/2)−ϵk(t)

2 ∆t
)

. (5.8)

Here we assume that in one time step ∆t, the orbital energies ϵk(t), ϵd(t) and Hubbard
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Figure 5.1: e density of states of the bath orbitals ϵk. We consider a semicircle DOSwith
a half band width E. e bath is initially half-filled, and the d-orbital energy ϵd = ±|ϵd|
oscillates every half driving period T/2 across the Fermi level.

U(t) do not change by much, so one still obtains the sinc function aer the time average.
e wave function is still evolved according to

|Ψ(t + ∆t)⟩ ≈ e−iH̃mix(t+∆t
2 )∆t |Ψ(t)⟩ (5.9)

with the exponential Taylor expanded to 4th order of ∆t to ensure good unitarity.

Up to now everything has been general for the single-impurity Anderson model. In
this paper, we consider the evolution starting from a product state

|Ψ(t = 0)⟩ = |Ψ0⟩d ⊗ |FS⟩bath, (5.10)

where |FS⟩bath is a half-filled Fermi-sea state of the bath with a semicircle density of states
(DOS) as shown in Fig. 5.1. e N → ∞ bath orbitals have fixed energies ϵk(t) = ϵk and
fixed equal hopping amplitudes Vk(t) = V/

√
N to the impurity d orbital. e Hubbard

U on the d orbital is also fixed. e only time-dependent quantity is the d-orbital energy

ϵd(t) =


−|ϵd|, 0 < t <

T
2

,

+|ϵd|,
T
2
< t < T,

(5.11)

which oscillates in a square wave every half driving period T/2. Physically, we are
interested in the local quantities on the d orbital. To this end, the bath can be fied
by a finite number N of bath orbitals to reproduce the hybridization function in the
thermodynamic limit up to a maximum time proportional to N. is fit is independent
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Figure 5.2: e entanglement entropy growth of a driven SIAM (red line) against a quench
SIAM (blue line). e driving period ET = 10. Hubbard U = 0 and impurity-bath
coupling V/E = 0.25. Initially the impurity state |0⟩d is empty and the bath state
|FS⟩bath is half-filled.

of the driving of the d-orbital energy and the Hubbard U. Computationally, we want
to study the growth of entanglement entropy of the bath, which determines the time
complexity of the problem.

5.2 Noninteracting Results

Let us first do some cheap calculations of the entanglement entropy growth of the
noninteracting SIAM using a standard Slater-determinant-based method to scan the
complexity diagram. e driven 4-MPS scheme developed in §5.1 will be used in §5.3
for simulating the interacting SIAM. In this section, the Hubbard U = 0 and the initial
state is |0⟩d ⊗ |FS⟩bath, an empty d-orbital and a half-filled Fermi sea in Fig. 5.1. e
impurity-bath coupling V/E = 0.25 is fixed. Bath size N ≥ 1000.

Energy-ordered bath

We use the entanglement entropy Socc between the N/2 bath orbitals below the Fermi
level and the rest of the system to estimate the maximum entanglement entropy that
would be encountered in an MPS-based simulation when the bath orbitals are energy-
ordered. We find that for long driving periods T > Tc = π/E, the convergence radius
of the Floquet-Magnus expansion (see Appendix F), a small amplitude |ϵd| could change
the logarithmic growth of entropy to linear. is is shown in Fig. 5.2, where we did a
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Figure 5.3: e steady-state entropy growth rate (∆Socc)T/T v.s. the period T at various
amplitudes |ϵd|. Hubbard U = 0. Impurity-bath coupling V/E = 0.25.

simulation with N = 1000 bath orbitals and driving period ET = 10. e entanglement
entropy Socc between the 500 bath orbitals below the Fermi level and the rest of the
system is ploed in Fig. 5.2 over time. e quenched model exhibits a logarithmic growth
of entanglement entropy Socc over time and while the entanglement entropy growth in
the periodically driven model is linear.

e critical driving period Tc = π/E, or 2π over the band width, separates the
logarithmic growth (T < Tc) and linear growth (T > Tc) of Socc. In Fig. 5.3, we plot
the maximum growth rate of entropy (∆Socc)T/ET v.s. the period T as an envelope of
the growth rate v.s. T curves at fixed driving amplitudes |ϵd|. Each of these curves is
tangent to the envelope at some points and they all intersect with zero at the same critical
period Tc. e linear growth of entanglement entropy in a driven SIAM can be intuitively
understood in an entropy pumping picture. e up and down motion of the d orbital
acts as an elevator that transports some electrons from the occupied bath orbitals to the
unoccupied bath orbitals (and holes in the opposite direction). So if the entanglement
entropy Socc increases by a constant (∆Socc)T in every period, the linear growth rate of
Socc would then be (∆Socc)T/T.

However, for short periods T < Tc, the linear growth of entropy cannot be main-
tained. To understand this critical period, one needs to consider the Floquet Hamiltonian
HF defined by

e−iHFT ≡ e−iH+T/2 e−iH−T/2, (5.12)
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Figure 5.4: e bath orbital energies ϵk of the Floquet Hamiltonian HF for ET = 3 (blue)
and ET = 4 (red). e orbital energies are unaffected by the periodic driving if ET < π
but aliased to [−π/T, π/T] modulo 2π/T if ET > π.

where H± corresponds to ϵd = ±|ϵd| respectively. e time-independent Floquet
Hamiltonian HF reproduces the unitary evolution of the time-dependent system H(t)
over full periods. It turns out ET = π is the convergence radius of the Floquet-Magnus
expansion of HF in terms of H+ and H−. Within the convergence radius and for small
driving amplitude |ϵd|, we have

HF = H̄ + i|ϵd| tan
(

T
4

adH̄

)
nd +O(|ϵd|2), (5.13)

where H̄ = (H+ + H−)/2 is the SIAM Hamiltonian with ϵd = 0, adH̄ = [H̄, · ] is the
adjoint representation of H̄, and tan(·) is defined via its Taylor expansion. Eq. (5.13)
can be derived using the formalism given in Appendix F. e convergence radius of
Eq. (5.13) is ET = π. We expect this to hold also for the interacting SIAM, because
in the thermodynamic limit N → ∞, the spectral radius ∥H̄∥ is mainly determined by
the band width of the bath DOS (unless a bound state is formed on the impurity). As a
result, ∥H̄∥ ≈ E is equal to the half band width E of the bath. Since tan(·) is singular
at π/2, the series expansion of Eq. (5.13) fails to converge if ∥adH̄∥ T/4 = ∥H̄∥ T/2 ≈
ET/2 > π/2, i.e. ET > π.

Once the critical period is exceeded, surprising new physics emerges. For driving
periods T > Tc, numerics shows that the bath orbital energies in HF are now aliased
to [−π/T, π/T] ⊂ [−E, E], breaking the original ordering of the bath orbitals. is
situation is shown in Fig. 5.4. e inter-bath-orbital hopping amplitudes remain very

70



Figure 5.5: e growth of entropy SN/2 for the driven and quenched models with energy-
ordered and quasi-energy-ordered bath orbitals. Hubbard U = 0 and impurity-bath
coupling V/E = 0.25. Period ET = 10.

small. e ascending order of bath orbital energies is violated because of energy aliasing.
is gives overlap of (aliased) energy between the occupied and unoccupied bath orbitals
and thus a linear growth of entanglement entropy over the periods becomes possible.

asi-energy-ordered bath

What happens then, if one reorders the bath orbitals in the MPS in ascending order of
quasi-energy rather than energy in case of the driving period T > Tc? e initial state
|0⟩d ⊗ |FS⟩bath in the star geometry remains a product state (anMPSwith bond dimension
= 1). We use the entanglement entropy SN/2 between the N/2 bath orbitals with
negative quasi-energies (within [−π/T, 0)) and the rest of the system to estimate the
maximum entanglement entropy that would be encountered in an MPS-based simulation
when the bath orbitals are quasi-energy-ordered. SN/2 becomes the Socc used in the
previous subsection when the bath orbitals are energy-ordered.

We redo the same simulation as in Fig. 5.2 using N = 1000 bath orbitals ordered
by their quasi-energies of ET = 10. e same results of nd(t) as in Fig. 5.2 (b) for
the quenched and driven models are reproduced. e entropies of the energy-ordered
simulation in Fig. 5.2 (a) are compared with the new results in Fig. 5.5 and the time t is
put on log scale. It is found that the growth of SN/2 is logarithmic for both the quenched
and driven models. is is because the Floquet Hamiltonian HF is now energy-ordered
(as opposed to Fig. 5.4). But the driven model is still harder to simulate than the quenched
model, because the slope of the SN/2 v.s. ln t curve is greater for the driven model.
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Figure 5.6: (a) e upshi ∆SN/2 of entropy in the quenched SIAM at |ϵd| = 0. (b) e
slope of SN/2 v.s ln t in the driven SIAM at |ϵd|/E = 0.1. Bath size for long periods need
to reach N = 3000 to obtain accurate data.

For the quenched model, the steady-state slope of SN/2 v.s. ln t is unchanged when
the bath orbitals are quasi-energy-ordered. Only the steady-state intercept is shied up
by a constant ∆SN/2, which is found to be approximately proportional to ln(T/Tc) (see
Fig. 5.6 (a)). is is the price to pay for not ordering the quenched bath by energy, which is
beer than a randomly shuffled bath (see Fig. 4.7 in Chap. 4), whose entropy SN/2 would
grow linearly with time t.

e driving amplitude |ϵd| changes the slope of the SN/2 v.s. t curve. Fig. 5.6 (b)
shows how the slope increases from that of the quenched model (T → 0 at fixed |ϵd| is
equivalent to quench) to unboundedly large values proportional to ln T. is indicates
that the leading-order term in the entropy SN/2 is

SN/2 ∼ c ln T ln t, (5.14)
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Figure 5.7: e dependence of the coefficient c in Eq. (5.14) on the driving amplitude |ϵd|.
Hubbard U = 0 and impurity-bath coupling V/E = 0.25.

where c depends on |ϵd| but is found to be bounded (see Fig. 5.7). At very large |ϵd| & E,
the coefficient c goes down, which is likely to come from the bound state formed on the
impurity. Eq. (5.14) means that the bond dimension in an MPS-based simulation using
the quasi-energy-ordered algorithm is D ∼ eSN/2 ∼ t c ln T . e time complexity of the
singular value decomposition (SVD) step is then O(D3) = O(t3c ln T). Since the power
of t for the quasi-energy-ordered algorithm is unbounded for long driving periods T, the
complexity is still beyond polynomial time. Another drawback of quasi-energy ordering is
delocalization of maximum entanglement entropy throughout the MPS, while in energy-
ordered MPSs, the maximum entanglement entropy tends to concentrate near the Fermi
level. is gives the quasi-energy-ordered algorithm a prefactor of the bath size N.

5.3 Interacting results

In the previous section, we have been estimating what would happen in an MPS-based
simulation using a noninteracting (Slater-determinant-based) code. Now let us do some
real MPS-based simulations of the interacting SIAM using the 4-MPS method of §5.1. We
choose a fixed Hubbard U/E = 1 and the impurity bath coupling V/E = 0.25 is the
same as in §5.2. We use N = 30 bath orbitals to fit the hybridization function of the
continuum bath DOS in Fig. 5.1 with good accuracy up to Et ≤ 75 following Chap. 4. e
SVD truncation error tolerance was 10−5. Noninteracting d-occupancies are reproduced
with 2 ∼ 3 decimal places as a benchmark.
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Figure 5.8: e d-occupancy nd = ⟨nd↑⟩+ ⟨nd↓⟩ and double occupancy D = ⟨nd↑nd↓⟩ of
the quenched and driven SIAMs v.s. time at Hubbard U/E = 1, impurity-bath coupling
V/E = 0.25, driving amplitude |ϵd|/E = 0.1 and period in (a) ET = 10 and (b) ET = 20.
e dashed grey line is n2

d/4 of the quenched nd.

Physical results

e results of short periods ET < π are not significantly different from the quenched
SIAM with no oscillation of d-orbital energy. So we plot both Figs. 5.8 and 5.9 in the long
period regime ET > π. Both the energy-ordered and quasi-energy-ordered algorithms
as discussed in §5.2 give the same physical results.

e Hubbard U suppresses the double occupancy of the d-orbital for both the
quenched and driven SIAMs. In Fig. 5.8, the dashed grey lines indicate the level of double
occupancy in a noninteracting SIAM (estimated from the n2

d/4 of the quenched nd). e
interacting double occupancy is appreciably lower than n2

d/4 when the driving amplitude
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Figure 5.9: (a) e d-occupancy nd and double occupancy D of the SIAM at driving
amplitudes |ϵd|/E = 0, 0.1, . . . , 0.8 and period ET = 10. Other parameters are the
same as Fig. 5.8. e grey dashed line is n2

d/4 of the quenched nd. (b) Amplitude ∆nd
(1/2 of peak-to-peak value) of nd and the time-averaged double occupancy D over a full
driving period.

|ϵd|/E = 0.1 is small. For period ET = 10, both nd (red line in Fig. 5.8 (a)) and the
double occupancy D (purple line) oscillate in sinusoidal waves, even though the driving
signal ϵd(t) is a square wave. When the period increases to ET = 20, the wave forms
approach a relaxed oscillation (Fig. 5.8 (b)). e overshoots in every period disappear in a
noninteracting simulation (U = 0, not ploed), which produces simple monotonic decays
to the square wave levels.

When the driving amplitude |ϵd| is increased, the wave form of nd distorts, and the
relaxation to steady-state oscillation slows down, as is shown in Fig. 5.9. Also, there is an
increase of the average double occupancy D. At |ϵd|/E = 0.8, the double occupancy D in
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its oscillation steady state is above n2
d/4 almost the entire period. A possible explanation

might be that the oscillating d-orbital energy is like a phonon mode that induces an
effective intra-d-orbital araction, which becomes greater than U when the oscillation
amplitude |ϵd| is big enough (|ϵd|/E & 0.6, at which D ≈ 1/4). Whether this aractive
interaction can lead to superconductivity is interesting for further studies.

Complexity results

Obtaining results in Fig. 5.9 (a) at medium to large driving amplitudes was not easy,
because in the ET > π regime, the linear growth of maximum entanglement entropy
makes the maximum bond dimensions in the MPSs increase exponentially with the
number of periods simulated. We used some extrapolation techniques to estimate the
steady-state quantities in Fig. 5.9 (b), especially for |ϵd|/E = 0.8 where the relaxation is
slow. In this section we mainly check whether this linear entropy growth (exponential
difficulty) can be helped by reordering the bath orbitals in theMPSs in quasi-energy order.

It is found that even though the entropy growth in the noninteracting SIAM changes
from linear to logarithmic by quasi-energy ordering the bath orbitals, as is shown in §5.2,
the entropy growth for the interacting SIAM is faster than logarithmic. We increased the
number of bath orbitals to N = 40 to reach Et = 100. Figure 5.10 shows a comparison of
the energy-ordered and quasi-energy-ordered simulations of the interacting SIAM under
|ϵd|/E = 0.1, ET = 6. As is shown in Fig. 5.10 (b), the quasi-energy-ordered 4-MPS
simulation is slower than the energy-ordered simulation in the short run. e short-term
growth of entropy, e.g. in the first period, is faster if the energies of the bath orbitals
are not ordered. In the long run, the quasi-energy-ordering is more favorable, but not
as favorable as it is in the noninteracting SIAM, because the entropy growth is probably
still linear (curves up in the Smax v.s. ln t plot), but the linear slope is clearly reduced,
and so is that of ln tCPU v.s. t in Fig. 5.10 (b). e hardness in the ET > π regime is
beyond polynomial time using either method, but is still quantitatively reduced by the
quasi-energy ordering method.

Figure 5.11 shows the crossing time of the maximum entanglement entropies Smax of
the energy ordered and quasi-energy ordered simulations. In a wide range of driving
periods the crossing time tcross of the entropies in Fig. 5.10 exists and is minimum
at intermediate driving periods T at which the linear growth rate of entropy Smax

of the energy ordered method is fastest. Aer the entropies cross, the quasi-energy-
ordered method still needs to overcome two more short-term drawbacks: a) its maximum
entanglement entropy being more widespread than the energy-ordered method with
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Figure 5.10: e maximum entanglement entropy Smax reached in (a) and CPU time tCPU
spent in (b) to run to different simulation times Et. Parameter values U/E = 1, V/E =
0.25, |ϵd|/E = 0.1, and ET = 6. e red curve in (a) is clearly concave upward as Et
approaches 100 when the period-ET oscillations are eliminated by moving average.

maximum entanglement entropy concentrated near the Fermi level, and b) the bigger
entropy at short times, before the actual CPU-times cross.

5.4 Summary and conclusion

We have generalized our previously developed 4-MPS method to time-dependent Hamil-
tonians to study periodically driven SIAMs. We analyzed the computational complexity
in the short period ET < π and long period ET > π regimes for both the noninteracting
(U = 0) and interacting (U > 0) models. emodel behavior in the ET < π regime is not
significantly different from the quenched model. is is the regime in which the Floquet-
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Figure 5.11: Crossing time of maximum entanglement entropies of the energy ordered and
quasi-energy ordered simulations at various driving periods T. Fixed parameter values
U/E = 1, V/E = 0.25, |ϵd|/E = 0.1. e red line is a smooth guideline of the data
points in blue dots.

Magnus expansion converges. Both the interacting and noninteracting models are as easy
to simulate as the quenchedmodels (polynomial time). In the ET > π regime, the entropy
grows linearly in the energy-ordered algorithm, which is therefore exponentially hard to
reach long times, i.e. many periods. Using quasi-energy ordering reduces the entropy
growth of the noninteracting model from linear to logarithmic with a coefficient that
grows unboundedly with the driving period T (proportional to ln T). For the interacting
model, it also reduces the linear growth rate of entropy and the exponential hardness of
the problem in the long run. But there is a tradeoff between the short-term and long-term
computational costs, as is revealed in Fig. 5.11. e quasi-energy-ordering algorithm is
most favored when the driving period T is greater than the critical period π/E by about
a factor of 2, which gives the quickest linear growth rate of entanglement entropy and
the earliest crossing point.
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Conclusion

is thesis conducts a focused study of strongly correlated systemswith localized electron
orbitals. We have studied two real materials (LuNiO3 and VO2) and one model system,
i.e. the Anderson impurity model, using two main theories (DFT+U and DMFT) and other
techniques in the appendices. e electron-electron interactions on the localized orbitals
are typically strong compared with other delocalized orbitals. e on-site interactions
parameterized as Hubbard U and Hund’s coupling J are included on the Hartree-Fock
level in DFT+U to obtain a so band structure that depends on the orbital occupancies
of the electrons. is gives rise to competitions between multiple orbitals and complex
phase diagrams as revealed in the equilibrium phase transitions of LuNiO3. In the pump-
probe experiment of VO2, the so band physics leads to the collapse of the interaction
maintained energy gap in Mo insulators as an enough number of electron-hole pairs are
created via photo-excitation to induce an insulator-to-metal transition.

While a Hartree-Fock-level treatment of the interactions of the localized orbitals is
conceptually simple and computationally cheap, this uncontrolled approximation can be
quantitatively inaccurate and miss qualitative features of the interacting system such as
the quasi-particle lifetime and other beyond-band-theory effects. e dynamical mean-
field theory (DMFT) aempts to keep the on-site part of the interactions on the localized
orbitals exactly as impurity orbitals and only reduce the delocalized orbitals into an
effective noninteracting bath, instead of reducing the whole system into an effective
noninteracting so band structure as in DFT+U.

Our research works in Chaps. 4 and 5 are motivated by DMFT to build a real-time
impurity solver using the density matrix renormalization group (DMRG) technique. We
have built a matrix product state (MPS) based impurity solver and have achieved some
preliminary complexity results of both the quenched and the driven single-impurity
Anderson model. e main intuition is that for the quenched model, one can fully
utilize the fact that the bath is noninteracting to control the entropy growth using energy
separation, so that different regions of theMPS corresponds to different energy ranges and
the noninteracting bath electrons would choose to localize themselves around the energy
range they belong to. When the impurity d-orbital energy is periodically driven, the
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impurity orbital functions as an electron elevator that transports bath electrons between
different energy levels. is leads to linear entropy growth for energy-ordered bathMPSs.
Using quasi-energy-ordered bath MPSs reduces the long-term growth of entanglement
entropy but increases the entropy growth in the short run. e entropy crossing point
of the two algorithms can come very late. How to efficiently simulate time-dependent
impurity Hamiltonians remains an open question.
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Appendix A: Maximally localized Wannier functions

In this appendix, we give the mathematical derivation of the formulas for the center and
spread of the multi-band Wannier functions in k-space. From Eqs. (1.12)–(1.13), we can
express the Wannier center rm of the mth Wannier function wm(r) in terms of the Bloch
wave functions in k-space via

rm =
∫∫

BZ

d3k
(2π)3

d3k′

(2π)3

∫
d3r ũ∗

mk(r) r umk′(r) e−i(k−k′)·r, (1)

where the gauge freedom Unm(k) goes into the decoupled cell-periodic functions

ũmk(r) ≡ ∑
n

U∗
nm(k)unk(r). (2)

If we interpret a Bloch wave unk(r)eik·r as the LCAO wave function of the “molecular
orbitals”, then ũmkeik·r is the component of unk(r)eik·r from the mth “atomic orbital”
(i.e., the Wannier function wm(r − R)). Since the Bloch waves unkeik·r and ũmk(r)eik·r

are k-periodic, we have

0 =
∫

BZ

d3k′

(2π)3∇k′

[
ũmk′(r)eik′·r

]
=
∫

BZ

d3k′

(2π)3 [(∇k′ + ir) ũmk′(r)] eik′·r. (3)

is proves the relation r 7→ i∇k′ and therefore from Eq. (1), we have

rm = i
∫∫

BZ

d3k
(2π)3

d3k′

(2π)3

∫
d3r [ũ∗

mk(r)∇k′ ũmk′(r)] e−i(k−k′)·r. (4)

From the cell-periodicity of ũ∗
mk(r)∇k′ ũmk′(r), we can break the d3r integral into an

integration within one unit cell followed by a sum over the unit cells. We have∫
d3r [ũ∗

mk(r)∇k′ ũmk′(r)] e−i(k−k′)·r

=
∫

Cell
d3r[ũ∗

mk(r)∇k′ ũmk′(r)] e−i(k−k′)·r ∑
R

e−i(k−k′)·R (5)

=
∫

Cell
d3r[ũ∗

mk(r)∇k′ ũmk′(r)] e−i(k−k′)·r ∑
ν∈Z3

δ3
(

k − k′

2π
− ν

)
. (6)
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e sum over R then leads to a k-selection rule k = k′ that collapses the d3k′ integral.
Since both k and k′ are restricted to the first Brillouin zone, we have ν = 0 and thus
k = k′. So the Wannier center is simply given by

rm = i
∫

BZ

d3k
(2π)3

∫
Cell

d3r ũ∗
mk(r)∇kũmk(r). (7)

To calculate the spread we also need the second-order moment

⟨wm|r2|wm⟩ =
∫∫

BZ

d3k
(2π)3

d3k′

(2π)3

∫
d3r ũ∗

mk(r) r2 ũmk′(r)e−i(k−k′)·r. (8)

Even though Eq. (3) does not directly generalize to higher-order moments, we can use
r2 = r · r, take the complex conjugate of Eq. (3) to replace one r by i∇k′ and the other r
by −i∇k to obtain

⟨r2⟩m =
∫∫

BZ

d3k
(2π)3

d3k′

(2π)3

∫
d3r [∇kũ∗

mk(r) · ∇k′ ũmk′(r)] e−i(k−k′)·r (9)

=
∫

BZ

d3k
(2π)3

∫
Cell

d3r ∇kũ∗
mk(r) · ∇kũmk(r), (10)

following the same procedure from Eq. (4) to Eq. (7). e metric in r2 = r · r need not
be identity in a nonorthogonal Bravais laice. One may in fact put in any metric and
Eq. (10) gives the corresponding second-order moment so long as the samemetric is put in
∇kũ∗

mk(r) · ∇kũmk(r) ≡ ∥∇kũmk(r)∥2. Once we have Eqs. (7) & (10), we can calculate
the spread Ωm ≡ ⟨r2⟩m − r2

m of the mth Wannier function and numerically minimize the
total spread ∑m Ωm by tuning the unitary matrices Unm(k) in Eq. (1.12).
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Appendix B: Rotationally invariant on-site interaction

In this appendix, we give a detailed derivation of the parameterization of rotationally
invariant two-body interaction tensor Umm′m′′m′′′ in terms of the invariant radial integrals
Fk. en we prove the sum rule of the isotropic and anisotropic integrals.

Parameterization of Umm′m′′m′′′ by spherical symmetry

We require the addition theorem of Legendre polynomials

Pk(r̂1 · r̂2) =
4π

2k + 1

k

∑
q=−k

Ykq(r̂1)Y∗
kq(r̂2). (11)

Based on the assumptions of Eqs. (1.23)–(1.25), we have from Eq. (11) that

Umm′m′′m′′′ =
∞

∑
k=0

4π

2k + 1
Fk

k

∑
q=−k

∫
dΩ1 Y∗

lm(r̂1)Ykq(r̂1)Ylm′′(r̂1)

×
∫

dΩ2 Y∗
lm′(r̂2)Y∗

kq(r̂2)Ylm′′′(r̂2), (12)

with the radial integrals Fk defined in Eq. (1.26). We have used d3r = r2drdΩ in the
spherical coordinates to separate the radial and angular integrals. We may next use
Ylm(r̂) = (−1)mYl,−m(r̂) and its relation to the Wigner 3j-symbols

∫
dΩ Yl1m1(r̂)Yl2m2(r̂)Yl3m3(r̂) =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
(

l1 l2 l3
0 0 0

)(
l1 l2 l3

m1 m2 m3

)
, (13)

to obtain

Umm′m′′m′′′ = (2l + 1)2
∞

∑
k=0

Fk

(
l k l
0 0 0

)2 k

∑
q=−k

(−1)m+m′+q

×
(

l k l
−m q m′′

)(
l k l

−m′ −q m′′′

)
. (14)
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Because of the selection rules of the Wigner 3j-symbols, the summation of k is truncated
to only even numbers from 0 to 2l, which can be rewrien as 2k with the new variable k
summing from 0 to l as follows:

Umm′m′′m′′′ = (2l + 1)2
l

∑
k=0

F2k

(
l 2k l
0 0 0

)2 2k

∑
q=−2k

(−1)m+m′+q

×
(

l 2k l
−m q m′′

)(
l 2k l

−m′ −q m′′′

)
. (15)

e interaction tensor Umm′m′′m′′′ is parameterized by the radial integrals F0, F2, . . . F2l
as linear coefficients of the universal Wigner 3j-symbols.

Expressing U and J in terms of F2k

From the definition of Hubbard U in Eq. (1.22) and Eq. (15), we have

U =
l

∑
k=0

F2k

(
l 2k l
0 0 0

)2

∑
mm′

(−1)m+m′
(

l 2k l
−m 0 m

)(
l 2k l

−m′ 0 m′

)
, (16)

where we have used the selection rule of Wigner 3j-symbols to pick out the q = 0 term.
en we use the sum rule

∑
m
(−1)l+m

(
l k l

−m 0 m

)
=

√
2l + 1 δk0. (17)

Only the k = 0 term survives and we obtain

U = (2l + 1) F0

(
l 0 l
0 0 0

)2

= F0. (18)

Next we calculate the sum

∑
m

Jmm′ = (2l + 1)2
l

∑
k=0

F2k

(
l 2k l
0 0 0

)2

∑
qm

(
l 2k l

−m q m′

)(
l 2k l

−m′ −q m

)
.

e selection rule requires q = m − m′, which may or may not be reached within q ∈
[−2k, 2k]. But the sign (−1)m+m′+q in Eq. (15) is canceled. We can use symmetries of
the 3j-symbols to show that the last two symbols are in fact equal. We have(

j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
=

(
j3 j2 j1

−m3 −m2 −m1

)
,
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which then leads to

∑
m

Jmm′ = (2l + 1)2
l

∑
k=0

F2k

(
l 2k l
0 0 0

)2

∑
qm

(
l 2k l

−m q m′

)2

. (19)

We now use the orthonormality relation of Wigner 3j-symbols

(2l + 1) ∑
m1m2

(
j1 j2 l

m1 m2 m

)(
j1 j2 l′

m1 m2 m′

)
= δll′δmm′ , (20)

to further reduce Eq. (19) into

∑
m

Jmm′ = (2l + 1)
l

∑
k=0

F2k

(
l 2k l
0 0 0

)2

. (21)

e result is independent of m′ as a consequence of the rotational symmetry. Finally,
from the definition of Hund’s coupling J in Eq. (1.22) and Eqs. (18) and (21), we have

J =
1
2l

(
∑
m

Jmm′ − F0

)
=

2l + 1
2l

l

∑
k=1

F2k

(
l 2k l
0 0 0

)2

. (22)

Eqs. (18) and (22) constitute the results of Eq. (1.28). e Hubbard U and Hund’s coupling
J correspond to the isotropic and anisotropic parts of the interaction, respectively.
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Appendix C: Hybridization function of a fermionic bath

In this appendix, we give a derivation of the hybridization function of a noninteracting
fermionic bath. Consider a situation as follows:

HS = ∑
ij

Tijc†
i cj +

1
2 ∑

ijkl
Uijklc†

i c†
j clck, (23)

HE = ∑
k

ϵka†
k ak, Hmix = ∑

ik

(
Vikc†

i ak + V∗
ika†

kci

)
. (24)

e system S can be strongly interacting and correlated, but the bath E it is coupled to
via the one-body hopping terms in Hmix is noninteracting. From Eq. (1.32), we have

TC eSeff[c,c†] = ⟨TC e−i
∫
C dt Hmix(t)⟩E =

∞

∑
m=0

∞

∑
n=0

(−i)m+n

m!n!

∫
C

dt1 . . . dtm

∫
C

dt′1 . . . dt′n

× ∑
i1...im

∑
k1...km

∑
i′1...i′n

∑
k′1...k′n

Vi1k1 . . . VimkmV∗
i′1k′1

. . . V∗
i′nk′n

TC
[
c†

i1(t1) . . . c†
im(tm)

× ⟨TC akm(tm) . . . ak1(t1) a†
k′1
(t′1) . . . a†

k′n
(t′n)⟩E ci′n(t

′
n) . . . ci′1

(t′1)
]

. (25)

Since the bath E conserves particle number, we have m = n, otherwise ⟨. . .⟩E = 0. Also,
because the bath E is noninteracting, we can useWick’s theorem to factorize ⟨. . .⟩E into a
product of one-particle (two operator) Green’s functions. ere are totally n! contractions
corresponding to permutations of the summation indices k′1 . . . k′n relative to k1 . . . kn to
yield equal contributions. erefore, we have

TC eSeff[c,c†] =
∞

∑
n=0

(−i)2n

n!

∫
C

dt1 . . . dtn

∫
C

dt′1 . . . dt′n

× ∑
i1...in

∑
k1...kn

∑
i′1...i′n

∑
k′1...k′n

Vi1k1 . . . VinknV∗
i′1k′1

. . . V∗
i′nk′n

TC
[
c†

i1(t1) . . . c†
in(tn)

× ⟨TC ak1(t1)a†
k′1
(t′1)⟩E . . . ⟨TC akn(tn)a†

k′n
(t′n)⟩E ci′n(t

′
n) . . . ci′1

(t′1)
]

. (26)

Protected by TC , the integrals and summations give the same factor raised to power n. To
make this statement more explicit, we define the bath Green’s function and hybridization
function to simplify the expression. e bath Green’s function is given by

GE
kk′(t, t′) = −i⟨TC ak(t)a†

k′(t
′)⟩E, (27)
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and the hybridization function is defined as

∆ii′(t, t′) = ∑
kk′

VikV∗
i′k′G

E
kk′(t, t′). (28)

e eigenstate Green’s function of the bath GE
kk′(t, t′) satisfies the selection rule k = k′.

e hybridization function ∆ii′(t, t′) is like a superposition-state Green’s function, which
contains contributions from various k modes. In terms of ∆ii′(t, t′), we have

TC eSeff[c,c†] =
∞

∑
n=0

(−i)n

n!

∫
C

dt1 . . . dtn

∫
C

dt′1 . . . dt′n ∑
i1...in

∑
i′1...i′n

∆i1i′1
(t1, t′1) . . . ∆ini′n(tn, t′n) TC

[
c†

i1(t1) . . . c†
in(tn) ci′n(t

′
n) . . . ci′1

(t′1)
]

=
∞

∑
n=0

(−i)n

n!
TC

∫∫
C

dt1dt′1 ∑
i1i′1

c†
i1(t1)∆i1i′1

(t1, t′1)ci′1
(t′1)

n

= TC e−i
∫∫

C dtdt′ ∑ii′ c†
i (t)∆ii′ (t,t

′)ci(t′). (29)

erefore, the effective action due to a noninteracting fermion bath is

Seff[c, c†] = −i
∫∫

C
dtdt′ ∑

ii′
c†

i (t)∆ii′(t, t′)ci(t′). (30)

Eqs. (27)–(28) will be used for calculating the hybridization function of the bath.
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Appendix D: Group theory analysis of the NiO6 array

In this appendix, we give a full-length group-theoretical analysis of the energy function
E(Q0, Q3, q0, q1, q3) of a corner-shared 3D array of NiO6 octahedra without tilts. To
find out the symmetry-determined form of the Landau energy E as a function of modes
Q0 = Q000

0 , Q3 = Q000
3 , q1 = Qππ0

1 , q0 = Qπππ
0 , and q3 = Qπππ

3 , we need to extend
our configuration space to a minimal Oh group-invariant subspace of 9 dimensions

Q000
0 , Q000

1 , Q000
3 ,

Qπππ
0 , Qπππ

1 , Qπππ
3 ,

Qππ0
1 , Q0ππ

1 , Qπ0π
1 .

(31)

is is because the Jahn-Teller distortion Q000
3 along the z direction can be rotated to x and

y directions byOh to give us the Q000
1 mode. Similarly, rotating Qπππ

3 to x and y directions
gives us Qπππ

1 , and Qππ0
1 = δlππ0

x − δlππ0
y can be rotated to Q0ππ

1 = δl0ππ
y − δl0ππ

z and
Qπ0π

1 = δlπ0π
z − δlπ0π

x . e Landau energy E as a function of the 9 modes will have to
be invariant under the 3! = 6 permutations of the x, y, and z indices due to Oh and the
translations along x, y, and z as well. A translation along x by one nearest-neighbor Ni-
Ni distance, for example, will leave all kx = 0 modes unchanged and will let all kx = π
modes change sign. Translations in all three directions can generate, in total, 23 = 8
ways of sign change. e Landau function E will therefore have to be invariant under
6 × 8 = 48 symmetry operations which include Oh plus translations.

e algorithm we use for determining the symmetry-allowed form of the energy E
is based mainly on the rearrangement theorem of group theory. We start with a general
Taylor expansion of E with respect to the 9 variables in Eq. (31) to some required order.
e truncated expansion, which is a 9-variate polynomial, is then transformed by each of
the 48 symmetry operations. e average of the 48 transformed polynomials is then
guaranteed to be invariant under all 48 symmetries according to the rearrangement
theorem. Once we find the symmetry-determined function E of the 9 modes, we project
back to the 5 modes we previously started with by seing the other 4 modes Q000

1 , Qπππ
1 ,

Q0ππ
1 , Qπ0π

1 to zero. e general form of E is then given by

E =
∞

∑
n=0

2n

∑
j=0

∞

∑
m=0

Cnjm(Q0, Q3)q
2n−j
0 qj

3q2m
1 . (32)

e functions Cnjm(Q0, Q3) are Taylor expandable and have the forms

C000(Q0, Q3) = a0(Q0)Q2
0 + b0(Q0, Q3)Q2

3, (33)
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Cn00(Q0, Q3) = an(Q0) + bn(Q0, Q3)Q2
3, (34)

Cn10(Q0, Q3) = cn(Q0, Q3)Q3, (35)

where n = 1, 2, 3, . . . and other Cnjm(Q0, Q3) functions and all lowercase functions that
appear in Eqs. (33)–(35) are arbitrary Taylor-expandable functions. Equation (32) can be
thought of as some advanced version of Eq. (2.3) for a single NiO6 octahedron. We used
mathematica to expand out all polynomial terms, then implemented the rearrangement
projection to si out symmetry-allowed terms, and aggregated them into the Taylor
expansions of the arbitrary functions an(Q0), bn(Q0, Q3), cn(Q0, Q3), etc.

Finally, we approximate the uniform distortion modes Q0 = Q0(a) and Q3 = Q3(a)
as smooth functions of the laice constant a, to simplify the energy function into

E =
∞

∑
n=0

2n

∑
j=0

∞

∑
m=0

Cnjm(a)q2n−j
0 qj

3q2m
1 , (36)

with only three order parameters q0, q3, and q1 le. e uniform modes Q0 and Q3 are
treated as control parameters smoothly determined by the laice constant a and disappear
from the energy function. is approximation can be justified by the calculated structures
in Fig. 2.4 to see that the jumps in Q0 and Q3 at the transitions are much smaller than
those in q0, q3, and q1.
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Appendix E: K-averaged quantum Boltzmann equation

In this Appendix, we give a detailed derivation of the k-averaged quantum Boltzmann
equation (QBE) in Eq. (3.15) of the main text from the standard QBE in Eq. (3.9). As one
can see, when the assumption in Eq. (3.11) is satisfied, the number of degrees of freedom
of the system is greatly reduced and Eq. (3.9) becomes

dnν1(ϵ⃗k1ν1
)

dt
=

2π

h̄
1

N2 ∑
k⃗2⃗k3⃗k4

∑
ν2ν3ν4

|Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2

× δ⃗k1+⃗k2 ,⃗k3+⃗k4
δ(ϵ⃗k1ν1

+ ϵ⃗k2ν2
− ϵ⃗k3ν3

− ϵ⃗k4ν4
)

×
{[

1 − nν1(ϵ⃗k1ν1
)
] [

1 − nν2(ϵ⃗k2ν2
)
]

nν3(ϵ⃗k3ν3
) nν4(ϵ⃗k4ν4

)

−nν1(ϵ⃗k1ν1
) nν2(ϵ⃗k2ν2

)
[
1 − nν3(ϵ⃗k3ν3

)
] [

1 − nν4(ϵ⃗k4ν4
)
]}

. (37)

We may insert resolutions of unity∫
dE δ(E − ϵ⃗kν

) = 1 (38)

for k⃗2, k⃗3, k⃗4 on the right-hand side of Eq. (37) to get

dnν1(ϵ⃗k1ν1
)

dt
=

2π

h̄
1

N2 ∑
k⃗2⃗k3⃗k4

∑
ν2ν3ν4

|Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2 δ⃗k1+⃗k2 ,⃗k3+⃗k4

∫
dE2dE3dE4

× δ(ϵ⃗k1ν1
+ E2 − E3 − E4)δ(E2 − ϵ⃗k2ν2

)δ(E3 − ϵ⃗k3ν3
)δ(E4 − ϵ⃗k4ν4

)

×
{
[1 − nν1(ϵ⃗k1ν1

)] [1 − nν2(E2)] nν3(E3) nν4(E4)

−nν1(ϵ⃗k1ν1
) nν2(E2) [1 − nν3(E3)] [1 − nν4(E4)]

}
. (39)

Multiplying by 1
N δ(E1 − ϵ⃗k1ν1

) on both sides of Eq. (39) and summing over k⃗1 in the first
Brillouin zone, the le-hand side becomes

LHS =
1
N ∑

k⃗1

δ(E1 − ϵ⃗k1ν1
)

dnν1(E1)

dt
=

d
dt

Dν1(E1)nν1(E1) =
dNν1(E1)

dt
, (40)
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using notations defined in Eqs. (3.12)–(3.14). e right-hand side of Eq. (39) becomes

RHS =
2π

h̄
1

N3 ∑
ν2ν3ν4

∫
dE2dE3dE4 δ(E1 + E2 − E3 − E4) ∑

k⃗1⃗k2⃗k3⃗k4

|Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2

× δ⃗k1+⃗k2 ,⃗k3+⃗k4
δ(E1 − ϵ⃗k1ν1

)δ(E2 − ϵ⃗k2ν2
)δ(E3 − ϵ⃗k3ν3

)δ(E4 − ϵ⃗k4ν4
)

× {[1 − nν1(E1)] [1 − nν2(E2)] nν3(E3)nν4(E4)

−nν1(E1)nν2(E2) [1 − nν3(E3)] [1 − nν4(E4)]} . (41)

Up to this point, the treatment has been exact. Here comes the approximation: the matrix
element modulus squared

|Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2 δ⃗k1+⃗k2 ,⃗k3+⃗k4
≈ 1

N
|U|2ν1ν2ν3ν4

, (42)

is replaced by the k-averaged quantity |U|2ν1ν2ν3ν4
defined in Eq. (3.10), which only

depends on the band indices ν1, ν2, ν3, ν4 that typically carry orbital information. is
is assuming that the k-points are randomized by the scaering processes, so they can be
eliminated from the dynamical variables of the distributions of occupancies.

e randomization of k-points lets us have

dNν1(E1)

dt
=

2π

h̄ ∑
ν2ν3ν4

∫
dE2dE3dE4 δ(E1 + E2 − E3 − E4)

1
N4 ∑

k⃗1⃗k2⃗k3⃗k4

|U|2ν1ν2ν3ν4

× δ(E1 − ϵ⃗k1ν1
)δ(E2 − ϵ⃗k2ν2

)δ(E3 − ϵ⃗k3ν3
)δ(E4 − ϵ⃗k4ν4

)

× {[1 − nν1(E1)] [1 − nν2(E2)] nν3(E3) nν4(E4)

−nν1(E1) nν2(E2) [1 − nν3(E3)] [1 − nν4(E4)]} . (43)

Since |U|2ν1ν2ν3ν4
is independent of k⃗1, k⃗2, k⃗3, k⃗4, it can be taken out of the k-sums, which

then give us the product Dν1(E1)Dν2(E2)Dν3(E3)Dν4(E4) of four densities of states.
en using notations in Eqs. (3.13) and (3.14), we have

dNν1(E1)

dt
=

2π

h̄ ∑
ν2ν3ν4

|U|2ν1ν2ν3ν4

∫
dE2dE3dE4 δ(E1 + E2 − E3 − E4)

× [N̄ν1(E1)N̄ν2(E2)Nν3(E3)Nν4(E4)− Nν1(E1)Nν2(E2)N̄ν3(E3)N̄ν4(E4)] , (44)

which reproduces Eq. (3.15). e main assumptions are the slow manifold assumption
in Eq. (3.11), which reduces the number of dynamical degrees of freedom, and the local
interaction and random band approximation, which justify the k-averaging of the rate
constants. In the actual implementation of Eq. (3.10) to obtain the k-averaged rate
constants |U|2ν1ν2ν3ν4

, it is more convenient to first randomly generate matrix elements
|Ũν1ν2ν3ν4 (⃗k1⃗k2⃗k3⃗k4)|2 that satisfy both momentum and energy conservation, take the
sample average, and then multiply the result by a correction factor M2/M1, where the
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Figure 1: Integration measures M1 and M2 for different band indices ν1, ν2, ν3, ν4 in VO2.
e energy δ functions in Eqs. (45)–-(46) are smeared to a finite width of ±5 meV, which
is compatible with the k-point mesh of 20 × 20 × 20 we used.

integration measure

M1 =
1

N4 ∑
k⃗1⃗k2⃗k3⃗k4

δ(ϵ⃗k1ν1
+ ϵ⃗k2ν2

− ϵ⃗k3ν3
− ϵ⃗k4ν4

) (45)

does not consider momentum conservation, while

M2 =
1

N3 ∑
k⃗1⃗k2⃗k3⃗k4

δ⃗k1+⃗k2 ,⃗k3+⃗k4
δ(ϵ⃗k1ν1

+ ϵ⃗k2ν2
− ϵ⃗k3ν3

− ϵ⃗k4ν4
) (46)

does. But it turns out that M1 ≈ M2 according to our actual Monte Carlo data for VO2
(see Fig. 1). erefore, the correction factor M2/M1 is insignificant. is result also
partly justifies the random band approximation proposed in the main text: the fact that
k⃗1 + k⃗2 = k⃗3 + k⃗4 does not make M2 very different from the case that k⃗1 + k⃗2 equals
any other value, so the conservation of momentum does not make a big difference in the
integration measure.
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Appendix F: Floquet theory of a small-amplitude square wave

In this appendix, we obtain the Floquet Hamiltonian of a system driven by a small-
amplitude square wave. In general, the Floquet Hamiltonian HF of a periodically driven
system H(t) = H0 + ϵH1(t) with period T is defined by

e−iHFT = T e−i
∫ T

0 dt [H0+ϵH1(t)], (47)

where T is the time-ordering symbol. For small amplitudes we have ϵ → 0. We can take
the derivative with respect to ϵ at ϵ = 0 to obtain

T e−i
∫ T

0 dt [H0+ϵH1(t)] = e−iH0T − iϵ
∫ T

0
dt e−iH0(T−t)H1(t)e−iH0t +O(ϵ2). (48)

Let us define an expansion for the Floquet Hamiltonian

HF = H0 + ϵ δH(1)
F +O(ϵ2). (49)

en we have following the same derivation as Eq. (48) that

e−iHFT = e−iH0T − iϵ
∫ T

0
dt e−iH0(T−t) δH(1)

F e−iH0t +O(ϵ2). (50)

Comparing Eqs. (48) and (50), we have from the first-order terms of ϵ that∫ T

0
dt eiH0tH1(t)e−iH0t =

∫ T

0
dt eiH0t δH(1)

F e−iH0t, (51)

where we have multiplied on both sides by eiH0T from the le. en we use the nested
commutator expansion

eiH0tH1(t)e−iH0t =
∞

∑
n=0

(it)n

n!
adn

H0
[H1(t)], (52)

where adH0(·) ≡ [H0, ·] is the adjoint representation of H0, and adn
H0
[H1(t)] =
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[H0, adn−1
H0

[H1(t)]] is the n-fold nested commutator of H0 with H1(t). Using this formula
on both sides of Eq. (51), and from the square wave model

H1(t) = H1 sgn
(

t − T
2

)
, 0 ≤ t < T, (53)

we have
∞

∑
n=0

(iT)n

(n + 1)!

(
1 − 1

2n

)
adn

H0
(H1) =

∞

∑
n=0

(iT)n

(n + 1)!
adn

H0
(δH(1)

F ), (54)

or in functional form

(ei T
2 adH0 − 1)2

iTadH0

H1 =
eiTadH0 − 1

iTadH0

δH(1)
F . (55)

All functions of adH0 are defined using their Taylor expansions in Eq. (54). We now apply
the inverse of the function of adH0 on the right-hand side to both sides and aer some
algebra obtain

δH(1)
F = i tan

(
T
4

adH0

)
H1. (56)

In the eigenbasis of H0, the matrix elements of δH(1)
F and H1 are related by

⟨m|δH(1)
F |n⟩ = i⟨m|H1|n⟩ tan

(
Em − En

4
T
)

, (57)

where |m⟩ and |n⟩ are eigenstates of H0 with eigen-energies Em and En. Some matrix
elements of δH(1)

F can be singular when ∥H0∥T > π, assuming H0 has a continuous
spectral range [−∥H0∥, ∥H0∥] that is symmetric about 0.

102


