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Abstract 

Metabolic Strategies to Cope with Overcrowding in a Pseudomonas aeruginosa Biofilm 

Jeanyoung Jo 

 Bacteria, while traditionally studied in liquid suspensions, are often found in nature as 

biofilms, aggregates of cells enclosed in self-produced matrices. Cells in biofilms have a fitness 

advantage over those that are free-living, as the biofilm lifestyle is correlated with increased 

resistance to various assaults, including antimicrobials, UV exposure, and dehydration. These 

biofilm-associated characteristics have important clinical implications, as biofilm-based bacterial 

infections are a major cause of morbidity in immunocompromised individuals. With this 

increased resiliency, however, comes a major challenge that arises during biofilm growth: the 

formation of resource gradients. My thesis work focused on one particular gradient, that of 

oxygen, which is established in biofilms formed by Pseudomonas aeruginosa. This bacterium 

has multiple mechanisms for coping with limited access to oxygen, including a highly-branched 

respiratory system for optimal oxygen scavenging and production and utilization of redox-active 

molecules called phenazines. The purpose of this thesis has been to investigate the different 

strategies used by P. aeruginosa to deal with the oxygen limitation precipitated by the biofilm 

lifestyle.  

 In Chapter 1, I will provide the necessary background for understanding the principles of 

redox balancing, metabolism, respiration, biofilm physiology, and phenazine utilization in P. 

aeruginosa. The work described in Chapter 2 provides evidence for the formation of a novel 

terminal oxidase complex that plays a biofilm-specific role in P. aeruginosa growth. The results 

in this chapter also suggest that specific terminal oxidase complexes differ in the timing of their 

contributions to biofilm growth and implicate the novel complex in mediating reduction of 

phenazines in biofilms. 

 Chapter 3 expands upon the principle of metabolic versatility exemplified by the results 

discussed in Chapter 2. The research presented in this chapter looks at how varying the source 

of electrons that feed into the respiratory chain influences downstream electron transfer steps, 



including terminal oxidase activities and phenazine production and utilization. The data 

presented in Chapters 2 and 3 add to the growing body of evidence that bacterial growth in 

liquid culture is distinct from that in biofilms and underscores the need for more biofilm-based 

research that can inform treatment strategies for P. aeruginosa infections.  

 The results described in Chapter 4 take an even broader look at the strategies used by 

P. aeruginosa to sustain efficient metabolism under conditions of potential stress. An important 

node of central metabolism is pyruvate, which can be transformed in a number of ways. In this 

chapter, I will consider two pathways of pyruvate metabolism: fermentation to lactate and 

carboxylation to oxaloacetate. I will present data indicating that a previously-uncharacterized 

lactate dehydrogenase contributes to P. aeruginosa growth under specific growth conditions and 

that pyruvate carboxylation contributes to optimal progress through central metabolic pathways. 

I will also describe experiments that characterize the contributions of another carboxylase, 

previously thought to function as the pyruvate carboxylase, to P. aeruginosa’s ability to grow on 

selected nutrient sources. Finally, I will discuss how redox state informs biofilm formation in a 

phylogenetically distinct bacterium, Bacillus subtilis, highlighting the universality of redox 

reactions in driving metabolic processes. 

 In sum, the research presented in this thesis broadens our understanding of the 

immense respiratory and metabolic flexibility of P. aeruginosa and serves as an important 

reminder of the discrete factors that govern liquid culture and biofilm growth. 
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Chapter 1: Introduction 

1.1: Balancing life’s reactions: The importance of redox homeostasis 

 Though life, as a concept, is difficult to define, a unique feature that can help us to 

understand it is homeostasis: a balanced internal condition that persists in spite of changes in 

the environment. Metabolism is a network of reactions that enables growth while keeping cells 

in this state of balance. This thesis focuses on pathways of organotrophy and aerobic 

respiration, in which carbon sources are metabolized to produce energy using oxygen. At one 

end of this scheme are the carbon sources that feed electrons into the metabolic pathways. At 

the other end is oxygen, which is reduced upon the final electron transfer step carried out by the 

terminal oxidase(s). In between the two, the respiratory chain performs a series of coordinated 

reactions that couple electron transfer to cellular energy generation.  

 When a carbon source is catabolized, it is oxidized through a series of reactions that 

generate reduced intracellular intermediates. Electrons released from the oxidation of carbon 

sources are passed through a series of carriers, each one more electronegative than the last, 

until they arrive at the terminal electron acceptor. In aerobically respiring organisms, this is 

molecular oxygen (O2). The transfer of electrons between the membrane-associated proteins 

that constitute the respiratory chain is coupled to the pumping of protons across the membrane 

to generate an electrochemical gradient (also called the proton motive force or ∆p), which 

ultimately drives cellular energy production in the form of adenosine triphosphate (ATP) 

synthesis. For these reactions to continually proceed, substrates must be regenerated and the 

cellular redox state must be maintained at a potential that favors catabolism.  

 Imbalances that disturb cellular redox homeostasis can have harmful consequences for 

the cell. Our lab studies the various mechanisms through which the clinically-relevant bacterium 

Pseudomonas aeruginosa maintains redox homeostasis and how redox state affects bacterial 

physiology. We are especially interested in learning more about the mechanisms that underlie 

redox homeostasis in biofilms, multicellular assemblages of bacteria encased within a self-
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produced matrix (Høiby et al. 2011). P. aeruginosa exists as biofilms both in nature as well as in 

clinical environments (Hall-Stoodley, Costerton, and Stoodley 2004; Williams, Zlosnik, and Ryall 

2007; Ciofu et al. 2012; Penesyan, Gillings, and Paulsen 2015). The presence of P. aeruginosa 

biofilms in the latter context is a major problem for the treatment of infections caused by this 

bacterium, as biofilms are more resistant to external stressors, such as antibiotic treatment, than 

free-living, planktonic cells (Ciofu et al. 2012). However, as cells switch from the planktonic to 

the biofilm mode of growth, they encounter new challenges they must overcome, perhaps the 

most notable being the formation of steep nutrient gradients across biofilm depth (Werner et al. 

2004). Therefore, a more thorough understanding of the metabolic processes that drive biofilm 

formation will serve not only to broaden our understanding of the physiology of multicellularity 

but will also lead to more efficient ways to combat this opportunistic pathogen. 

1.2: Fueling the electron transport chain: Carbon sources 

 P. aeruginosa is a heterotrophic, motile, Gram-negative bacterium known for its 

metabolic versatility, which allows it to grow under many conditions. One facet of this versatility 

is seen in its ability to grow on a variety of carbon sources (Stanier, Palleroni, and Doudoroff 

1966; Ornston 1971; Wargo 2013). The P. aeruginosa genome, already considered quite large 

for that of a bacterium, encodes a noticeably significant amount of membrane transport 

systems, about two-thirds of which are involved in nutrient uptake (Stover et al. 2000). Once 

these substrates are transported into the cell, a multitude of potential pathways exists for their 

catabolism (Figure 1.1). A few key pathways of carbon catabolism are summarized below. 

 Glucose and other hexoses are broken down via the Entner-Doudoroff pathway, an 

alternative pathway akin to glycolysis. The Entner-Doudoroff pathway is almost completely 

restricted to prokaryotes (i.e., bacteria and archaea), and is commonly found among aerobic, 

Gram-negative bacteria (White, Drummond, and Fuqua 2012). While many bacteria can employ 

both the Entner-Doudoroff and glycolytic pathways depending on environmental factors, 

pseudomonads are restricted to the Entner-Doudoroff pathway because they lack two key 
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Figure 1.1. An overview of Pseudomonas aeruginosa central metabolism. An abridged 
overview of the central metabolic pathways in P. aeruginosa. Dark blue, Entner-Doudoroff 
pathway; green, gluconeogenesis; orange, tricarboxylic acid (TCA) cycle; purple, generation of 
phosphoenolpyruvate (PEP); red, pyruvate carboxylation; yellow, pyruvate fermentation; light 
blue, pathways of amino acid synthesis; gray, anabolic building blocks. Within amino acid 
synthesis pathways, yellow highlights indicate amino acids that lead to the synthesis of other 
amino acids while bold and italicized indicate essential amino acids. (Madigan et al., 2015, 
White et al., 2012, KEGG Pathway Database (https://www.genome.jp/kegg/pathway.html)).

3
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enzymes necessary to carry out glycolysis. In contrast to glycolysis, which has a net ATP 

production of two molecules per glucose, the Entner-Doudoroff pathway generates just one net 

ATP per glucose (White, Drummond, and Fuqua 2012). The enzymes involved in this pathway 

are produced upon exposure to hexoses, but not in response to three- or four-carbon sugar 

acids (Ornston 1971) and oxidize glucose to pyruvate. Once pyruvate is generated, it can be 

oxidized to acetyl-CoA, reduced to lactate, or carboxylated to oxaloacetate (Figure 1.1). The 

fate of pyruvate is determined by the environmental conditions to which the bacterium is 

exposed. 

 Under aerobic conditions, pyruvate is usually oxidized to acetyl-CoA, which is further 

oxidized via the tricarboxylic acid (TCA) cycle (also called the citric acid or Krebs cycle). The 

TCA cycle begins when acetyl-CoA, together with oxaloacetate, forms the 6-carbon compound 

citric acid. Through a series of reactions, citric acid is oxidized in a stepwise fashion to ultimately 

regenerate oxaloacetate, thus fulfilling the “cyclic” nature of the TCA cycle (Madigan et al. 2015; 

Figure 1.1), and producing reduced cofactors and electron carriers such as FADH and 

NAD(P)H. TCA cycle intermediates serve as precursors for the biosynthesis of amino acids, 

cytochromes, and fatty acids (Madigan et al. 2015; Figure 1.1). It is important that TCA cycle 

intermediates are constantly replenished so that the cycle can continue to run. This 

replenishment occurs through a series of anaplerotic reactions, i.e., reactions that generate the 

intermediates of a metabolic pathway. One of the anaplerotic reactions that replenishes the TCA 

cycle is mediated by the enzyme pyruvate carboxylase, which is essential for oxaloacetate 

replenishment when P. aeruginosa is growing on a sugar (White, Drummond, and Fuqua 2012; 

Figure 1.1).  

 As citric acid is oxidized, the electrons released from these reactions are transferred to 

NAD(P)+ and FAD to generate NAD(P)H and FADH2, respectively. In P. aeruginosa, the TCA 

cycle is the predominant source of reducing power that fuels electron transport (Lee et al. 2015). 

While various metabolites can influence the cellular redox potential and directly or indirectly 

donate electrons to the electron transport chain (ETC), NADH participates in numerous 

4
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reactions of central metabolism and is the canonical donor to the ETC in textbook models 

(White, Drummond, and Fuqua 2012; Madigan et al. 2015). It is imperative that NADH is re-

oxidized to NAD+ to enable continual metabolic function. The oxidation of NADH is coupled to 

ATP synthesis through the ETC, which serves as the major pathway through which NAD+ is 

regenerated. 

1.3: Dissipating intracellular redox stress: The electron transport chain 

1.3.1: Electron carriers 

 The overall machinery and steps of electron transfer and proton pumping are similar 

between bacteria and eukaryotes. The respiratory machinery is embedded in the inner 

membrane of mitochondria in eukaryotes (van der Bliek, Sedensky, and Morgan 2017) and in 

the cytoplasmic membranes of bacteria (Madigan et al. 2015). Respiratory electron carriers 

include flavoproteins, quinones, iron-sulfur proteins, and cytochromes, all of which are proteins 

except for quinones, which are lipids. The protein-based electron carriers contain prosthetic 

groups, which are the actual sites of electron transfer (White, Drummond, and Fuqua 2012). 

The prosthetic groups in flavoproteins are flavins, which include flavin adenine dinucleotide 

(FAD) and flavin mononucleotide (FMN). The prosthetic group in iron-sulfur proteins is the iron-

sulfur cluster. The prosthetic group in cytochromes is heme. These electron carriers possess 

different redox potentials and are arranged such that the electron passes sequentially to carriers 

with higher potentials until it reaches the molecule with the highest potential, the final electron 

acceptor. 

 My main thesis work centered on the physiological role of a cytochrome complex. The 

heme prosthetic group of cytochromes is made up of four pyrrole rings (hence giving them the 

classification of tetrapyrroles) joined together through methene bridges (Figure 1.2). Each heme 

contains a centrally-located iron atom that is bound to the nitrogen of each of the four pyrrole 

rings, and it is this iron that serves as the electron carrier (Figure 1.2). Each pyrrole ring can be 
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modified by a side chain, and the side chains that adorn the pyrrole rings of a heme dictate the 

heme classification (White, Drummond, and Fuqua 2012). 

  

 There are five classes of hemes, and the heme nomenclature is carried over when 

describing the cytochromes to which they belong: a, b, c, d, and o. Hemes d and o have 

currently only been found in bacterial cytochromes (White, Drummond, and Fuqua 2012). 

Because hemes are classified by their decorating side chains, they typically show distinguishing 

spectrophotometric curves. A cytochrome’s characteristic peak wavelength is often incorporated 

into its name, particularly for cytochromes from eukaryotes (i.e., cytochrome b556, which is a 

cytochrome containing a b-type heme that shows a peak at 556 nm). Occasionally, the name of 

a cytochrome will bear a subscript 3, which indicates the O2-binding heme (White, Drummond, 

and Fuqua 2012; Cramer and Kallas 2016). For example, the mitochondrial terminal oxidase (to 

be discussed further below) is called cytochrome aa3; the name of this cytochrome tells us that 

it contains two a-type hemes, with the second being the one that binds O2. Sometimes 
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N N
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CH2

COO-

CH2
CH2

COO-

CH2

CH3
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CH3

CH3

H3C

H2C

C
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Figure 1.2. General structure of a heme. Heme 
consists of four pyrrole rings interconnected through 
methene bridges and a central iron, which is bound to 
the heme via the nitrogen of each pyrrole ring. The 
iron atom is the electron carrier; its oxidized form is 
ferric (Fe(III)) iron while its reduced form is ferrous 
(Fe(II))  iron.
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cytochrome names contain a prime (‘) annotation, which also denotes the heme that is likely to 

bind O2 (Cramer and Kallas 2016).  

1.3.2: Electron transfer through the ETC 

 Here, I will provide a general overview of the steps of the aerobic respiratory chains that 

function in mitochondria (Figure 1.3) and pseudomonads (Figure 1.4). Electrons primarily enter 

the ETC at the NADH dehydrogenase (called Complex I in eukaryotes). The electron released 

by the oxidation of NADH is transferred to ubiquinone, a molecule in the membrane. This redox 

reaction is coupled to the translocation of protons across the membrane and contributes to the 

formation of a proton gradient. Succinate dehydrogenase (Complex II in eukaryotes) also 

reduces ubiquinone by oxidizing succinate, a TCA cycle intermediate. This electron transfer step 

serves as a direct link between the TCA cycle and the respiratory chain. The hydrophobic nature 

of ubiquinone allows it to shuttle electrons from the dehydrogenases to the next electron carrier, 

the cytochrome bc1 complex (Complex III) (Madigan et al. 2015; van der Bliek, Sedensky, and 

Morgan 2017). This complex then passes electrons to another mobile electron carrier, 

cytochrome c, which delivers electrons to O2 via the activity of the terminal oxidase (Complex 

IV). The redox reactions catalyzed by the bc1 complex and the terminal oxidase are both 

coupled to proton translocation across the membrane. The resulting proton gradient is used to 

power ATP production by the ATP synthase (ATPase; or Complex V) (Madigan et al. 2015).  

1.3.3: The implications of a branched ETC 

 Eukaryotes have a relatively straightforward electron transport chain (Figure 1.3), and 

the mitochondrial electron transfer pathways are generally invariable across the domain. 

Bacterial respiratory pathways are often more branched than those of eukaryotes (Poole and 

Cook 2000; White, Drummond, and Fuqua 2012). Across the bacterial domain, there is more 

flexibility in terms of the substrates that can be used as electron donors and acceptors in the 

respiratory chain (White, Drummond, and Fuqua 2012). Furthermore, bacterial respiratory 
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chains exhibit more redundancy along various steps of the electron transfer pathways, with 

multiple iterations of a protein complex existing to catalyze a particular step in the pathway 

(Poole and Cook 2000; Williams, Zlosnik, and Ryall 2007; Hirai et al. 2016; Jo et al. 2017). 

These branch points are often influenced by external factors, such that bacterial respiratory 

chains can be modulated in response to environmental conditions. This provides bacteria with 

more metabolic versatility, as they are able to adapt their respiratory chains to be the most 

optimal for specific conditions. For example, the respiratory system of Escherichia coli can 

terminate at one of two terminal oxidases: an energetically favorable but low-O2-affinity terminal 

oxidase, “Bo3“, is used when O2 is abundant while a less energetically favorable but high-O2-

affinity terminal oxidase, “Bd”, is used when O2 is scarce (Williams, Zlosnik, and Ryall 2007). 

 Our lab’s model organism, P. aeruginosa, is well-known for its ability to thrive under 

conditions of low O2 (Comolli and Donohue 2004; Alvarez-Ortega and Harwood 2007; Williams, 

Zlosnik, and Ryall 2007; Arai 2011). Not coincidentally, it has even more versatility at the 

terminal end of the respiratory chain than E. coli (Williams, Zlosnik, and Ryall 2007). P. 

Figure 1.3. Mitochondrial electron transport chain. Electrons enter the electron transport 
chain (ETC) at Complexes I (orange) or II (pink), the primary dehydrogenases, which then 
reduce ubiquinone (Q). Q is oxidized by Complex III (the bc1 complex; purple) which is in turn 
oxidized by the mobile electron carrier cytochrome c (green). Cytochrome c donates electrons 
to Complex IV (the terminal oxidase; blue), which delivers electrons to their final destination, O2. 
Complexes I, III, and IV contribute to the generation of a proton gradient (∆p), which is used by 
Complex V (ATP synthase; yellow) to generate energy in the form of ATP.
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aeruginosa’s ability to dominate in microaerobic environments is largely due to its arsenal of five 

terminal oxidases (Figure 1.4), all of which differ in expression patterns, environmental 

sensitivities, and O2 affinity (Alvarez-Ortega and Harwood 2007; Kawakami et al. 2010; Hirai et 

al. 2016)). A more in-depth description of these terminal oxidases will follow in the next section.  

1.3.4: P. aeruginosa colony biofilms as a model system 

 We use P. aeruginosa colony biofilms as a model to study how resource limitation affects 

the redox homeostasis of cells in densely-packed aggregates. By placing a 10-µl spot of cells 

onto an agar plate and monitoring community development, we are able to investigate how P. 

aeruginosa cells coordinate to form elaborate architectures over time. Our lab has shown that 

O2 availability plays a crucial role in driving biofilm morphogenesis. While the details of redox 

balancing in biofilms will be discussed further later in this chapter, it is important to note that as 

biofilms develop (and grow thicker), O2 is consumed rather rapidly within the biofilm, with no O2 

Figure 1.4. P. aeruginosa electron transport chain. Electrons enter the electron transport chain 
(ETC) at the NADH (orange) or succinate (pink) dehydrogenases, which then reduce ubiquinone 
(Q). Q can be oxidized by quinol oxidases (brown) or the bc1 complex, the latter of which is 
oxidized by the mobile electron carrier cytochrome c (green). P. aeruginosa encodes two quinol 
oxidases, Bo3 and Cio. Cytochrome c  reduces one of three cytochrome c oxidases (blue), Aa3, 
Cco1, or Cco2. The quinol and cytochrome c oxidases are terminal oxidases that deliver electrons 
to their final destination, O2. Electron transfer steps mediated by the NADH dehydrogenase, the bc1 
complex, and the terminal oxidases contribute to the generation of a proton gradient (∆p), which is 
used by ATP synthase (yellow) to generate energy in the form of ATP.
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detected below a depth of ~75-80 µm from the surface (Dietrich et al. 2013; Jo et al. 2017). 

Biofilms are fully oxic during early stages of development; however, as they grow thicker, they 

develop a considerable anoxic zone such that cells positioned further into the colony have less 

access to O2 than cells at the periphery (Jo et al. 2017; Chapter 2).  

 Limited access to O2, the terminal electron acceptor, poses a problem to the biofilm 

because this compromises the ETC’s ability to dissipate the accumulated reducing power that is 

created during metabolism. This is quantifiable and manifests as an increased intracellular 

NADH/NAD+ ratio as biofilms develop (Dietrich et al. 2013). Once the biofilm’s NADH/NAD+ ratio 

reaches a tipping point, cells within the biofilm will coordinate and begin to wrinkle their surface, 

thereby increasing their access to O2. This wrinkling coincides with a drop in NADH/NAD+ ratios 

back down to levels during early development (Dietrich et al. 2013). Therefore, access to O2 is 

directly related to intracellular redox state and P. aeruginosa has a variety of mechanisms 

through which they maximize their access to O2, one of which is a large complement of terminal 

oxidases. 

1.3.5: The terminal oxidases of P. aeruginosa 

This section is adapted from:  
Jo, J, Price-Whelan, A, Dietrich, LEP (2014). An aerobic exercise: Defining the roles of 
Pseudomonas aeruginosa terminal oxidases. J Bacteriol 196, 4203-4205. 

In 2014, I co-authored a commentary article in the Journal of Bacteriology about the terminal 
oxidases of P. aeruginosa. This commentary was written as a companion piece to a study 
published in the same issue that elucidated the efficiencies of the respiratory chain terminated 
by each of these oxidases and determined their affinities for O2. This section is a modified 
version of that commentary piece, the published version of which is included as an appendix to 
my thesis.   

 P. aeruginosa is an exceptionally metabolically versatile organism, and the presence of 

an ETC terminating at five different oxidases is but one aspect of this adaptability (Figure 1.5). 

The mitochondrial respiratory chain terminates at the Aa3 (or Cox) complex, which accepts 

electrons from cytochrome c and is therefore referred to as a cytochrome c oxidase. P. 

aeruginosa encodes an Aa3 oxidase as well as two more cytochrome c oxidases, Cco1 and 
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Cco2. Furthermore, it contains two terminal oxidases, Bo3 and Cio, that receive their electrons 

directly from the ubiquinone pool and, as such, are called (ubi)quinol oxidases (Williams, 

Zlosnik, and Ryall 2007).  

 A diverse collection of terminal oxidases may be especially important for an organism 

that has a proficiency for persisting in biofilms, which are characterized by the formation of 

steep O2 gradients (Xu et al. 1998; Werner et al. 2004; Wessel et al. 2014) P. aeruginosa’s five 

terminal oxidases have varying proton-pumping efficiencies, affinities for O2 (Arai et al. 2014), 

and are expressed in response to different environmental factors (Comolli and Donohue 2004; 

Alvarez-Ortega and Harwood 2007; Kawakami et al. 2010; Arai et al. 2014). These divergent 

characteristics allow P. aeruginosa to thrive under many different conditions and contribute to its 

overall success as a ubiquitously-found bacterium. 

The P. aeruginosa membrane-bound electron transport chain can employ five 
different oxygen reductases. Ubiquinone (Ub) is reduced by a dehydrogenase (not 
shown) and acts as the electron donor for the cytochrome bc1 complex, Cyo, or CIO. 
The cytochrome bc1 complex reduces a c-type cytochrome, which then acts as the 
electron donor for Aa3, Cbb3-1 (or Cco1), or Cbb3-2 (or Cco2). Heme-copper oxidases 
are represented by pink shapes. Oxidases that support growth better under 
microaerobic conditions are shaded yellow, while those that support growth better 
under typical conditions are shaded blue. These roles are influenced by intrinsic 
chemical properties and expression levels of the individual complexes. Approximate 
affinities for oxygen (Km Values obtained amperometrically) are shown. 
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 The Bo3 terminal oxidase (which is sometimes referred to as Cyo) has mostly been 

characterized in E. coli, which uses this low-O2-affinity enzyme to grow under highly aerobic 

conditions (D’Mello, Hill, and Poole 1995). Arai and colleagues confirmed that this enzyme is 

also a low affinity enzyme in P. aeruginosa (Km = 3.2 µM; Arai et al. 2014) whose expression is 

upregulated specifically in response to iron starvation (Kawakami et al. 2010). Because its 

overall expression is very low, Bo3 is not expected to contribute significantly to P. aeruginosa 

growth under laboratory conditions (Kawakami et al. 2010; Arai 2011).  

 Cio, or the cyanide insensitive oxidase, is the only copper-free terminal oxidase in P. 

aeruginosa. It is encoded by a two-gene operon bearing high sequence homology (at both the 

DNA and amino acid levels) to the E. coli bd quinol oxidases (Cunningham, Pitt, and Williams 

1997) and for this reason the P. aeruginosa Cio is often referred to as a bd-type quinol oxidase. 

However, spectral studies have not detected cytochrome d in P. aeruginosa, so Cio is believed 

to belong to an atypical subfamily of bd-type quinol oxidases with an altered heme composition 

(Cunningham, Pitt, and Williams 1997). E. coli’s bd oxidases are known for their high O2 affinity 

and expression under microaerobic growth conditions (Cunningham, Pitt, and Williams 1997; 

Williams, Zlosnik, and Ryall 2007). P. aeruginosa’s Cio has also been demonstrated to be 

important for microaerobic growth in both liquid cultures and biofilms (Alvarez-Ortega and 

Harwood 2007) and therefore had also been assumed to have a high affinity for O2. However, 

more recent work measuring the affinities of P. aeruginosa’s terminal oxidases surprisingly 

showed that Cio is a low-affinity enzyme (Km = 4 µM; Arai et al. 2014). 

 As its name implies, Cio is also resistant to cyanide, a virulence factor that P. aeruginosa 

produces during early stationary phase (Blumer and Haas 2000). Micromolar concentrations of 

cyanide inhibit complexes belonging to the heme copper oxidase (HCO) superfamily (Blumer 

and Haas 2000), which includes the Aa3, Bo3, and Cco oxidases produced by P. aeruginosa, 

and cyanide has been detected in stationary-phase P. aeruginosa cultures at 300-500 µM 

(Lenney and Gilchrist 2011). P. aeruginosa mutants lacking the genes encoding Cio are less 

resistant to cyanide (Comolli and Donohue 2002). Furthermore, transcriptional reporters have 
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shown cio to be upregulated by cyanide (Comolli and Donohue 2002) and low O2 

concentrations (Alvarez-Ortega and Harwood 2007).  

 The P. aeruginosa Aa3 terminal oxidase, while phylogenetically related to the 

mitochondrial terminal oxidase, does not seem to play a significant role in supporting P. 

aeruginosa growth under normal laboratory conditions, as it is not expressed at high levels in 

cultures grown aerobically in a nutrient-rich medium (Kawakami et al. 2010). This is in contrast 

to many bacteria that do utilize Aa3 for growth, including Bacillus subtilis and P. denitrificans 

(Arai 2011). P. aeruginosa Aa3, on the other hand, is upregulated in response to nutrient 

limitation, specifically carbon, nitrogen, or iron starvation (Kawakami et al. 2010) and has been 

shown to be regulated by the sigma factor RpoS (Schuster et al. 2004). Bacterial sigma factors 

are positive regulators of transcription that can have regulons containing dozens to hundreds of 

genes (Schulz et al. 2015). RpoS is one such regulator that is active at the onset of stationary 

phase (Potvin, Sanschagrin, and Levesque 2008). That the genes encoding the Aa3 oxidase are 

upregulated by RpoS, then, is in line with observations that their expression is increased when 

nutrients are limited, as is often the case in stationary phase (Madigan et al. 2015). 

 The final two terminal oxidases, Cco1 and Cco2, are both members of the family of cbb3 

cytochrome c oxidases. cbb3-type oxidases are exclusively found in bacteria and are known for 

their very high affinities for O2 (Pitcher and Watmough 2004). Because of their O2 affinity, these 

enzymes tend to be induced under hypoxic conditions. The P. aeruginosa Cco’s indeed are high 

affinity enzymes, with Km values that are an order of magnitude lower than those of Bo3, Cio, 

and Aa3 (nanomolar vs. micromolar, respectively; Arai et al. 2014). Consistent with this, Cco2 is 

regulated by Anr, a transcription factor that regulates gene expression at the shift from aerobic 

to microaerobic conditions (Ray and Williams 1997; Comolli and Donohue 2004). However, 

Cco1 is constitutively expressed by P. aeruginosa, even under high aeration conditions (Comolli 

and Donohue 2004). The Cco’s have been demonstrated to be the predominant enzymes that 

support P. aeruginosa growth under normal laboratory conditions, with Cco1 being sufficient to 

support wild-type (WT) levels of growth under aerobic conditions and either Cco1 or Cco2 able 
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to support WT levels of growth under microaerobic conditions (Arai et al. 2014; Jo et al. 2017). A 

more detailed look at the functional redundancy of Cco1 and Cco2, as well as their roles in 

biofilm development, will follow in Chapter 2. 

1.4: Other strategies for redox balancing 

 In addition to its branched aerobic respiratory chain, P. aeruginosa possesses alternative 

metabolic pathways that can function to balance the intracellular redox state and generate ATP. 

These include anaerobic respiration (through denitrification) and fermentation.  

1.4.1: Denitrification 

 Denitrification is the process by which nitrate (NO3) is reduced to molecular nitrogen (N2) 

via the intermediates nitrite, nitric oxide, and nitrous oxide (Figure 1.6; Zumft 1997; Williams, 

Figure 1.6. P. aeruginosa denitrification and pyruvate fermentation pathways. (A) The 
denitrification (blue) and pyruvate fermentation (yellow) pathways as they fit into overall P. 
aeruginosa metabolism. Red shaded boxes indicate steps in which the reduced intermediate 
NADH is formed; green shaded boxes indicate steps in which NADH can be re-oxidized to 
NAD+. Asterisk (*) refers to the anaplerotic step of pyruvate carboxylation, further discussed in 
Chapter 4 (section 4.2). (B) The stepwise reduction of nitrate (NO3) to molecular nitrogen (N2) 
via denitrification.
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Zlosnik, and Ryall 2007). Most components of the anaerobic respiratory pathway are the same 

between aerobic respiration and denitrification (Williams, Zlosnik, and Ryall 2007); as such, 

denitrification is also coupled to the generation of a proton gradient for ATP production. As in 

aerobic respiration, electrons from NADH pass to the quinone pool, which can then pass 

electrons directly to terminal reductases or to the bc1 complex, the latter of which can also 

donate electrons to terminal reductases. The denitrification pathways of P. aeruginosa are 

physiologically relevant for hypoxic and anoxic environments, which will be touched upon briefly 

in sections 1.5 and 1.6; however, because denitrification is outside the scope of my thesis, I will 

not discuss it further here.   

1.4.2: Fermentation 

 Under anoxic conditions, P. aeruginosa is able to grow or survive using fermentation of 

arginine or pyruvate, respectively (Williams, Zlosnik, and Ryall 2007; Figure 1.6). Arginine 

fermentation requires a complex growth medium and yields modest levels of growth. Pyruvate 

fermentation produces lactate and generates enough energy to support anaerobic survival 

(Williams, Zlosnik, and Ryall 2007; Glasser, Kern, and Newman 2014; Lin et al. 2018). The 

contribution of pyruvate fermentation to P. aeruginosa physiology will be further discussed in 

Chapter 4 (section 4.1).  

1.4.3: Phenazine reduction: Extracellular electron transfer 

 The previous sections have described the immense versatility found within central 

metabolic pathways of P. aeruginosa. By modulating flux through these pathways in response to 

environmental conditions, P. aeruginosa can maintain a balanced intracellular redox state. 

Another strategy that can be employed by this bacterium to deal with redox stress is the 

production and utilization of phenazines. Phenazines are endogenous secondary metabolites 

that were traditionally considered to be antibiotics, toxic to competing bacteria in the 

environment (Chin-A-Woeng and Bloemberg 2003). More recently, the redox-active quality of 
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phenazines has been credited for helping P. aeruginosa thrive in environments in which iron 

(Wang and Newman 2008) or O2 (Price-Whelan, Dietrich, and Newman 2007; Wang, Kern, and 

Newman 2010; Dietrich et al. 2013) are limiting.  

 The phenazine biosynthetic pathway in P. aeruginosa begins with the conversion of 

chorismate to phenazine-1-carboxylic acid (PCA), the precursor phenazine, by the redundant 

operons phzA1-G1 (phz1) and phzA2-G2 (phz2) (Recinos et al. 2012). PCA can then be 

Figure 1.7. Electron shuttling by phenazines. (A) The phenazine biosynthetic pathway starts 
with the precursor phenazine, phenazine-1-carboxylic acid (PCA). PhzH converts PCA to 
phenazine-1-carboxamide (PCN), PhzM converts PCA to 5-methyl-PCA (5-Me-PCA), PhzS 
converts 5-Me-PCA to pyocyanin (PYO). (B) Phenazines are reduced (red) intracellularly and are 
transported out of the cell, where they are oxidized (ox) by extracellular oxidants such as O2. These 
oxidized phenazines can then be transported back into cell where they can oxidize NADH to NAD+. 
(C) A model for phenazine-mediated redox balancing in P. aeruginosa colony biofilms. Cells closer 
to the biofilm-air interface can use O2 as a terminal electron acceptor while cells near the biofilm-
agar interface cannot. Oxidized phenazines originating from the oxic zones of the biofilm are able 
to accept electrons from cells in the anoxic zones, thereby allowing these cells to dissipate 
intracellular redox state in the absence of oxygen.
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modified by several phenazine biosynthetic enzymes to yield the derivatives phenazine-1-

carboxamide (PCN), 5-methyl-PCA (5-Me-PCA), and pyocanin (PYO) (Figure 1.7A). These 

phenazine derivatives possess differing redox potentials that contribute to their varying 

specificities toward different oxidants (Wang and Newman 2008; Wang, Kern, and Newman 

2010). 

 Phenazines, through their redox-activity, play a role in iron acquisition. Iron is often found 

in the insolube Fe(III) form in aerobic environments (Wang and Newman 2008), posing a 

problem for organisms needing this substrate for growth. P. aeruginosa is able to overcome this 

obstacle by using phenazines to reduce Fe(III) to the soluble and bioavailable form, Fe(II) 

(Hernandez, Kappler, and Newman 2004).  

 Phenazines also support P. aeruginosa growth under conditions of O2 limitation. 

Previous work from our group has shown that the methylated phenazines, specifically 5-Me-

PCA, are the primary contributors to redox balancing in P. aeruginosa colony biofilms (Sakhtah 

et al. 2016), where O2 availability decreases with depth. A mutant unable to synthesize 

phenazines, ∆phz (in which both phz1 and phz2 operons are deleted), displays a significant 

biofilm phenotype relative to the WT, such that it is unable to maintain an anoxic zone. 

Intracellular NADH/NAD+ measurements have shown that the ∆phz mutant experiences redox 

stress, in the form of accumulated reducing equivalents, earlier than the WT. This redox stress 

correlates with decreased O2 concentration and is ameliorated by an earlier onset of wrinkling 

(Price-Whelan, Dietrich, and Newman 2007; Dietrich et al. 2013). In addition to wrinkling earlier, 

∆phz biofilms are much thinner and form higher ridges (wrinkles) than those formed by the WT, 

and these features serve to keep ∆phz biofilms fully aerobic throughout development. 

Additionally, phenazines have been shown to support anaerobic survival of P. aeruginosa 

(Wang, Kern, and Newman 2010) and to enhance energy generation during pyruvate 

fermentation (Glasser, Kern, and Newman 2014). Phenazines are reduced intracellularly and in 

turn react with oxidants (such as O2 and Fe(III)) outside the cell (Wang and Newman 2008; 
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Figure 1.7B). This “electron shuttling” by phenazines helps to alleviate redox stress in cells with 

limited access to O2 (Figure 1.7C). 

 Additionally, the production of pyocyanin (PYO), another methylated phenazine, by P. 

aeruginosa has been linked to virulence in mice (Lau et al. 2004). Phenazines have been 

detected in sputum samples of patients with respiratory illnesses (Wilson et al. 1988), and their 

presence is negatively correlated with lung function (Hunter et al. 2012). Furthermore, as with 

most cellular pathways in P. aeruginosa, phenazine production has been shown to be sensitive 

to environmental conditions, including carbon source (van Rij et al. 2004; Huang et al. 2012; 

Bosire, Blank, and Rosenbaum 2016). 

1.5: The implications of metabolic versatility on P. aeruginosa’s impact as a clinically-

relevant pathogen 

 P. aeruginosa’s metabolic versatility undoubtedly contributes to the bacterium’s ability to 

thrive in diverse environments, one being the human host. P. aeruginosa is the leading cause of 

morbidity and mortality in patients with the genetic disease cystic fibrosis (CF), with about 80% 

of afflicted individuals suffering from chronic infections in their lungs (Williams and Davies 2012). 

The underlying cause of CF is a mutation in the gene encoding a chloride channel, the CF 

transmembrane conductance regulator (CFTR), which results in abnormal ion transport across 

epithelial membranes (Williams, Zlosnik, and Ryall 2007; Conway and Cohen 2015). This leads 

to the formation of a dehydrated layer on epithelial cells, including those of the gastrointestinal 

and pulmonary systems, and increased mucus viscosity (Murray, Egan, and Kazmierczak 2007; 

Williams, Zlosnik, and Ryall 2007). This viscous mucus, or sputum, is resistant to normal bodily 

clearing and provides a breeding ground for bacteria. 

 The mucus of the CF lung is a heterogeneous environment, with different metabolites, 

O2 availabilities, and antibiotic concentrations present along the airway (Ciofu et al. 2012; 

Cowley et al. 2015). Normal pulmonary mucus consists of water, salts, mucins, and surfactants; 

mucins are glycoprotein components of mucus that contribute to its gel-like consistency and 
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surfactants function in facilitating gas exchange across the mucosal layer (Conway and Cohen 

2015). In CF sputum, these components are present at altered levels and additional molecules 

normally absent in healthy sputum are detected. These points will be elaborated upon in 

Chapter 4 (section 4.1).  

 Although the environmental conditions of the CF lung are quite varied, P. aeruginosa is 

consistently one of the most commonly-found pathogenic bacteria colonizing CF sputum. This is 

perhaps unsurprising given the metabolic versatility described above; its abilities to utilize 

diverse substrates as energy sources and scavenge small amounts of available O2 may allow P. 

aeruginosa to flourish in these conditions. Virtually all CF patients are prone to P. aeruginosa 

infections and disease prognosis significantly worsens when these infections become chronic 

and establish as biofilms (Høiby et al. 2011; Williams and Davies 2012; Ciofu et al. 2012). 

 In the CF lung environment, P. aeruginosa also produces various virulence factors, some 

of which can at once kill competing cells (including those of the host as well as other invading 

bacteria) while benefiting their producer. These include phenazines, which have been detected 

in the sputum of CF patients (Wilson et al. 1988). Another virulence factor released by P. 

aeruginosa is cyanide, which, as previously mentioned, inhibits the activity of heme-copper 

terminal oxidases and has been detected in CF sputum (Ryall et al. 2008; Sanderson et al. 

2008). P. aeruginosa’s Cio terminal oxidase allows it to grow even when cyanide is present in its 

surrounding environment, but any competing cells that do not encode a cyanide-insensitive 

oxidase will be sensitive to killing by this respiratory toxin. Detection of both phenazines and 

cyanide in sputum samples has been correlated with the presence of chronic P. aeruginosa 

infection in patients as well as compromised lung function (Hunter et al. 2012; Ryall et al. 2008; 

Sanderson et al. 2008). 

1.6: Biofilms in chronic lung infections 

 Another major factor contributing to pathogenesis is P. aeruginosa’s ability to form robust 

biofilms. Biofilms are multicellular assemblages of bacteria encased within a self-produced 

19

https://paperpile.com/c/2AV1A5/dHkI
https://paperpile.com/c/2AV1A5/dHkI
https://paperpile.com/c/2AV1A5/xU2c+TEUd+PzX2
https://paperpile.com/c/2AV1A5/jasZ
https://paperpile.com/c/2AV1A5/UWVF+kTdx
https://paperpile.com/c/2AV1A5/UWVF+kTdx
https://paperpile.com/c/2AV1A5/YGtC+UWVF+kTdx
https://paperpile.com/c/2AV1A5/YGtC+UWVF+kTdx


matrix composed of extracellular DNA, proteins, and polysaccharides (Høiby et al. 2011). As 

previously mentioned, the formation of an O2 gradient presents an obstacle for cells growing in 

biofilms. As a consequence of both O2 diffusion into the biofilm and O2 consumption by resident 

cells, cells found deeper within the biofilm have less access to O2 than those at the periphery 

(Werner et al. 2004). This leads to metabolic heterogeneity along the O2 gradient (Ciofu et al. 

2012), with cells in each microenvironment tuned to maximize energy generation/conservation 

in their specific set of conditions (Williams, Zlosnik, and Ryall 2007; Poole and Cook 2000). 

 Despite the inherent challenges of the biofilm lifestyle, this is the primary mode of 

bacterial growth in nature and in a host (Høiby et al. 2011; Penesyan, Gillings, and Paulsen 

2015), likely because cells within biofilms are afforded more protection against outside stresses 

such as antibiotics. Indeed, the biofilm lifestyle is primarily to blame for the failure of antibiotic 

treatments in CF patients (Ciofu et al. 2012) and the establishment of chronic infections (Høiby 

et al. 2011). P. aeruginosa biofilms in diseased lungs are often characterized by higher mutation 

rates and exhibit genetic modifications with conferred phenotypes that include increased matrix 

production and antibiotic resistance (Williams and Davies 2012). Because sublethal 

concentrations of antibiotics have been shown to increase mutation rates in P. aeruginosa (Nair 

et al. 2013), the fact that biofilm cells are even more resistant to antibiotics poses a major 

obstacle in the quest to find new drugs that can effectively kill P. aeruginosa. Furthermore, the 

heterogeneous nature of CF lung environments likely contributes to the presence of “persister” 

cells, which are able to survive in microenvironments of lower antibiotic concentrations while 

contributing to the establishment of chronic infection (Williams and Davies 2012). 

 Metabolic versatility and diverse strategies for redox balancing also contribute to P. 

aeruginosa’s ability to form robust biofilms. Its arsenal of terminal oxidases allows it to flourish 

under a spectrum of O2 concentrations ranging from atmospheric to microaerobic. Its abilities to 

denitrify and ferment allow it to survive and grow under anoxic conditions. The production and 

utilization of redox-active phenazines further support redox balancing and growth under micro- 

and anaerobic conditions. In the following chapters, I will expand upon these strategies and 
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demonstrate that P. aeruginosa is even more metabolically versatile than previously 

appreciated. In Chapter 2, I will describe a novel Cco terminal oxidase complex that contributes 

to biofilm physiology, phenazine utilization, and virulence. In Chapter 3, I will discuss how 

carbon sources affect the expression and utilization of P. aeruginosa aerobic respiratory chain 

components and phenazine-dependent metabolism, underscoring how this bacterium’s 

physiology is highly dependent on the environmental conditions under which is it grown. Finally, 

in Chapter 4, I will discuss other metabolic pathways that contribute to P. aeruginosa redox 

balancing and biofilm development as well as a redox-based mechanism of biofilm development 

in the phylogenetically distinct bacterium Bacillus subtilis. Together, these results will allow for a 

deeper appreciation for the various adaptations used by P. aeruginosa to maintain redox 

homeostasis and flourish in the biofilm lifestyle. 
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Chapter Two 

An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa 
biofilm growth and virulence 

This chapter is adapted from: 
Jo, J, Cortez, KL, Cornell, WC, Price-Whelan, A, Dietrich, LE (2017). An orphan cbb3-type 
cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. 
eLife 6, e30205. 

For this work, I formulated hypotheses, engineered all deletion and reporter constructs, and 
designed and performed all experiments, except competition assays (Figures 2.3A and 2.3B; 
performed by Krista L. Cortez) and thin sectioning of biofilms (Figure 2.3C, Figure 2.4, Figure 
2.5B (bottom), and Figure 2.5C; performed by William Cole Cornell). I contributed to the 
analysis and interpretation of all generated data and in the writing of this paper. 

I thank Rachel Hainline for technical assistance with competition assays, Christopher 
Beierschmitt for technical assistance with worm pathogenicity assays, and Konstanze Schiessl 
for help with image analysis and feedback on the manuscript. 

2.1: Abstract 

 Hypoxia is a common challenge faced by bacteria during associations with hosts due in 

part to the formation of densely packed communities (biofilms). cbb3-type cytochrome c 

oxidases, which catalyze the terminal step in respiration and have a high affinity for oxygen, 

have been linked to bacterial pathogenesis. The pseudomonads are unusual in that they often 

contain multiple full and partial (i.e., “orphan”) operons for cbb3-type oxidases and oxidase 

subunits. Here, we describe a unique role for the orphan catalytic subunit CcoN4 in colony 

biofilm development and respiration in the opportunistic pathogen Pseudomonas aeruginosa 

PA14. We also show that CcoN4 contributes to the reduction of phenazines, antibiotics that 

support redox balancing for cells in biofilms, and to virulence in a Caenorhabditis elegans model 

of infection. These results highlight the relevance of the colony biofilm model to pathogenicity 

and underscore the potential of cbb3-type oxidases as therapeutic targets. 

2.2: Introduction 

 Among the oxidants available for biological reduction, molecular oxygen (O2) provides 

the highest free energy yield. Since the accumulation of O2 in the atmosphere between 
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~2.4-0.54 billion years ago (Kirschvink and Kopp 2008; Dietrich, Tice, and Newman 2006), 

organisms that can use it for growth and survival, and tolerate its harmful byproducts, have 

evolved to exploit this energy and increased in complexity (Knoll and Sperling 2014; Falkowski 

2006). At small scales and in crowded environments, rapid consumption of O2 leads to 

competition for this resource and has promoted diversification of bacterial and archaeal 

mechanisms for O2 reduction that has not occurred in eukaryotes (Brochier-Armanet, Talla, and 

Gribaldo 2009). The various enzymes that allow bacteria to respire O2 exhibit a range of 

affinities and proton-pumping efficiencies and likely contribute to competitive success in hypoxic 

niches (Morris and Schmidt 2013). Such environments include the tissues of animal and plant 

hosts that are colonized by bacteria of high agricultural (Preisig et al. 1996) and clinical (Way et 

al. 1999; Weingarten, Grimes, and Olson 2008) significance. 

 The opportunistic pathogen Pseudomonas aeruginosa, a colonizer of both plant and 

animal hosts (Rahme et al. 1995), has a branched respiratory chain with the potential to reduce 

O2 to water using at least five different terminal oxidase complexes: two quinol oxidases (bo3 

(Cyo) and a bd-type cyanide insensitive oxidase (CIO)) and three cytochrome c oxidases (aa3, 

cbb3-1, and cbb3-2) (Figure 2.1A). Several key publications have described P. aeruginosa’s 

complement of terminal oxidases and oxidase subunits, revealing features specific to this 

organism (Williams, Zlosnik, and Ryall 2007; Comolli and Donohue 2004; Alvarez-Ortega and 

Harwood 2007; Arai et al. 2014; Kawakami et al. 2010; Jo, Price-Whelan, and Dietrich 2014). P. 

aeruginosa is somewhat unusual in that it encodes two oxidases belonging to the cbb3-type 

family. These enzymes are notable for their relatively high catalytic activity at low O2 

concentrations and restriction to the bacterial domain (Brochier-Armanet, Talla, and Gribaldo 

2009; Pitcher and Watmough 2004). (The P. aeruginosa cbb3-type oxidases are often referred to 

as cbb3-1 and cbb3-2; however, we will use “Cco1” and “Cco2” for these enzymes, consistent 

with the annotations of their encoding genes.) Most bacterial genomes that encode cbb3-type 

oxidases contain only one operon for such a complex, which is induced specifically under 

conditions of O2 limitation (Cosseau and Batut 2004). In P. aeruginosa, the cco2 operon is 
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Figure 2.1. The respiratory chain and arrangement of cco genes and protein 
products in P. aeruginosa, and the phylogenetic distribution of orphan ccoN 
genes. (A) Branched electron transport chain in P. aeruginosa, containing five terminal 
oxidases. (B) Organization of cco genes in the P. aeruginosa genome. The cartoon of 
the Cco complex is based on the Cco structure from P. stutzeri (PDB: 3mk7) 
(Buschmann et al. 2010a). (C) Left: graphical representation of the portion of genomes 
in each bacterial phylum that contain ccoO and N homologs. The clades 
Chrysiogenetes, Gemmatimonadetes, and Zetaproteobacteria were omitted because 
they each contain only one species with ccoO and N homologs. The height of each 
rectangle indicates the total number of genomes included in the analysis. The width of 
each shaded rectangle represents the portion of genomes that contain ccoN homologs. 
Middle: genomes that contain more ccoN than ccoO homologs (indicating the presence 
of orphan ccoN genes) are listed. Right: numbers of ccoO and ccoN homologs in each 
genome. Blue highlights genomes containing more than one orphan ccoN homolog. 
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induced during growth at low O2 concentrations, but the cco1 operon is expressed constitutively 

at high levels (Comolli and Donohue 2004; Kawakami et al. 2010). 

 An additional quirk of the P. aeruginosa terminal oxidase complement lies in the 

presence of genes for “orphan” cbb3-type subunits at chromosomal locations distinct from the 

cco1 and cco2 operons. While the cco1 and cco2 operons, which are chromosomally adjacent, 

each contain four genes encoding a functional Cco complex (consisting of subunits N, O, P, and 

Q), the two additional partial operons ccoN3Q3 and ccoN4Q4 each contain homologs coding for 

only the Q and catalytic N subunits (Figure 2.1B). Expression of the ccoN3Q3 operon is 

induced under anaerobic denitrification conditions (Alvarez-Ortega and Harwood 2007), and by 

nitrite exposure during growth under 2% O2 (Hirai et al. 2016). During aerobic growth in liquid 

cultures, ccoN4Q4 is induced by cyanide, which is produced in stationary phase (Hirai et al. 

2016). However, additional expression studies indicate that ccoN4Q4 transcription is influenced 

by redox conditions, as this operon is induced by O2 limitation (Alvarez-Ortega and Harwood 

2007) and slightly downregulated in response to pyocyanin, a redox-active antibiotic produced 

by P. aeruginosa (Dietrich et al. 2006).  

 In a recent study, Hirai et al. characterized the biochemical properties and physiological 

roles of P. aeruginosa cbb3 isoforms containing combinations of canonical and orphan subunits 

(Hirai et al. 2016). In a strain lacking all of the aerobic terminal oxidases, expression of any 

isoform conferred the ability to grow using O2, confirming that isoforms containing the orphan N 

subunits are functional. When preparations from wild-type, stationary-phase P. aeruginosa cells 

were separated on 2D gels and probed with anti-CcoN4 antibody, this subunit was detected at 

the same position as the assembled CcoNOP complex, showing that CcoN4-containing 

heterocomplexes form in vivo. Furthermore, the authors found that the products of ccoN3Q3 

and ccoN4Q4 contributed resistance to nitrite and cyanide, respectively, during growth in liquid 

cultures under low-O2 conditions. While these results provide insight into contributions of the 

cbb3 heterocomplexes to growth in liquid cultures, potential roles for N3- and N4-containing 

isoforms in biofilm growth and pathogenicity have yet to be explored.  
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 The biofilm lifestyle—in which cells grow in a dense community encased in a self-

produced matrix—has been linked to the establishment and persistence of infections in diverse 

systems (Edwards and Kjellerup 2012; Rybtke et al. 2015). Biofilm development promotes the 

formation of O2 gradients such that cells at a distance from the biofilm surface are subjected to 

hypoxic or anoxic conditions (Werner et al. 2004). Using a colony morphology assay to study 

redox metabolism and its relationship to community behavior, we have shown that O2 limitation 

for cells in biofilms leads to an imbalance in the intracellular redox state. This can be relieved by 

a change in community morphology, which increases the surface area-to-volume ratio of the 

biofilm and therefore access to O2 for resident cells (Kempes et al. 2014). For P. aeruginosa 

cells in biofilms, the intracellular accumulation of reducing power can also be prevented by 

production and reduction of endogenous antibiotics called phenazines, which mediate 

extracellular electron transfer to oxidants available at a distance (Dietrich et al. 2013). We have 

found that biofilm-specific phenazine production contributes to pathogenicity in a murine model 

of acute pulmonary infection (Recinos et al. 2012), further underscoring the importance of 

phenazine-mediated redox balancing for P. aeruginosa cells in communities. 

 Because of the formation of an O2 gradient inherent to the biofilm lifestyle, we 

hypothesized that the differential regulation of the P. aeruginosa cco operons affects their 

contributions to metabolic electron flow in biofilm subzones. We evaluated the roles of various 

cbb3-type oxidase isoforms in multicellular behavior and virulence. Our results indicate that 

isoforms containing the orphan subunit CcoN4 can support survival in biofilms via O2 and 

phenazine reduction and contribute to P. aeruginosa pathogenicity in a Caenorhabditis elegans 

“slow killing” model of infection.   

33

https://paperpile.com/c/OuyddC/i77MZ+FmDFe
https://paperpile.com/c/OuyddC/DXjtU
https://paperpile.com/c/OuyddC/ABuEP
https://paperpile.com/c/OuyddC/VxRM
https://paperpile.com/c/OuyddC/JBuC9


2.3: Results 

2.3.1: A small minority of bacterial genomes encode cbb3-type oxidase subunits in partial 

(“orphan”) operons 

 Biochemical, genetic, and genomic analyses suggest that the CcoN and CcoO subunits, 

typically encoded by an operon, form the minimal functional unit of cbb3-type oxidases 

(Ducluzeau, Ouchane, and Nitschke 2008; de Gier et al. 1996; Zufferey et al. 1996). CcoN is the 

membrane-integrated catalytic subunit and contains two b-type hemes and a copper ion. CcoO 

is membrane-anchored and contains one c-type heme. Additional redox subunits and/or 

subunits implicated in complex assembly, such as CcoQ and CcoP, can be encoded by adjacent 

genes (Figure 2.1B). ccoNO-containing clusters are widely distributed across phyla of the 

bacterial domain (Ducluzeau, Ouchane, and Nitschke 2008). We used the EggNOG database, 

which contains representative genomes for more than 3000 bacterial species (Huerta-Cepas et 

al. 2016) to obtain an overview of the presence and frequency of cco genes. Out of 3318 

queried bacterial genomes we found 467 with full cco operons (encoding potentially functional 

cbb3-type oxidases with O and N subunits). Among these, 78 contain more than one full operon. 

We also used EggNOG to look for orphan ccoN genes by examining the relative numbers of 

ccoO and ccoN homologs in individual genomes. We found 14 genomes, among which 

Pseudomonas species are overrepresented, that contain orphan ccoN genes (Figure 2.1C), 

and our analysis yielded 3 species that contain more than one orphan ccoN gene: 

Pseudomonas mendocina, Pseudomonas aeruginosa, and Achromobacter xylosoxidans. P. 

mendocina is a soil bacterium and occasional nosocomial pathogen that is closely related to P. 

aeruginosa, based on 16S rRNA gene sequence comparison (Anzai et al. 2000). A. 

xylosoxidans, in contrast, is a member of a different proteobacterial class but nevertheless is 

often mistaken for P. aeruginosa (Saiman et al. 2001). Like P. aeruginosa, it is an opportunistic 

pathogen that can cause pulmonary infections in immunocompromised individuals and patients 

with cystic fibrosis (De Baets et al. 2007; Firmida et al. 2016). Hirai et al. previously reported a 

ClustalW-based analysis of CcoN homologs specifically from pseudomonads, which indicated 
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the presence of orphan genes in additional species not represented in the EggNOG database. 

These include P. denitrificans, which contains two orphan genes (Hirai et al. 2016).  

2.3.2: CcoN4-containing isoforms function specifically in biofilms to support community 

morphogenesis and respiration 

 During growth in a biofilm, subpopulations of cells are subjected to regimes of electron 

donor and O2 availability that may create unique metabolic demands and require modulation of 

the respiratory chain for survival (Alvarez-Ortega and Harwood 2007; Borriello et al. 2004; 

Werner et al. 2004). We therefore investigated the contributions of individual cco genes and 

gene clusters to P. aeruginosa PA14 biofilm development using a colony morphology assay, 

which has demonstrated sensitivity to electron acceptor availability and utilization (Dietrich et al. 

2013). Because the Cco1 and Cco2 complexes are the most important cytochrome oxidases for 

growth of P. aeruginosa in fully aerated and O2-limited liquid cultures (Alvarez-Ortega and 

Harwood 2007; Arai et al. 2014), we predicted that mutations disabling the functions of Cco1 

and Cco2 would affect colony growth. Indeed, a mutant lacking both the cco1 and cco2 operons 

(“∆cco1cco2”) produced thin biofilms with a smaller diameter than the wild type. After five days 

of development, this mutant displayed a dramatic phenotype consisting of a tall central ring 

feature surrounded by short ridges that emanate radially (Figure 2.2A, Figure 2.2— figure 

supplement 1A). ∆cco1cco2 colonies were also darker in color, indicating increased uptake of 

the dye Congo red, which binds to the extracellular matrix produced by biofilms (Friedman and 

Kolter 2004). Surprisingly, a strain specifically lacking the catalytic subunits of Cco1 and Cco2 

(“∆N1∆N2”), while showing a growth defect similar to that of ∆cco1cco2 when grown in liquid 

culture (Figure 2.2C), showed biofilm development that was similar to that of the wild type 

(Figure 2.2A, Figure 2.2--figure supplement 1A).  

 As it is known that CcoN3 and CcoN4 can form functional complexes with subunits of 

the Cco1 and Cco2 oxidases in P. aeruginosa PAO1 (Hirai et al. 2016), this led us to 

hypothesize that Cco isoforms containing the orphan subunits CcoN3 and/or CcoN4 could 
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substitute for Cco1 and Cco2 in the biofilm context. Deleting ccoN3 (“∆N3” or “∆N1∆N2∆N3”) did 

not have an observable effect on biofilm development when mutants were compared to 

respective parent strains (Figure 2.2— figure supplement 1A). However, the phenotype of a 

Figure 2.2. CcoN4-containing heterocomplexes make biofilm-specific 
contributions to morphogenesis and respiration. (A) Top: Five-day-old colony 
biofilms of PA14 WT and cco mutant strains. Biofilm morphologies are representative of 
more than ten biological replicates. Images were generated using a Keyence digital 
microscope. Scale bar is 1 cm. Bottom: 3D surface images of the biofilms shown in the 
top panel. Images were generated using a Keyence wide-area 3D measurement 
system. Height scale bar: bottom (blue) to top (red) is 0 - 0.7 mm for WT, ∆N1∆N2, and 
∆N4; 0 - 1.5 mm for ∆N1∆N2∆N4 and ∆cco1cco2. (B) TTC reduction by cco mutant 
colonies after one day of growth. Upon reduction, TTC undergoes an irreversible color 
change from colorless to red. Bars represent the average, and error bars represent the 
standard deviation, of individually-plotted biological replicates (n = 5). P-values were 
calculated using unpaired, two-tailed t tests comparing each mutant to WT (****, P ≤ 
0.0001). For full statistical reporting, refer to Table 4. (C) Mean growth of PA14 WT and 
cco mutant strains in MOPS defined medium with 20 mM succinate. Error bars 
represent the standard deviation of biological triplicates.
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“∆N1∆N2∆N4” mutant was consistent with our model, as it mimicked that of the ∆cco1cco2 

mutant in both liquid-culture and biofilm growth (Figures 2.2A and 2.2C, Figure 2.2— figure 

supplement 1A). Furthermore, we found that a mutant lacking only ccoN4 (“∆N4”) displayed an 

altered phenotype in that it began to form wrinkle structures earlier than the wild type (Figure 

2.2— figure supplement 1A), which developed into a disordered region of wrinkles inside a 

central ring, surrounded by long, radially emanating ridges (Figure 2.2A). Reintroduction of the 

ccoN4 gene into either of these strains restored the phenotypes of the respective parent strains 

(Figure 2.2— figure supplement 1A). Deletion of either ccoN2 or ccoN3 in the ∆N4 

background did not exacerbate the colony phenotype seen in ∆N4 alone. However, the 

“∆N1∆N4” double mutant showed an intermediate phenotype relative to ∆N4 and ∆N1∆N2∆N4 

(Figure 2.2— figure supplement 1B), suggesting some functional redundancy for CcoN1 and 

CcoN4. The developmental pattern of the ∆N4 colony is reminiscent of those displayed by 

mutants defective in phenazine production and sensing (Figure 2.2— figure supplement 1A) 

(Dietrich et al. 2008, 2013; Sakhtah et al. 2016; Okegbe et al. 2017). Although ∆N4 itself 

showed a unique phenotype in the colony morphology assay, its growth in shaken liquid cultures 

was indistinguishable from that of the wild type (Figure 2.2C). Deleting the three non-cbb3-type 

terminal oxidases (“∆cox∆cyo∆cio”), did not affect biofilm morphology (Figure 2.2— figure 

supplement 2C). These results suggest that CcoN4-containing Cco isoform(s) play 

physiological roles that are specific to the growth conditions encountered in biofilms. 

 Next, we asked whether CcoN4 contributes to respiration in biofilms. We tested a suite 

of cco mutants for reduction of triphenyl tetrazolium chloride (TTC), an activity that is often 

associated with cytochrome c oxidase-dependent respiration (Rich et al. 2001). The ∆cco1cco2 

mutant showed a severe defect in TTC reduction, which was recapitulated by the ∆N1∆N2∆N4 

mutant. As in the colony morphology assay, this extreme phenotype was not recapitulated in a 

mutant lacking only CcoN1 and CcoN2, indicating that CcoN4 contributes to respiratory activity 

in PA14 biofilms. Although we did not detect a defect in TTC reduction for the ∆N4 mutant, we 
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saw an intermediate level of TTC reduction for ∆N1∆N4 compared to ∆N1∆N2 and 

∆N1∆N2∆N4, further implicating the CcoN4 subunit in this activity (Figure 2.2B).  

 A recent study implicated CcoN4 in resistance to cyanide, a respiratory toxin that is 

produced by P. aeruginosa (Hirai et al. 2016). The altered biofilm phenotypes of ∆N4 mutants 

could therefore be attributed to an increased sensitivity to cyanide produced during biofilm 

growth. We deleted the hcn operon, coding for cyanide biosynthetic enzymes, in the wild-type, 

phenazine-null, and various cco mutant backgrounds. The biofilm morphologies and liquid-

culture growth of these strains were unaffected by the ∆hcnABC mutation, indicating that the 

biofilm-specific role of CcoN4 explored in this work is independent of its role in mediating 

cyanide resistance (Figure 2.2— figure supplement 2). Additionally, we examined genomes 

available in the Pseudomonas Genome Database for the presence of homologs encoding CcoN 

subunits (ccoN genes) and enzymes for cyanide synthesis (hcnABC) (Winsor et al. 2016) and 

did not find a clear correlation between the presence of hcnABC and ccoN4 homologs (Figure 

2.2— figure supplement 3).  

 Together, the effects of cco gene mutations that we observed in assays for colony 

morphogenesis and TTC reduction suggest that one or more CcoN4-containing Cco isoform(s) 

support respiration and redox balancing, and is/are utilized preferentially in comparison to 

CcoN1- and CcoN2-containing Cco complexes, in biofilms. We performed a sequence 

alignment of the CcoN subunits encoded by the PA14 genome and identified residues that are 

unique to CcoN4 or shared uniquely between CcoN4 and CcoN1, which showed the strongest 

functional redundancy with CcoN4 in our assays (Figure 2.2— figure supplement 4A). We 

also threaded the CcoN4 sequence using the available structure of the CcoN subunit from P. 

stutzeri (Buschmann et al. 2010) and highlighted these residues (Figure 2.2— figure 

supplement 4B). It is noteworthy that most of the highlighted residues are surface-exposed, 

specifically on one half of the predicted CcoN4 structure, where they may engage in binding an 

unknown protein partner or specific lipids. In contrast, sites that have been described as points 

of interaction with CcoO and CcoP are mostly conserved, further supporting the notion that 
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Figure 2.3. CcoN4 confers a competitive advantage in biofilms, particularly when 
O2 becomes limiting. (A) Relative fitness of various YFP-labeled cco mutants when 
co-cultured with WT in mixed-strain biofilms for three days. Error bars represent the 
standard deviation of biological triplicates. P-values were calculated using unpaired, 
two-tailed t tests (**, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001). For full statistical 
reporting, refer to Table 4. (B) Time course showing relative fitness, over a period of 
three days, of various cco mutants when co-cultured with WT in mixed-strain biofilms. 
Results are shown for experiments in which the WT was co-cultured with various 
“labeled” strains, i.e. those that were engineered to constitutively express YFP. (See 
Figure 3—figure supplement 1 for results from experiments in which the labeled WT 
was co-cultured with unlabeled mutants.) Error bars represent the standard deviation 
of biological triplicates. (C) Change in thickness over three days of development for 
colony biofilms of WT and ∆phz as assessed by thin sectioning and DIC microscopy. 
After the onset of wrinkling, thickness was determined for the base (i.e., the “valley” 
between wrinkles). Error bars represent the standard deviation of biological triplicates. 
(D) O2 profiles of colonies at selected timepoints within the first three days of biofilm 
development. Green, WT; yellow, ∆phz; gray, outside the colony (measurements made 
in the agar directly below the colony). Error bars denote standard deviation of 
biological triplicates. 
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CcoN4 can interact with these subunits in Cco complexes.  

2.3.3: Different CcoN subunits are required for competitive fitness in early or late colony 

development 

 To further test CcoN4’s contribution to growth in biofilms, we performed competition 

assays in which ∆N4 and other mutants were grown as mixed-strain biofilms with the wild type. 

In each of these assays, one strain was labeled with constitutively-expressed YFP so that the 

strains could be distinguished during enumeration of colony forming units (CFUs). Experiments 

were performed with the label on each strain to confirm that YFP expression did not affect 

fitness (Figure 2.3— figure supplement 1A, B). When competitive fitness was assessed after 

three days of colony growth (Figure 2.3A), ∆N4 cells showed a disadvantage, with the wild type 

outcompeting ∆N4 by a factor of two. This was similar to the disadvantage observed for the 

∆N1∆N2 mutant, further suggesting that the orphan subunit CcoN4 plays a significant role in 

biofilm metabolism. Remarkably, deletion of ccoN4 in mutants already lacking ccoN1 and ccoN2 

led to a drastic decrease in fitness, with the wild type outcompeting ∆N1∆N2∆N4 by a factor of 

16. This disadvantage was comparable to that observed for the mutant lacking the full cco 

operons (∆cco1cco2), underscoring the importance of CcoN4-containing isoforms during biofilm 

growth. 

 To further explore the temporal dynamics of N subunit utilization, we repeated the 

competition assay, but sampled each day over the course of three days (Figure 2.3B). The 

fitness disadvantage that we had found for strains lacking CcoN1 and CcoN2 was evident after 

only one day of growth and did not significantly change after that. In contrast, the ∆N4-specific 

decline in fitness did not occur before the second day. These data suggest that the contributions 

of the various N subunits to biofilm metabolism differ depending on developmental stage.  

 DIC imaging of thin sections from wild-type colonies reveals morphological variation over 

depth that may result from decreasing O2 availability (Figure 2.3— figure supplement 1C). We 

have previously reported that three-day-old PA14 colony biofilms are hypoxic at depth (Dietrich 
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et al. 2013) and that O2 availability is generally higher in thinner biofilms, such as those formed 

by a phenazine-null mutant (∆phz). We have proposed that the utilization of phenazines as 

electron acceptors in wild-type biofilms enables cellular survival in the hypoxic zone and 

promotes colony growth (Okegbe, Price-Whelan, and Dietrich 2014). The relatively late-onset 

phenotype of the ∆N4 mutant in the competition assay suggested to us that CcoN4 may play a 

role in survival during formation of the hypoxic colony subzone and that this zone could arise at 

a point between one and two days of colony growth. We measured O2 concentrations in wild-

type and ∆phz biofilms at specific time points over development, and found that O2 declined 

similarly with depth in both strains (Figure 2.3D). The rate of increase in height of ∆phz tapered 

off when a hypoxic zone began to form, consistent with our model that the base does not 

increase in thickness when electron acceptors (O2 or phenazines) are not available. Although 

we cannot pinpoint the exact depth at which the O2 microsensor leaves the colony base and 

enters the underlying agar, we can estimate these values based on colony thickness 

measurements (Figure 2.3C). When we measured the thickness of wild-type and ∆phz biofilms 

over three days of incubation, we found that the values began to diverge between 30 and 48 

hours of growth, after the colonies reached ~70 µm in height, which coincides with the depth at 

which O2 becomes undetectable. ∆phz colonies reached a maximum thickness of ~80 µm, while 

wild-type colonies continued to grow to ~150 µm (Figure 2.3C). In this context, it is interesting 

to note that the point of divergence for the increase in wild-type and ∆phz colony thickness 

corresponds to the point at which CcoN4 becomes important for cell viability in our mixed-strain 

colony growth experiments (Figure 2.3B). We hypothesize that this threshold thickness leads to 

a level of O2 limitation that is physiologically relevant for the roles of phenazines and CcoN4 in 

biofilm metabolism. 

2.3.4: cco genes show differential expression across biofilm subzones 

 P. aeruginosa’s five canonical terminal oxidases are optimized to function under and in 

response to distinct environmental conditions, including various levels of O2 availability (Arai et 
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al. 2014; Kawakami et al. 2010; Alvarez-Ortega and Harwood 2007; Comolli and Donohue 

2004). Furthermore, recent studies, along with our results, suggest that even within the Cco 

terminal oxidase complexes, the various N subunits may perform different functions (Hirai et al. 

2016). We sought to determine whether differential regulation of cco genes could lead to 

uneven expression across biofilm subzones. To test this, we engineered reporter strains in 

which GFP expression is regulated by the cco1, cco2, or ccoN4Q4 promoters. Biofilms of these 

strains were grown for three days, thin-sectioned, and imaged by fluorescence microscopy. 

Representative results are shown in the left panel of Figure 2.4. The right panel of Figure 2.4 

contains plotted GFP signal intensity and O2 concentration measurements over depth for PA14 

wild-type colonies. cco1 and ccoN4 expression patterns indicate that the Cco1 oxidase and the 

CcoN4 subunit are produced throughout the biofilm (Figure 2.4). cco2 expression, on the other 

hand, is relatively low in the top portion of the biofilm and shows a sharp induction starting at a 

depth of ~45 µm. This observation is consistent with previous studies showing that cco2 

expression is regulated by Anr, a global transcription factor that controls gene expression in 

response to a shift from oxic to anoxic conditions (Comolli and Donohue 2004; Kawakami et al. 

2010; Ray and Williams 1997).  

 Though previous studies have evaluated expression as a function of growth phase in 

shaken liquid cultures for cco1 and cco2, this property has not been examined for ccoN4Q4. We 

monitored the fluorescence of our engineered cco gene reporter strains during growth under this 

condition in a nutrient-rich medium. As expected based on the known constitutive expression of 

cco1 and Anr-dependence of cco2 induction, we saw cco1-associated fluorescence increase 

before that associated with cco2. Induction of ccoN4Q4 occurred after that of cco1 and cco2 

(Figure 2.4— figure supplement 1), consistent with microarray data showing that this locus is 

strongly induced by O2 limitation (Alvarez-Ortega and Harwood 2007). However, our 

observation that ccoN4Q4 is expressed in the aerobic zone, where cco2 is not expressed, in 

biofilms (Figure 2.4) suggests that an Anr-independent mechanism functions to induce this 

operon during multicellular growth. 
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 Our results indicate that different Cco isoforms may function in specific biofilm subzones, 

but that CcoN4-containing isoforms could potentially form throughout the biofilm. These data, 

together with our observation that ∆N4 biofilms exhibit a fitness disadvantage from day two 

(Figure 2.3B), led us to more closely examine the development and chemical characteristics of 

the biofilm over depth. 

2.3.5: Microelectrode-based redox profiling reveals differential phenazine reduction 

activity in wild-type and cco mutant biofilms 

 The results shown in Figure 2.2B implicate CcoN4-containing isoforms in the reduction 

of TTC, a small molecule that interacts with the respiratory chain (Rich et al. 2001). Similar 

activities have been demonstrated for phenazines, including the synthetic compound phenazine 

methosulfate (PMS) (Nachlas, Margulies, and Seligman 1960) and those produced naturally by 

P. aeruginosa (Armstrong and Stewart-Tull 1971). Given that CcoN4 and phenazines function to 

Figure 2.4. cco genes are differentially expressed over biofilm depth. Left: Representative 
images of thin sections prepared from WT biofilms grown for three days. Each biofilm is 
expressing a translational GFP reporter under the control of the cco1, cco2, or ccoQ4N4 
promoter. Reporter fluorescence is shown in green and overlain on respective DIC images. 
Right: Fluorescence values corresponding to images on the left. Fluorescence values for a 
strain containing the gfp gene without a promoter (the empty MCS control) have been 
subtracted from each respective plot. O2 concentration over depth (open circles) from three-
day-old WT biofilms is also shown. Error bars represent the standard deviation of biological 
triplicates and are not shown in cases where they would be obscured by the point markers. y-
axis in the right panel provides a scale bar for the left panel. Reporter fluorescence images and 
values are representative of four biological replicates. 
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Figure 2.5. Characterization of chemical gradients and matrix distribution in PA14 WT 
and mutant colony biofilms. (A) Left: Change in O2 concentration (blue) and redox potential 
(orange) with depth for WT and ∆phz biofilms grown for two days. For O2 profiles, error bars 
represent the standard deviation of biological triplicates. For redox profiles, data are 
representative of at least five biological replicates. Right: model depicting the distribution of O2 
and reduced vs. oxidized phenazines in biofilms. (B) Top: Change in redox potential with depth 
for WT and various mutant biofilms grown for two days. Data are representative of at least five 
biological replicates. Bottom: Thickness of three-day-old colony biofilms of the indicated strains. 
Bars represent the average of the plotted data points (each point representing one biological 
replicate, n ≥ 4), and error bars represent the standard deviation. P-values were calculated 
using unpaired, two-tailed t tests comparing each mutant to WT (n.s., not significant; **, P ≤ 
0.01; ****, P ≤ 0.0001). For full statistical reporting, refer to Table 4. (C) Left: Representative thin 
sections of WT and cco mutant biofilms, stained with lectin and imaged by fluorescence 
microscopy. Biofilms were grown for two days before sampling. Right: Relative quantification of 
lectin stain signal intensity. Coloration of strain names in the left panel provides a key for the 
plotted data, and the y-axis in the right panel provides a scale bar for the left panel. Lectin-
staining images and values are representative of four biological replicates.
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influence morphogenesis at similar stages of biofilm growth (Figures 2.2A, 3, Figure 2.2— 

figure supplement 1, Figure 2.3— figure supplement 1A, B), we wondered whether the role 

of CcoN4 in biofilm development was linked to phenazine metabolism. We used a Unisense 

platinum microelectrode with a 20-30 µm tip to measure the extracellular redox potential in 

biofilms as a function of depth. This electrode measures the inclination of the sample to donate 

or accept electrons relative to a Ag/AgCl reference electrode. We found that wild-type colonies 

showed a decrease in redox potential over depth, indicating an increased ratio of reduced to 

oxidized phenazines, while the redox potential of ∆phz colonies remained unchanged (Figure 

2.5A). To confirm that phenazines are the primary determinant of the measured redox potential 

in the wild type, we grew ∆phz colonies on medium containing PMS (which resembles the 

natural phenazines that regulate P. aeruginosa colony morphogenesis (Sakhtah et al. 2016)), 

and found that these colonies yielded redox profiles similar to those of the wild type (Figure 2.5

— figure supplement 1A). Therefore, though the microelectrode we employed is capable of 

interacting with many redox-active substrates, we found that its signal was primarily determined 

by phenazines in our system. In addition, while wild-type colonies showed rapid decreases in O2 

availability starting at the surface, the strongest decrease in redox potential was detected after 

~50 µm (Figure 2.5A). These results suggest that the bacteria residing in the biofilm 

differentially utilize O2 and phenazines depending on their position and that O2 is the preferred 

electron acceptor.  

 We hypothesized that one or more of the CcoN subunits encoded by the PA14 genome 

is required for phenazine reduction and tested this by measuring the redox potential over depth 

for a series of cco mutants (Figure 2.5B, top). We saw very little reduction of phenazines in the 

∆cco1cco2 colony, suggesting that cbb3-type oxidases are required for this activity. In contrast, 

the mutant lacking the catalytic subunits of Cco1 and Cco2, ∆N1∆N2, showed a redox profile 

similar to the wild type, indicating that isoforms containing one or both of the orphan CcoN 

subunits could support phenazine reduction activity. Indeed, although redox profiles obtained for 

the ∆N1∆N2 and ∆N4 mutants were similar to those obtained for the wild type, the redox profile 
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of the ∆N1∆N2∆N4 mutant recapitulated that of ∆cco1cco2. These results indicate redundancy 

in the roles of some of the CcoN subunits. Consistent with this, ∆N1∆N4 showed an 

intermediate defect in phenazine reduction. We note that the triple mutant ∆cox∆cyo∆cio 

showed a wild-type-like redox profile, indicating that the cbb3-type terminal oxidases are 

sufficient for normal phenazine reduction (Figure 2.5— figure supplement 1B). Extraction and 

measurement of phenazines released from wild-type and cco mutant biofilms showed that 

variations in redox profiles could not be attributed to differences in phenazine production 

(Figure 2.5— figure supplement 1C). 

 Our group has previously shown that a ∆phz mutant compensates for its lack of 

phenazines by forming thinner colonies, thus limiting the development of the hypoxic subzone 

seen in the wild type (Dietrich et al. 2013). We therefore hypothesized that mutants unable to 

reduce phenazines would likewise result in thinner colonies. Indeed, we observed that the cco 

mutants that lacked phenazine reduction profiles in the top panel of Figure 2.5B produced 

biofilms that were significantly thinner than wild-type and comparable to that of the ∆phz mutant 

(Figure 2.5B, bottom). 

 Our group has also reported that reduction of nitrate, an alternate electron acceptor for 

P. aeruginosa (Williams, Zlosnik, and Ryall 2007), can serve as an additional redox-balancing 

strategy for cells in biofilms (Dietrich et al. 2013). Colony wrinkling is stimulated by a reduced 

cellular redox state; thus, provision of nitrate in the growth medium inhibits colony feature 

formation. We hypothesized that nitrate reduction could compensate for defects in O2 and 

phenazine reduction and inhibit colony wrinkling in the cco mutants that are the focus of this 

study. To test this, we grew strains on medium containing 10 or 40 mM potassium nitrate. We 

found that 10 mM nitrate was sufficient to inhibit wrinkling for up to 4 days of incubation in the 

wild type, ∆N4, and ∆N1∆N4, but that ∆phz and ∆N1∆N2∆N4 had initiated wrinkling at this point 

(Figure 2.5— figure supplement 1D). When we grew these strains on medium containing 40 

mM nitrate, we saw increased inhibition of wrinkling such that the wild type, ∆phz, ∆N4, and 

∆N1∆N4 remained completely smooth at 4 days of incubation. Though ∆N1∆N2∆N4 had shown 
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some feature formation after 4 days on this medium, it was diminished relative to the same point 

on 10 mM nitrate. These results suggest that O2 reduction, phenazine reduction, and nitrate 

reduction can operate in synchrony to oxidize the redox states of cells in biofilms and that 

provision of nitrate can compensate for defects in O2 and phenazine reduction to enable 

maintenance of redox homeostasis. 

2.3.6: Wild-type and cco mutant colony biofilms show increased matrix production at a 

consistent depth 

 We have recently demonstrated that extracellular matrix production, a hallmark of biofilm 

formation, is regulated by redox state in PA14 colony biofilms. Increased matrix production 

correlates with the accumulation of reducing power (as indicated by higher cellular NADH/NAD+ 

ratios) due to electron acceptor limitation and is visible in the hypoxic region of ∆phz colonies 

(Dietrich et al. 2013; Okegbe et al. 2017). The morphologies of our cco mutants (Figure 2.2A) 

suggest that matrix production can also be induced by respiratory chain dysfunction, which may 

be linked to defects in phenazine utilization (Figure 2.5B). To further examine the relationships 

between Cco isoforms and redox imbalance in biofilms, we prepared thin sections from two day-

old colonies and stained with fluorescein-labeled lectin, which binds preferentially to the Pel 

polysaccharide component of the matrix (Jennings et al. 2015). Consistent with their similar 

gross morphologies, the wild-type and ∆N1∆N2 biofilms showed similar patterns of staining, with 

a faint band of higher intensity at a depth of ~40 µm (Figure 2.5C). ∆N4 also showed a similar 

pattern, with a slightly higher intensity of staining in this band. ∆N1∆N2∆N4 and ∆cco1cco2 

showed more staining throughout each sample, with wider bands of greater intensity at the ~40 

µm point. These data suggest that deletion of the Cco complexes leads to a more reduced 

biofilm, which induces production of more matrix, and that CcoN4 contributes significantly to 

maintaining redox homeostasis when O2 is limiting. 
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2.3.7: ccoN4 contributes to P. aeruginosa virulence in a C. elegans slow killing model 

 We have previously shown that a mutant defective in biofilm-specific phenazine 

production, which also shows altered colony morphology (Dietrich et al. 2008, 2013), exhibits 

decreased virulence (Recinos et al. 2012). We and others have suggested that one way in 

which phenazines could contribute to virulence is by acting as electron acceptors to balance the 

intracellular redox state in the hypoxic conditions that are encountered during infection (Price-

Whelan, Dietrich, and Newman 2006; Newman 2008; Dietrich et al. 2013). Because CcoN4 is 

required for wild-type biofilm architecture and respiration (Figures 2.2A, 2.2C, and 2.5C), we 

hypothesized that it could also contribute to virulence. To test this, we conducted virulence 

assays using the nematode Caenorhabditis elegans as a host. It has been shown that P. 

aeruginosa is pathogenic to C. elegans and that the slow killing assay mimics an infection-like 

killing of C. elegans by the bacterium (Tan, Mahajan-Miklos, and Ausubel 1999). While ∆N1∆N2 

killed with wild type-like kinetics, ∆N1∆N2∆N4 and ∆cco1cco2 both showed comparably-

impaired killing relative to wild-type PA14 (Figure 2.6). 

Figure 2.6. CcoN4-containing isoform(s) 
make unique contributions to PA14 
virulence. Slow-killing kinetics of WT, gacA, 
and various cco mutant strains in the nematode 
Caenorhabditis elegans. Nearly 100% of the C. 
elegans population exposed to WT PA14 is 
killed after four days of exposure to the 
bacterium, while a mutant lacking GacA, a 
regulator that controls expression of virulence 
genes in P. aeruginosa, shows decreased 
killing, with ~50% of worms alive four days 
pos t -exposu re . (A ) ∆N1∆N2∆N4 and 
∆cco1cco2 show comparably attenuated 
pathogenicity relative to WT. Error bars 
represent the standard deviation of at least six 
biological replicates. At 2.25 days post-
exposure, significantly less C. elegans were 
killed by ∆N1∆N2∆N4 than by WT (unpaired 
two-tailed t test; p = 0.0022). (B) ∆N1∆N2 
displays only slightly reduced pathogenicity 
when compared to WT. At 2.25 days post-
exposure, significantly more C. elegans were 
killed by ∆N1∆N2 than by ∆N1∆N2∆N4 
(unpaired two-tailed t test; p = 0.003). For full 
statistical reporting, refer to Table 4. Error bars 
represent the standard deviation of at least four 
biological replicates, each with a starting 
sample size of 30-35 worms per replicate.
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2.4: Discussion 

 Biofilm formation contributes to P. aeruginosa pathogenicity and persistence during 

different types of infections, including the chronic lung colonizations seen in individuals with 

cystic fibrosis (Tolker-Nielsen 2014; Rybtke et al. 2015). The conditions found within biofilm 

microenvironments are distinct from those in well-mixed liquid cultures with respect to 

availability of electron donors and acceptors. We have previously described the roles of 

phenazines, electron-shuttling antibiotics produced by P. aeruginosa, in biofilm-specific 

metabolism. In this study, we focused on P. aeruginosa’s large complement of genes encoding 

cbb3-type cytochrome oxidase subunits and set out to test their contributions to metabolic 

electron flow in biofilms.  

 The P. aeruginosa genome contains four different homologs of ccoN, encoding the 

catalytic subunit of cbb3-type oxidase. Only two of these (ccoN1 and ccoN2) are co-transcribed 

with a ccoO homolog, encoding the other critical component of an active cbb3-type oxidase 

(Figure 2.1B). However, genetic studies have demonstrated that all four versions of CcoN can 

form functional complexes when expressed with either of the two CcoO homologs (Hirai et al. 

2016). In well-mixed liquid cultures, mutants lacking the “orphan” subunits did not show growth 

defects (Figure 2.2C) (Hirai et al. 2016). We were therefore surprised to find that the ∆N4 

mutant showed a unique morphotype in a colony biofilm assay (Figure 2.2A, Figure 2.2— 

figure supplement 1A). We have applied this assay extensively in our studies of the 

mechanisms underlying cellular redox balancing and sensing and noted that the phenotype of 

∆N4 was similar to that of mutants with defects in electron shuttling and redox signaling (Dietrich 

et al. 2013; Okegbe et al. 2017).  

 We characterized the effects of a ∆N4 mutation on biofilm physiology through a series of 

assays. In well-mixed liquid cultures, ∆cco1cco2 showed a growth phenotype similar to that of 

∆N1∆N2. While Hirai et al. have shown that wild-type P. aeruginosa cultures grown 

planktonically do form Cco heterocomplexes containing CcoN4, our observations suggest that 

such complexes do not contribute significantly to growth under these conditions. Consistent with 
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this, deleting ccoN4 in the ∆N1∆N2 background had no effect on planktonic growth (Figure 

2.2C). However, in biofilm-based experiments, we found that deleting N4 alone was sufficient to 

cause an altered morphology phenotype (Figure 2.2A and Figure 2.2— figure supplement 

1A), and that deleting N4 in either a ∆N1 or a ∆N1∆N2 background profoundly affected biofilm 

physiology. These experiments included quantification of respiratory activity in colonies, in which 

deletion of CcoN4 led to a significant decrease (Figure 2.2B); biofilm co-culturing, in which 

CcoN4 was required for competitive fitness (Figure 2.3A and B, Figure 2.3— figure 

supplement 1); redox profiling, which showed that CcoN4 can contribute to phenazine 

reduction (Figure 2.5B, top); colony thickness measurements, which showed that CcoN4 is 

required for the formation of the hypoxic and anoxic zones (Figure 2.5B, bottom); and matrix 

profiling, which showed that CcoN4 contributes to the repression of Pel polysaccharide 

production (Figure 2.5C). The overlap in zones of expression between cco1, cco2, and 

ccoN4Q4 seen in colony thin sections (Figure 2.4) implies that CcoN4 can form 

heterocomplexes with Cco1 and Cco2 subunits that span the depth of the colony and function to 

influence the physiology of P. aeruginosa biofilms in these ways. 

 The mutant phenotypes and gene expression profiles reported in this study suggest 

roles for CcoN4 in O2 and phenazine reduction specifically in the biofilm context, and allow us to 

draw conclusions about the roles of other CcoN subunits. The expression of ccoN4Q4 

throughout the biofilm depth suggests that CcoN4-containing isoforms could contribute to 

cytochrome c oxidation in both oxic and hypoxic zones (Figure 2.4). This constitutes a deviation 

from the previously published observation that these genes are specifically induced in hypoxic 

liquid cultures when compared to well-aerated ones (Alvarez-Ortega and Harwood 2007). 

Therefore, the ccoN4Q4 expression we observed in the relatively oxic, upper portion of the 

colony may be specific to biofilms. 

 ∆N4 displayed a colony morphology indicative of redox stress and had a fitness 

disadvantage compared to the wild type (Figures 2.2A, 2.3A and B, Figure 2.5B, bottom, 

Figure 2.3— figure supplement 1). However, because it did not show a defect in phenazine 
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reduction (Figure 2.5B, top), we attribute its colony morphology and impaired fitness 

phenotypes to its proposed role in O2 reduction (Hirai et al. 2016). Similarly, ∆N1∆N2 showed 

reduced fitness compared to the wild type (Figure 2.3A and B, Figure 2.3— figure 

supplement 1) while showing phenazine reduction comparable to that of the wild type (Figure 

2.5B), implying that one or both of these subunits contribute to oxygen reduction in biofilms. 

When CcoN4 was deleted in conjunction with CcoN1 and CcoN2, however, the resulting strain 

showed a severe phenazine reduction defect, a phenotype recapitulated by deleting both cco 

operons (Figure 2.5B). Thus, our observations suggest a role for the cbb3-type oxidases in 

phenazine reduction in addition to their established roles in O2 reduction, thereby expanding our 

understanding of their overall contributions P. aeruginosa’s physiology and viability. 

 The results described here can inform our model of how cells survive under distinct 

conditions in the microenvironments within biofilms. Previous work has shown that pyruvate 

fermentation can support survival of P. aeruginosa under anoxic conditions (Eschbach et al. 

2004) and that phenazines facilitate this process (Glasser, Kern, and Newman 2014). Additional 

research suggests that phenazine reduction is catalyzed adventitiously by P. aeruginosa 

flavoproteins and dehydrogenases (Glasser et al. 2017). Our observation that cbb3-type 

cytochrome oxidases, particularly those containing the CcoN1 or CcoN4 subunits, were required 

for phenazine reduction in hypoxic biofilm subzones (Figure 2.5B) further implicates the 

electron transport chain in utilization of these compounds. It is also interesting in light of the 

historical roles of phenazines acting as mediators in biochemical studies of the cytochrome bc1 

complex and cytochrome oxidases (King 1963; Armstrong and Stewart-Tull 1971; Davidson et 

al. 1992). Based on this earlier work, we can speculate that different CcoN subunits may 

indirectly influence phenazine reduction, which could occur at the cytochrome c binding site of 

the CcoO subunit or elsewhere in the electron transport chain, through effects these CcoN 

subunits have on the overall function or stability of respiratory complexes. Ultimately, various 

mechanisms of phenazine reduction and phenazine-related metabolisms may be relevant at 

different biofilm depths or depending on electron donor availability. Our results suggest that, in 
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the colony biofilm system, enzyme complexes traditionally considered to be specific to oxygen 

reduction may contribute to anaerobic survival. 

 Because biofilm formation is often associated with colonization of and persistence in 

hosts, we tested whether CcoN4 contributes to P. aeruginosa pathogenicity in C. elegans. 

Similar to our observations in biofilm assays, we found that the ∆cco1cco2 mutant displayed a 

more severe phenotype than the ∆N1∆N2 mutant, suggesting that an orphan subunit can 

substitute for those encoded by the cco1 and cco2 operons. We also found that deleting ccoN4 

in ∆N1∆N2 led to a ∆cco1cco2-like phenotype, suggesting that CcoN4 is the subunit that can 

play this role (Figure 2.6). In host microenvironments where O2 is available, CcoN4-containing 

isoforms could contribute to its reduction. Additionally, in hypoxic zones, CcoN4-containing 

isoforms could facilitate the reduction of phenazines, enabling cellular redox balancing. Both of 

these functions would contribute to persistence of the bacterium within the host. The 

contributions of the cbb3-type oxidases to P. aeruginosa pathogenicity raise the possibility that 

compounds interfering with Cco enzyme function could be effective therapies for these 

infections. Such drugs would be attractive candidates due to their specificity for bacterial 

respiratory chains and, as such, would not affect the host’s endogenous respiratory enzymes.  

 Our discovery that an orphan cbb3-type oxidase subunit contributes to growth in biofilms 

further expands the picture of P. aeruginosa’s remarkable respiratory flexibility. Beyond 

modularity at the level of the terminal enzyme complex (e.g., utilization of an aa3- vs. a cbb3-

type oxidase), the activity of P. aeruginosa’s respiratory chain is further influenced by 

substitution of orphan cbb3-type catalytic subunits for native ones. Utilization of CcoN4-

containing isoforms promotes phenazine reduction activity and may influence aerobic 

respiration in P. aeruginosa biofilms. For the exceptional species that contain orphan cbb3-type 

catalytic subunits, this fine level of control could be particularly advantageous during growth and 

survival in environments covering a wide range of electron acceptor availability (Cowley et al. 

2015).  
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2.5: Materials and methods 

2.5.1: Bacterial strains and growth conditions 

 P. aeruginosa strain UCBPP-PA14 (Rahme et al. 1995) was routinely grown in lysogeny 

broth (LB; 1% tryptone, 1% NaCl, 0.5% yeast extract) (Bertani 2004) at 37 ˚C with shaking at 

250 rpm unless otherwise indicated. Overnight cultures were grown for 12-16 hours. For genetic 

manipulation, strains were typically grown on LB solidified with 1.5% agar. Strains used in this 

study are listed in Table 2.3. In general, liquid precultures served as inocula for experiments. 

Overnight precultures for biological replicates were started from separate clonal source colonies 

on streaked agar plates. For technical replicates, a single preculture served as the source 

inoculum for subcultures. 

2.5.2: Construction of mutant P. aeruginosa strains 

 For making markerless deletion mutants in P. aeruginosa PA14 (Table 2.3) 1 kb of 

flanking sequence from each side of the target gene were amplified using the primers listed in 

Table 2.1 and inserted into pMQ30 through gap repair cloning in Saccharomyces cerevisiae 

InvSc1 (Shanks et al. 2006). Each plasmid listed in Table 2.2 was transformed into Escherichia 

coli strain UQ950, verified by restriction digests, and moved into PA14 using biparental 

conjugation. PA14 single recombinants were selected on LB agar plates containing 100 µg/ml 

gentamicin. Double recombinants (markerless deletions) were selected on LB without NaCl and 

modified to contain 10% sucrose. Genotypes of deletion mutants were confirmed by PCR. 

Combinatorial mutants were constructed by using single mutants as hosts for biparental 

conjugation, with the exception of ∆cco1cco2, which was constructed by deleting the cco1 and 

cco2 operons simultaneously as one fragment. ccoN4 complementation strains were made in 

the same manner, using primers LD438 and LD441 listed in Table 2.1 to amplify the coding 

sequence of ccoN4, which was verified by sequencing and complemented back into the site of 

the deletion.  
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2.5.3: Colony biofilm morphology assays  

 Overnight precultures were diluted 1:100 in LB (∆N1∆N2, ∆N1∆N2∆N3, ∆N1∆N2∆N4, 

∆N1∆N2∆N4∆N3, ∆N1∆N2∆N4::N4, ∆cco1cco2, ∆N1∆N2∆hcn, ∆N1∆N2∆N4∆hcn, 

∆cco1cco2∆hcn, and ∆cox∆cyo∆cio were diluted 1:50) and grown to mid-exponential phase (OD 

at 500 nm ≈ 0.5). Ten microliters of subcultures were spotted onto 60 mL of colony morphology 

medium (1% tryptone, 1% agar [Teknova A7777] containing 40 µg/ml Congo red dye [VWR 

AAAB24310-14] and 20 µg/ml Coomassie blue dye [Omnipur; VWR EM-3300]) in a 10 cm x 10 

cm x 1.5 cm square Petri dish (LDP D210-16). For preparation of biofilms grown on on 

phenazine methosulfate (PMS), colony morphology medium was supplemented with 200 µM 

PMS (Amresco 0361) after autoclaving. For nitrate experiments, colony morphology medium 

was supplemented with 0, 10, or 40 mM potassium nitrate. Plates were incubated for up to five 

days at 25 ˚C with > 90% humidity (Percival CU-22L) and imaged daily using a Keyence 

VHX-1000 digital microscope. Images shown are representative of at least ten biological 

replicates. 3D images of biofilms were taken on day 5 of development using a Keyence 

VR-3100 wide-area 3D measurement system. ∆cox∆cyo∆cio, hcn deletion mutants, and strains 

grown for the nitrate experiment were imaged using a flatbed scanner (Epson E11000XL-GA) 

and are representative of at least three biological replicates  

2.5.4: TTC reduction assay  

 One microliter of overnight cultures (five biological replicates), grown as described 

above, was spotted onto a 1% tryptone, 1.5% agar plate containing 0.001% (w/v) TTC (2,3,5-

triphenyl-tetrazolium chloride [Sigma-Aldrich T8877]) and incubated in the dark at 25 ˚C for 24 

hours. Spots were imaged using a scanner (Epson E11000XL-GA) and TTC reduction, 

normalized to colony area, was quantified using Adobe Photoshop CS5. Colorless TTC 

undergoes an irreversible color change to red when reduced. Pixels in the red color range were 

quantified and normalized to colony area using Photoshop CS5. 
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2.5.5: Liquid culture growth assays   

 (i) Overnight precultures were diluted 1:100 (∆N1∆N2, ∆N1∆N2∆N4, and ∆cco1cco2 

were diluted 1:50) in 1% tryptone in a clear- flat-bottom polystyrene 96-well plate (VWR 

82050-716) and grown for two hours (OD500nm ≈ 0.2). These cultures were then diluted 100-fold 

in 1% tryptone in a new 96-well plate and incubated at 37 °C with continuous shaking on the 

medium setting in a Biotek Synergy 4 plate reader.  Growth was assessed by taking OD 

readings at 500 nm every thirty minutes for at least 24 hours.  

 (ii) hcn mutants: Overnight precultures were diluted 1:100 (∆N1∆N2∆hcn, 

∆N1∆N2∆N4∆hcn, and ∆cco1cco2∆hcn were diluted 1:50) in MOPS minimal medium (50 mM 4-

morpholinepropanesulfonic acid (pH 7.2), 43 mM NaCl, 93 mM NH4Cl, 2.2 mM KH2PO4, 1 mM 

MgSO4•7H2O, 1 µg/ml FeSO4•7H2O, 20 mM sodium succinate hexahydrate) and grown for 2.5 

hours until OD at 500 nm ≈ 0.1. These cultures were then diluted 100-fold in MOPS minimal 

medium in a clear, flat-bottom polystyrene 96-well plate and incubated at 37 °C with continuous 

shaking on the medium setting in a Biotek Synergy 4 plate reader. Growth was assessed by 

taking OD readings at 500 nm every thirty minutes for at least 24 hours.  

 (iii) Terminal oxidase reporters: Overnight precultures were grown in biological 

triplicate; each biological triplicate was grown in technical duplicate. Overnight precultures were 

diluted 1:100 in 1% tryptone and grown for 2.5 hours until OD at 500 nm ≈ 0.1. These cultures 

were then diluted 100-fold in 1% tryptone in a clear, flat-bottom, polystyrene black 96-well plate 

(VWR 82050-756) and incubated at 37 °C with continuous shaking on the medium setting in a 

Biotek Synergy 4 plate reader. Expression of GFP was assessed by taking fluorescence 

readings at excitation and emission wavelengths of 480 nm and 510 nm, respectively, every 

hour for 24 hours. Growth was assessed by taking OD readings at 500 nm every 30 minutes for 

24 hours. Growth and RFU values for technical duplicates were averaged to obtain the 

respective values for each biological replicate. RFU values for a strain without a promoter 

inserted upstream of the gfp gene (MCS-gfp) were considered background and subtracted from 

the fluorescence values of each reporter.  
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2.5.6: Competition assays  

 Overnight precultures of fluorescent (YFP-expressing) and non-fluorescent strains were 

diluted 1:100 in LB (∆N1∆N2, ∆N1∆N2∆N4 and ∆cco1cco2 were diluted 1:50) and grown to mid-

exponential phase (OD at 500 nm ≈ 0.5).  Exact OD at 500 nm values were read in a Spectronic 

20D+ spectrophotometer (Thermo Scientific) and cultures were adjusted to the same OD. 

Adjusted cultures were then mixed in a 1:1 ratio of fluorescent:non-fluorescent cells and ten µl 

of this mixture were spotted onto colony morphology plates and grown for three days as 

described above. At specified time points, biofilms were collected, suspended in one mL of 1% 

tryptone, and homogenized on the “high” setting in a bead mill homogenizer (Omni Bead Ruptor 

12); day one colonies were homogenized for 35 seconds while days two and three colonies 

were homogenized for 99 seconds. Homogenized cells were serially diluted and 10-6, 10-7, and 

10-8 dilutions were plated onto 1% tryptone plates and grown overnight at 37 °C. Fluorescent 

colony counts were determined by imaging plates with a Typhoon FLA7000 fluorescent scanner 

(GE Healthcare) and percentages of fluorescent vs. non-fluorescent colonies were determined.  

2.5.7: Construction of terminal oxidase reporters  

 Translational reporter constructs for the Cco1, Cco2, and CcoN4Q4 operons were 

constructed using primers listed in Table 2.1. Respective primers were used to amplify promoter 

regions (500 bp upstream of the operon of interest), adding an SpeI digest site to the 5’ end of 

the promoter and an XhoI digest site to the 3’ end of the promoter. Purified PCR products were 

digested and ligated into the multiple cloning site (MCS) of the pLD2722 vector, upstream of the 

gfp sequence. Plasmids were transformed into E. coli strain UQ950, verified by sequencing, and 

moved into PA14 using biparental conjugation with E. coli strain S17-1. PA14 single 

recombinants were selected on M9 minimal medium agar plates (47.8 mM Na2HPO4•7H2O, 22 

mM KH2PO4, 8.6 mM NaCl, 18.6 mM NH4Cl, 1 mM MgSO4, 0.1 mM CaCl2, 20 mM sodium 

citrate dihydrate, 1.5% agar) containing 100 µg/ml gentamicin. The plasmid backbone was 

resolved out of PA14 using Flp-FRT recombination by introduction of the pFLP2 plasmid (Hoang 
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et al. 1998) and selected on M9 minimal medium agar plates containing 300 µg/ml carbenicillin 

and further on LB agar plates without NaCl and modified to contain 10% sucrose. The presence 

of gfp in the final clones was confirmed by PCR. 

2.5.8: Thin sectioning analyses  

 Two layers of 1% tryptone with 1% agar were poured to depths of 4.5 mm (bottom) and 

1.5 mm (top). Overnight precultures were diluted 1:100 (∆N1∆N2, ∆N1∆N4, ∆N1∆N2∆N4, 

∆cco1cco2 were diluted 1:50) in LB and grown for two hours, until early-mid exponential phase. 

Five to ten µL of subculture were then spotted onto the top agar layer and colonies were 

incubated in the dark at 25 ˚C with > 90% humidity (Percival CU-22L) and grown for up to three 

days. At specified time points to be prepared for thin sectioning, colonies were covered by a 1.5-

mm-thick 1% agar layer. Colonies sandwiched between two 1.5-mm agar layers were lifted from 

the bottom layer and soaked for four hours in 50 mM L-lysine in phosphate buffered saline 

(PBS) (pH 7.4) at 4 ˚C, then fixed in 4% paraformaldehyde, 50 mM L-lysine, PBS (pH 7.4) for 

four hours at 4˚C, then overnight at 37 °C. Fixed colonies were washed twice in PBS and 

dehydrated through a series of ethanol washes (25%, 50%, 70%, 95%, 3x 100% ethanol) for 60 

minutes each. Colonies were cleared via three 60-minute incubations in Histoclear-II (National 

Diagnostics HS-202) and infiltrated with wax via two separate washes of 100% Paraplast Xtra 

paraffin wax (Electron Microscopy Sciences; Fisher Scientific 50-276-89) for two hours each at 

55 ˚C, then colonies were allowed to polymerize overnight at 4 ˚C. Tissue processing was 

performed using an STP120 Tissue Processor (Thermo Fisher Scientific 813150). Trimmed 

blocks were sectioned in ten µm-thick sections perpendicular to the plane of the colony using an 

automatic microtome (Thermo Fisher Scientific 905200ER), floated onto water at 45 ˚C, and 

collected onto slides. Slides were air-dried overnight, heat-fixed on a hotplate for one hour at 45 

˚C, and rehydrated in the reverse order of processing. Rehydrated colonies were immediately 

mounted in TRIS-Buffered DAPI:Fluorogel (Electron Microscopy Sciences; Fisher Scientific 

50-246-93) and overlaid with a coverslip. Differential interference contrast (DIC) and fluorescent 
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confocal images were captured using an LSM700 confocal microscope (Zeiss). Each strain was 

prepared in this manner in at least biological triplicates. 

2.5.9: Colony thickness measurements  

 Colonies were prepared for thin sectioning as described above, but growth medium was 

supplemented with 40 µg/ml Congo Red dye and 20 µg/ml Coomassie Blue dye. Colony height 

measurements were obtained from confocal DIC images using Fiji image processing software 

(Schindelin et al. 2012).    

2.5.10: Lectin staining  

 Two-day-old colonies were prepared for thin sectioning as described above. Rehydrated 

colonies were post-stained in 100 µg/mL fluorescein-labeled Wisteria floribunda lectin (Vector 

Laboratories FL-1351) in PBS before being washed twice in PBS, mounted in TRIS-buffered 

DAPI and overlaid with a coverslip. Fluorescent confocal images were captured using an 

LSM700 confocal microscope (Zeiss).  

2.5.11: Redox profiling of biofilms  

 A 25 µm-tip redox microelectrode and external reference (Unisense RD-25 and REF-

RM) were used to measure the extracellular redox state of day two (~ 48 h) biofilms (grown as 

for the colony biofilm morphology assays). The redox microelectrode measures the tendency of 

a sample to take up or release electrons relative to the reference electrode, which is immersed 

in the same medium as the one on which the sample is grown. The redox microelectrode was 

calibrated according to manufacturer’s instructions using a two-point calibration to 1% 

quinhydrone in pH 4 buffer and 1% quinhydrone in pH 7 buffer. Redox measurements were 

taken every five µm throughout the depth of the biofilm using a micromanipulator (Unisense 

MM33) with a measurement time of three seconds and a wait time between measurements of 
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five seconds. Profiles were recorded using a multimeter (Unisense) and the SensorTrace 

Profiling software (Unisense).  

2.5.12: Oxygen profiling of biofilms  

 A 25 µm-tip oxygen microsensor (Unisense OX-25) was used to measure oxygen 

concentrations within biofilms during the first two days of development, grown as described 

above. For oxygen profiling on three-day-old colonies (Figure 2.4), biofilms were grown as for 

the thin sectioning analyses. To calibrate the oxygen microsensor, a two-point calibration was 

used. The oxygen microsensor was calibrated first to atmospheric oxygen using a calibration 

chamber (Unisense CAL300) containing water continuously bubbled with air. The microsensor 

was then calibrated to a “zero” point using an anoxic solution of water thoroughly bubbled with 

N2; to ensure complete removal of all oxygen, N2 was bubbled into the calibration chamber for a 

minimum of 30 minutes before calibrating the microsensor to the zero calibration point. Oxygen 

measurements were then taken throughout the depth of the biofilm using a measurement time 

of three seconds and a wait time between measurements of five seconds. For six-hour-old 

colonies, a step size of one µm was used to profile through the entire colony; for 12-hour and 

24-hour colonies, two µm; for 48-hour colonies, five µm. A micromanipulator (Unisense MM33) 

was used to move the microsensor within the biofilm and profiles were recorded using a 

multimeter (Unisense) and the SensorTrace Profiling software (Unisense). 

2.5.13: Phenazine quantification  

 Overnight precultures were diluted 1:10 in LB and spotted onto a 25- mm 0.2 µm filter 

disk (pore size: 0.2 µm; GE Healthcare 110606) placed into the center of one 35 x 10 mm round 

Petri dish (Falcon 351008). Colonies were grown for two days in the dark at 25 ˚C with > 90% 

humidity. After two days of growth, each colony (with filter disk) was lifted off its respective plate 

and weighed. Excreted phenazines were then extracted from the agar medium overnight in five 

mL of 100% methanol (in the dark, nutating at room temperature). Three hundred µl of this 
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overnight phenazine/methanol extraction were then filtered through a 0.22 µm cellulose Spin-X 

column (Thermo Fisher Scientific 07-200-386) and 200 µl of the flow-through were loaded into 

an HPLC vial. Phenazines were quantified using high-performance liquid chromatography 

(Agilent 1100 HPLC System) as described previously (Dietrich et al. 2006; Sakhtah et al. 2016). 

2.5.14: C. elegans pathogenicity (slow killing) assays  

 Slow killing assays were performed as described previously (Tan, Mahajan-Miklos, and 

Ausubel 1999; Powell and Ausubel 2008). Briefly, ten µl of overnight PA14 cultures (grown as 

described above) were spotted onto slow killing agar plates (0.3% NaCl, 0.35% Bacto-Peptone, 

1 mM CaCl2, 1 mM MgSO4, 5 µg/ml cholesterol, 25 mM KPO4, 50 µg/ml FUDR, 1.7% agar) and 

plates were incubated for 24 hours at 37 °C followed by 48 hours at room temperature (~23 °C). 

Larval stage 4 (L4) nematodes were picked onto the PA14-seeded plates and live/dead worms 

were counted for up to four days. Each plate was considered a biological replicate and had a 

starting sample size of 30-35 worms.  

2.5.15: Statistical analysis  

 Data analysis was performed using GraphPad Prism version 7 (GraphPad Software, La 

Jolla California USA). Values are expressed as mean ± SD. Statistical significance of the data 

presented was assessed with the two-tailed unpaired Student’s t-test. Values of P ≤ 0.05 were 

considered significant (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤0.001; ****, P ≤ 0.0001). A summary of 

the statistical analyses performed can be found in Table 2.4.  
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2.7: Tables 

Table 2.1: Primers used in this study.

primer 
number

sequence used to make 
plasmid number

LD717 ccaggcaaattctgttttatcagaccgcttctgcgttctgatCAGGACAAGCAGTGGGAA
C

pLD1852

LD718 aggtgttgtaggccatcagcTGGCGGACCACCTTATAGTT

LD958 aactataaggtggtccgccaCGGTGGTTTCTTCCTCACC

LD959 ggaattgtgagcggataacaatttcacacaggaaacagctGGTCCAGCCTTTTTCCTT
GT

LD725 ccaggcaaattctgttttatcagaccgcttctgcgttctgatCCCCTCAGAGAAGTCAGTC
G

pLD1610

LD726 aggtgttgtaggccatcaggGGCGGACCACCTTGTAGTTA

LD727 taactacaaggtggtccgccCCTGATGGCCTACAACACCT

LD728 ggaattgtgagcggataacaatttcacacaggaaacagctCAGCGGGTTGTCATACT
CCT

LD741 ccaggcaaattctgttttatcagaccgcttctgcgttctgatTCGAGGGCTTCGAGAAGAT pLD1616

LD742 aggtgttgtaggccatcagcCAGGGTCATCAGGGTGAACT

LD743 agttcaccctgatgaccctgGCTGATGGCCTACAACACCT

LD744 ggaattgtgagcggataacaatttcacacaggaaacagctCGGGTGATGTCGACGTA
TTC

LD438 ggaattgtgagcggataacaatttcacacaggaaacagctCCGTTGATTTCCTTCTGC
AT

pLD1264 (LD438 - 
LD441) 
pLD1853 
(LD438 and 
LD441)

LD439 ctacaaggtggttcgccagtCGCTGACCTACTCCTTCGTC

LD440 gacgaaggagtaggtcagcgACTGGCGAACCACCTTGTAG

LD441 ccaggcaaattctgttttatcagaccgcttctgcgttctgatCATCGACCTGGAAGTGCTC

LD725 ccaggcaaattctgttttatcagaccgcttctgcgttctgatCCCCTCAGAGAAGTCAGTC
G

pLD1929

LD1063 gttgcccaggtgttcctgtGGCGGACCACCTTGTAGTTA

LD949 ggaattgtgagcggataacaatttcacacaggaaacagctTGTAGTCGAGGGACTTC
TTGC

LD1064 taactacaaggtggtccgccACAGGAACACCTGGGCAAC
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Table 2.1 (continued): Primers used in this study.

primer 
number

sequence used to make 
plasmid number

LD2168 ccaggcaaattctgttttatcagaccgcttctgcgttctgatATGTAGGGATCGAGCGACA
G

pLD2791

LD2169 acacgatatccagcccctctTGGACATCGCGCCGTTCCTC

LD2170 gaggaacggcgcgatgtccaAGAGGGGCTGGATATCGTGT

LD2171 ggaattgtgagcggataacaatttcacacaggaaacagctAAGAGGTCATAATCGGC
GGT

LD2120 gattcgacatcactagtACGCCCAGCTCCAACAAA pLD2777

LD2121 gattcgatgccctcgaGCTAGGGGTTCCACGGTTAAT

LD2122 gattcgactgcactagtCATCGACTTGCCGCCCAG pLD2778

LD2123 gattcgatgccctcgaGCTATGGGCTTCCATCCAC

LD2124 gattcgactgcactagtGGCTACTTCCTCTGGCTGG pLD2779

LD2125 gattcgactgcctcgagCTGTACAGTCCCGAAAGAAATGAAC

LD1118 ccaggcaaattctgttttatcagaccgcttctgcgttctgatTCTTCAGGTTCTCGCGGTA
G

pLD1966

LD1119 aagtgccagtaccaactggcGCAGATCCAGAAGATGGTCA

LD1120 tgaccatcttctggatctgcGCCAGTTGGTACTGGCACTT

LD1121 ggaattgtgagcggataacaatttcacacaggaaacagctATCGCGAGACTCATGGTT
TT

LD1134 ccaggcaaattctgttttatcagaccgcttctgcgttctgatCGCTGCTTGTCGATCTGTT pLD1967

LD1135 gcgacatgaccctgttcaacCTGACCGGCTACTGGACC

LD1136 ggtccagtagccggtcagGTTGAACAGGGTCATGTCGC

LD1137 ggaattgtgagcggataacaatttcacacaggaaacagctCCTCGGCGACCATGAAT
AC

LD1126 ccaggcaaattctgttttatcagaccgcttctgcgttctgatTTCAGGTTCTTCGGGTTCT
C

pLD2044

LD1187 aacagcgcgccgaccagcatCTCTTCGTTCGTTTTCAGCC

LD1188 ggctgaaaacgaacgaagagATGCTGGTCGGCGCGCTGTT

LD1189 ggaattgtgagcggataacaatttcacacaggaaacagctGCGTTGATGAAGCGGAT
AAC
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Table 2.2: Plasmids used in this study

plasmid description source

pMQ30 7.5 kb mobilizable vector; oriT, sacB, GmR. Shanks et al. 2006

pAKN69 Contains mini-Tn7(Gm)PA1/04/03::eyfp fusion. Lambertsen et al. 
2004

pLD2722 GmR, TetR flanked by Flp recombinase target (FRT) sites to 
resolve out resistance casettes.

this study

pFLP2 Site-specific excision vector with cI857-controlled FLP 
recombinase encoding sequence, sacB, ApR.

Hoang et al. 1998

pLD1852 ∆ccoN1 PCR fragment introduced into pMQ30 by gap repair 
cloning in yeast strain InvSc1.

this study

pLD1610 ∆ccoN2 PCR fragment introduced into pMQ30 by gap repair 
cloning in yeast strain InvSc1.

this study

pLD1616 ∆ccoN3 PCR fragment introduced into pMQ30 by gap repair 
cloning in yeast strain InvSc1.

this study

pLD1264 ∆ccoN4 PCR fragment introduced into pMQ30 by gap repair 
cloning in yeast strain InvSc1.

this study

pLD1929 ∆cco1 cco2 PCR fragment introduced into pMQ30 by gap repair 
cloning in yeast strain InvSc1.

this study

pLD2791 ∆hcn PCR fragment introduced into pMQ30 by gap repair cloning 
in yeast strain InvSc1.

this study

pLD1853 Full genomic sequence of ccoN4 PCR fragment introduced into 
pMQ30 by gap repair cloning in yeast strain InvSc1. Verified by 
sequencing.

this study

pLD1966 ∆aa3 PCR fragment introduced into pMQ30 by gap repair cloning 
in yeast strain IncSc1.

this study

pLD1967 ∆bo3 PCR fragment introduced into pMQ30 by gap repair cloning 
in yeast strain IncSc1.

this study

pLD2044 ∆cio PCR fragment introduced into pMQ30 by gap repair cloning 
in yeast strain IncSc1.

this study

pLD2777 PCR-amplified cco1 promoter ligated into pSEK103 using SpeI 
and XhoI.

this study

pLD2778 PCR-amplified cco2 promoter ligated into pSEK103 using SpeI 
and XhoI.

this study

pLD2779 PCR-amplified ccoN4 promoter ligated into pSEK103 using SpeI 
and XhoI.

this study
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Table 2.3: Strains used in this study

strain number description source

Pseudomonas aeruginosa strains

UCBPP-PA14 Clinical isolate UCBPP-PA14. Rahme et al. 1995

PA14 ∆phz LD24 PA14 with deletions in phzA1-G1 and phzA2-G2 
operons.

Dietrich et al. 2006

PA14 ∆ccoN1 LD1784 PA14 with deletion in PA14_44370. this study

PA14 ∆ccoN2 LD1614 PA14 with deletion in PA14_44340. this study

PA14 ∆ccoN3 LD1620 PA14 with deletion in PA14_40510. this study

PA14 ∆ccoN4 LD2833 PA14 with deletion in PA14_10500. this study

PA14 ∆ccoN1 
∆ccoN2

LD1888 PA14 with deletions in PA14_44370 and 
PA14_44340. Made by mating pLD1610 into 
LD1784.

this study

PA14 ∆ccoN1 
∆ccoN4

LD1951 PA14 with deletions in PA14_44370 and 
PA14_10500. Made by mating pLD1264 into 
LD1784.

this study

PA14 ∆ccoN2 
∆ccoN4

LD1692 PA14 with deletions in PA14_44340 and 
PA14_10500. Made by mating pLD1264 into 
LD1614.

this study

PA14 ∆ccoN3 
∆ccoN4

LD1649 PA14 with deletions in PA14_40510 and 
PA14_10500. Made by mating pLD1264 into 
LD1620.

this study

PA14 ∆ccoN1 
∆ccoN2 ∆ccoN3

LD1977 PA14 with deletions in PA14_443470, 
PA14_44340, and PA14_40510. Made by mating 
pLD1616 into LD1888.

this study

PA14 ∆ccoN1 
∆ccoN2 ∆ccoN4

LD1976 PA14 with deletions in PA14_443470, 
PA14_44340, and PA14_10500. Made by mating 
pLD1264 into LD1888.

this study

PA14 ∆ccoN1 
∆ccoN2 ∆ccoN4 
∆ccoN3

LD2020 PA14 with deletions in PA14_443470, 
PA14_44340, PA14_10500, and PA14_40510. 
Made by mating pLD1264 into LD1977.

this study

PA14 ∆cco1cco2 LD1933 PA14 with both cco operons (PA14_44340- 
PA14_44400) deleted simultaneously.

this study

PA14 ∆cox ∆cyo 
∆cio

LD2587 PA14 with deletions in PA14_01290-01320 (cox/
aa3 operon), PA14_47150-47210 (cyo/bo3 
operon), and PA14_13030-13040 (cio operon). 
Made by mating pLD1966, pLD1967, and 
pLD2044, in that order, to PA14.

this study

PA14 ∆hcn LD2827 PA14 with deletion in hcnABC operon 
(PA14_36310-36330).

this study

PA14 ∆phz ∆hcn LD2828 PA14 with deletions in phzA1-G1, phzA2-G2, and 
hcnABC operons. Made by mating pLD2791 into 
LD24.

this study
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Table 2.3 (continued): Strains used in this study
strain number description source

PA14 ∆ccoN4 
∆hcn

LD2829 PA14 with deletions in PA14_10500 and hcnABC 
operon. Made by mating pLD2791 into LD2833.

this study

PA14 ∆ccoN1 
∆ccoN2 ∆hcn

LD2830 PA14 with deletions in PA14_44370, PA14_44340, 
and hcnABC operon. Made by mating pLD2791 
into LD1888.

this study

PA14 ∆ccoN1 
∆ccoN2 ∆ccoN4 
∆hcn

LD2831 PA14 with deletions in PA14_44370, PA14_44340, 
PA14_10500 and hcnABC operon. Made by 
mating pLD2791 into LD1976.

this study

PA14 ∆cco1cco2 
∆hcn

LD2832 PA14 with deletions in cco1, cco2, and hcnABC 
operons. Made by mating pLD2791 into LD1933.

this study

PA14 gacA::Tn LD1560 MAR2xT7 transposon insertion into PA14_30650. Liberati et al. 2006

PA14 
∆ccoN4::ccoN4

LD1867 PA14 ∆ccoN4 strain with wild-type ccoN4 
complemented back into the site of deletion. Made 
by mating pLD1853 into LD2833.

this study

PA14 ∆ccoN1 
∆ccoN2 
∆ccoN4::ccoN4

LD2576 PA14 ∆ccoN1 ∆ccoN2 ∆ccoN4 strain with wild-
type ccoN4 complemented back into the site of 
deletion. Made by mating pLD1853 into LD1976.

this study

PA14 MCS-gfp LD2820 PA14 without a promoter driving gfp expression. this study

PA14 Pcco1-gfp LD2784 PA14 with promoter of cco1 operon driving gfp 
expression.

this study

PA14 Pcco2-gfp LD2786 PA14 with promoter of cco2 operon driving gfp 
expression.

this study

PA14 PccoN4-gfp LD2788 PA14 with promoter of ccoN4Q4 operon driving 
gfp 
expression.

this study

PA14-yfp LD2780 WT PA14 constitutively expressing eyfp. this study

PA14 ∆ccoN1 
∆ccoN2-yfp

LD2013 PA14 ∆ccoN1 ∆ccoN2 constitutively expressing 
eyfp. Made by mating pAKN69 into LD1888.

this study

PA14 ∆ccoN4-yfp LD2834 PA14 ∆ccoN4 constitutively expressing eyfp. 
Made by mating pAKN69 into LD2833.

this study

PA14 ∆ccoN1 
∆ccoN2 ∆ccoN4-
yfp

LD2136 PA14 ∆ccoN1 ∆ccoN2 ∆ccoN4 constitutively 
expressing eyfp. Made by mating pAKN69 into 
LD1976.

this study

PA14 ∆cco1cco2-
yfp

LD2012 PA14 ∆cco1cco2 constitutively expressing eyfp. 
Made by mating pAKN69 into LD1933.

this study

Escherichia coli strains

UQ950 LD44 E. coli DH5 λpir strain for cloning. F-∆(argF- 
lac)169φ80 dlacZ58(∆M15) glnV44(AS) rfbD1 
gyrA96(NaIR) recA1 endA1 spoT thi-1 hsdR17 
deoR λpir+

D. Lies, Caltech
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Table 2.4: Statistical analyses. 

Table 2.3 (continued): Strains used in this study

strain number description source

BW29427 LD661 Donor strain for conjugation. thrB1004 pro thi rpsL 
hsdS lacZ ∆M15RP4-1360 ∆(araBAD)567 
∆dapA1314::[erm pir(wt)]

W. Metcalf, 
University of Illinois

β2155 LD69 Helper strain. thrB1004 pro thi strA hsdsS 
lacZ∆M15 (F’lacZ∆M15 lacIq traD36 proA+ proB+) 
∆dapA::erm (Ermr)pir::RP4 [::kan (Kmr) from 
SM10]

Dehio and Meyer, 
1997

S17-1 LD2901 StrR , TpR , F− RP4-2-Tc::Mu aphA::Tn7 recA λpir 
lysogen

Simon et al. 1983

Saccharomyces cerevisiae strains

InvSc1 LD676 MATa/MATalpha leu2/leu2 trp1-289/trp1-289 
ura3-52/ ura3-52 his3-∆1/his3-∆1

Invitrogen

Figure 2.2B
number of 

values 
(biological 
replicates)

mean median SD SEM
lower 95% 
confidence 
interval of 

mean

upper 95% 
confidence 
interval of 

mean
WT 5 73.22 72.94 3.387 1.515 69.02 77.43

∆N4 5 68.97 70.6 6.44 2.88 60.97 76.96

∆N1∆N2 5 52.18 50.46 5.142 2.3 45.79 58.56

∆N1∆N4 5 11.57 12.42 2.011 0.8991 9.074 14.07

∆N1∆N2∆N4 5 0.001958 0.001117 0.001696 0.0007586 -0.0001481 0.004064

∆cco1cco2 5 0.001367 0.0008644 0.001237 0.0005532 -0.0001686 0.002903

t-test P value P value  
summary

WT vs. ∆N4 0.2273 ns

WT vs. ∆N1∆N2 <0.0001 ****

WT vs. ∆N1∆N4 <0.0001 ****

WT vs. 
∆N1∆N2∆N4 <0.0001 ****

WT vs. 
∆cco1cco2 <0.0001 ****
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Table 2.4 (continued): Statistical analyses

Figure 2.3A
number of 

values 
(biological 
replicates)

mean median SD SEM
lower 95% 
confidence 
interval of 

mean

upper 95% 
confidence 
interval of 

mean
WT-YFP 12 54.95 54.92 4.387 1.266 52.16 57.74

∆N4-YFP 3 29.92 30.83 2.234 1.29 24.37 35.46

∆N1∆N2-YFP 3 30.49 31.91 3.527 2.036 21.73 39.25

∆N1∆N2∆N4-YFP 3 4.408 4.296 3.23 1.865 -3.617 12.43

∆cco1cco2-YFP 3 7.097 5.306 4.093 2.363 -3.072 17.27

t-test P value P value  
summary

WT-YFP vs. 
∆N4- YFP <0.0001 ****

WT-YFP vs. 
∆N1∆N2-YFP <0.0001 ****

∆N1∆N2-YFP vs. 
∆N1∆N2∆N4-YFP 0.0007 ***

∆N1∆N2-YFP vs. 
∆cco1cco2-YFP 0.0017 **

Figure 2.3– 
figure 
supplement 
1A

number of 
values 

(biological 
replicates)

mean median SD SEM
lower 95% 
confidence 
interval of 

mean

upper 95% 
confidence 
interval of 

mean

WT 12 45.05 45.08 4.387 1.266 42.26 47.84

∆N4 3 28.22 31.31 7.442 4.297 9.731 46.71

∆N1∆N2 3 27.81 28.57 2.514 1.451 21.56 34.05

∆N1∆N2∆N4 3 7.002 6.973 0.7508 0.4335 5.137 8.867

∆cco1cco2 3 5.38 4.183 2.146 1.239 0.05034 10.71

t-test P value P value  
summary

WT vs. ∆N4 0.0002 ***

WT vs. ∆N1∆N2 <0.0001 ****

∆N1∆N2 vs. 
∆N1∆N2∆N4 0.0002 ***

∆N1∆N2 vs. 
∆cco1cco2 0.0003 ***
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Table 2.4 (continued): Statistical analyses 

Figure 2.5
number of 

values 
(biological 
replicates)

mean median SD SEM
lower 95% 
confidence 
interval of 

mean

upper 95% 
confidence 
interval of 

mean
WT 8 150.3 151.2 10.31 3.644 141.7 158.9

∆N1∆N2 4 139.3 137.6 12.33 6.166 119.6 158.9

∆N4 7 131.9 127.8 8.915 3.369 123.7 140.2

∆N1∆N4 4 99.96 99.34 2.726 1.363 95.62 104.3

∆cco1cco2 4 95.19 95.56 1.559 0.7793 92.71 97.67

∆N1∆N2∆N4 4 102.8 99.79 8.664 4.332 88.98 116.6

∆phz 7 84.98 84.23 10.93 4.131 74.87 95.09

t-test P value P value  
summary

WT vs. 
∆N1∆N2 0.1302 ns

WT vs. ∆N4 0.0028 **

WT vs. 
∆N1∆N4 <0.0001 ****

WT vs. 
∆cco1cco2 <0.0001 ****

WT vs. 
∆N1∆N2∆N4 <0.0001 ****

WT vs. ∆phz <0.0001 ****

Figure 2.6
number of 

values 
(biological 
replicates)

mean median SD SEM
lower 95% 
confidence 
interval of 

mean

upper 95% 
confidence 
interval of 

mean
WT 9 27.44 39 18.48 6.16 13.24 41.65

gacA::Tn 9 92.56 93 8.546 2.849 85.99 99.12

∆N1∆N2 4 19 21.5 14.07 7.036 -3.39 41.39

∆N1∆N2∆N4 6 64.17 68 18 7.35 45.27 83.06

∆cco1cco2 9 70.56 76 22.69 7.565 53.11 88

t-test P value P value  
summary

WT vs. 
∆N1∆N2∆N4 0.0022 **

∆N1∆N2 vs. 
∆N1∆N2∆N4 0.0030 **

WT vs. ∆N1∆N2 0.4362 ns

74



2.8: Figure supplements 

Figure 2.2—figure supplement 1. Effects of individual and combined cco gene deletions 
on colony biofilm morphogenesis. (A) Morphologies of WT, ∆phz, and cco single, 
combinatorial, and ccoN4 complementation strains after 3 and 5 days of incubation. Images 
shown are representative of at least five biological replicates and were generated using a 
Keyence digital microscope. Scale bar is 1 cm. (B) Development of WT, ∆N4 and N subunit 
double mutants containing ∆N4. Images shown are representative of at least three biological 
replicates and were generated using a Keyence digital microscope. Scale bar is 1 cm. (C) 
Development of WT and the triple mutant ∆cox∆cyo∆cio in which only the cbb3-type terminal 
oxidases are present. Images were generated using a flatbed scanner (Epson Expression 
11000XL) and are representative of at least three biological replicates. Scale bar is 1 cm. 
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Figure 2.2—figure supplement 2. PA14 WT, ∆phz, and cco mutant growth 
phenotypes are unaffected by endogenous cyanide production. (A) Colony 
development over four days for ∆phz, ∆hcnABC, and cco combinatorial mutants. 
Images were generated using a flatbed scanner (Epson Expression 11000XL) and are 
representative of at least three biological replicates. Scale bar is 1 cm. (B) Growth of 
∆phz, ∆hcnABC, and cco combinatorial mutants in MOPS defined medium with 20 
mM succinate. Error bars represent the standard deviation of biological triplicates and 
are not shown in cases where they would be obscured by the point marker.

76



Figure 2.2—figure supplement 3. Pseudomonads with CcoN homologs. We examined genomes 
available in the Pseudomonas Genome Database (Winsor et al. 2016) for CcoN homologs by 
performing a protein BLAST search on CcoN1 from P. aeruginosa PA14. All hits from full genomes, 
excluding other P. aeruginosa strains, were aligned using ClustalW and a tree was built using the 
geneious tree builder (Geneious 10 (Kearse et al. 2012)). We also included draft genomes that 
contained genes involved in phenazine biosynthesis (highlighted in purple). The tree revealed four 
clusters, each being more closely related to one of the four N subunits from PA14, which allowed us to 
annotate the N subunits accordingly. We next probed all genomes with N subunits for the presence of 
genes involved in cyanide synthesis (hcnABC) and phenazine biosynthesis (phzABCDEFG). We did not 
find a clear correlation between the presence of CcoN4 and Hcn proteins (Hirai et al. 2016). We note 
that with the exception of two P. fluorescens strains, those containing phzABCDEFG operons also 
contained ccoN4.  
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Figure 2.2—figure supplement 4. Comparison of the PA14 CcoN subunit sequences and 
analysis of the predicted structure of CcoN4. (A) Amino acid alignment (ClustalW) of the 
four CcoN subunits encoded by the PA14 genome. Residues conserved among all four N 
subunits are highlighted in black; residues conserved among any three of the four N subunits in 
gray; residues shared exclusively between CcoN1 and CcoN4 in yellow; and residues unique to 
CcoN4 in purple. (B) Predicted structure of CcoN4 from P. aeruginosa PA14, obtained by 
threading the PA14 sequence through the reported structure for the CcoN subunit of P. stutzeri 
(PDB: 5DJQ; (Buschmann et al. 2010b)) using SWISS-MODELL (Biasini et al. 2014). Surface-
exposed residues that are shared exclusively between CcoN1 and CcoN4 are shown in yellow, 
while residues that are unique to CcoN4 are shown in magenta. Ribbon structures of the CcoO 
and CcoP subunits from P. stutzeri are shown in red and green, respectively. Structures were 
generated using PyMol (Schrödinger, LLC 2015).  
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Figure 2.3—figure supplement 1. CcoN4 is necessary for optimal fitness in biofilms, 
particularly when O2 becomes limiting. (A) Relative fitness of YFP-labeled WT when co-
cultured with various cco mutant strains in mixed-strain biofilms for three days. Error bars 
represent the standard deviation of biological triplicates. P-values were calculated using 
unpaired, two-tailed t tests (***, P ≤ 0.001; ****, P ≤ 0.0001). For full statistical reporting, refer to 
Table 4. (B) Time course showing relative fitness, over a period of three days, of YFP-labeled 
WT when co-cultured with various cco mutant strains in mixed-strain biofilms. Error bars 
represent the standard deviation of biological triplicates. (C) DIC image of a three-day-old WT 
biofilm.
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Figure 2.4—figure supplement 1. Expression of cco reporters in shaken liquid cultures. 
(A) Fluorescence of translational reporter strains, engineered to express GFP under the control 
of the cco1, cco2, or ccoN4Q4 promoter during growth in 1% tryptone. Fluorescence values for 
a strain containing the gfp gene without a promoter (the MCS control) were treated as 
background and subtracted from each growth curve.  (B) Liquid-culture growth of translational 
reporter strains in 1% tryptone. Error bars in (A) and (B) represent the standard deviation of 
biological triplicates and are not drawn in cases where they would be obscured by point 
markers.
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Figure 2.5—figure supplement 1. Use of a redox microelectrode to measure phenazine 
reduction in colony biofilms. (A) Change in redox potential over depth for two-day-old 
biofilms of PA14 WT, ∆phz, and ∆phz grown on 200 µM phenazine methosulfate (PMS). Data 
are representative of at least three biological replicates. To ensure that addition of PMS did not 
alter the baseline redox potential, a measurement was also taken of agar only. (B) Change in 
redox potential with depth for WT, ∆phz, and ∆cox∆cyo∆cio biofilms grown for two days. Data 
are representative of at least two biological replicates. (C) Levels of phenazines extracted from 
the agar medium underneath the colony and separated by HPLC, adjusted for biomass, for 
PA14 WT and various cco mutant biofilms grown for two days. Data represent the area under 
each peak in absorbance units for the phenazines indicated, and error bars represent standard 
deviation of at least three biological replicates. The phenazines pyocyanin (PYO), phenazine-1-
carboxamide (PCN), and phenazine-1-carboxylic acid (PCA) were quantified. (D) Colony biofilm 
morphologies on day four of development for WT and various cco mutant biofilms grown on 
colony morphology plates containing 0, 10, and 40 mM potassium nitrate. Images were 
generated using a flatbed scanner (Epson Expression 11000XL) and are representative of at 
least three biological replicates. Scale bar is 1 cm.  
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Chapter 3 

Carbon source influences electron flow through the aerobic respiratory chain of 
Pseudomonas aeruginosa 

This chapter represents a manuscript that is being prepared for publication. I was responsible 
for all the work, except for the thin-sectioning of biofilms (Figure 3.4B), which was performed by 
William Cole Cornell. Matthew Greenwald and Brett Colbert assisted in the construction of 
transcriptional reporters for terminal oxidases. While most of the experiments have been 
completed, some are still pending; these will be mentioned throughout the text. 

3.1: Introduction 

 A hallmark of the domain Bacteria is metabolic diversity, i.e. the vast variety of pathways 

and substrates that can be used to generate energy for growth or survival (Madigan et al., 

2015). The metabolic diversity of bacteria allows them to persist in conditions that generally do 

not support eukaryotes, which produce energy almost exclusively by redox transformations of 

oxygen and water (Poole and Cook, 2000). An additional advantage for many bacteria is 

metabolic versatility, in which one species is able use multiple substrates and/or pathways for 

energy generation. Metabolic versatility affords the ability to grow in disparate environments and 

provides resilience in changing conditions. 

 A feature of bacteria that contributes to their metabolic versatility is respiratory chain 

branching (Madigan et al., 2015; Poole and Cook, 2000; White et al., 2012). While the 

mitochondrial electron transport chain (ETC) has one route for electrons to be delivered to the 

final electron acceptor, oxygen (O2), bacterial respiratory chains often have multiple routes 

(most commonly two or three) (White et al., 2012). Furthermore, many species of bacteria are 

able to use substrates other than O2, such as nitrate, as the final electron acceptor. This confers 

the ability to grow and respire anaerobically.  

 Work from our group and others has recently uncovered an additional level of branching 

in the respiratory chain of the Gram-negative, opportunistic pathogen Pseudomonas 

aeruginosa. P. aeruginosa’s ETC terminates at one of five canonical terminal oxidases, the 

enzymes that catalyze the final electron transfer step to reduce O2 to water (Arai, 2011; Williams 

et al., 2007). Each of these terminal oxidases possesses unique characteristics, including 
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different expression patterns and affinities for O2 (Alvarez-Ortega and Harwood, 2007; Arai et 

al., 2014; Comolli and Donohue, 2004; Kawakami et al., 2010). Our picture of the diversity at the 

terminal end of the ETC was further expanded by the discovery that the P. aeruginosa “Cco” 

complexes, which belong to the cbb3 family of terminal oxidases, can contain subunits encoded 

by multiple, redundant operons present at distinct sites in the genome (Hirai et al., 2016). These 

heterocomplexes (i.e., isoforms) were shown to have specific roles under different conditions 

(Hirai et al., 2016) and to contribute differentially to biofilm physiology and redox state (Jo et al., 

2017). 

 Another important aspect of P. aeruginosa metabolic versatility lies at the opposite, 

inaugural end of the ETC. This bacterium, being a chemoorganoheterotroph, obtains energy by 

oxidizing organic compounds, which also serve as source of carbon and electrons. The 

metabolism of carbon sources generates reducing equivalents, mainly in the form of NADH, 

which are re-oxidized when they feed electrons to the ETC (Madigan et al., 2015; White et al., 

2012). It has long been appreciated that pseudomonads can metabolize a wide range of carbon 

sources and fine-tune their respiratory chains in response to changing environmental conditions 

(Poole and Cook, 2000; Stanier et al., 1966; Williams et al., 2007). When the genome of this 

bacterium was first sequenced, it was the largest of the bacterial genomes sequenced up to that 

point at ~ 6.3 million base pairs, and its size was attributed to the metabolic versatility of the 

organism (Stover et al., 2000). Of special note was the large number of membrane transport 

systems encoded, two thirds of which were annotated to be involved in nutrient uptake. These 

systems undoubtedly play a role in P. aeruginosa’s ability to thrive under diverse environmental 

conditions.  

 While P. aeruginosa can be found in nutrient-rich environments, such as soil, it is also 

found in more limited environments, such as water reservoirs (Eichner et al., 2014). Another 

environment in which P. aeruginosa is commonly found is in the lungs of patients with cystic 

fibrosis (CF) (Ciofu et al., 2012; Eichner et al., 2014; Høiby et al., 2011; Williams and Davies, 

2012) where a defect in a chloride channel leads to the accumulation of thick mucus. P. 
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aeruginosa persists in this heterogeneous environment despite the scarcity of its preferred 

electron acceptor, O2. Mutations in genes involved in nutrient uptake (Son et al., 2007) and 

primary metabolic pathways like the tricarboxylic acid (TCA) cycle (Hoboth et al., 2009) have 

been shown to be selected for in strains adapted to persist in CF lungs. 

 Metabolism is often conceptualized as a modular process in which the oxidation of 

diverse carbon sources can be coupled to the respiration of diverse electron acceptors via 

common, central pathways. However, this is an oversimplification as different carbon sources 

offer varying degrees of reducing power. As carbon sources are oxidized, electrons released 

from this process are transferred via dehydrogenases to ubiquinone, a redox-active lipid that 

ultimately reduces terminal oxidases. The redox state of the ubiquinone pool in the membrane 

has been shown to affect gene expression in Escherichia coli and Rhodobacter capsulatus, 

indicating that the so-called “charging” of the ubiquinone pool is an important regulatory step in 

bacterial respiration (Aussel et al., 2014). Therefore, it is perhaps unsurprising that different 

carbon sources have been shown to alter electron flow through central metabolic pathways and 

the activity of respiratory chain enzymes (Saint-Amans et al., 2001). 

 Furthermore, nutrient conditions, including carbon source identity and availability, have 

been shown to affect the development of P. aeruginosa biofilms (Shrout et al., 2006; Sriramulu 

et al., 2005). Biofilms are dense organizations of cells enclosed in a self-produced matrix with 

important implications for virulence (Elias and Banin, 2012; Høiby et al., 2011). Additionally, the 

production of phenazines, redox-active secondary metabolites that support redox balancing 

when O2 is limiting (Glasser et al., 2014; Wang et al., 2010), is sensitive to environmental 

conditions (van Rij et al., 2004). Phenazines are necessary for the formation of an anoxic zone 

in a colony biofilm model (Dietrich et al., 2013) and recent work from our group indicates that 

they interact with components of the ETC (Jo et al., 2017). While P. aeruginosa’s metabolic 

versatility is well-known, how and whether specific carbon sources affect electron flow to 

phenazines and through the respiratory chain during biofilm growth has not been studied.  
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 To investigate how electron donor affects downstream metabolic processes, I looked at 

the influence of carbon source on P. aeruginosa PA14 physiology. I began by testing a wide 

range of carbon sources for respiratory activity, and then chose three representative carbon 

sources for follow-up experiments: glucose (a fermentable carbon source metabolized via 

glycolysis [or, in the case of P. aeruginosa, the analogous Entner-Doudoroff pathway]), 

succinate (a TCA cycle intermediate), and tryptone (an undefined medium representative of 

nutrient-rich conditions (Frimmersdorf et al., 2010) and one that is commonly used to grow P. 

aeruginosa in laboratories).  

 I was particularly interested in investigating how the presence of specific terminal 

oxidases and phenazines might influence P. aeruginosa’s utilization of different carbon sources. 

I chose to focus on the Cco and Cio terminal oxidases, as those have been shown to be 

sufficient for P. aeruginosa growth under the microaerobic conditions in which this bacterium 

thrives (Alvarez-Ortega and Harwood, 2007). These terminal oxidases represent two diverging 

pathways of electron flow through the P. aeruginosa ETC: Cio accepts electrons from the 

quinone pool while the Cco’s accept electrons from cytochrome c (Figure 3.1A). As work from 

our group has recently implicated the Cco terminal oxidases in phenazine utilization in biofilms 

(Jo et al., 2017), I also assessed how specific carbon sources influence phenazine production. 

My results indicate that the identity of the carbon source has profound effects on PA14 growth, 

colony biofilm morphogenesis, terminal oxidase expression, and phenazine production and 

utilization. 

3:2: Results 

3.2.1: Identification of carbon sources that support reduction of tetrazolium violet 

 To assess the influence of different carbon sources on P. aeruginosa PA14’s branched 

ETC, I measured respiratory activity using a commercially-available “phenotype 

microarray” (PM). The array is a 96-well plate containing 95 carbon sources and respiration is 
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quantified by incubating cells in a manufacturer-provided growth medium with the redox 

indicator dye “tetrazolium violet,” which undergoes an irreversible color change from faint yellow 

to purple upon reduction. The reduction of tetrazolium dyes is dependent on the ETC (Berridge 

et al., 2005).  

 I compared dye reduction by the PA14 strains WT, PaCco, and PaCio in the presence 

and absence of phenazines to address the question of how different respiratory chain 

components and phenazines might affect electron flow in P. aeruginosa. PaCco (∆cox∆cyo∆cio; 

the cox operon encodes Aa3, the cyo operon encodes Bo3, and the cio operon encodes Cio) is a 

terminal oxidase mutant that only has the Cco terminal oxidases remaining; PaCio 

(∆cox∆cyo∆cco1cco2) only has the Cio terminal oxidase remaining (Figure 3.1A). The 

respective phenazine-null strains of these mutants are referred to as PaCco∆phz and 

PaCio∆phz. I chose to focus on these terminal oxidases because they have been shown to be 

most important for aerobic and microaerobic growth in P. aeruginosa under laboratory 

conditions (Alvarez-Ortega and Harwood, 2007; Arai, 2011). Because terminal oxidase gene 

deletions can result in growth defects (Alvarez-Ortega and Harwood, 2007; Arai et al., 2014; Jo 

et al., 2017; Chapter 2) I wanted to ensure that any dye reduction phenotype observed in the 

terminal oxidase mutants was an effect of altered electron flow rather than abrogated growth. 

Therefore, I performed a separate set of experiments, using the same strains, in which cells 

were resuspended in a MOPS-buffered medium (with no tetrazolium violet or added carbon 

source) and measured cell density at 500 nm to assay for growth on the provided carbon 

source. Carbon sources that did not support growth are listed in Figure 3.1–figure supplement 

1. 

 37 of the 95 tested carbon sources supported PA14 growth, and of those, 22 supported 

dye reduction by PA14 (Figure 3.1B). I did not notice any obvious carbon source preference 

with respect to amino acids, carbohydrates, and carboxylic acids. These results are consistent 

with previous reports that have shown P. aeruginosa to be capable of utilizing a variety of 

carbon sources (Stanier et al., 1966). 
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Figure 3.1. Carbon sources that support growth of PA14. (A) A simplified diagram of 
electron flow through the P. aeruginosa electron transport chain, indicating the terminal 
oxidases remaining in the WT (left), PaCco (middle), and PaCio (right). Terminal oxidases in 
gray indicate those that have been deleted in respective strains. (B) Carbon sources that 
support growth of PA14 strains (total = 37), classified into groups based on levels of tetrazolium 
violet reduction in the presence (left) and absence (right) of phenazines. Gray, no reduction in 
any strains; blue, group 1 (WT > PaCco > PaCio); yellow, group 2 (WT = PaCco > PaCio); 
orange, group 3 (PaCco > WT > PaCio); lavender, group 4 (PaCco > WT = PaCio); red, group 5 
(WT = PaCco = PaCio). Dashed lines interconnecting carbon sources indicate those whose dye 
reduction patterns were affected by phenazines.
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3.2.2: Respiratory chain composition influences tetrazolium dye reduction in P. 

aeruginosa  

 For the carbon sources that facilitated tetrazolium violet reduction, I then asked whether 

this activity was predominantly mediated by the quinol oxidase Cio or the cytochrome c oxidase 

Cco complexes. To assess how availability of the various ETC branches affects carbon source 

utilization with respect to dye reduction and growth, I tested the terminal oxidase mutants 

PaCco and PaCio. I grouped the carbon sources into five categories according to their relative 

levels of dye reduction: (1) WT > PaCco > PaCio, (2) WT = PaCco > PaCio, (3) PaCco > WT > 

PaCio, (4) PaCco > WT = PaCio, and (5) WT = PaCco = PaCio (Figure 3.1B). I have 

encountered some discrepancies between trials of the same strain, and more trials are planned 

to elucidate which trends are reproducible. However, I have been able to preliminarily group the 

carbon sources into the aforementioned categories and make some general observations. 

 Carbon sources that fell into groups 1 and 2 (i.e., WT or WT and PaCco exhibited the 

most dye reduction) were consistent with previous observations that the Cco terminal oxidases 

support WT-like physiology in liquid cultures and biofilms (Arai et al., 2014; Jo et al., 2017). In 

contrast, carbon sources in the remaining groups resulted in altered electron flow, with PaCco 

displaying most dye reduction (groups 3 and 4) or WT, PaCco, and PaCio contributing equally to 

dye reduction (group 5). While the latter does represent an interesting deviation from expected 

dye reduction kinetics (i.e., those seen in groups 1 and 2), I was particularly intrigued by groups 

3 and 4 as we recently showed that the Cco terminal oxidases are required for WT biofilm 

development and phenazine utilization on tryptone (Jo et al., 2017). 

 Carbon sources in group 3 resulted in the most dye reduction by PaCco, followed by WT, 

then PaCio. The carbon sources that fell into this group were acetic acid, D-mannitol, L-proline, 

and L-glutamine (Figure 3.2A). The lower levels of dye reduction in these carbon sources by 

PaCio could be attributed to this strain’s significant growth defect (Figure 3.2–figure 

supplement 1A). However, the dye reduction phenotype of PaCco relative to the WT in group 3 
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carbon sources cannot be attributed to differential growth, as I observed similar growth yields for 

these two strains (Figure 3.2–figure supplement 1A). 

 Group 4 represented carbon sources that again lead to the most dye reduction by 

PaCco, but in which dye reduction by WT is comparable to that by PaCio (Figure 3.2B). Only 

one carbon source was in this group: ɑ-ketoglutaric acid, a TCA cycle intermediate that serves 

as a branchpoint from central metabolism to the synthesis of various amino acids including 

proline and glutamine, two carbon sources identified in group 3 (Figure 1.1B). 

Figure 3.2. Dye reduction kinetics of carbon sources of interest. Dye reduction 
(absorbance at 590 nm) over time of carbon sources in group 3 (A) and group 4 (B). Initial 
designations into groups were based on dye reduction with phenazines, and dye reduction 
curves are shown in the presence (top, closed circles) and absence (bottom, open circles) of 
phenazines. Data represent the average of two biological replicates. (C) Dye reduction over 
time for glucose, a representative glycolytic carbon source, and succinate, a representative TCA 
cycle carbon source, in the presence (top, closed circles) and absence (bottom, open circles) of 
phenazines.
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3.2.3: Phenazines have differential effects on tetrazolium dye reduction depending on 

respiratory chain composition 

 Recently we found that the Cco terminal oxidases are required for phenazine reduction 

in tryptone-grown colonies (Jo et al., 2017). Because phenazines have been shown to receive 

electrons from the mitochondrial ETC (Armstrong and Stewart-Tull, 1971), I studied dye 

reduction patterns of the aforementioned strains in the phenazine-null (∆phz) background as 

well. Indeed, by comparing dye reduction kinetics of WT, PaCco, and PaCio with the equivalent 

strains in a phenazine-null (∆phz) background, I found that the group assignment changed for 

14 out of the 37 carbon sources that support WT growth (Figure 3.1B), indicating that the 

presence of phenazines had significant effects on dye reduction and, by extension, electron flow 

in PA14. For example, when phenazines are present, PaCco reduces tetrazolium violet more 

than WT when grown in L-glutamine or L-proline (Figure 3.2A, top). However, when phenazines 

are absent, ∆phz and PaCco∆phz exhibit similar levels of dye reduction (Figure 3.2A, bottom); 

in other words, carbon sources that were categorized into group 3 with phenazines could now 

be classified into group 2 (Figures 3.1B and 3.2A). A similar switching of groupings was 

observed for acetic acid and ɑ-ketoglutaric acid (Figures 3.1A and 3.2A, B). 

 Of the five carbon sources in groups 3 and 4, three (L-proline, L-glutamine, and ɑ-

ketoglutaric acid) are intermediates or direct branchpoints off of the TCA cycle (Figure 1.1). 

Therefore, I wondered what dye reduction patterns would be observed for the standard 

glycolytic and TCA cycle carbon sources glucose and succinate. When I compared dye 

reduction patterns of PA14 in glucose and succinate, I found that glucose fell into carbon-source 

group 3 while succinate fell into group 2 (Figure 3.2C). When comparing growth profiles of WT 

and PaCco, I found similar levels of growth (Figure 3.2–figure supplement 1C), again 

indicating that any dye reduction phenotypes observed are independent of growth differences. 

 While the PM-based dye reduction and growth assays provided insights into factors that 

alter electron flow through the P. aeruginosa ETC (the presence of certain terminal oxidases 

and phenazines), I chose to focus subsequent experiments on the following carbon sources: ɑ-
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ketoglutaric acid, glutamine, glucose, succinate, and tryptone. All of these carbon sources, with 

the exception of tryptone, are directly or closely linked to central metabolic pathways. Glucose 

and succinate represent P. aeruginosa’s two main pathways for carbon source oxidation, the 

Entner-Doudoroff pathway and the TCA cycle, respectively. Additionally, while many previous 

studies have been carried out using these two carbon sources in liquid culture, less has been 

done exploring how they alter biofilm growth and physiology. ɑ-ketoglutaric acid is another TCA 

cycle intermediate and the precursor for glutamine synthesis. The ɑ-ketoglutaric acid-glutamine 

branchpoint also represents an important hub between carbon and nitrogen metabolism 

(Doucette et al., 2011). The experiments using ɑ-ketoglutaric acid and glutamine have not yet 

been completed and, as such will not be discussed further here. Finally, I included tryptone as 

an additional carbon source because it is commonly used to culture P. aeruginosa in laboratory 

settings and may more closely mimic the nutrient-rich conditions in which P. aeruginosa is 

sometimes found in nature (Frimmersdorf et al., 2010).  

3.2.4: Effects of phenazines and carbon sources on planktonic and biofilm growth in 

PA14 

 To confirm the growth trends for glucose and succinate that I observed in the PM plates 

(Figure 3.2), I grew the same six strains (WT, PaCco, PaCio, ∆phz, PaCco∆phz, PaCio∆phz) 

using the following media: a MOPS-buffered defined medium with either 20 mM glucose or 

succinate as the sole carbon source or a broth made with tryptone, an undefined tryptic protein 

digest that is a popular ingredient in bacterial growth media. Consistent with the data shown in 

Figure 3.2, PaCio had a growth defect relative to WT and PaCco in all media tested (Figure 

3.3A). Cells grew fastest in 1% tryptone, followed by MOPS-succinate, then MOPS-glucose 

(Figure 3.3A). Because glucose is a 6-carbon compound while succinate is a 4-carbon 

compound, I wanted to ensure that these growth trends were not a byproduct of discrepancies 

in molar availabilities of carbon source. When I grew PA14 in MOPS medium with 30 mM 
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succinate, I found that the trends observed in Figure 3A persisted (Figure 3–figure 

supplement 1).  

 WT and PaCco exhibited similar growth patterns in 1% tryptone and MOPS-succinate 

(Figure 3.3A). However, PaCco had an exponential-phase growth defect relative to the WT 

when grown in MOPS-glucose (Figure 3.3A). Also specifically in glucose, the lack of 

phenazines resulted in an exponential phase growth defect for all strains tested (Figure 3.3A), 

suggesting that phenazines promote optimal planktonic growth when glucose is the sole carbon 

source. Phenazines have been implicated in redox balancing during anaerobic survival via 

pyruvate fermentation (Glasser et al., 2014); their contribution to growth on glucose suggests 

that phenazines may also help to offset a redox imbalance that occurs during metabolism of this 

carbon source. 

 While liquid culture represents one mode of bacterial growth, in nature bacteria often 

grow as biofilms, multicellular aggregates of cells encased in a self-produced matrix (Hall-

Stoodley et al., 2004; Toyofuku et al., 2016), which affords protection from external assaults. 

The increased resistance of biofilms to chemicals such as antibiotics presents a formidable 

challenge to eradicating biofilm-based bacterial infections (Høiby et al., 2011; Murray et al., 

2007). To test whether the growth phenotypes I saw in liquid culture would be recapitulated in 

biofilms, I next grew PA14 colony biofilms on agar plates containing tryptone, glucose, or 

succinate and monitored their development. 

 Growth on tryptone yielded the largest and thickest WT biofilms (Figure 3.3B, Figure 

3.4B). The colonies also exhibited the most wrinkling and Congo red binding, two features that 

are indicative of matrix production as a result of redox stress (Dietrich et al., 2013; Friedman 

and Kolter, 2004; Jennings et al., 2015; Okegbe et al., 2014). On glucose, WT colonies were 

smaller and paler than those grown on tryptone, while biofilms on succinate were thin (Figure 

3.4B) and translucent, indicative of poor growth (Figure 3.3B). In contrast, ∆phz biofilms grown 

on succinate were thicker and more robust (Figure 3.3B), indicating that phenazines negatively 

affect growth on succinate. I did not notice any obvious differences between WT and ∆phz 
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colonies on glucose and tryptone. I observed the same trends for strains containing only the Cio 

terminal oxidases (PaCio), although they generally formed thinner and smaller colonies (Figure 

3.3B). 

 PaCco phenocopied WT biofilms on all three carbon sources (Figure 3.3B; Jo et al., 

2017). PaCco∆phz biofilms were indistinguishable from those formed by ∆phz on tryptone and 

succinate, but they showed delayed wrinkling and less Congo red binding on glucose (Figure 

3.3B). Taken together, these results suggest a role for phenazines in modulating the efficiency 

of terminal oxidases in a carbon source-dependent manner, both in liquid culture (Figures 3.2 

and 3.3A) and in biofilms (Figure 3.3B).  

Figure 3.3. Carbon source affects PA14 growth in liquid culture and biofilms. (A) Growth 
of P. aeruginosa PA14 strains in 1% tryptone (left), MOPS defined medium with 20 mM glucose 
(middle), and MOPS defined medium with 20 mM succinate (right). Data represent the mean 
values of at least six biological replicates. Error bars denote standard deviation. (B) Colony 
biofilms of P. aeruginosa strains on day three of development on varying carbon sources. 
Colony morphologies are representative of at least three biological replicates. 
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3.2.5: Carbon source influences expression of terminal oxidases 

 The growth data suggested that the presence (or absence) of specific terminal oxidases 

affects carbon source utilization. To test if carbon sources themselves influence terminal oxidase 

expression, I created reporters by fusing the promoters of the five terminal oxidases to gfp and 

monitored their expression in tryptone, glucose, and succinate.  

 I found that in liquid culture, both cco operons were most highly expressed on tryptone, 

with cco2-gfp sharply induced upon entry into stationary phase (Figure 3.4A). cco2’s 

expression is consistent with previous studies demonstrating that cco2 is regulated by Anr, a 

global transcription factor that regulates gene expression during the shift from oxic to anoxic 

conditions (Ray and Williams, 1997). While aa3 was equally well-expressed on tryptone and 

glucose, it was barely detectable on succinate. bo3 expression was slightly elevated in glucose 

over tryptone, while I did not detect a significant signal on succinate. Finally, the expression of 

cio was comparable on all three carbon sources. These results illustrate the importance of 

carbon source on the relative expression pattern for terminal oxidases in liquid culture (Figure 

3.4A). 

 Shaking liquid cultures are characterized by a constant influx of O2 and a homogeneous 

environment. This is in stark contrast to biofilms which form nutrient gradients that are likely to 

affect the expression of terminal oxidases. We previously showed that a three-day-old colony 

biofilm contains O2 concentrations ranging from atmospheric levels at the top to undetectable 

levels at the bottom (Jo et al., 2017), making it an intriguing system in which to study terminal 

oxidase expression. I grew the reporter strains for three days on agar plates with tryptone, 

glucose, or succinate as the sole carbon sources, then fixed and thin-sectioned the biofilms to 

visualize terminal oxidase expression along the oxygen gradient (Figure 3.4B). 

 bo3-gfp expression was not observed in biofilms grown on any carbon source (Figure 

3.4B), indicating that Bo3 is not highly expressed in the biofilm under these conditions. That I 

detected bo3-gfp expression in tryptone and glucose when cells were grown planktonically 

(Figure 3.4A) suggests differential regulation of bo3 in the liquid versus biofilm context. Aa3, 
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Figure 3.4. Differential expression of terminal oxidases in tryptone, glucose, and 
succinate. (A) Expression profiles of P. aeruginosa’s five terminal oxidases (aa3, bo3, cio, cco1, 
cco2) during liquid-culture growth. Strains expressing GFP under the control of terminal oxidase 
promoters were grown in tryptone (yellow), MOPS-glucose (blue), and MOPS-succinate (red). 
Top graphs show expression of terminal oxidases (RFU) while bottom graphs show growth 
curves of corresponding strains. Data represent the average of at least three biological 
replicates, and error bars denote standard deviation. (B) Representative images of thin sections 
prepared from WT biofilms grown for 3 days on tryptone, MOPS-glucose, or MOPS-succinate 
agar plates. Each biofilm is expressing GFP under the control of the aa3, bo3, cio, cco1, or cco2 
promoter. Reporter fluorescence (green) is overlain on respective DIC images. Scale bars 
indicate depth (µm) into the biofilm, with “0” representing the biofilm-air interface. Images are 
representative of at least six biological replicates.

depth into the biofilm
 (µm

)
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while the predominant terminal oxidase enzyme in many bacteria (Arai, 2011) and the one most 

closely-related to the mitochondrial terminal oxidase, is expected to play a minor role under 

normal laboratory conditions in P. aeruginosa (Arai et al., 2014). In tryptone and glucose, I 

observed the highest level of aa3-gfp expression in the top ~ 40 µm of the biofilm (Figure 3.4B). 

As the biofilm-agar interface is at the bottom of the biofilm, the top of the biofilm represents the 

region that would be the most nutrient-starved, and this is the location where I saw aa3 

expressed.  

 We have previously shown that cco1 is expressed throughout biofilms grown on 

tryptone, while cco2 expression is sharply induced at ~ 40 µm (Jo et al., 2017; Figure 3.4B). 

cco2-gfp expression coincides with the biofilm depth at which O2 becomes limiting (Jo et al., 

2017; Figure 3.4B) again consistent with its regulation by Anr. cio-gfp expression on tryptone 

was similar to that of cco1 with two exceptions: cco1-gfp showed a bright, thin band of high 

expression at ~ 45 µm coinciding with a void in cio-gfp expression and cio-gfp showed a 

discrete thin band of expression at ~ 100 µm, coinciding with a void in cco1-gfp expression. aa3-

gfp had an almost inverse expression profile as that of cco2-gfp: it was highly expressed only in 

the top ~ 40 µm of the biofilm. 

 When biofilms were grown on glucose (Figure 3.4B, middle row), cco1-gfp was again 

seen throughout the biofilm; however, expression was more homogeneous and relatively lower 

than on tryptone (Figure 3.4B, top row). cco2-gfp again showed brightest expression in parts of 

the biofilm that were microaerobic, with expression between 45-90 µm into the biofilm. In 

contrast to tryptone, where cco2-gfp was seen to the bottom of the biofilm, cco2-gfp on glucose 

was only expressed at background levels past 90 µm into the colony. The expression profiles of 

cio-gfp and aa3-gfp were intriguingly similar on glucose, with both having the highest expression 

at the top ~ 40 µm of the biofilm, and another (slightly less bright) band of high expression 

between 80-100 µm. 

 When biofilms were grown on succinate (Figure 3.4B, bottom row), colonies were 

thinner (only ~ 80 µm as opposed to the 120-150 µm thickness of colonies grown on tryptone 
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and glucose). cco1-gfp and cio-gfp showed similar expression on succinate: both were 

expressed throughout the biofilm, excepting a small void at ~ 60-70 µm, with a band of highest 

expression seen between ~ 30-50 µm. aa3-gfp expression was similar, but its highest 

expression was in a very thin strip at ~ 35 µm. cco2-gfp expression on succinate again peaked 

at ~ 45 µm, as it did on tryptone and glucose, but was restricted to one thin ~ 10 µm strip. 

3.2.6: Carbon source affects phenazine production in P. aeruginosa 

 Given that both carbon source and phenazines affected tetrazolium violet reduction 

(Figures 3.1 and 3.2), I next asked if carbon source itself affects phenazine production. P. 

aeruginosa produces a diverse set of phenazines that have different chemical properties 

(varying redox potentials, hydrophobicity, and colors) (Price-Whelan et al., 2006; Wang and 

Newman, 2008). The precursor phenazine, phenazine-1-carboxylic acid (PCA), can be modified 

into derivatives, such as phenazine-1-carboxamide (PCN) and pyocyanin (PYO) (Figure 1.7A). 

I grew WT PA14 in liquid cultures and biofilms on tryptone, glucose, and succinate and 

quantified phenazines produced under each condition using high performance liquid 

chromatography (HPLC). 

 In agreement with a previous report (Recinos et al., 2012), PCN was produced in 

biofilms grown on all three carbon sources (Figure 3.5B), but it was barely detectable in liquid 

cultures (Figure 3.5A). Conversely, PYO, which was amply produced in liquid culture, was 

detectable in only trace amounts in biofilms, or not at all in the case of glucose (Figure 3.5B 

and C). This indicates a biofilm-specific but carbon source-independent switch from PYO to 

PCN production between the planktonic and biofilm growth states (Figure 3.5A). I note that 

most of the phenazines produced in biofilms were released into the agar (Figures 3.5B and 

3.5–figure supplement 1) and, as such, I will only consider phenazines detected in the agar 

when discussing phenazines produced in biofilms.  

 PCA is the precursor for PCN and PYO (Figure 1.7A). Intriguingly, while the conversion 

of PCA to PYO (liquid culture) or PCN (biofilm) occurred in a 10:1 ratio on tryptone and 
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succinate, only ~ 20% of PCA was converted when grown on glucose. These dynamics in 

phenazine production indicate that the carbon source influences the kind and amount of 

phenazine(s) produced by PA14 and highlights the plasticity of phenazine production in 

response to environment. 

3.2.7: Phenazine reduction patterns are altered by carbon source 

 Since the redox activity of phenazines is crucial for their functionality (Price-Whelan et 

al., 2007, 2006; Wang and Newman, 2008) I next asked if carbon sources not only affect their 

production (Figure 3.5) but also their electrochemical reduction. To address this question, I 

directly measured phenazine reduction throughout the depth of three-day-old biofilms using 

redox microelectrodes. We have previously shown that WT colonies grown on tryptone show a 

gradient of increasingly-reduced extracellular redox state as depth into the colony increases and 

that this reduction gradient is phenazine-dependent (Figures 2.5A and 3.6A; Jo et al., 2017). 

We have also shown that the Cco terminal oxidases are necessary for phenazine reduction 

through tryptone-grown colonies (Figures 2.5B and 3.6A; Jo et al., 2017).  

 When colonies were grown on glucose, phenazines were reduced in the topmost, 

aerobic zone of the biofilm (Figure 3.6B), displaying different reduction patterns than those 

Figure 3.5. Phenazine production is altered in response to carbon source. (A) 
Quantification of phenazines produced by planktonic WT PA14 cells in late stationary phase of 
growth. (B) Quantification of phenazines secreted into the agar beneath three-day-old WT 
biofilms. (C) Close-up of pyocyanin concentrations shown in panel (B). For all panels, individual 
data points represent biological replicates, and bars indicate the mean. Error bars denote 
standard deviation. The phenazines quantified were phenazine-1-carboxylic acid (PCA), 
phenazine-1-carboxamide (PCN), and pyocyanin (PYO). 
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observed on tryptone (Figure 3.6A). Furthermore, the Cco oxidases no longer appeared to be 

required for phenazine reduction on glucose. On succinate, phenazine reduction was not 

detectable, in spite of the fact that colonies produced similar amounts of phenazine on succinate 

as they did on tryptone (Figure 3.5B). Together, these results support the hypothesis that 

electron flux through the respiratory chain is altered significantly in response to different carbon 

sources. 

 Because PA14 synthesizes multiple different phenazine compounds, all with differing 

chemical structures, redox potentials, and likely physiological function, I created a “clean” 

background in which I would be able to measure the reduction of individual phenazines. To this 

end, I made a mutant unable to produce or modify any of PA14’s phenazines, 

∆phzH∆phzM∆phzS ∆phzA1-G1∆phzA2-G2 (referred to as “∆HMS∆phz”; Figure 1.7A). I then 

grew this mutant on agar plates containing one of the pure phenazine compounds (PCA, PCN, 

PMS, or PYO) and measured their reduction on glucose and tryptone. I did not include 

succinate in this analysis because I did not detect any phenazine reduction in biofilms grown on 

succinate (Figure 3.6C). Because the endogenous PCA derivative 5-methyl-PCA (5-Me-PCA) is 

Figure 3.6. Phenazine reduction is influenced by carbon source. Change in redox potential 
(mV) with depth in three-day-old PA14 biofilms grown on tryptone (A), MOPS-glucose (B), or 
MOPS-succinate (C). Data shown are representative of at least six biological replicates. 
Dashed lines indicate approximate colony thickness.
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highly reactive and unstable (Hansford et al., 1972), I used its synthetic analog, phenazine 

methosulfate (PMS), as a proxy to study 5-Me-PCA reduction. 

 ∆HMS∆phz biofilms grown on tryptone did not significantly reduce PCA or PCN (Figure 

3.7A, circles). Both PMS and PYO, on the other hand, were reduced substantially, with differing 

patterns of reduction. The majority of PYO reduction occurred within the top 50 µm of the 

biofilm, while PMS showed more gradual reduction until ~ 100 µm into the colony. The PMS 

reduction curve most resembled that seen in WT colonies grown on tryptone (Figure 3.6A). 

When reduction of exogenously-added phenazines was measured in glucose-grown colonies, I 

again saw drastically different redox profiles than those observed on tryptone. Here, neither 

Figure 3.7. Cco terminal oxidases contribute differently to phenazine reduction on tryptone 
and glucose. Change in redox potential (mV) with depth in three-day-old PA14 biofilms grown on 
tryptone (A) or MOPS-glucose (B) supplemented with 200 µM of PCA (yellow), PCN (green), PMS 
(red), or PYO (blue) by ∆HMS∆phz (circles) or ∆HMS∆phz∆cco1cco2 (squares). Data shown are 
representative of at least six biological replicates.
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PMS nor PYO were reduced significantly, while PCA and PCN were; in essence, the reverse of 

what I observed on tryptone (Figure 3.7B).  

 Because on tryptone phenazine reduction is dependent on the Cco terminal oxidases 

(Jo et al., 2017), I wondered whether these enzymes were required for phenazine reduction in 

general or whether they are involved in the reduction of distinct phenazines. To address this 

question, I created a ∆HMS∆phz∆cco1cco2 deletion mutant and investigated its ability to reduce 

exogenously-added phenazines. On tryptone, I found that deleting the Cco’s in the ∆HMS∆phz 

background compromised the reduction of all four phenazines tested (Figure 3.7A, squares). 

The most striking phenotype, however, was seen with PMS, one of the two phenazines that are 

most potent with respect to affecting colony morphogenesis on tryptone (Sakhtah et al., 2016). 

While the parent strain was able to reduce PMS substantially, the ∆cco1cco2 mutant showed no 

PMS reduction.  

 On glucose, deleting the Cco terminal oxidases did not change the redox profiles seen 

for ∆HMS∆phz grown on PMS or PYO (Figure 3.7B), not entirely unexpectedly since these two 

phenazines were barely, if at all, reduced in the parent strain. However, I was surprised to see 

that the ∆HMS∆phz∆cco1cco2 mutant showed reduction defects for both PCA and PCN, 

because redox profiles of endogenously-produced phenazines indicated that the Cco terminal 

oxidases were not required for phenazine reduction on glucose (Figure 3.6). These results 

indicate that singly-provided, exogenously-added phenazines may not have the same 

physiological roles as their endogenously-produced counterparts, which are synthesized in 

concert with other phenazine derivatives. 

3.3: Discussion 

 Pseudomonas aeruginosa is an important clinical pathogen, notoriously forming chronic 

infections in nosocomial settings. These infections are hard to eradicate due to characteristics 

associated with the biofilm lifestyle, in which cells arrange themselves into a multicellular 

consortium encased in an extracellular matrix. In the cystic fibrosis lung, P. aeruginosa is well-
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known for causing chronic, biofilm-based infections that ultimately lead to the mortality of 

patients. In this environment, mutations associated with changes in nutrient uptake and 

metabolism have been found to be associated with growth in the CF lung environment (Hoboth 

et al., 2009; Son et al., 2007). Furthermore, ETC genes, including those encoding 

dehydrogenases and the high-O2-affinity terminal oxidases Ccos, are upregulated in conditions 

that mimic those found in the CF lung (Eichner et al., 2014). Therefore, a deeper understanding 

of the interplay of nutrient availability and respiratory activity may yield new strategies for the 

treatment of P. aeruginosa infections. In this chapter, I describe how carbon sources affect P. 

aeruginosa growth and characterized how a subset of these carbon sources (tryptone, glucose, 

and succinate) affect biofilm development, expression of terminal oxidase genes, and 

phenazine production and utilization.  

3.3.1: Electron flux through the respiratory chain is modulated in response to terminal 

oxidase and phenazine availability 

 I began by screening for carbon sources that support growth and electron flow through 

the aerobic respiratory chain of P. aeruginosa. Strikingly, phenazines or altering the complement 

of terminal oxidases affected electron flow through the respiratory chain, as indicated by PA14’s 

ability to reduce the redox indicator dye tetrazolium violet (Figures 3.1B and 3.2). 

 Based on dye reduction kinetics, I classified carbon sources into five groups (Figure 

3.1B). For all carbon sources that supported growth, tetrazolium violet dye reduction by PaCco 

was comparable or greater than WT (Figure 3.1B). This is in agreement with previous work 

from our group indicating that the Cco terminal oxidases are mostly responsible for the 

reduction of another tetrazolium dye, triphenyl-tetrazolium chloride (Jo et al., 2017). Groups 3 

and 4 contained carbon sources in which PaCco (where only the Cco terminal oxidases remain) 

was able to reduce tetrazolium violet even more efficiently than the WT and PaCio, despite the 

fact that growth levels were comparable between PaCco and WT (Figures 3.2A and B; 3.2–

figure supplement 1A and B). On these carbon sources, the other terminal oxidases (Aa3, Bo3, 
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and Cio) may contribute to growth and divert electrons away from the Cco’s. In PaCco, 

electrons are directly routed to the Cco’s, leading to enhanced dye reduction and possibly more 

efficient electron flow through the respiratory chain, resulting in elevated dye reduction.  

 I was particularly intrigued by carbon sources in groups 3 and 4 as ɑ-ketoglutaric acid 

and glutamine represent a node between carbon and nitrogen metabolism where the TCA cycle 

branches off into the synthesis of glutamate and then glutamine (Figure 1.1). Furthermore, 

glutamine is directly linked to phenazine biosynthesis with one glutamine being required for the 

production of PCA and another one for its derivatization to PCN (Culbertson and Toney, 2013; 

Pierson and Thomashow, 1992), Figure 1.7). These carbon sources will be the focus of future 

studies and I expect them to give us new insights with respect to the regulation of phenazine 

production and reduction (Figures 3.5, 3.6, and 3.7). The current study was focused on 

establishing benchmarks for the various assays utilizing some of the most commonly-used 

carbon sources for growth of P. aeruginosa, i.e. tryptone, a complex, undefined medium 

composed of peptides resulting from the digest of casein; glucose, a fermentable sugar and 

precursor of the glycolytic pathway; and succinate, a TCA cycle intermediate (Figure 1.1).  

 On tryptone and succinate, Cco terminal oxidases were necessary and sufficient for WT-

like planktonic growth (Figure 3.3). On glucose, however, the Cco terminal oxidases were not 

sufficient for WT-like growth (Figure 3.3A), suggesting that other terminal oxidases are more 

required on glucose. Consistent with this, cco1 and cco2 expression are lower while bo3 

expression was more than 2-fold higher in glucose relative to tryptone (Figure 3.4A). Because 

Bo3 is upregulated under iron limitation (Arai, 2011; Arai et al., 2014), growth on glucose may 

yield a higher demand for iron, possibly due to changes in the respiratory chain since 

cytochrome biosynthesis may lead to a high demand for this metal.  

3.3.2: Gradients formed within the biofilm inform expression of respiratory complexes 

 Biofilms and liquid cultures are physiologically quite distinct. An important characteristic 

of biofilms is the formation of gradients (Werner et al., 2004). As biofilms develop, they increase 
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in thickness (Figure 2.3C; Jo et al., 2017), leading to a carbon source gradient originating at the 

bottom of the colony and an O2 gradient originating at the top. In this study I observed biofilm-

specific characteristics with respect to the expression and utilization of terminal oxidases. The 

bo3 terminal oxidase is expressed in liquid culture but not in biofilms, irrespective of the carbon 

source. In glucose, Cco’s are not sufficient for WT levels of liquid culture growth (Figure 3.3A), 

but are for WT-like biofilm development (Figure 3.3B). In succinate, the lack of phenazines 

confers more robust growth in biofilms (Figure 3.3B) that is not seen in liquid (Figure 3.3A). 

 I found that the biofilm-specific gradients inform expression of different terminal oxidases 

(Figure 3.4B). The switch from free-living to biofilm growth is also accompanied by altered 

phenazine production, which is further impacted by growth medium (Figure 3.5). Differential 

phenazine production then contributes to different phenazine utilization throughout biofilm 

depths, as observed through redox microprofiling (Figure 3.6). These results demonstrate the 

differences that exist between the liquid culture and biofilm modes of growth. This has important 

implications in the quest for discovery of new antibiotics that are able to fight biofilm-based 

infections in clinical settings, as the majority of that research is done in liquid culture (Penesyan 

et al., 2015). However, my results presented here and in Chapter 2 highlight the need for more 

biofilm-based research during the process of new drug discovery.  

3.3.3: Phenazine utilization is not determined solely by phenazine availability 

 While overall phenazine production levels were similar in PA14 biofilms grown on 

tryptone and succinate (Figure 3.5), I did not detect any phenazine reduction in succinate-

grown biofilms (Figure 3.6), suggesting that phenazine reduction is dependent upon more than 

just availability and/or amount of phenazines produced. ∆phz colonies grown on succinate 

formed more robust biofilms than their phenazine-producing counterparts (Figure 3.3B), 

indicating that phenazines may have a negative effect on biofilm growth on succinate. As 

succinate-grown biofilms do not reduce phenazines, the redox-active role of phenazines is likely 

rendered irrelevant on this carbon source and their accumulation may become harmful. This is 
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supported by the fact that phenazines have been shown to become toxic at high concentrations 

(Meirelles and Newman, 2018; Sakhtah et al., 2016). 

 We have previously shown reduction of phenazines on tryptone to be mediated by the 

Cco terminal oxidases (Jo et al., 2017). Here, I expanded upon these findings by measuring 

reduction of individual phenazines (Figure 3.7). On tryptone, I saw that phenazine methosulfate 

(PMS, a synthetic analog of the endogenous but highly reactive 5-methyl-PCA [5-Me-PCA]) and 

pyocyanin (PYO) contributed the majority of redox-active behavior in biofilms (Figure 3.7A, 

circles), indicating that these phenazines are predominantly used on this carbon source. The 

∆cco1cco2 mutant showed reduction defects when grown on PMS and PYO (Figure 3.7A, 

squares), consistent with the Cco-dependent phenazine reduction profiles observed in Figure 

3.6 and reported previously (Jo et al., 2017). As PMS/5-Me-PCA is important for WT colony 

biofilm morphogenesis and redox balancing (Sakhtah et al., 2016) and PYO has been shown to 

play a role in virulence in a mouse model (Lau et al., 2004), their successful utilization could 

have important implications for P. aeruginosa growth and virulence. 

 In contrast to tryptone, here I found that phenazine reduction is Cco-independent on 

glucose-grown biofilms that endogenously produce phenazines (Figure 3.6). These biofilms 

almost exclusively produce (Figure 3.5) and most efficiently reduce (Figure 3.7) phenazine-1-

carboxamide (PCN) and phenazine-1-carboxylic acid (PCA). Intriguingly, when single 

phenazines were provided exogenously, Cco’s were required for the reduction of both PCN and 

PCA on glucose (Figure 3.7B). This discrepancy between endogenous and exogenous 

phenazine reduction suggests that phenazines, when produced in mixtures, may have 

synergistic or antagonistic effects that remain to be elucidated. 

3.3.4: Conclusion 

 Together, these results inform our understanding of how P. aeruginosa metabolism is 

influenced by carbon source and mode of growth. Our biofilm results are especially illuminating, 

as biofilm growth is associated with the formation and persistence of chronic infections in 
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various host environments. This includes the heterogeneous environment found in the lungs of 

CF patients, in which varying oxygen concentrations, nutrient availabilities, and antibiotic 

concentrations are found along airways (Winstanley et al., 2016). P. aeruginosa’s adaptable 

metabolism contributes to its ability to colonize nearly all of these microenvironments and, by 

extension, its virulence. Phenazines are also involved in mediating virulence, as they have been 

detected at high concentrations in CF sputum samples (Wilson et al., 1988) and influence 

immune response in human airway epithelial cells by increasing oxidant production (Price-

Whelan et al., 2006). This in turn can affect gene expression patterns in the host (Look et al., 

2005) while also having negative repercussions on host tissue. Therefore, the identification of 

the mechanisms that underlie P. aeruginosa persistence in heterogeneous environments, 

including mediators of phenazine production and/or utilization, would have the potential to vastly 

improve how chronic P. aeruginosa infections are treated.  

3:4: Materials and methods 

3.4.1: Strains and growth conditions 

 Pseudomonas aeruginosa strain UCBPP-PA14 (Mathee, 2018; Rahme et al., 1995) 

overnight precultures were routinely grown for 12-16 hours in lysogeny broth (LB; 1% tryptone, 

1% NaCl, 0.5% yeast extract) (Bertani, 2004) at 37˚C with shaking at 250 rpm. Overnight 

precultures serving as biological replicates were inoculated from separate clonal source 

colonies grown on streaked LB + 1.5% agar plates. Liquid subcultures were made from diluting 

overnight precultures 1:100 (1:50 for PaCio and PaCio∆phz) in LB and grown at 37˚C with 

shaking at 250 rpm until mid-exponential phase (OD at 500 nm ~ 0.5). Liquid subcultures were 

used for experiments unless otherwise noted. Strains used in this study are listed in Table 3.1. 

 The growth media used in this study were 1% tryptone and MOPS minimal medium (50 

mM 4-morpholinepropanesulfonic acid (pH 7.2), 43 mM NaCl, 93 mM NH4Cl, 2.2 mM KH2PO4, 1 

mM MgSO4•7H2O, 1 µg/ml FeSO4•7H2O). MOPS minimal medium contained either 20 mM D-

glucose (MOPS-glucose) or 20 mM sodium succinate hexahydrate (MOPS-succinate) as a 
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carbon source unless otherwise noted. Agar-containing versions of each growth medium 

contained 1% agar (Teknova A7777). 

3.4.2: Construction of P. aeruginosa deletion mutant strains 

 Markerless deletions mutants were created by amplifying ~ 1 kb of flanking DNA 

sequence from each side of the gene(s) to be deleted using the primers listed in Table 3.2. 

These flanking sequences were inserted into pMQ30 via gap repair cloning in Saccharomyces 

cerevisiae strain InvSc1 (Shanks et al., 2006). The resulting plasmids, listed in Table 3.3, were 

then transformed into Escherichia coli strain UQ950, verified by restriction digests and/or 

sequencing, and moved into PA14 using biparental conjugation. Single recombinants in PA14 

were selected using LB agar plates containing 100 µg/ml gentamicin. Markerless deletions 

(double recombinants) were selected on LB without NaCl containing 10% sucrose and 

confirmed by PCR. Combinatorial mutants were constructed by using single mutants as hosts 

for biparental conjugation as described in Table 3.1. 

3.4.3: Construction of reporter strains  

 Reporter constructs for P. aeruginosa’s five terminal oxidases (Aa3, Bo3, Cio, Cco1, and 

Cco2) were constructed using the primers listed in Table 3.2 to amplify respective promoter 

regions (500 bp upstream of the respective terminal oxidase operon), adding an SpeI and an 

XhoI digest site to the 5’ and 3’ ends of the promoter, respectively. Purified PCR products were 

digested and ligated into the pLD2722 vector at the multiple cloning site (MCS), upstream of the 

gfp sequence. The resulting plasmids (listed in Table 3.3) were transformed into E. coli strain 

UQ950, verified by sequencing, moved into PA14 using biparental conjugation with E. coli strain 

S17-1. Recombinants were selected for as described previously (Jo et al., 2017). 
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3.4.4: Growth assays and determination of carbon sources that support PA14 growth 

 One ml of liquid subculture was washed two times in sterile 1x phosphate-buffered 

saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4), resuspended in 1 

ml MOPS minimal medium without a carbon source, and diluted 1:100 in MOPS minimal 

medium without a carbon source. One hundred microliters of this cell suspension were 

dispensed into each well of a phenotype microarray carbon microplate PM1 (Biolog 12111) and 

incubated at 37˚C with continuous shaking on the medium setting in a Synergy 4 plate reader 

(BioTek). Growth was measured by taking OD readings at 500 nm every 30 min for 20-24 hr. 

Each strain was assayed twice in Biolog plate PM1. 

 Carbon sources that support growth of PA14 strains producing phenazines were then 

determined by monitoring growth over 20 hours for two biological replicates of each phenazine-

producing PA14 strain, and a cutoff of 0.15 was applied to cell density (OD at 500 nm) values. 

Anything falling below this cutoff was designated as background. Carbon sources with OD500nm 

readings that exceeded the cutoff of 0.15 were manually inspected to verify growth. I found that 

37 carbon sources supported growth (Figure 3.1B) while 58 did not (Figure 3.1–figure 

supplement 1). 

3.4.5: Biolog phenotype microarrays (i.e., dye reduction assays) and determination of 

carbon sources that support reduction of tetrazolium violet 

 For dye reduction assays, PBS-washed cells were resuspended in 1x IF-0 (IF-0a GN/GP 

Base Inoculating Fluid, Biolog 72268) to a percent transmittance of 42. The 42 %T cell 

suspension was diluted 1:5 in 1x IF-0 + 1x Redox Dye A (tetrazolium violet; Biolog 74221). One 

hundred microliters of this cell + dye suspension were dispensed into each well of a PM1 

microplate and incubated at 37˚C with continuous shaking on the medium setting in a Synergy 4 

plate reader. Growth and dye reduction were measured by taking absorbance readings at 500 

nm and 590 nm, respectively, every 30 min for 20-24 hr. After the run was completed, an 

endpoint spectral scan of the plate was taken, reading absorbance of each well at wavelengths 
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between (and including) 300 to 800 nm in 10 nm steps. As tetrazolium dye reduction is 

irreversible, the endpoint scan at 590 nm should represent the maximal dye reduction value. 

 To determine which carbon sources yield tetrazolium dye reduction, only carbon sources 

that supported PA14 growth (Figure 1B) were considered. Endpoint, maximal dye reduction 

values for each of these 37 carbon sources for each strain were determined by subtracting the 

absorbance value at 800 nm (which I considered as background) from the absorbance value at 

590 nm. These values were then subjected to a cutoff of 0.25, and anything lower than this 

value was considered background dye reduction. Values meeting the cutoff were then compared 

for each carbon source across strains, with phenazine-producing strains compared to each 

other and phenazine-null strains being compared to each other. Finally, each carbon source was 

then classified into one of the following six groups based on dye reduction levels: group 1, WT 

or ∆phz > PaCco or PaCco∆phz > PaCio or PaCio∆phz; group 2, WT or ∆phz = PaCco or 

PaCco∆phz > PaCio or PaCio∆phz; group 3, PaCco or PaCco∆phz > WT or ∆phz > PaCio or 

PaCio∆phz; group 4, PaCco or PaCco∆phz > WT or ∆phz = PaCio or PaCio∆phz; group 5, WT 

or ∆phz = PaCco or PaCco∆phz = PaCio or PaCio∆phz; or no reduction. 

3.4.6: Liquid culture growth and terminal oxidase reporter expression assays 

 For growth assays, one ml of liquid subculture cells was washed two times in sterile 1x 

PBS and resuspended in one ml sterile 1x PBS. These cells were then diluted 1:100 in 

respective growth medium (1% tryptone, MOPS-glucose, or MOPS-succinate) in either a clear, 

flat-bottom polystyrene 96-well plate (VWR 82050-716; for growth assays) or a clear, flat-bottom 

polystyrene black 96-well plate (VWR 82050-756; for reporter expression assays) and incubated 

at 37˚C with continuous shaking on the medium setting in a Synergy 4 plate reader. Growth was 

monitored by taking OD readings at 500 nm every 30 minutes for 20-24 hr.  

 For reporter expression assays, expression of GFP was also assessed by taking 

fluorescence readings at excitation and emission wavelengths of 480 nm and 510 nm, 

respectively, for the duration of the experiment. RFU values for a strain lacking a promoter 
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upstream of the gfp gene (MCS-gfp) were subtracted from the fluorescence values of each 

reporter. Fluorescence and absorbance readings were taken simultaneously. 

3.4.7: Colony biofilm morphology assays 

 Ten microliters of liquid subcultures were spotted onto 60 ml of colony morphology 

medium in a 10 cm x 10 cm x 1.5 cm square Petri dish (LDP D210-16). Colony morphology 

medium was 1% tryptone agar, MOPS-glucose agar, or MOPS-succinate agar supplemented 

with 40 µg/ml Congo red dye (VWR AAAB24310-14) and 20 µg/ml Coomassie blue dye (VWR 

EM-3300). Colony biofilms were incubated for up to five days in the dark at 25˚C with >90% 

humidity (Percival CU-22L) and imaged daily using a VHX-1000 digital microscope (Keyence). 

Images shown are representative of at least four biological replicates.  

3.4.8: Thin sectioning assays 

 Two layers of 1% tryptone with 1% agar were poured to depths of 4.5 mm (bottom) and 

1.5 mm (top) and left to solidify overnight. Overnight precultures were diluted 1:100 in LB and 

grown for ~ 2 h, until early-mid exponential phase. Five microliters of subculture were then 

spotted onto the top agar layer and colonies were incubated in the dark at 25˚C with > 90% 

humidity (Percival CU-22L) and grown for three days. After three days, colonies were covered 

by a 1.5-mm-thick 1% agar layer. Colonies sandwiched between two 1.5-mm agar layers were 

lifted from the bottom layer, washed for 10 min in 1x PBS (pH 7.4) at room temperature in the 

dark, and fixed in 4% paraformaldehyde in PBS overnight at room temperature in the dark. 

Fixed colonies were washed twice in PBS and dehydrated through a series of ethanol washes 

(25%, 50%, 70%, 95%, 3 × 100% ethanol) for 60 min each. Colonies were cleared via three 60-

min incubations in Histoclear-II (National Diagnostics HS-202) and infiltrated with wax via two 

separate washes of 100% Paraplast Xtra paraffin wax (Thermo Fisher Scientific 50-276-89) for 

2 hr each at 55˚C, then colonies were allowed to polymerize overnight at 4˚C. Tissue processing 

was performed using an STP120 Tissue Processor (Thermo Fisher Scientific 813150). Trimmed 
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blocks were sectioned in 10-µm-thick sections perpendicular to the plane of the colony using an 

automatic microtome (Thermo Fisher Scientific 905200ER), floated onto water at 45˚C, and 

collected onto slides. Slides were air-dried overnight, heat-fixed on a hotplate for 1 hr at 45˚C, 

and rehydrated in the reverse order of processing. Rehydrated colonies were immediately 

mounted in TRIS-Buffered DAPI:Fluorogel (Thermo Fisher Scientific 50-246-93) and overlaid 

with a coverslip. Differential interference contrast (DIC) and fluorescent confocal images were 

captured using an LSM800 confocal microscope (Zeiss, Germany). Each strain was prepared in 

this manner in at least biological triplicates. 

3.4.9: Phenazine detection and quantification 

 (i) For phenazine extraction from liquid cultures, overnight cultures of WT PA14 were 

inoculated in 2 ml of respective growth medium (1% tryptone, MOPS-glucose, or MOPS-

succinate) in 13 x 100 mm culture tubes (VWR 10545-936) in at least biological triplicate and 

incubated at 37˚C with shaking at 250 rpm for 14-16 hr. One milliliter of each overnight culture 

was dispensed into a microfuge tube and centrifuged for two minutes at 14,000 rpm to pellet 

cells. Three hundred microliters of the supernatant were applied to a 0.22 µm Spin-X column 

(VWR 29442-754), centrifuged for two minutes at 14,000 rpm, and 200 µl of the resulting cell-

free flow-through were loaded into an HPLC vial for analysis.  

 (ii) For phenazine extraction from biofilms, 1 ml of liquid subcultures was washed twice 

in 1x PBS and resuspended in 1 ml of 1x PBS. A 25 mm filter disk with a pore size of 0.2 µm 

(GE Healthcare 110606) was placed into the center of one 35 x 10 mm round Petri dish (VWR 

25373-041) filled with 4 ml of 1% tryptone agar, MOPS-glucose agar, or MOPS-succinate agar 

and 10 µl of the washed cells were spotted onto the filter disk. Colony biofilms were grown for 3 

days in the dark at 25˚C with >90% humidity, after which point each colony and filter were lifted 

off their plate. The colony biofilm and filter were placed into one 5-ml aliquot of 100% methanol 

while the agar upon which the biofilm had developed was placed into another 5-ml aliquot of 

100% methanol, and phenazines were extracted from the biofilms or agar overnight at room 
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temperature in the dark. Three hundred microliters of the phenazine extraction were filtered 

through a 0.22 µm Spin-X column as described above and 200 µl of the cell-free flow-through 

were loaded into an HPLC vial for analysis. 

 (iii) Phenazines were identified using high-performance liquid chromatography (Agilent 

1100 HPLC System) as described previously (Dietrich et al., 2006; Sakhtah et al., 2016) and 

comparing sample peaks to peaks of pure phenazine standards run as controls. The area under 

each peak (mAU*s) was used to determine the concentrations of each phenazine. For 

phenazines extracted from liquid culture, the area under each peak was first normalized to cell 

density at the time of phenazine extraction and concentration was determined using the 

extinction coefficient for each phenazine. Dilution standards of purified PYO, PCA, and PCN 

were prepared at known concentrations and extinction coefficients (ε) were generated for each 

based on seven biological replicates. εPYO = 0.0253 µM/mAU*s, εPCA = 0.0104 µM/mAU*s, εPCN 

= 0.0099 µM/mAU*s. 

3.4.10: Redox microprofiling 

 (i) Extracellular redox states of day 3 (~ 72 hr) phenazine-producing biofilms (Figure 3.6) 

were measured using a 25 µm-tip redox microelectrode and external reference (Unisense RD25 

and REF-RM). Colony biofilms were grown as for the colony biofilm morphology assays, except 

that Congo red and Coomassie blue dyes were omitted. Calibration and redox measurements 

were performed using the SensorTrace Profiling software (Unisense) as described previously 

(Jo et al., 2017).  

 (ii) For measuring extracellular redox states of biofilms grown on exogenously-added 

phenazines, the respective growth medium (tryptone agar, MOPS-glucose agar, or MOPS-

succinate agar) was autoclaved and allowed to cool to ~ 55˚C in a water bath. Purified 

phenazine compounds were added to final concentrations of 200 µM for all phenazines tested. 

The phenazines tested were PCA (Apexmol), PCN (Apexmol), PMS (Thermo Fisher Scientific 

AC130160010), and PYO (Cayman Chemicals); PCA and PCN stock solutions were 25 mM in 
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DMSO while PMS and PYO stock solutions were 200 mM in DMSO. Extracellular redox states 

of biofilms were measured on DMSO-only plates to ensure that the solvent did not alter 

extracellular redox state. Extracellular redox states of day 3 (~ 72 hr) ∆HMS∆phz biofilms grown 

on exogenously-added phenazines were measured as above.  
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3.6: Tables 

Table 1: Strains used in this study 
strain number description source

Pseudomonas aeruginosa strains

UCBPP-PA14 Clinical isolate UCBPP-PA14. Rahme et al., 1995

PA14 ∆phz LD24 PA14 with deletions in phzA1-G1 and phzA2-
G2 operons.

Dietrich et al., 
2006

PA14 ∆cco1cco2 LD1933 PA14 with both cco operons (cbb3-1, cbb3-2; 
PA14_44340-PA14_44400) deleted 
simultaneously.

Jo et al., 2017

PA14 ∆cio LD2076 PA14 with a deletion in the cio operon 
(PA14_13030-13040)

this study

PA14 PaCco LD2587 PA14 with deletions in PA14_01290-01320 
(cox/aa3 operon), PA14_47150-47210 (cyo/
bo3 operon), and PA14_13030-13040 (cio 
operon).

Jo et al., 2017

PA14 PaCco∆phz LD2588 PA14 with only the Cco terminal oxidases 
remaining in the phenazine-null background; 
deletions in the phzA1-G1, phzA2-G2, aa3, 
bo3, and cio operons.

this study

PA14 PaCio LD1989 PA14 with only the Cio terminal oxidase 
remaining; deletions in the aa3, bo3, cco1, 
and cco2 operons.

this study

PA14 PaCio∆phz LD1990 PA14 with only the Cio terminal oxidase 
remaining in the phenazine-null background; 
deletions in the phzA1-G1, phzA2-G2, aa3, 
bo3, cco1, and cco2 operons.

this study

PA14 ∆phzH ∆phzM 
∆phzS ∆phzA1-G1 
∆phzA2-G2

LD3122 PA14 with deletions in the phenazine 
biosynthetic genes phzH (PA14_00640), phzM 
(PA14_09490), phzS (PA14_09400), phzA1-
G1, and phzA2-G2.

this study

PA14 ∆phzH ∆phzM 
∆phzS ∆phzA1-G1 
∆phzA2-G2 ∆cco1cco2

LD3140 PA14 with deletions in the phenazine 
biosynthetic genes phzH, phzM, phzS, phzA1-
G1, phzA2-G2, and the terminal oxidase 
operons of cco1 and cco2. Made by mating 
LD1933 to LD3122.

this study

PA14 Paa3-gfp LD2962 PA14 with promoter of aa3 operon driving gfp 
expression.

this study

PA14 Pbo3-gfp LD2966 PA14 with promoter of bo3 operon driving gfp 
expression.

this study

PA14Pcio-gfp LD2969 PA14 with promoter of cio operon driving gfp 
expression.

this study

PA14 Pcco-1-gfp LD2784 PA14 with promoter of cco1 operon driving gfp 
expression.

Jo et al., 2017
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Table 3.2: Primers used in this study 

Table 3.1 (continued): Strains used in this study

strain number description source

PA14 Pcco-2-gfp LD2786 PA14 with promoter of cco2 operon driving gfp 
expression.

Jo et al., 2017

Escherichia coli strains

UQ950 LD44 E. coli DH5 λpir strain for cloning. F-∆(argF-
lac)169φ80 dlacZ58(∆M15) glnV44(AS) rfbD1 
gyrA96(NaIR) recA1 endA1 spoT thi-1 hsdR17 
deoR λpir+

D. Lies, Caltech

BW29427 LD661 Donor strain for conjugation. thrB1004 pro thi 
rpsL hsdS lacZ ∆M15RP4-1360 ∆(araBAD)567 
∆dapA1314::[erm pir(wt)]

W. Metcalf, 
University of 
Illinois

β2155 LD69 Helper strain. thrB1004 pro thi strA hsdsS 
lacZ∆M15 (F’lacZ∆M15 lacIq traD36 proA+ 
proB+) ∆dapA::erm (Ermr)pir::RP4 [::kan 
(Kmr) from SM10]

Dehio and Meyer, 
1997.

S17-1 LD2901 StrR , TpR , F− RP4-2-Tc::Mu aphA::Tn7 recA 
λpir lysogen

Teng et al., 1998

Saccharomyces cerevisiae strains

InvSc1 LD676 MATa/MATalpha leu2/leu2 trp1-289/trp1-289 
ura3-52/ura3-52 his3-∆1/his3-∆1

Invitrogen

primer 
number sequence used to make 

plasmid number
LD725 ccaggcaaattctgttttatcagaccgcttctgcgttctgatCCCCTCAGAGAAGTCAGTCG pLD1929

LD1063 gttgcccaggtgttcctgtGGCGGACCACCTTGTAGTTA

LD949 ggaattgtgagcggataacaatttcacacaggaaacagctTGTAGTCGAGGGACTTC
TTGC

LD1064 taactacaaggtggtccgccACAGGAACACCTGGGCAAC

LD1118 ccaggcaaattctgttttatcagaccgcttctgcgttctgatTCTTCAGGTTCTCGCGGTAG pLD1966

LD1119 aagtgccagtaccaactggcGCAGATCCAGAAGATGGTCA

LD1120 tgaccatcttctggatctgcGCCAGTTGGTACTGGCACTT

LD1121 ggaattgtgagcggataacaatttcacacaggaaacagctATCGCGAGACTCATGGT
TTT
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Table 3.2 (continued): Primers used in this study

primer 
number sequence used to make 

plasmid number
LD1134 ccaggcaaattctgttttatcagaccgcttctgcgttctgatCGCTGCTTGTCGATCTGTT pLD1967

LD1135 gcgacatgaccctgttcaacCTGACCGGCTACTGGACC

LD1136 ggtccagtagccggtcagGTTGAACAGGGTCATGTCGC

LD1137 ggaattgtgagcggataacaatttcacacaggaaacagctCCTCGGCGACCATGAATAC

LD1126 ccaggcaaattctgttttatcagaccgcttctgcgttctgatTTCAGGTTCTTCGGGTTCTC pLD2044

LD1187 aacagcgcgccgaccagcatCTCTTCGTTCGTTTTCAGCC

LD1188 ggctgaaaacgaacgaagagATGCTGGTCGGCGCGCTGTT

LD1189 ggaattgtgagcggataacaatttcacacaggaaacagctGCGTTGATGAAGCGGAT
AAC

LD2247 gattcgactgcactagtCTCGCCTTGCGGCTGGATGG pLD2958

LD2248 gattcgactgcctcgagTCGGGTTCCCCTTATCGTTG

LD2249 gattcgactgcactagtAAGCCCTACTTTATCTATG pLD2959

LD2250 gattcgactatctcgagCTTCCGGCCTTAATCGATG

LD2251 gattcgactgcactagtCGCGGCGCTGGCGGAAACG pLD2960

LD2252 gattcgactgcctcgaGGCAACTCCTCTTCAGGTTC

LD2120 gattcgacatcactagtACGCCCAGCTCCAACAAA pLD2777

LD2121 gattcgatgccctcgaGCTAGGGGTTCCACGGTTAAT

LD2122 gattcgactgcactagtCATCGACTTGCCGCCCAG pLD2778

LD2123 gattcgatgccctcgaGCTATGGGCTTCCATCCAC
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Table 3.3: Plasmids used in this study 
plasmid description source

pMQ30 7.5 kb mobilizable vector; oriT, sacB, GmR. Shanks et al., 2006

pLD2722 GmR, TetR flanked by Flp recombinase target (FRT) sites to 
resolve out resistance casettes.

Jo et al., 2017

pFLP2 Flp recombinase-producing plasmid Hoang et al., 1998.

pLD1929 ∆cco1 cco2 PCR fragment introduced into pMQ30 by gap 
repair cloning in yeast strain InvSc1.

Jo et al., 2017

pLD1966 ∆aa3 PCR fragment introduced into pMQ30 by gap repair 
cloning in yeast strain InvSc1.

this study

pLD1967 ∆bo3 PCR fragment introduced into pMQ30 by gap repair 
cloning in yeast strain InvSc1.

this study

pLD2044 ∆cio PCR fragment introduced into pMQ30 by gap repair 
cloning in yeast strain InvSc1.

this study

pLD2958 PCR-amplified aa3 promoter ligated into pLD2722 using SpeI 
and XhoI.

this study

pLD2959 PCR-amplified bo3 promoter ligated into pLD2722 using SpeI 
and XhoI.

this study

pLD2960 PCR-amplified cio promoter ligated into pLD2722 using SpeI 
and XhoI.

this study

pLD2777 PCR-amplified cco1 promoter ligated into pLD2722 using 
SpeI and XhoI.

Jo et al., 2017

pLD2778 PCR-amplified cco2 promoter ligated into pLD2722 using 
SpeI and XhoI.

Jo et al., 2017
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3.7: Figure supplements 
 

carbon source mode of action carbon source mode of action

1,2-propanediol C-Source, alcohol glycyl-L-glutamic acid C-Source, amino acid

2-deoxyadenosine C-Source, carbohydrate glyoxylic acid C-Source, carboxylic acid

acetoacetic acid C-Source, carboxylic acid L-alanyl-glycine C-Source, amino acid

adenosine C-Source, carbohydrate L-arabinose C-Source, carbohydrate

adonitol C-Source, carbohydrate L-fucose C-Source, carbohydrate

D-aspartic acid C-Source, amino acid L-galactonic acid-γ-
lactone

C-Source, carboxylic acid

D-cellobiose C-Source, carbohydrate L-lyxose C-Source, carbohydrate

D-fructose-6-phosphate C-Source, carbohydrate L-serine C-Source, amino acid

D-galactonic acid-γ-lactone C-Source, carboxylic acid L-threonine C-Source, amino acid

D-galactose C-Source, carbohydrate lactulose C-Source, carbohydrate

D-galacturonic acid C-Source, carboxylic acid m-hydroxyphenyl-acetic 
acid

C-Source, carboxylic acid

D-glucosaminic acid C-Source, carboxylic acid m-inositol C-Source, carbohydrate

D-glucose-1-phosphate C-Source, carbohydrate m-tartaric acid C-Source, carboxylic acid

D-glucose-6-phosphate C-Source, carbohydrate maltose C-Source, carbohydrate

D-glucuronic acid C-Source, carboxylic acid maltotriose C-Source, carbohydrate

D-mannose C-Source, carbohydrate monomethylsuccinate C-Source, carboxylic acid

D-melibiose C-Source, carbohydrate mucic acid C-Source, carboxylic acid

D-psicose C-Source, carbohydrate N-acetyl-β-D-
mannosamine

C-Source, carbohydrate

D-ribose C-Source, carbohydrate phenylethylamine C-Source, amine

D-saccharinic acid C-Source, carboxylic acid sucrose C-Source, carbohydrate

D-serine C-Source, amino acid thymidine C-Source, carbohydrate

D-threonine C-Source, amino acid tricarballylic acid C-Source, carboxylic acid

D-trehalose C-Source, carbohydrate uridine C-Source, carbohydrate

D-xylose C-Source, carbohydrate α-D-lactose C-Source, carbohydrate

dulcitol C-Source, carbohydrate α-hydroxy-butyric acid C-Source, carboxylic acid

formic acid C-Source, carboxylic acid α-hydroxy-glutaric acid-γ-
lactone

C-Source, carboxylic acid

glucuronamide C-Source, amide α-ketobutyric acid C-Source, carboxylic acid

glycolic acid C-Source, carboxylic acid α-methyl-D-galactoside C-Source, carbohydrate

glycyl-L-aspartic acid C-Source, amino acid β-methyl-D-glucoside C-Source, carbohydrate

Figure 3.1–figure supplement 1. Carbon sources that do not support growth of PA14. The 58 
carbon sources (and their modes of action as designated by Biolog, Inc.) in the phenotype microarray 
plate that did not support growth of PA14 strains.
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Figure 3.2–figure supplement 1. Growth profiles of carbon sources of interest. Growth 
curves (absorbance at 500 nm) over time of carbon sources in group 3 (A), group 4 (B), and 
glucose and succinate (C) in the presence (top, closed circles) and absence (bottom, open 
circles) of phenazines. Data represent the average of two biological replicates.  
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Figure 3.3–figure supplement 1. PA14 growth in MOPS + 30 mM succinate. Growth 
curves of PA14 strains in MOPS defined medium with 30 mM succinate. Data represent 
the mean values of at least three biological replicates, and error bars denote standard 
deviation. 

Figure 3.5–figure supplement 1. Phenazine production in three-day-old biofilms. 
Quantification of phenazines retained in three-day old WT biofilms. Individual data 
points represent biological replicates, and bars indicate the mean. Error bars denote 
standard deviation. PCA, phenazine-1-carboxylic acid; PCN, phenazine-1-carboxamide; 
PYO, pyocyanin.
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Chapter 4 

Other pathways of energy generation in Pseudomonas aeruginosa  
and the contribution of redox state to biofilm formation in Bacillus subtilis 

In the preceding chapters, I have discussed projects for which I was the primary contributor. The 
main metabolic pathways considered in those chapters involved the oxidation of a carbon 
source via aerobic respiration. This chapter represents a collection of papers to which I 
contributed as a co-author through various collaborations. I have distilled each paper into its 
main points, including experiments that I performed.  

Here, I will discuss some alternative pathways of energy generation carried out by P. 
aeruginosa, starting with two alternative fates of pyruvate. During aerobic respiration, pyruvate 
is oxidized to acetyl-CoA at the end of the Entner-Doudoroff pathway. At this point, it will enter 
the TCA cycle and its oxidation (ultimately to CO2) will be coupled to energy generation via the 
ETC. However, under different environmental conditions and nutrient availabilities, pyruvate can 
be reduced to lactate or carboxylated to oxaloacetate. I will discuss each of these fates, in the 
context of my collaborations, in turn. I will then discuss research elucidating the role of a 
metabolic enzyme originally believed to mediate the carboxylation of pyruvate to oxaloacetate. 
Finally, I will conclude with a project that demonstrates a role for redox state in driving biofilm 
development in another bacterium, Bacillus subtilis. 

The figures presented in this chapter were modified from their respective articles with the 
exception of Figures 4.11 (modified from Okegbe et al., 2014) and 4.12 (my unpublished data). 
Materials and methods relevant to the points discussed in this chapter are adapted from their 
respective articles, with minor revisions. 

4:1: The Pseudomonas aeruginosa complement of lactate dehydrogenases contributes 

to growth in CF lung-like environments 

This section is adapted from: 

Lin, YC, Cornell, WC, Jo, J, Price-Whelan, A, Dietrich, LEP (2018). The Pseudomonas 
aeruginosa complement of lactate dehydrogenases enables use of D- and L-lactate and 
metabolic cross-feeding. mBio 9, e00961-18. 

I performed the growth assays in the various synthetic CF media (Figure 4.4) and the data 
analysis and interpretation for those experiments.  

 In addition to being able to produce energy via oxygen or nitrate respiration, P. 

aeruginosa is also capable of fermenting arginine or pyruvate when it encounters anoxic 

conditions (Figure 1.6). Arginine fermentation provides enough ATP to allow for growth while 

pyruvate fermentation is less efficient, allowing for anaerobic survival but not growth (Shoesmith 

and Sherris 1960; Vander Wauven et al. 1984; Williams, Zlosnik, and Ryall 2007). The P. 

aeruginosa genome encodes four enzymes annotated to be involved in the conversion between 

lactate and pyruvate. LdhA reduces pyruvate to the D-enantiomer of lactate (D-lactate) while 
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LldE mediates the reverse reaction (conversion of D-lactate to pyruvate). P. aeruginosa also 

encodes LldD, an enzyme that converts L-lactate to pyruvate, as well as an additional, less-

characterized enzyme LldA, which is 44% identical to LldD. lldD and lldE are co-transcribed in 

the same operon along with another gene encoding a lactate permease (lldP) while lldA is found 

elsewhere in the genome, not in an operon (Figure 4.1). That P. aeruginosa has two enzymes 

for L-lactate metabolism is interesting in light of the facts that (1) this bacterium does not 

produce L-lactate and (2) L-lactate is mostly a byproduct of plant and mammalian metabolism 

(Petersen 2005; Maurino and Engqvist 2015). We therefore hypothesized that LldA functions 

redundantly with LldD as an L-lactate dehydrogenase, and that together these enzymes would 

contribute to P. aeruginosa survival in a host. 

 In order to characterize the conditions under which the different lactate metabolism 

genes are expressed, we created reporter constructs that fused the promoters of lldPDE and 

lldA to gfp. We then grew these reporters planktonically in a defined MOPS-buffered medium 

with D-glucose, L-lactate, or D-lactate as the sole carbon source (Figure 4.2). We saw a quick 

and strong expression of lldPDE-gfp in both D- and L-lactate starting from early stages of 

growth, as expected, and a low level of expression in D-glucose starting later in growth. The 

latter was most likely lldPDE-gfp expression in response to production of D-lactate at later 

Figure 4.1. The P. aeruginosa genome encodes several enzymes that interconvert 
pyruvate and lactate. (Left) Reactions catalyzed by P. aeruginosa’s lactate 
dehydrogenases; (right) chromosomal loci encoding each of the corresponding 
enzymes. LdhA catalyzes the reduction of pyruvate during anaerobic survival. LldE 
catalyzes the oxidation of D-lactate during aerobic growth. Unlike E. coli, which 
contains only one gene encoding an L-lactate dehydrogenase, P. aeruginosa contains 
two orthologues for this enzyme. LldD catalyzes the oxidation of L-lactate during 
aerobic growth. This study describes a role for LldA in catalyzing the oxidation of L-
lactate during aerobic growth.
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stages of growth (Figure 4.2). lldA-gfp expression, on the other hand, was more gradual and 

only seen in response to L-lactate, consistent with the hypothesis that LldA specifically oxidizes 

L-lactate to pyruvate. 

 To then assess the physiological contributions of lldD, lldE, and lldA to P. aeruginosa 

growth, we generated deletion mutants of lldDE and lldA and characterized the development of 

the resulting colony biofilms on different carbon sources. Mutants grown with D-glucose as the 

sole carbon source showed biofilm development indistinguishable from that of the WT (Figure 

4.3). Indeed, ∆lldA showed WT-like growth in all carbon sources tested, including L- and D-

lactate, indicating that LldA alone is not necessary for metabolism of either lactate enantiomer. 

When ∆lldDE was grown on D-lactate, colony biofilms exhibited a severe growth defect with 

almost no growth, consistent with previous reports that LldE is likely solely responsible for D-

lactate metabolism (Gao et al. 2012). When ∆lldDE was grown on L-lactate, the resulting 

colonies were able to grow robustly, but displayed more wrinkled biofilms that bound more 

Congo red dye relative to the WT (Figure 4.3), features we have previously shown to be 

indicative of redox stress in biofilms (Dietrich et al. 2008, 2013). This phenotype indicated that 

LldD participates in L-lactate utilization, but that it is likely working in conjunction with another 

enzyme whose presence allows ∆lldDE to grow on L-lactate. Strikingly, while ∆lldA showed WT-

like biofilm development on L-lactate, the ∆lldDE∆lldA double mutant produced biofilms that 

Figure 4.2. Expression of loci associated with pyruvate and lactate metabolism 
during aerobic, liquid-culture growth. Strains engineered to express GFP under the 
control of promoters upstream of lldP (which is cotranscribed with lldD and lldE) or lldA 
were grown in MOPS medium, with the indicated compounds provided as sole carbon 
sources. Background fluorescence from a strain with a promoterless reporter (MCS-gfp) 
was subtracted before normalization to the OD at 500 nm. Error bars, which are often 
obscured by the point markers, represent the standard deviations from biological 
triplicates. AU, arbitrary units.
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were unable to grow on this carbon source (Figure 4.3). These results suggest that LldA 

functions redundantly with LldD in L-lactate metabolism.  

 As previously mentioned, it is noteworthy that P. aeruginosa has two enzymes for the 

conversion of L-lactate to pyruvate when it itself does not produce L-lactate as a metabolic 

byproduct. Furthermore, the redundant role we described for LldA in biofilm formation on L-

lactate was in contrast to previous reports in another pseudomonad, P. stutzeri, which showed 

that the lldDE operon alone is required for growth on L-lactate (Gao et al. 2012). These 

observations led us to hypothesize that the presence of a redundant gene for L-lactate 

utilization in P. aeruginosa contributes to its success as a human pathogen.  

 To further explore the possibility that lldA contributes to P. aeruginosa growth in a 

pathogenic context, we grew our mutants in a variety of synthetic CF media designed to mimic 

sputum from CF patients (Palmer, Aye, and Whiteley 2007; Fung et al. 2010; Turner et al. 2015). 

Nutrient conditions found in CF sputum are markedly different from those found in sputum from 

healthy individuals. Healthy sputum is a mixture of water, salts, mucins, and surfactants; in CF 

patients, the levels of these ingredients are altered, and additional molecules not found in 

healthy sputum are detected. Specifically, CF sputum contains higher amounts of free amino 

Figure 4.3. Physiological roles of enzymes that interconvert pyruvate and lactate 
during biofilm growth. Growth and morphological development of the indicated strains 
under an oxic atmosphere on MOPS medium containing the dyes Congo red and 
Coomassie blue and amended with D-glucose, L-lactate, or D-lactate. Images were 
taken after 4 days of incubation. WT, wild type.
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acids, DNA, iron, and lactate. Lactate has been measured in millimolar concentrations ranging 

from 3-14.1 mM and the presence of it in CF sputum correlates to lung inflammation (Conway 

and Cohen 2015). We tested the growth of ∆lldDE∆lldA in three kinds of synthetic CF media: (1) 

synthetic CF medium (SCFM, a defined mixture of ions, amino acids, iron, and carbon sources; 

(Palmer, Aye, and Whiteley 2007)), (2) ASMDM (modified artificial sputum medium, similar to 

SCFM but also containing bovine serum albumin, mucin, and herring sperm DNA; (Fung et al. 

2010)), and (3) SCFM2, which is similar to ASMDM but also contains the large molecules N-

acetyl-D-glucosamine and dipalmitoylphosphatidylcholine (Turner et al. 2015).  

 Compared to WT P. aeruginosa, the ∆lldDE∆lldA mutant had about 10% less growth in 

SCFM, with the growth defect starting after cells were in stationary phase (Figure 4.4A). The 

mutant also had a stationary growth defect compared to the WT in ASMDM (Figure 4.4B) and 

SCFM2 (Figure 4.4C), but in the former, ∆lldDE∆lldA showed slower growth starting in 

exponential phase. Together, these data indicate that the lactate dehydrogenases contribute to 

growth in media that are similar in makeup to the sputum found in CF patients. That the 

∆lldDE∆lldA mutant displayed growth defects relative to the WT in all three synthetic media 

tested also suggests that these enzymes may contribute to the virulence of P. aeruginosa in the 

CF lung. 

Figure 4.4. PA14 utilizes the L-lactate in various synthetic cystic fibrosis sputum media 
for growth. Growth of the indicated strains in SCFM (A), ASMDM (B), and SCFM2 (C). Error 
bars represent the standard deviations from at least four biological replicates and are omitted in 
cases where they would be obscured by point markers. Dashed lines indicate onset of 
stationary phase. In panel (B), ∆lldDE ∆lldA reaches stationary phase at a later time point than 
the other two strains; its onset of stationary phase is delineated by the red dashed line while the 
onset of stationary phase for the other two strains is indicated by the black dashed line.
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 Lactate is a major component of the CF sputum (Palmer, Aye, and Whiteley 2007), and 

while P. aeruginosa can convert pyruvate into D-lactate, the L-enantiomer is produced by 

eukaryotes rather than bacteria (Starkey and Rahme 2009; Lorenz et al. 2016; Winsor et al. 

2016). Therefore, the presence of a gene for L-lactate utilization is likely tied to P. aeruginosa’s 

prevalence as a plant and human pathogen. Furthermore, the presence of lldA, a redundant 

gene for L-lactate utilization, may allow this bacterium to more efficiently metabolize this carbon 

source when colonizing a eukaryotic host. In support of this hypothesis are our results in Figure 

4.4, which demonstrate that LldD and LldA cooperatively contribute to optimal growth in media 

that mimic the nutrient conditions of CF sputum. While the majority of pseudomonad species 

contain either the LldD or LldA enzymes for L-lactate utilization, P. aeruginosa contains both (Lin 

et al. 2018); together, these two enzymes may endow this bacterium to more successfully 

colonize and persist in CF lung environments. 

4:2: Pyruvate carboxylation affects Pseudomonas aeruginosa biofilm morphogenesis 

This section is adapted from: 

Choi, PH, Jo, J, Lin, YC, Lin, MH, Chou, CY, Dietrich, LE, Tong, L (2016). A distinct holoenzyme 
organization for two-subunit pyruvate carboxylase. Nat Commun 7, 12713. 

The work presented in this section resulted from a collaboration with the Tong lab at Columbia 
University. I generated all of the Pseudomonas aeruginosa mutant and complementation strains 
discussed in this section and conducted initial liquid culture and colony biofilm growth assays. I 
also contributed to the data analysis and interpretation of the work pertaining to P. aeruginosa 
and the role of pyruvate carboxylase in biofilm morphogenesis and redox balancing. 

 Pyruvate, in addition to being oxidized to acetyl-CoA and reduced to lactate, can be 

carboxylated to oxaloacetate, an intermediate of the TCA cycle. Pyruvate carboxylase (PC) is 

the enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate, thereby functioning in 

anaplerosis of the TCA cycle. When P. aeruginosa grows on organic acids (such as succinate) 

or amino acids (which are plentiful in a complex carbon source like tryptone), it is able to 
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synthesize oxaloacetate easily from these compounds. However, when it is grown on a sugar 

(i.e., glucose), PC activity is necessary for oxaloacetate replenishment. 

 Through a collaboration with the Tong lab at Columbia University, we were able to gain 

more insight into the structure and function of PC (PA14_71720-71740), a member of the biotin-

dependent carboxylase family, which also includes acetyl-CoA carboxylase (ACC) and 

propionyl-CoA carboxylase (PCC) (Tong 2013). Reactions mediated by biotin-dependent 

carboxylases function in two steps: first, the enzyme carboxylates its biotin cofactor and then 

this carboxyl group is transferred from the biotin to the substrate (Tong 2013; Tran et al. 2015). 

These enzymes contain three core domains: the biotin carboxylase (BC) domain, the 

carboxyltransferase (CT) domain, and the biotin carboxyl carrier protein (BCCP) domain. The 

biotin cofactor interacts with the carboxylase enzyme at the BCCP domain and is carboxylated 

by the BC domain. The CT domain mediates the transfer of the carboxyl group to the enzyme’s 

substrate.  

 In pyruvate carboxylases of eukaryotes and most bacteria, these domains are found 

within one polypeptide chain and are therefore called “single-chain” PCs. However, in a subset 

of Gram-negative bacteria, including Methylobacillus flagellatus and P. aeruginosa, the domains 

are encoded by two genes, the ɑ and β subunits (Figure 4.5A), and are accordingly classified 

as two-subunit enzymes. In these enzymes, the ɑ subunit contains the BC domain while the β 

subunit contains the CT and BCCP domains. 

 The structures of single-chain PCs had been previously reported and showed that the 

holoenzyme consists of four PC monomers forming a two-layered homotetramer (St Maurice et 

al. 2007; Xiang and Tong 2008); Figure 4.5B). Each layer contains two PC monomers and 

previous structural insights have indicated that PC will only be catalytically active in the 

tetrameric form; the tetramerization of PC is mediated by the PC tetramerization (PT) domain 

(Tong 2013). This is because the BCCP-biotin is carboxylated by the BC domain of one 

monomer and then transfers the CO2 to a pyruvate molecule in the CT domain of another 

monomer in the same layer, hence making both monomers necessary for pyruvate 
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carboxylation. However, the conformation of these two monomers is only stable when the 

enzyme forms a tetramer, as two monomers in the same layer have minimal interactions with 

one another. 

 

 Based on these details, the structure of the two-subunit PCs were expected to show an 

ɑ4β4 stoichiometry, which would correspond to the homotetrameric organization of single-chain 

PCs previously shown to be important for catalytic activity. Surprisingly, the structure of M. 

flagellatus PC (MfPC), the first reported for a holoenzyme of a two-subunit PC, revealed an ɑ2β4 

stoichiometry and an overall divergent structure from the single-chain PCs (Figure 4.6).  

 The region corresponding to the PT domain of MfPC showed a less than 10% sequence 

identity to the PT domain of single-chain PCs. The ɑ and β subunits of MfPC interact through a 

helix at the C terminal end of an ɑ subunit making contact with a region in the CT-BCCP linker 

Figure 4.5. Organization of single-chain and two-subunit pyruvate carboxylases. 
(A) Domain organization of Staphylococcus aureus pyruvate carboxylase (SaPC), a 
representative single-chain PC, and Methylobacillus flagellatus PC, a representative 
two-subunit PC. (B) Schematic drawing of the structure of the single-chain SaPC 
holoenzyme (Xiang and Tong, 2008). The domains in the four monomers are labeled 
and colored according to (A). 
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of a β subunit (Figure 4.6); this interaction corresponds to that mediated through the PT domain 

of single-chain PCs. Furthermore, the structure of the two-subunit MfPC revealed novel 

interactions between a CT domain (in a β subunit) and the aforementioned helix (in an ɑ 

subunit). This interaction led to the formation of a new, “BT-like” domain (Figure 4.6, “BT-L” in 

orange) that resembles the BT domains (which mediate the interaction between BC and CT 

domains) found in ACCs and PCCs. This BT-like domain is very likely the driving force behind 

the ɑ2β4 stoichiometry seen in the two-subunit PCs, which, based on sequence homologies, is 

expected to be conserved among all bacterial two-subunit PCs.  

 ACCs also contain BC, CT, and BCCP domains; however, this helix domain is not found 

in the BC subunit. The presence of this domain has been the source of some confusion, leading 

to P. aeruginosa’s ACC and PC to originally be misannotated (Stover et al. 2000). Through the 

in vivo studies described next and another collaboration with the Tong Lab (to be discussed in 

section 4.3 below), we were able to clarify the functions of these two enzymes in P. aeruginosa. 

 Because the identity of P. aeruginosa’s ACC and PC were somewhat nebulous, and 

because P. aeruginosa PC (PaPC) represents another two-subunit PC, we then conducted 

Figure 4.6. Structure of MfPC holoenzyme. (A) 
Structure of the wild-type MfPC holoenzyme, 
having the shape of a butterfly in this view. The 
domains are colored according to Figure 4.5A, 
except that the BC domain of the second subunit 
is colored in pink. BT-L, BT-like domain. (B) 
Structure of the wild-type MfPC holoenzyme 
viewed down the BC domain dimer, along the 
arrow of A.
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functional studies to investigate the physiological role of PaPC. PaPC has high sequence 

identity with MfPC, and in vitro biochemical assays predict it to also have an ɑ2β4 stoichiometry. 

In order to study the contribution of this enzyme to P. aeruginosa growth, we generated a 

mutant lacking this enzyme (∆PC) as well as point mutants for some key residues identified 

through the MfPC structure. The point mutants generated were: K451stop (K451*) in the ɑ 

subunit, which would disrupt holoenzyme formation, K572A in the β subunit, which would 

eliminate biotinylation, and A55T in the β subunit, which would interfere with biotin binding to the 

CT domain and predicted to reduce PC activity by ~50-fold. We also generated a 

complementation strain that complemented WT PC back into the site of deletion. 

 In agreement with known contributions of PaPC to P. aeruginosa growth on specific 

carbon sources, ∆PC and all point mutants grew comparably to the WT when grown on 

succinate as a sole carbon source. However, when glucose or pyruvate was the sole carbon 

source, ∆PC showed a significant growth defect in liquid culture relative to the WT (Figure 

4.7A), indicative of a stalled TCA cycle resulting from a depletion of oxaloacetate. In glucose, 

growth of K451* and K572A recapitulated that of ∆PC, while A55T showed a less severe growth 

defect than the full deletion. In pyruvate, K451* and K572A again phenocopied ∆PC, while A55T 

displayed WT-like growth. These results confirmed that the A55T point mutation was not as 

deleterious to enzyme activity as the other two point mutations as expected. 

 We then extended these physiological studies to biofilms by looking at pellicle and 

colony formation. Pellicles are biofilms that form from static liquid cultures at the liquid-air 

interface. When pellicles or colonies were grown on succinate, the ∆PC mutant, as expected, 

looked like the WT. However, when biofilms were grown on either glucose or pyruvate as the 

sole carbon source, the ∆PC mutant conferred a strong growth defect, reflective of what was 

observed in liquid culture (Figure 4.7B, C).  

 After assessing  the contribution of PC to biofilm growth on a single carbon source, we 

next tested 1% tryptone, a complex, rich medium. When WT biofilms are grown on tryptone, 

they remain relatively smooth until day three of development, when they begin to wrinkle 
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(Figure 4.8A). The onset of wrinkling has previously been shown to correspond to an increase 

in intracellular redox stress, which is alleviated by increased surface exposure to O2 (Dietrich et 

al. 2013). Compared to the WT, ∆PC mutant biofilms displayed morphologies indicative of 

increased redox stress: they wrinkled earlier and formed thinner biofilms with higher wrinkle 

structures (Figure 4.8A). Of the point mutants generated, only the K572A mutant phenocopied 

the ∆PC mutant.  

Figure 4.7. The two-subunit PaPC is required for growth on selected carbon sources. (A) 
Shaken liquid-culture growth of wild-type P. aeruginosa PA14, ∆PC, the PC-complemented 
strain and various site-specific mutants in a defined medium containing 20 mM succinate, 
pyruvate, or glucose as the sole carbon source. Each growth curve represents the average of 
three biological replicates. Error bars denote standard deviation. (B) Pellicles formed by P. 
aeruginosa PA14, ∆PC, and the PC-complemented strain on a defined medium containing 
succinate, pyruvate, or glucose as the sole carbon source. (C) Colony morphology of P. 
aeruginosa PA14, ∆PC, and the PC-complemented strain on a defined medium (supplemented 
with 1% agar, Congo red, and Coomassie blue) containing succinate, pyruvate, or glucose as 
the sole carbon source. Images depict day three of colony development. Scale bar is 1 cm.
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 As matrix production is necessary for the formation of biofilms structures, we 

hypothesized that the ∆PC mutant would have increased matrix production relative to the WT. 

To this end, we measured matrix production by quantifying Pel, a major component of PA14 

matrix. Pel is a cationic polysaccharide that binds to the anionic dye Congo red, so the 

proportion of bound Congo red dye is directly proportional to matrix production. We found that 

∆PC biofilms formed on tryptone bound significantly higher levels of Congo red than the WT 

(Figure 4.8B). Consistent with our tryptone biofilm morphology results, we saw that only the 

Figure 4.8. PaPC dysfunction leads to increased matrix production and altered colony 
morphology. (A) Colony morphology of wild-type P. aeruginosa PA14, ∆PC, the PC-
complemented strain, and the K572A mutant on 1% tryptone, 1% agar (supplemented with 
Congo red and Coomassie blue). Scale bar is 1 cm. (B) Quantification of Congo red binding, a 
proxy for matrix production, for P. aeruginosa PA14, ∆PC, the PC-complemented strain, and 
various site-specific mutants grown on 1% tryptone, 1% agar with no added dyes. Colonies 
were grown for 3 days before they were collected for the Congo red binding assay. (C) Shaken 
liquid-culture growth of P. aeruginosa PA14, ∆PC, the PC-complemented strain, and various 
site-specific mutants in 1% tryptone. Each growth curve represents the average of three 
biological replicates. Error bars denote standard deviation.
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K572A point mutant showed increased matrix production relative to the WT, while A55T and 

K451* produced WT levels of matrix.  

 Surprisingly, we found that the ∆PC-mediated growth phenotypes on tryptone were 

biofilm-specific: when we grew all strains planktonically, we saw that ∆PC and all of the point 

mutants grew like the WT (Figure 4.8C). This indicates that the function of PC on a complex 

medium is more linked to growth in a biofilm context than it is in liquid culture, another indication 

that growth in the liquid and biofilm contexts are quite divergent and illustrating how P. 

aeruginosa may switch its metabolism in response to its mode of growth. The biofilm-specific 

phenotype of the PC deletion mutant on a complex medium corresponds to increased redox 

stress as indicated by colony morphology and Congo red binding assays. Additionally, ∆PC 

showed abrogated growth on glucose and no growth on pyruvate, two carbon sources that are 

found in CF sputum (Palmer, Aye, and Whiteley 2007; Bensel et al. 2011). Together, these 

results indicate that PC’s expected anaplerotic role does indeed sustain TCA cycle function and 

participates in redox balancing in biofilms; both of these functions may have important 

contributions to P. aeruginosa as a clinically-relevant pathogen. 

4.3: Structure and function of a single-chain, multi-domain long-chain acyl-CoA 

carboxylase 

This section is adapted from: 

Tran, TH, Hsiao, YS, Jo, J, Chou, CY, Dietrich, LE, Walz, T, Tong, L (2015). Structure and 
function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature 518, 120-124. 

The work presented in this section resulted from another collaboration with the Tong Lab at 
Columbia University. I generated the Pseudomonas aeruginosa ∆LCC mutant strain and 
contributed to data analysis and interpretation of the experiments performed in P. aeruginosa. 

 In collaboration with the Tong lab, we studied the function of P. aeruginosa’s acetyl-CoA-

carboxylase, or ACC. While eukaryotic ACCs are single-chain, multi-domain enzymes, those 

found in bacteria have been shown to be multi-subunit enzymes. ACCs catalyze the 

carboxylation of acetyl-CoA to malonyl-CoA, which is then used as a precursor of fatty acid 
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biosynthesis (Kutchma, Hoang, and Schweizer 1999). In Tran et al., 2015, the structure of ACC 

from Mycobacterium avium subspecies paratuberculosis was solved and shown to be a single-

chain, multi-domain enzyme (Figure 4.9A). A homolog of this enzyme is found in P. aeruginosa 

but had been previously mis-annotated to be a pyruvate carboxylase (Stover et al. 2000) and 

later shown to be an acetyl-CoA carboxylase (Lai et al. 2006). Biochemical assays performed 

within the scope of our study confirmed that this enzyme did not possess PC activity but instead 

showed activity toward a variety of acyl-CoAs, including acetyl-CoA and propionyl-CoA, but 

showed a preference for long-chain substrates, leading this group of enzymes to be named 

long-chain acyl-CoA carboxylases (or LCCs) (Tran et al. 2015).  

 The structure of ACC from M. avium subspecies paratuberculosis (MapLCC) showed its 

holoenzyme to be a homohexamer (Figure 4.9B). Each monomer contained BC, BCCP, and CT 

domains as expected and the monomers within the holoenzyme have significant interactions 

with each other (these interactions include van der Waals and ionic interactions and hydrogen 

bonding). In contrast to other ACCs, the BC-CT (BT) interaction domain is not found in MapLCC 

and the BCCP domain of LCC is found in the middle of the peptide rather than at the end of the 

polypeptide chain (Figure 4.9A). As a result, there are two linkers from the BCCP domain to the 

rest of the protein, making this region very flexible during catalysis, allowing for optimal contact 

between the biotin and the BC and CT domains, resulting in good catalytic activity (Tong 2013). 

Figure 4.9. Structure of LCC from M. avium 
subspecies paratuberculosis. (A) Domain 
organization of MapLCC, with the domains 
labeled. (B) Overall structure of the 720 kDa 
hexameric holoenzyme of MapLCC. The six 
monomers are labeled. The domains in the three 
monomers in the top layer (numbered 1, 2, 3) are 
colored as in A. The BC, BCCP, N, and C CT 
domains in the three monomers in the bottom layer 
(numbered 4, 5, and 6) are colored pink, pale blue, 
and pale cyan, and pale yellow, respectively. The 
disordered region of the BCCP-CT linker is 
indicated with a dashed line.The BC active sites 
are indicated with asterisks. The CT active sites 
are on the side of the CT domain core and 
indicated with black arrows.
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 To further study the physiological role of this enzyme, we generated a deletion mutant for 

its ortholog in P. aeruginosa (PA14_46320; the resulting deletion strain will be referred to as 

∆LCC) and evaluated its growth under ~ 2,000 conditions using Biolog phenotype microarrays. 

Some of the conditions tested included growth on various carbon and nitrogen sources and 

exposure to different antibiotics. Growth was measured as a function of the chemical reduction 

of a tetrazolium dye that undergoes a color change upon a change in redox state. Overall, 

∆LCC in P. aeruginosa was similar to the reference WT PA14 strain in most conditions tested. 

Only a few conditions elicited different growth profiles between WT and ∆LCC. These were 

growth in the carbon sources fumarate and gly-pro (a dipeptide) and in the dipeptide nitrogen 

sources asp-phe, glu-val, met-asp, and met-val (Figure 4.10). Only the results on fumarate and 

met-val were considered significant. On met-val, the ∆LCC mutant had a growth defect relative 

to the WT while on fumarate, the mutant grew significantly better than the WT. 

 The metabolism of methionine and valine both lead to the production of propionyl-CoA 

(Tran et al. 2015). It is possible that the activity of LCC toward propionyl-CoA, which was 

demonstrated in this work, contributes to further degradation of propionyl-CoA, a hypothesis 

Figure 4.10. In vivo function of P. aeruginosa LCC. Phenotypic differences between 
wild type and LCC knockout (∆PA14_46320) P. aeruginosa PA14 strains, revealed by a 
colorimetric assay that monitors the reduction of a tetrazolium dye. Assays were 
performed twice in each medium for the wild-type (red and orange) and mutant (blue 
and cyan) strains. For each panel, the horizontal axis is time (24 h) and the vertical axis 
is OmniLog signal, indicating levels of dye reduction (Shea et al., 2012).
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supported by the fact that P. aeruginosa does not encode a dedicated PCC (Tran et al. 2015). 

Propionyl-CoA can also be converted to succinyl-CoA, an important TCA cycle intermediate 

whose oxidation is linked directly to the reduction of the quinone pool (Williams, Zlosnik, and 

Ryall 2007). Therefore, met-val metabolism may ultimately lead to anaplerosis of succinate in 

the TCA cycle and the growth defect of ∆LCC seen on met-val may be indicative of succinate 

depletion, leading to a stalled TCA cycle. Interestingly, the oxidation of succinate leads to the 

production of fumarate, the only other nutrient source in which the ∆LCC showed a significant 

phenotype. In the case of fumarate, the mutant grows better than WT, which would be 

consistent with the provision of fumarate allowing the mutant to bypass its succinate deficiency 

and thus restoring growth to levels surpassing those of  WT.  

Figure 4.11. Architecturally complex biofilms are formed by diverse microbial species. (A) 
Candida albicans, a eukaryotic fungus (D. Morales and D. Hogan). (B) Saccharomyces cerevisiae SK1 
(C. Sison, B. Miller, L. Dietrich).  (C) Escherichia coli K-12 derivative AR3110 (S. Herbst and R. 
Hengge). (D) Bacillus subtilis NCIB3610 (J. Jo and L. Dietrich). (E) Pseudomonas oryzihabitans, 
isolated from a bench in Riverside Park, NY (S. Jordan and L. Dietrich). (F) Pseudomonas aeruginosa 
PA14 (J. Jo and L. Dietrich). 
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4:4: Redox state contributes to biofilm physiology in Bacillus subtilis 

This section is adapted from: 

Arnaouteli, S, Ferreira AS, Schorb, M, Morris, RJ, Bromley, KM, Jo, J, Cortez, KL, Sukhodub, T, 
Prescott, AR, Dietrich LEP, MacPhee, CE, Stanley-Wall, NR (2017). Binfunctionality of a biofilm 
matrix protein controlled by redox state. PNAS 114, E6184-6191. 

The work presented in this section resulted from a collaboration with the Stanley-Wall Lab at the 
University of Dundee. I generated the oxygen and redox microprofiling data (Figure 4.15) and 
contributed to the data analysis and interpretation of those results. 

 My thesis work has been focused on studying the mechanisms that underlie biofilm 

formation in P. aeruginosa. However, the ability to form biofilms is a quality shared by many 

divergent bacteria and even single-celled eukaryotes such as Saccharomyces cerevisiae 

(Figure 4.11; Okegbe et al., 2014).  All these biofilms share key characteristics: they are 

multicellular assemblages encased within a self-produced matrix that face challenges arising 

from the formation of nutrient gradients. Here, I will discuss the work I did in collaboration with 

the Stanley-Wall Lab at the University of Dundee to further elucidate how redox state drives 

biofilm formation in Bacillus subtilis. 

 B. subtilis is a motile, spore-forming, Gram-positive bacterium commonly found in 

diverse habitats. It, like P. aeruginosa, is a facultative anaerobe with fermentative and 

denitrification capabilities and possesses a branched respiratory chain whose terminal oxidases 

can oxidize both the quinone pool and cytochrome c (García Montes de Oca et al. 2012). B. 

subtilis is capable of forming highly-structured, rugose biofilms and wrinkle formation appears to 

be at least partially driven by O2 availability (Kolodkin-Gal et al., 2013). The matrix of these 

biofilms is composed of an exopolysaccharide whose components are the products of the epsA-

O operon, protein fibers encoded by the tapA-sipW-tasA operon, and bslA, which encodes a 

small secreted protein (Arnaouteli et al. 2017). A distinct feature of B. subtilis biofilms is their 

hydrophobicity, which renders the biofilm impermeable to water, gases, and solvents (Figure 

4.12; Epstein et al. 2011). As this hydrophobic nature also prevents entry of some biocides into 

the biofilm, it is thought that this feature affords B. subtilis biofilms an added layer of protection 

against external assault (Arnaouteli et al. 2017). Previous work has attributed the formation of 
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this so-called hydrophobic “raincoat” to the matrix component BslA (Biofilm Surface Layer 

Protein A).  

 BslA is a ~19 kDa amphipathic protein with structural features reminiscent of the 

immunoglobulin (Ig) superfamily (Arnaouteli et al. 2017). A key feature of BslA is the presence of 

a series of hydrophobic amino acids that form a “cap” (Hobley et al. 2013). When BslA is in an 

aqueous environment, its structure is configured in the “cap in” formation wherein the 

hydrophobic cap is tucked into the protein. When BslA encounters a hydrophobic interface, such 

as the biofilm-air interface, it will switch to the “cap out” conformation, exposing its hydrophobic 

residues to form the biofilm raincoat.  

 Previous work has shown that the ∆bslA deletion mutant forms featureless biofilms that 

do not have hydrophobic coats but instead a “wetting,” hydrophilic surface (Kobayashi and 

Iwano 2012). Hydrophobicity was determined by a simple assay in which a droplet of water was 

dispensed onto the surface of the biofilm. In WT biofilms, which possess the hydrophobic coat, 

the water droplet is retained in a sphere, but in ∆bslA biofilms, the water droplet spreads out 

across the surface of the biofilm. An outstanding question remains in the field as to how B. 

subtilis biofilms access nutrients if they are surrounded by a protective shield of sorts formed by 

BslA (Hobley et al. 2013; Arnaouteli et al. 2017). An additional feature of BslA, also found 

among BslA variants in other Bacillus species, is the presence of two conserved cysteine 

residues in the C-terminus, forming a “CxC” motif. Because of the importance of cysteine 

Figure 4.12. Colony biofilms of B. subtilis form a hydrophobic coat at the biofilm-air interface. 
Colored droplets of water placed onto the surface of two-day-old colony biofilms of B. subtilis strain 
NCIB3610 grown on MSgg agar.
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residues in stabilizing protein structure, we set out to determine the contribution of the CxC motif 

to biofilm development.   

 Preliminary biochemical results indicated that recombinant BslA forms monomers, 

dimers, and tetramers in vitro. To see if oligomerization is also observed in vivo, we purified BslA 

from wild-type (3610) B. subtilis biofilms in the presence of Cu(II)-(o-phenanthroline)3, which 

cross-links disulfide bonds. Western blotting results showed that the monomeric, dimeric, and 

tetrameric forms of BslA are indeed found in WT biofilms (Figure 4.13A). When either of the two 

cysteine residues of the C-terminus was mutated to an alanine (“CxA” or “AxC”), dimerization, 

but not tetramerization, of BslA was retained. When both cysteine residues were abolished 

(“AxA”), only monomeric BslA was detected. As expected, the ∆bslA deletion mutant showed no 

BslA in any form. When DTT, a reducing agent that would break disulfide bonds, was added 

during protein purification, only monomeric BslA was observed in all strains (Figure 4.13B). 

Together, these results indicate that dimerization and tetramerization of BslA are dependent on 

disulfide bonds formed between the CxC motifs of BslA.  

Figure 4.13. BslA is a bifunctional protein. Western blot analysis of BslA in a native (A) and 
reduced (B) state using proteins extracted from biofilms. (C) Architecture and hydrophobicity of 
various BslA mutant biofilms. For panels (A), (B), and (C), strains used were WT (NCIB3610), 
bslA– (NRS2097), CxC (NRS2299), AxC (NR5177, CxA (NRS5178), AxA (NRS5179), ∆Cterm 
(NRS2957). (D) Architecture and hydrophobicity of the ∆bdbA∆bdbCD biofilm. For all panels, 
under each biofilm is an image of a water droplet on the upper surface of the biofilm, illustrating 
surface hydrophobicity.
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 We next investigated the physiological contribution of disulfide bonds in B. subtilis biofilm 

development. While the AxA mutant was unable to oligomerize BslA, it was able to form 

architecturally complex biofilms similar to those formed by the WT (Figure 4.13C). However, the 

surface of the AxA biofilms were hydrophilic (Figure 4.13C), suggesting that monomeric BslA 

contributes to the formation of complex biofilm structures but not surface hydrophobicity. The 

AxC and CxA mutants, in which tetrameric BslA was not detected, formed complex biofilms 

whose surfaces were hydrophobic (Figure 4.13C), indicating that tetramerization is not required 

for surface hydrophobicity. These results indicated that at least dimerization is required for the 

production of the hydrophobic coat. 

 Because dimerization of BslA is likely mediated by the formation of disulfide bonds, we 

then explored the mechanisms of disulfide bond formation in B. subtilis. Disulfide bond 

formation, which can be spontaneous in the presence of O2 (Bardwell 2002), is catalyzed by 

thiol-disulfide oxidoreductases. In B. subtilis, disulfide bond formation is carried out by two such 

enzymes, BdbA and BdbD. If these enzymes mediate disulfide bond formation, deleting them 

should result in structured biofilms with a hydrophilic surface. To test this, we generated a 

deletion mutant lacking the genes encoding both of these enzymes, ∆bdbA∆bdbCD (bdbD is 

encoded in an operon with bdbC). ∆bdbA∆bdbCD produced biofilms whose surfaces were more 

hydrophilic than that of WT but not to the same degree as the ∆bslA mutant (Figure 4.13D). 

This result suggests that there may either be (1) a redundant, yet-undiscovered mechanism of 

active disulfide bond formation in B. subtilis or (2) spontaneous, in conjunction with TDOR-

mediated, disulfide bond formation occurring that contributes to BslA dimerization. This in turn 

would lead to the presence of the hydrophobic coat on the biofilm surface. 

 To test if the conditions within the biofilm are amenable to spontaneous disulfide bond 

formation at the surface of the biofilm, we measured O2 concentrations throughout the depth of 

WT B. subtilis biofilms. We observed a steep O2 gradient within the biofilm, with no detectable 

O2 after ~ 50µm into the biofilm (Figure 4.14). The presence of O2 at the top of the biofilm is in 
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agreement with the hypothesis that spontaneous disulfide bond formation could be contributing 

to BslA dimerization. 

 In P. aeruginosa biofilms, O2 depletion correlates with a more reduced extracellular state 

in the deeper portions of the biofilm relative to the top (Jo et al. 2017). To confirm that the same 

is true in B. subtilis biofilms, we then measured extracellular redox state using a redox 

microelectrode and found that the upper portions of the biofilm were more oxidized relative to 

the bottom (Figure 4.14). Together with the O2 data, which show that the bottom of the biofilm is 

anoxic, the redox profiling results indicate that there is a lack of electron acceptors in this region, 

leading to a more reduced environment.  

 As shown previously, a reduced environment abolishes BslA dimerization and 

tetramerization (Figure 4.13B), so it is likely that BslA exists in its monomeric form in the lower 

biofilm. This would mean that the bottom of the biofilm would be hydrophilic rather than 

hydrophobic. We tested this by flooding the agar on which a mature WT biofilm had developed 

with pigmented water. We saw that, rather than being pushed back by a hydrophobic layer, the 

dye moved outward-in under the biofilm (Figure 4.15). Furthermore, when a mature biofilm was 

turned upside-down, a hydrophilic surface was revealed. Therefore, we concluded that BslA 

only forms a hydrophobic coat at the biofilm-air interface while the bottom remains hydrophilic, 

Figure 4.14. Quantification of chemical gradients 
formed in a B. subtilis biofilm. Measurement of the 
oxygen concentration (µM) and redox potential (mV) 
as a function of the depth of a three-day-old WT 
biofilm, with 0 mV being set at the biofilm surface.
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thus explaining how B. subtilis biofilms access nutrients in the presence of a hydrophobic BslA 

layer. 

 While it is thought that hydrophobic coat formation protects B. subtilis biofilms from 

environmental stressors such as antimicrobial agents, this had not been directly tested. 

Because we were able to genetically separate the mechanisms of biofilm architectural 

complexity (sufficiently mediated by presence of monomeric BslA) and hydrophobic coat 

formation (via disulfide bonding and dimeric BslA), we were able to elucidate which feature is 

necessary for protection against external assault. To do this, we used three strains: WT, which 

forms structured biofilms with a hydrophobic coat, ∆bslA, which forms featureless, hydrophilic 

biofilms and the AxA mutant, which forms structured, hydrophilic biofilms. Previous studies have 

shown that the BslA coat prevents certain biocides from entering B. subtilis biofilms (Epstein et 

al. 2011). One of the common active ingredients in these biocides is the antiseptic chlorhexidine 

gluconate (CHG), which we used to test whether hydrophobicity or structural complexity (or 

both) was required to protect the biofilm.  

 We exposed biofilms to this reagent by placing a 5 µl droplet of 1% CHG onto a mature 

biofilm. We confirmed that the surface of WT biofilms was hydrophobic to 1% CHG and that the 

surface of both ∆bslA and AxA were hydrophilic (Figure 4.16A). We then measured cell survival 

after a five-minute exposure to 1% CHG relative to that after a five-minute saline exposure. WT 

biofilms saw a ~ 75% survival rate after exposure to CHG (Figure 4.16B). In contrast, we saw 

that ∆bslA biofilms had a nearly 0% survival rate after exposure to CHG, the equivalent of a ~ 

38-fold decrease in surviving cells relative to the WT. The AxA mutant, which morphologically 

Figure 4.15. The biofilm surface at the biofilm-agar interface is hydrophilic. Time 
course of water uptake by a mature biofilm visualized by using pigmented water: before 
treatment (0 min), 2 min after exposure; and 15 min after exposure. At 15 min, 5-µL 
colored water droplets demonstrate retention of upper biofilm hydrophobicity.
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resembles the WT, also had a drastic decrease in survival (~ 15%), indicating that architectural 

complexity, while affording limited protection, is not sufficient for WT levels of survival against 

CHG. Taken together, these data suggest that the hydrophobic coat formed by dimeric BslA is 

mainly responsible for protecting cells growing in biofilms. 

 The results from this study expand our knowledge of how O2 contributes to biofilm 

formation. As I and others from our lab have shown, O2 plays a critical role in driving 

morphological and gene expression changes in P. aeruginosa biofilms (Dietrich et al. 2013; 

Okegbe, Price-Whelan, and Dietrich 2014; Jo et al. 2017). Similarly, the presence of O2 at the 

top of a B. subtilis biofilm allows for dimerization of BslA, thus allowing for the formation of a 

protective hydrophobic coat at the surface of the biofilm.  

 Hydrophobic coat formation may also play a larger role than protecting just resident B. 

subtilis biofilm cells. In nature, B. subtilis often forms populated communities in the upper layers 

of the soil. Here, it forms mutualistic relationships with plant rhizospheres, preemptively 

colonizing plant roots thereby protecting plants from pathogenic bacterial colonization while 

taking advantage of the nutrients released by the plant roots (Arnaouteli et al. 2017). For 

example, B. subtilis colonization and biofilm formation in the roots of Arabidopsis thaliana have 

been shown to protect the plant from infection by a competing, pathogenic bacterium, P. 

syringae (Bais, Fall, and Vivanco 2004). It is possible that the hydrophobic coats of B. subtilis 

biofilms could extend their protective capabilities to offer limited protection to their host from 

potentially harmful compounds it may encounter. 

Figure 4.16. Cell survival after 
exposure to chlorhexidine gluconate. 
(A) An image of a 1% (vol/vol) 
chlorhexidine gluconate droplet on the 
upper surface of the biofilm for strain WT 
(NRS5132), bslA– mutant (NRS5131), 
and the bslA– mutant complemented 
with BslAC178A C180A (AxA; NRS5136). (B) 
The strains described above were 
exposed to 1% (vol/vol) chlorhexidine 
gluconate, and the percentage survival 
was calculated.
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4.5: Concluding remarks 

 Together, the research presented in this chapter convey the eclectic mechanisms used 

by bacteria to maintain redox homeostasis and an efficient metabolism regardless of external 

environment. The work described in sections 4.1-4.3 add further evidence of P. aeruginosa’s 

astounding metabolic versatility, which renders it a formidable pathogen in clinical settings. The 

more we understand about this bacterium’s fundamental pathways of energy generation and 

survival, the better equipped we will be at eradicating infections caused by it. The research 

presented in section 4.4 demonstrates how bacteria can use a principle as foundational as 

redox state to coordinate complex, multicellular behaviors and illustrates how common this 

principle is in driving biofilm formation across genera. 

4.6: Materials and methods 

4.6.1: Methods pertaining to section 4.1  

Bacterial strains and growth conditions 

 Unless otherwise indicated, P. aeruginosa strain UCBPP-PA14 and mutants thereof were 

routinely grown in lysogeny broth (LB; 1% tryptone, 1% NaCl, 0.5% yeast extract) (Bertani, 

2004) at 37˚C with shaking at 250 rpm. Overnight cultures were grown for 16 ± 1 h. For genetic 

manipulation, strains were typically grown on LB solidified with 1.5% agar. Strains used in this 

study are listed in Table 4.1. In general, liquid precultures served as inocula for experiments. 

Overnight precultures for biological replicates were started from separate clonal colonies on 

streak plates.  

Construction of mutant P. aeruginosa strains 

 For making markerless deletion mutants in P. aeruginosa PA14 (Table 1), 1-kb flanking 

sequences from each side of the target gene were amplified using the primers listed in Table 

4.2 and inserted into the allelic-replacement vector pMQ30 through gap repair cloning in 

Saccharomyces cerevisiae InvSc1 (Shanks et al., 2006). Each plasmid listed in Table 1 was 
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transformed into Escherichia coli strain UQ950, verified by sequencing, and moved into PA14 

using biparental conjugation. PA14 single recombinants were selected on LB agar plates 

containing 100 µg/ml gentamicin. Double recombinants (markerless deletions) were selected on 

sucrose plates (1% tryptone, 0.5% yeast extract, 10% sucrose, and 1.5% agar). Genotypes of 

deletion mutants were verified by PCR. Combinatorial mutants were constructed by using single 

mutants as parent strains. 

Construction of GFP reporter strains 

 Transcriptional reporter constructs for the genes gacS, lldP, and lldA were made by 

fusing their promoter sequences with gfp using primers listed in Table 2. Respective primers 

were used to amplify promoter regions (as indicated in Table 1) and to add an SpeI digest site to 

the 5’ end of the promoter and an XhoI digest site to its 3’ end. For the reporter, an EcoRI site 

was used instead of XhoI. Purified PCR products were digested and ligated into the multiple 

cloning site (MCS) upstream of the gfp sequence of pLD2722, which is a derivative of pYL122 

(Lequette and Greenberg, 2005) and contains a ribosome-binding site between the MCS and 

gfp. Plasmids were transformed into E. coli strain UQ950, verified by sequencing, and moved 

into PA14 using biparental conjugation. Conjugative transfer of pLD2722 was conducted with 

the E. coli strain S17-1 (Lequette and Greenberg, 2005). PA14 single recombinants were 

selected on M9 minimal medium agar plates (47.8 mM Na2HPO4, 22 mM KH2PO4, 8.6 mM 

NaCl, 18.6 mM NH4Cl, 1 mM MgSO4, 0.1 mM CaCl2, 20 mM sodium citrate dihydrate, 1.5% 

agar) containing 70 µg/ml gentamicin. The plasmid backbone of pLD2722 was resolved from 

PA14 using Flp-Flp recombination target (FRT) recombination by introduction of the pFLP2 

plasmid (Hoang et al., 1998) and selected on M9 minimal medium agar plates containing 300 

µg/ml carbenicillin and further on sucrose plates (1% tryptone, 0.5% yeast extract, 10% sucrose, 

1.5% agar). The presence of gfp in the final clones was confirmed by PCR. 
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Liquid-culture growth assays 

 Overnight (16-h) precultures were diluted 1:100 in a clear-bottom, 

polystyrene black 96-well plate (VWR 82050-756), with each well containing 200 µl of medium. 

Cultures were then incubated at 37˚C with continuous shaking at medium speed in a BioTek 

Synergy 4 plate reader. Reporter strains were grown in MOPS medium (50 mM MOPS, 43 mM 

NaCl, 93 mM NH4Cl, 2.2 mM KH2PO4, 1 mM MgSO4, 1g/ml FeSO4 at pH 7.0) amended with one 

of the following carbon sources: 20 mM D-glucose, 40 mM L-lactate, or 40 mM D-lactate 

(Sigma-Aldrich). Expression of GFP was assessed by taking fluorescence readings at excitation 

and emission wavelengths of 480 nm and 510 nm, respectively, every 30 min for up to 24 h. 

Growth was assessed by taking readings of optical density at 500 nm simultaneously with the 

fluorescence readings.  

Colony growth assays 

 Overnight (16-h) precultures were diluted 1:10 in phosphate-buffered saline (PBS). Five 

microliters of diluted cultures was spotted onto MOPS medium amended with one of the 

following carbon sources: 20 mM D-glucose, 40 mM L-lactate, or 40 mM D-lactate (Sigma-

Aldrich). The culture medium was then solidified with 1% agar (Teknova). Colonies were 

incubated at 25˚C for up to 4 days and imaged with an Epson Expression 11000XL scanner.  

Preparation of synthetic SCFM and derivatives 

 Cystic fibrosis sputum medium (SCFM) was prepared as described previously (Palmer 

et al., 2007). SCFM contains the following ingredients: 2.28 mM NH4Cl, 14.94 mM KCl, 51.85 

mM NaCl, 10 mM MOPS, 1.3 mM NaH2PO4, 1.25 mM Na2HPO4, 0.348 mM KNO3, 0.271 mM 

K2SO4, 1.754 mM CaCl2, 0.606 mM MgCl2, 0.0036 mM FeSO4, 3mM D-glucose, 9.3 mM sodium 

L-lactate, 0.827 mM L-aspartate, 1.072 mM L-threonine, 1.446 mM L-serine, 1.549 mM L-

glutamate•HCl, 1.661 mM L-proline, 1.203 mM glycine, 1.78 mM L-alanine, 0.16 mM L-

cysteine•HCl, 1.117 mM L-valine, 0.633 mM L-methionine, 1.12 mM L-isoleucine, 1.609 mM L-
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leucine, 0.802 mM L-tyrosine, 0.53 mM L-phenylalanine, 0.676 mM L-ornithine•HCl, 2.128 mM 

L-lysine•HCl, 0.519 mM L-histidine•HCl, 0.013 mM L-tryptophan, and 0.306 mM L-arginine•HCl. 

Depending on the solubility of the various salts, concentrations of their stock solutions ranged 

from 0.2 M to 1 M. Stock concentrations for D-glucose and sodium L-lactate were 1 M and 0.1 

M for amino acids. No stock solution was prepared for L-tyrosine or L-tryptophan due to poor 

solubility. The pH of SCFM was adjusted to 6.5 with KOH and sterilized by filtration (Thermo 

Scientific Nalgene Rapid-Flow). ASMDM was prepared as previously described (Fung et al., 

2010) by supplementing SCFM with 10 mg/ml bovine serum albumin, 10 mg/ml mucin from 

porcine stomach, and 1.4 mg/ml herring sperm DNA. SCFM2 was prepared by supplementing 

SCFM with 5 mg/ml mucin from porcine stomach, 100 µg/ml 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC), 300 µM N-acetyl-D-glucosamine, 600 µg/ml herring sperm DNA as 

previously described (Turner et al., 2015). 

4.6.2: Methods pertaining to section 4.2  

Protein expression and purification 

 The ⍺ and β subunits for PC from several bacterial species, including M. flagellatus, P. 

aeruginosa, P. fluorescens and Thiobacillus denitrificans were amplified from genomic DNA 

(American Type Culture Collection) and sub-cloned into the pCDFduet vector (Novagen). The ⍺ 

subunit was sub-cloned into MCS1 with an N-terminal hexa-histidine tag, and the β subunit was 

sub-cloned into MCS2 with no tag. The internal B-domain deletion was made using overlapping 

PCR. Surface entropy reduction mutations were chosen based on the UCLA SerP server 

(Goldschmidt et al., 2007). The individual ⍺ and β subunits for MfPC were sub-cloned into 

pET28a with an N-terminal hexa-histidine tag. All expression constructs were co-transformed 

into BL21 Star (DE3) cells along with a plasmid encoding the E. coli biotin ligase (BirA) gene. 

The cells were cultured in Luria–Bertani (LB) medium with 50 mg/ml streptomycin and 35 mg/ml 

chloramphenicol, and were induced for 14 h with 1mM isopropyl-β-D-thiogalactoside at 20˚C. 

Before induction, 20 mg/L biotin and 10mM MnCl2 were added to the growth medium. The 
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protein was purified through nickel-agarose affinity chromatography (Qiagen) followed by gel 

filtration chromatography (Sephacryl S-300, GE Healthcare). The purified protein was 

concentrated to 15 mg/ml in a buffer containing 20 mM Tris (pH 8.0), 150 mM NaCl, 5% (v/v) 

glycerol and 5 mM dithiothreitol, flash-frozen in liquid nitrogen and stored at -80˚C. The protein 

was confirmed to be fully biotinylated by a streptavidin gel-shift assay. The N-terminal hexa-

histidine tag was not removed for crystallization. 

Protein crystallization 

 Crystals were grown by the sitting-drop vapour diffusion method at 20˚C. For MfPC with 

B-domain deletion, the protein was incubated with 2.5 mM pyruvate for 30 min at 4 C before 

crystallization set-up. The reservoir solution contained 19% (w/v) PEG3350, 2% tacsimate (pH 

6.0) (Hampton) and 3% (v/v) ethanol. The crystals appeared within 1 week and grew to full size 

after an additional week. The crystals were cryo-protected in the reservoir solution 

supplemented with 10% (v/v) ethylene glycol and 5% (w/v) sucrose and were flash-frozen in 

liquid nitrogen for data collection at 100 K. For wild-type MfPC, the protein at 15 mg/ml was 

incubated with 2.5 mM ATP and 2.5 mM pyruvate for 30 min at 4˚C before crystallization set-up. 

The reservoir solution contained 1.3 M ammonium sulfate and 0.1 M sodium citrate (pH 6.0). 

The crystals appeared after 1 day and grew to full size within a week. They were cryo-protected 

in the reservoir solution supplemented with 15% (v/v) ethylene glycol and flash-frozen in liquid 

nitrogen for data collection at 100 K 

Data collection and structure determination 

 X-ray diffraction data were collected at the Advanced Photon Source beamline NE-CAT 

24-ID-E using an ADSC Q315r detector and at the X25 beamline at the National Synchrotron 

Light Source at Brookhaven National Laboratory using a Pilatus 6M detector. The diffraction 

images were processed using HKL2000 (Otwinowski and Minor, 1997). Crystals of the mutant 

MfPC belong to space group R32 with unit cell parameters of a = b = 285.8 Å and c = 274.9 Å. 
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With an ⍺2β4 oligomer in the asymmetric unit, the Vm is 2.9 Å3 Da–1 and the solvent content is 

58%. The structure was solved by the molecular replacement method with the programme 

Phaser (McCoy et al., 2007), using the BC, CT and BCCP domains of the S. aureus PC 

structure (Xiang and Tong, 2008) as the search models. Manual rebuilding was carried out with 

Coot (Emsley and Cowtan, 2004) and refinement with the programme Refmac (Murshudov et 

al., 1997).  

 Crystals of wild-type MfPC belong to space group P3121 with unit cell parameters of a = 

b = 160.8 Å and c = 227.7 Å. A molecular replacement solution for this structure was found with 

the programme Phaser using the individual BC and CT domains of the refined mutant MfPC 

structure as the search models. There is one ⍺ subunit and two β subunits in the asymmetric 

unit, and the full ⍺2β4 complex can be generated by a crystallographic two-fold axis. On the 

basis of this molecular replacement solution, the solvent content of the crystal is 73% and the 

Matthews coefficient is 4.6Å3 Da–1. After one round of refinement, electron density was 

observed indicating the positions of the B domain of BC and the BT-like domain. There was also 

density indicating a BCCP domain in the active site of the distal CT domain, which itself adopts 

a conformation that is consistent with an interaction with BCCP. In addition, the MfPC molecules 

in the crystal do not have direct contacts without this BCCP domain, further supporting its 

placement in the model. After inclusion of these additional domains, we observed a decrease in 

the R values and clear density for these domains on refinement. 

Construction of PC mutant and complementation strains 

 PC mutant and complementation strains were made for the two-gene operon encoding 

PC (PA14_71720-PA14_71740) in P. aeruginosa PA14 as follows. Relevant genomic sequences 

were amplified, with point mutations introduced where noted in Table 4.3, and recombined into 

the allelic replacement vector pMQ30 through gap repair cloning in the Saccharomyces 

cerevisiae strain InvSc1. The deletion construct contained two fused ~ 1-kb sequences 

representing regions upstream and downstream of the PA14_71720-PA14_71740 operon. Point 
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mutant and complementation constructs contained the full operon sequence, with mutations 

where appropriate, plus these two flanking regions. Each plasmid was transformed into E. coli 

strain DH5⍺, verified by sequencing, and put into P. aeruginosa using biparental conjugation. 

PA14 single recombinants were selected on LB plates containing 100 µg/ml gentamicin. Double 

recombinants (with the final genotype of interest) were selected on agar plates containing 10% 

(w/v) sucrose, and their genotypes were confirmed by PCR. For point mutant strains, genotypes 

were confirmed by sequencing. 

P. aeruginosa PA14 growth conditions 

 For genetic manipulation and pre-culturing, PA14 was routinely grown in LB (unless 

otherwise noted) at 37˚C with shaking at 250 rpm. For growth curve analyses, overnight pre-

cultures of PA14 strains were diluted 100-fold in either 1% tryptone or a defined medium (50 

mM MOPS (4-morpholinepropanesulfonic acid), 43 mM NaCl, 93.5 mM NH4Cl, 2.2 mM KH2PO4, 

1 mM MgSO4 and 1 µg/ml FeSO4) amended with 20 mM sodium succinate, sodium pyruvate, or 

glucose as the carbon source and grown to the following approximate OD500nm values: 0.6 for 

succinate; 0.1 for pyruvate; and 0.1 for glucose. These cultures were diluted to OD500nm ~ 0.01 

and dispensed into 96-well plates, then incubated at 37˚C with continuous shaking on the 

medium setting in a Biotek Synergy 4 plate reader.  

P. aeruginosa PA14 colony morphology assay 

 For the standard assay, PA14 was grown overnight in LB and diluted to OD500nm = 0.5. A 

volume of 10 µl of these normalized cell suspensions were spotted on colony morphology assay 

medium (1% tryptone, 1% agar, 40 µg/m Congo red and 20 µg/ml Coomassie blue; 60 ml in 

each 9 cm x 9 cm square plate) and incubated in a humidified chamber at 25˚C for up to 5 days. 

When defined media were used for the colony morphology assay, PA14 pre-cultures were 

grown overnight in MOPS liquid medium with 20mM succinate. Pre-cultures were centrifuged for 

1 min at 12, 396 x g and resuspended in defined medium without a carbon source to OD500nm = 
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0.25. A volume of 10 µl of washed and resuspended cells was spotted onto solidified defined 

medium (25 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 7.6 mM 

(NH4)2SO4, 0.8 mM MgSO4•7H2O, 10 mM K2HPO4, 20 mM of carbon source (succinate, 

pyruvate or glucose), 40 µg/ml Congo red, 20 µg/ml Coomassie blue and 1% agar; 60 ml in 

each 9 cm x 9 cm square plate) and incubated in a humidified chamber at 25˚C for up to 5 days. 

Images were taken with a CanoScan 5600F scanner (Canon). 

P. aeruginosa PA14 Congo red binding assay 

 PA14 colonies were grown for 3 days (76 h) according to the standard colony 

morphology assay, with the modification that dyes were omitted from the 1% tryptone, 1% agar 

medium. Each colony was scraped from the agar using a 1-ml pipette tip and resuspended in 

1.5 ml phosphate-buffered saline (136 mM NaCl, 2.68 mM KCl, 10.1 mM Na2HPO4, 1.76 mM 

KH2PO4 at pH 7.4) supplemented with 60 µg of Congo red. Each colony suspension was briefly 

vortexed and shaken at 250 rpm at 37˚C for 1 h to allow the matrix to bind the Congo red dye. 

The colony biomass was then pelleted by centrifugation at 16,873 x g for 2 min. A volume of 200 

µl of supernatant was dispensed into 96-well plates and the absorbance at 490 nm, 

representing unbound Congo red, was measured using a Biotek Synergy 4 plate reader. Bound 

Congo red was calculated by subtracting the absorbance of the unbound Congo red from that of 

the control solution containing 60 µg Congo red per 1.5 ml PBS.  

P. aeruginosa PA14 pellicle assay 

 Overnight LB pre-cultures of PA14 strains were diluted 100-fold in MOPS liquid medium 

amended with 20 mM sodium succinate as the carbon source and grown to OD500nm ~ 0.7. A 

sample (4.6 ml) of each subculture was centrifuged at 10,000 x g for 1 min, and the pellet was 

resuspended in 23 ml of the defined medium amended with 20 mM sodium succinate, D-

glucose, or sodium pyruvate in a scintillation vial, with a starting OD500nm at 0.14 for pellicle 
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growth. Scintillation vials were incubated without shaking or disturbance at 37˚C for up to 4 days 

and photographed under side illumination using an iPhone 5S.  

Data availability 

 Atomic coordinates and structure factors for the two reported structures of M. flagellatus 

PC have been deposited in the Protein Data Bank under the primary accession code 5KS8. The 

authors declare that all other relevant data supporting the findings of this study are available on 

request. 

4.6.3: Methods pertaining to section 4.3  

Protein expression and purification 

 Full-length LCCs from several different bacterial organisms, including R. palustris, M. 

avium subspecies paratuberculosis and P. aeruginosa, were amplified from genomic DNA by 

PCR and cloned into pET28a, pET26b and/or pET24d vectors (Novagen). The plasmids were 

transformed into BL21Star (DE3) cells (Invitrogen). Protein expression was induced with the 

addition of 1 mM isopropyl β-D-thiogalactoside, and the cells were grown at 16˚C for 16–20 h. 

To facilitate biotinylation, the recombinant enzyme was co-expressed with the E. coli biotin 

ligase BirA, and 15 mg/l biotin was added to the medium. An avidin shift assay of the purified 

enzymes showed that R. palustris LCC was completely biotinylated. However, purified MapLCC 

did not show any biotinylation, possibly indicating some degree of selectivity of the BirA enzyme. 

Expression of P. aeruginosa LCC did not produce any soluble protein and was not pursued 

further.  

 Cells were lysed by sonication in a buffer containing 20 mM Tris-HCl pH8.0, 250 mM 

NaCl, 5% (v/v) glycerol, 10 mM 2-mercaptoethanol, and 1 mM phenylmethylsulphonyl fluoride. 

Soluble enzyme was purified by Ni2+-nitrilotriacetate (Qiagen), anion-exchange and gel-filtration 

(Sephacryl S-300; GE Healthcare) chromatography. The S-300 running buffer for MapLCC 

contained 25 mM HEPES pH 7.4, 250 mM NaCl and 2.5 mM dithiothreitol. The purified protein 
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was concentrated to 6 mg/ml, and the solution was supplemented with 5% (v/v) glycerol before 

being flash-frozen in liquid nitrogen and stored at -80˚C. The selenomethionyl MapLCC protein 

was produced in B834 (DE3) cells (Novagen) that were grown in defined LeMaster medium 

supplemented with selenomethionine (Hendrickson et al., 1990). The protein was purified with 

the same protocol as that for the native enzyme. 

Protein crystallization 

 MapLCC was crystallized at 4˚C using the microbatch method under paraffin oil. The 

protein solution was mixed with a precipitant solution containing 0.1 M Bis-Tris propane pH 7.5–

8.5 and 1.5–2.0 M ammonium sulphate. Crystals took 4–6 weeks to grow to full size, and larger 

crystals were obtained by microseeding. They were cryoprotected with reservoir solution 

supplemented with 12–15% (v/v) glycerol and flash-frozen in liquid nitrogen for data collection at 

100 K. The C-terminal His tag on the protein was not removed before crystallization.  

Data collection and structure determination 

 X-ray diffraction data for the native (wavelength 1.075 Å) and selenomethionyl (0.979 Å) 

crystals were collected with a Q315 charge-coupled device (Area Detector Systems 

Corporation) at the X29A beamline of the National Synchrotron Light Source. The diffraction 

images were processed with the HKL package (Otwinowski and Minor, 1997). The crystals 

belong to space group P213, with cell dimensions of a = b = c = 220.9 Å. There are two 

MapLCC monomers in the crystallographic asymmetric unit.  

 The structure of MapLCC was solved by a combination of molecular replacement and 

selenomethionyl SAD phasing. The orientation and position of the BC, CT and BCCP domains 

were located with the program Phaser (McCoy et al., 2007). The Se sites were located with the 

program SHELX (Sheldrick, 2008), and SOLVE/RESOLVE was used for phasing the reflections 

and automated model building (Terwilliger, 2003). The atomic model was built with the program 

Coot (Emsley and Cowtan, 2004). The structure refinement was performed with the program 
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CNS (Brunger et al., 1998). The crystallographic information is summarized in Table 4.4. We 

also obtained a second crystal form of MapLCC, with an entire hexamer in the asymmetric unit, 

and were able to collect an X-ray diffraction data set to 4.3 Å resolution (space group P212121, a 

= 102Å, b = 292 Å, c = 314Å). The structure of this crystal form was readily solved by the 

molecular replacement method, and it revealed essentially the same holoenzyme architecture 

(data not shown). 

Enzymatic assays 

 The kinetic assays monitored the hydrolysis of ATP by R. palustris LCC in the presence 

of various acyl-CoA substrates, using coupling enzymes to convert the ADP product to NADH 

oxidation (Blanchard et al., 1999). The reaction mixture contained 100 mM HEPES pH7.5, 40 

mM KHCO3, 1.5 mM ATP, 0.4 mM NADH, 200 mM KCl, 10 mM MgCl2, 0.5 mM 

phosphoenolpyruvate, 3.5/3.7U of lactate dehydrogenase/pyruvate kinase (Sigma), 0.25 µM 

enzyme (except for MCC, which was at 1.2 µM) and various concentrations of acyl-CoA. The 

absorbance at 340 nm was monitored for 1.5 min. The initial velocities were fitted to the 

Michaelis–Menten equation using the program Origin (OriginLab). 

Construction of an LCC deletion mutant in P. aeruginosa 

 A markerless deletion was generated for the gene PA14_46320 in P. aeruginosa PA14, 

using previously described methods (Recinos et al., 2012). In brief, ~ 1-kilobase flanking 

regions for PA14_46320 were amplified with primers listed in Table 4.5 and recombined into the 

allelic-replacement vector pMQ30 through gap repair cloning in the yeast strain InvSc1 (Shanks 

et al., 2006). This plasmid was transformed into E. coli BW29427 and moved into PA14 using 

biparental conjugation. Luria–Bertani (LB) agar containing 100 µg/ml gentamicin was used to 

select for P. aeruginosa single recombinants. Markerless deletions in PA14_46320 (double 

recombinants) were then selected with the use of LB agar plates devoid of NaCl and containing 

10% (w/v) sucrose as a counterselection, and their genotypes were confirmed by PCR.  
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Phenotype microarrays 

 Phenotype microarray screening was performed by Biolog, Inc., as described (Shea et 

al., 2012). 

4.6.4: Methods pertaining to section 4.4 

General growth conditions and strain construction 

The B. subtilis and E. coli strains used and constructed in this study are detailed in Table 4.6. E. 

coli strain MC1061 was used for the construction and maintenance of plasmids. B. subtilis 168 

derivatives were obtained by transformation of competent cells with plasmids using standard 

protocols (Harwood and Cutting, 1990). SPP1 phage transductions were used to introduce DNA 

into B. subtilis strain NCIB3610 (Verhamme et al., 2007). Both E. coli and B. subtilis strains 

were routinely grown in Lysogeny Broth (LB) medium (10 g of NaCl, 5 g of yeast extract, and 10 

g of tryptone per liter) at 37 °C for 16 h. For complex colony formation, B. subtilis strains were 

grown on MSgg medium (5 mM potassium phosphate and 100 mM MOPS at pH 7.0 

supplemented with 2 mM MgCl2, 700 µM CaCl2, 50 µM MnCl2, 50 µM FeCl3, 1 µM ZnCl2, 2 µM 

thiamine, 0.5% glycerol, and 0.5% glutamate) (Branda et al., 2001) solidified with 1.5% Select 

Agar (Invitrogen) at 30°C for 48 h (Branda et al., 2001) and imaged as described (Verhamme et 

al., 2007). Ectopic gene expression was induced by medium supplementation with 25 µM 

isopropyl β-D-1-thiogalactopyranoside (IPTG) as indicated. When appropriate, antibiotics were 

used at the following concentrations: ampicillin 100 µg/ml, chloramphenicol 5 µg/ml , 

erythromycin 1 µg/ml with lincomycin 25 µg/ml, kanamycin 25 µg/ml, and spectinomycin 100 µg/

ml. ΔbdbA, ΔbdbCD, and ΔbdbACD mutant strains were constructed as described in Table 4.6 

by using standard methodologies.  
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Plasmid construction and site-directed mutagenesis 

 All strains, plasmids, and primers used in this study are presented in Tables 4.6, 4.7, 

and 4.8 and were constructed by using standard methods. The plasmids for BslA42–181 

overproduction were obtained by site directed mutagenesis using the plasmid pNW1128 as 

template, which is a pGEX-6P-1 derivative used previously to overexpress BslA42–181 (Hobley et 

al., 2013). Primers for the codon substitutions are included in Table 8, and mutagenesis was 

achieved following the Stratagene QuikChange kit recommendations. 

Protein purification 

 BslA41–181 protein and its derivatives were overexpressed and purified as described 

(Hobley et al., 2013). Briefly, the pGEX1–6P derivative plasmids were introduced into E. coli 

BL21 (DE3). After growth and overexpression, the protein was purified in HEPES buffer. To 

achieve this purification, the E. coli cells were lysed in an Emulsiflex cell disruptor, and the 

solubilized protein extracts, cleared of cell debris, were incubated with Glutathione Sepharose 

4B (GE Healthcare), allowing the fused protein to bind to the GST binding beads. After 

incubation, the beads containing the BslA-fusion were recovered by using a gravity flow column 

(Bio-Rad) and suspended into new buffer containing DTT and TEV–His-tagged protease. TEV 

removed the GST tag from BslA protein, which remained soluble in the purification buffer. The 

protease and unbound GST were then separated from BslA by incubating the mixture with 

Ninitrilotriacetic acid (Ni-NTA) agarose (Qiagen) and glutathione beads, followed by a new 

passage in a gravity flow column. The flow-through recovered contained the purified protein, 

which was then concentrated by using VivaSpin concentrator. Protein quality was confirmed by 

size exclusion chromatography analysis. 

Size exclusion chromatography (SEC 

 To evaluate the presence or absence of dimers in the purified proteins, 500 ng of purified 

protein was analyzed by SEC using a Superdex 75 10/300GL column with a low rate of 0.5 ml/
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min in the original purification buffer. Protein samples were also analyzed by using 14% SDS/

PAGE, with and without the addition of a reducing agent (β-mercaptoethanol) as the loading dye 

and stained with Instant Blue before photography. 

Oxidative cross-linking of cysteines in colony biofilms 

 B. subtilis 48-h grown complex colonies were collected from the agar plate by using a 

sterile loop and suspended in 250 µl of LB. The biomass was disrupted by passage through a 

23 x 1 needle 10 times. The cell suspension obtained was incubated for 15 min at 37°C with 1.8 

mM Cu(II)-(o-phenanthroline)3 (hereafter CuPhe) or 10 mM DTT, followed by centrifugation and 

wash of the pellet with 250 µl of PBS. After centrifugation, the pellet was suspended in 250 µl of 

PBS, followed by a 15 min incubation with 8 mM N-ethylmaleimide/10 mM EDTA to stop the 

reaction (Lee et al., 1995; Lee et al, 1994). Samples were then centrifuged, and the pellet was 

washed with 250 µl of PBS. The cell pellet was suspended in 250 µl of BugBuster Master Mix 

(Novagen), followed by gentle sonication to promote the release of the proteins from the biofilm 

matrix. The samples were then incubated at room temperature with agitation for 20 min, and the 

insoluble cell debris was removed by centrifugation at 17,000 x g for 10 min at 4°C. The proteins 

samples were then analyzed by Western blot.  

Western blot analysis 

 The 1.5 µg of total protein extract (see above) was separated on a 14% SDS/PAGE 

before transfer onto PVDF membrane (Millipore) by electroblotting at 25 V for 2 h. The 

membrane was incubated for 16 h in 3% (wt/vol) powdered milk in TBS [20 mM Tris·HCl (pH 

8.0) and 0.15 M NaCl] at 4°C with shaking. This step was followed by 2-h incubation with 

purified anti-BslA antibody at a dilution of 1:500 (vol/vol) in TBS in 3% powdered milk wash 

buffer (TBS + 0.05% Tween 20). The membrane was washed by using wash buffer (TBS + 

0.05% Tween 20) and incubated for 45 min with the secondary antibody conjugated to 
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horseradish peroxidize [goat anti-rabbit (Pierce)] at a dilution of 1:5,000. The membrane was 

washed, developed, and exposed to X-ray film. 

Oxygen profiling of biofilms 

 Overnight cultures of B. subtilis strain 3610 were inoculated from a streaked plate and 

subsequently grown in LB at 37°C with shaking at 250 rpm for 12–16 h. Precultures were diluted 

10-fold in LB and grown at 37°C with shaking at 250 rpm until OD600nm ~ 1.0. Five microliters 

of the culture were spotted onto an MSgg agar plate and grown at 30 °C for 2 d before analysis. 

A 25-µm-tip Clark-type oxygen microsensor (Unisense OX-25) was used to measure the oxygen 

concentrations. The oxygen microsensor was calibrated according to manufacturer’s 

instructions, and measurements were taken throughout the depth of the biofilm (step size = 5 

µm, measurement period = 3 s, wait time between measurements = 3 s). Four different colonies 

were probed, and representative data are shown.  

Redox profiling of biofilms 

 Biofilms were grown as described above, and a 25-µm-tip redox microelectrode with an 

external reference (Unisense RD-25 and REF-RM) was used to measure the extracellular redox 

potential. After calibrating the redox microelectrode according to the manufacturer’s instructions, 

redox measurements were taken throughout the depth of the biofilm (step size = 5 µm, 

measurement period = 3 s, wait time between measurements = 5 s). The redox potential was 

set to zero at the surface of the colony, and relative values are plotted. Three different colonies 

were probed, and representative data are shown. 

Cell survival upon chlorhexidine gluconate exposure 

 To test biofilm resistance to chlorhexidine gluconate, colony biofilms were grown for 48 h 

at 30°C. Droplets of 5 µl of 1% (vol/vol) chlorhexidine gluconate were placed on the biofilm 

surface (near the periphery) for 5 min at room temperature. The solution was removed, and a 
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punch biopsy of 5 mm in diameter was recovered (this area encompassed the entire exposed 

region). This sample was transferred immediately into 500 µl of saline solution, thus diluting any 

remaining chlorhexidine gluconate, disrupted by passage through a 23 × 1 needle 10 times and 

washed once with saline solution. The sample was subsequently subjected to mild sonication 

(20% amplitude, 1 s on, 1 s off, for 5 s total) to liberate bacterial cells from the matrix. Serial 

dilutions of the cell suspension were made, and 100 µl were plated onto LB agar supplemented 

with 100 µg/ml spectinomycin; saline solution was used as a control for the process. The 

percentage survival was evaluated by colony forming unit counting, and results are presented 

as the percentage of colony forming units obtained after exposure to 1% (vol/vol) chlorhexidine 

gluconate, divided by the number of colony forming units recovered on the control spots. 
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4.8: Tables 

Table 4.1: Strains and plasmids used in section 4.1 
strain/plasmid number description source or 

reference

Pseudomonas aeruginosa strains

UCBPP-PA14 Clinical isolate UCBPP-PA14. Rahme et al., 1995

PA14 ∆lldDE LD2735 PA14 with deletion in lldDE Lin et al., 2018

PA14 ∆lldA LD2844 PA14 with deletion in lldA Lin et al., 2018

PA14 ∆lldDE ∆lldA LD2759 PA14 with deletion in lldDE and lldA Lin et al., 2018

Table 4.1 (continued): Strains and plasmids used in section 4.1

strain/plasmid number description source or 
reference

PA14 ∆lldDE 
∆lldA::lldDE

LD2904 PA14 ∆ldDE ∆lldA with complementation of 
lldDE

Lin et al., 2018

PA14 attB::MCS-gfp LD2820 PA14 with MCS-gfp inserted at the attB site 
using pLD2722

Lin et al., 2018

PA14 attB::lldPp-gfp LD2798 PA14 with lldPp-gfp inserted at the attB site 
using pLD2797

Lin et al., 2018

PA14 attB::lldAp-gfp LD2868 PA14 with lldAp-gfp inserted at the attB site 
using pLD2867

Lin et al., 2018

Escherichia coli strains

UQ950 LD44 E. coli DH5 λpir strain for cloning. F-∆(argF-
lac)169φ80 dlacZ58(∆M15) glnV44(AS) rfbD1 
gyrA96(NaIR) recA1 endA1 spoT thi-1 hsdR17 
deoR λpir+

D. Lies, Caltech

BW29427 LD661 Donor strain for conjugation. thrB1004 pro thi 
rpsL hsdS lacZ ∆M15RP4-1360 ∆(araBAD)567 
∆dapA1314::[erm pir(wt)]

W. Metcalfe, 
University of Illinois

S17-1 LD2901 StrR , TpR , F− RP4-2-Tc::Mu aphA::Tn7 recA 
λpir lysogen

Teng et al., 1998

Saccharomyces cerevisiae strains

InvSc1 LD622 MATa/MATalpha leu2/leu2 trp1-289/trp1-289 
ura3-52/ura3-52 his3-∆1/his3-∆1

Invitrogen

Plasmids

pMQ30 LD621 Yeast-based allelic-exchange vector; sacB+ , CEN/ARSH, URA3+ , 
GmR
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Table 4.2: Primers used in section 4.1 

Table 4.1 (continued): Strains and plasmids used in section 4.1

strain/plasmid number description source or 
reference

pLD2734 (pMQ30-
∆lldDE)

ΔlldDE flanking fragments introduced into 
pMQ30 by gap repair cloning in yeast strain 
InvSc1

Lin et al., 2018

pLD2758 (pMQ30-
∆lldA)

ΔlldA flanking fragments introduced into 
pMQ30 by gap repair cloning in yeast strain 
InvSc1

Lin et al., 2018

pLD2903 (pMQ30-
lldDE-comp)

lldDE complementation flanking fragments 
introduced into pMQ30 by gap repair cloning in 
yeast strain InvSc1

Lin et al., 2018

pYL122 AmpR rhlA-gfp transcription fusion in mini-
CTXlacZ

Lequette and 
Greenberg, 2005

pUC18-mini-Tn7 AmpR ColE1 replicon mini-Tn7 base vector Choi et al., 2005

pLD844 (pSEK101) rhlA promoter of pYL122 was removed (XhoI 
and EcoRI) and replaced with a multiple 
cloning site (MCS) from pUC18-mini-Tn7

Lin et al., 2018b

pLD2722 (pSEK103) aacC1 (gentamicin resistance cassette) from 
pMQ30 was inserted at the BspDI site of 
pLD844

Lin et al., 2018b

pLD2797 (pSEK103-
lldPp)

324 bp of lldP promoter sequence inserted at 
the MCS (SpeI and XhoI) of pLD2722

Lin et al., 2018

pLD2867 (pSEK103-
lldAp)

356 bp of lldA promoter sequence inserted at 
the MCS (SpeI and XhoI) of pLD2722

Lin et al., 2018

pFLP2 Site-specific excision vector with cI857-
controlled FLP recombinase; sacB+, AmpR

Hoang et al., 1998

primer number name sequence description

1087 attB::gfp-inCheck1 AGGGCCAATCGATAGAGTTT To verify the genotype 
of gfp reporter strains

1088 attB::gfp-inCheck2 TCTTCGTGATCTGAAGCCATT To verify the genotype 
of gfp reporter strains

1089 attB::gfp-outCheck1 TAGAAGAACAGGCGGACGAT To verify the genotype 
of gfp reporter strains

1090 attB::gfp-outCheck2 AGCATCATCGGTACCCAGTC To verify the genotype 
of gfp reporter strains

2088 ∆lldDE-yeast1 ggaattgtgagcggataacaatttcacacagga
aacagct 
CCTACAGCTTCGGCGAGAT

To make pLD2734 
(pMQ30-ΔlldDE) by gap 
repair cloning in yeast 
strain InvSc1
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Table 4.2 (continued): Primers used in section 4.1

primer number name sequence description

2089 ∆lldDE-yeast2 caccaggtagaccacccc 
GTAGTCGGTGGAAGCGGAAAT

To make pLD2734 
(pMQ30-ΔlldDE) by gap 
repair cloning in yeast 
strain InvSc1

2090 ∆lldDE-yeast3 atttccgcttccaccgactac 
GGGGTGGTCTACCTGGTG

To make pLD2734 
(pMQ30-ΔlldDE) by gap 
repair cloning in yeast 
strain InvSc1

2091 ∆lldDE-yeast4 aggcaaattctgttttatcagaccgcttctgcgttct
gat TCCGGCGGATAGAAATAGAA

To make pLD2734 
(pMQ30-ΔlldDE) by gap 
repair cloning in yeast 
strain InvSc1

2092 ∆lldDE-check1 ACCCTGTTCCTCAAGGTCTG To verify the genotype 
of ∆lldDE strains

2093 ∆lldDE-check2 GTCGTGACGTAGGGCGAATA To verify the genotype 
of ∆lldDE strains

2094 ∆lldDE-check3 GCATGCTGGTGCACTGAC To verify the genotype 
of ∆lldDE strains

2095 ∆lldDE-check4 CAGGCGGTAGACGTACTGGT To verify the genotype 
of ∆lldDE strains

2100 ∆lldA-yeast1 ggaattgtgagcggataacaatttcacacagga
aacagct 
ATTTCCGTTTTCCTTCCATC

To make pLD2758 
(pMQ30-ΔlldA) by gap 
repair cloning in yeast 
strain InvSc1

2101 ∆lldA-yeast2 tatcgcgggtagcttcccgg 
GTCTTCGATATCGGTGATGACG

To make pLD2758 
(pMQ30-ΔlldA) by gap 
repair cloning in yeast 
strain InvSc1

2102 ∆lldA-yeast3 cgtcatcaccgatatcgaagac 
CCGGGAAGCTACCCGCGATA

To make pLD2758 
(pMQ30-ΔlldA) by gap 
repair cloning in yeast 
strain InvSc1

2103 ∆lldA-yeast4 aggcaaattctgttttatcagaccgcttctgcgttct
gat TAACCTGGCAGAACTGAACG

To make pLD2758 
(pMQ30-ΔlldA) by gap 
repair cloning in yeast 
strain InvSc1

2104 ∆lldA-check1 GACGCGGTATCCCTGATCT To verify the genotype 
of ∆lldA strains

2105 ∆lldA-check2 ACCTGCTGGAAAGCTTCGAC To verify the genotype 
of ∆lldA strains

2106 ∆lldA-check3 GACTGAAACGGCGGAATTT To verify the genotype 
of ∆lldA strains
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Table 4.2 (continued): Primers used in section 4.1

primer number name sequence description

2107 ∆lldA-check4 CTCATCGGACTGAAGGGAGA To verify the genotype 
of ∆lldA strains

2146 PlldP-F acgtacgtacactagtCGACACCCTTACC
CGAAGT

To make pLD2797 
(pSEK103-lldPp) by 
restriction-ligation

2147 PlldP-R acgtacgtacctcgaGGGTTGGCTCCCT
AATTGTT

To make pLD2797 
(pSEK103-lldPp) by 
restriction-ligation

2203 PlldA-F acgtacgtacactagtTGCTCGATTTGGG
CATGA

To make pLD2867 
(pSEK103-lldAp) by 
restriction-ligation

2204 plldA-R acgtacgtacctcgagGCAGTCCACTCC
TTCGGG

To make pLD2867 
(pSEK103-lldAp) by 
restriction-ligation

2213 lldDE-comp-yeast1 ggaattgtgagcggataacaatttcacacagga
aacagctCCTACAGCTTCG 
GCGAGAT

To make pLD2903 
(pMQ30-lldDE-comp) by 
gap repair cloning in 
yeast strain InvSc1

2214 lldDE-comp-yeast2 ACGGTCTCGAGAAAGGGAAT To make pLD2903 
(pMQ30-lldDE-comp) by 
gap repair cloning in 
yeast strain InvSc2

2215 lldDE-comp-yeast3 CGCCAGAAAAGCCTGAAA To make pLD2903 
(pMQ30-lldDE-comp) by 
gap repair cloning in 
yeast strain InvSc3

2216 lldDE-comp-yeast4 CGGCCTTTTCCAGCAGAC To make pLD2903 
(pMQ30-lldDE-comp) by 
gap repair cloning in 
yeast strain InvSc4

2217 lldDE-comp-yeast5 GGCCACGGGTGGTCTATC To make pLD2903 
(pMQ30-lldDE-comp) by 
gap repair cloning in 
yeast strain InvSc5

2218 lldDE-comp-yeast6 aggcaaattctgttttatcagaccgcttctgcgttct
gatTCCGGCGGATAGAA ATAGAA

To make pLD2903 
(pMQ30-lldDE-comp) by 
gap repair cloning in 
yeast strain InvSc6
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Table 4.3: Primers used in section 4.2 
primer name sequence description

∆PA14_71720- 
71740 1F

ccaggcaaattctgttttatcagaccgcttctgcgttctgatGATGATGC
CCTTGAACTGCT

To make the in-frame 
markerless deletion of 
PA14_71720-PA14_71740

∆PA14_71720- 
71740 1R

gtctactccgaggccgatcAGGCGATGAAGATGGAAACC To make the in-frame 
markerless deletion of 
PA14_71720-PA14_71740

∆PA14_71720- 
71740 2F

ggtttccatcttcatcgcctGATCGGCCTCGGAGTAGAC To make the in-frame 
markerless deletion of 
PA14_71720-PA14_71740

∆PA14_71720- 
71740 2R

ggaattgtgagcggataacaatttcacacaggaaacagctCAATTCC
TCCACCGGTAGTT

To make the in-frame 
markerless deletion of 
PA14_71720-PA14_71740

PA14_71720- 
71740c 1F

ccaggcaaattctgttttatcagaccgcttctgcgttctgatGATGATGC
CCTTGAACTGCT

To make the PA14_71720-
PA14_71740 
complementation strain

PA14_71720- 
71740c 1R

cggcgagcgctacaagaccaTCACCAACGAAGTGAAGCTG To make the PA14_71720-
PA14_71740 
complementation strain

PA14_71720- 
71740c 2F

cagcttcacttcgttggtgaTGGTCTTGTAGCGCTCGCCG To make the PA14_71720-
PA14_71740 
complementation strain

PA14_71720- 
71740c 2R

tggagttcctgctcgccgacGGCGAGGTGTACTTCATGG To make the PA14_71720-
PA14_71740 
complementation strain

PA14_71720- 
71740c 3F

ccatgaagtacacctcgccGTCGGCGAGCAGGAACTCCA To make the PA14_71720-
PA14_71740 
complementation strain

PA14_71720- 
71740c 3R

ggaattgtgagcggataacaatttcacacaggaaacagctCAATTCC
TCCACCGGTAGTT

To make the PA14_71720-
PA14_71740 
complementation strain

PA14_71740- 
K451* 1F

ccaggcaaattctgttttatcagaccgcttctgcgttctgatGACGAAGC
CCACAGCATC

To make the K451stop point 
mutation in PA14_71740 (α 
subunit)

PA14_71740- 
K451* 1R

gccaggtgcgacgggttgcgttaGATCGAGTACTGGGTCAGT
T

To make the K451stop point 
mutation in PA14_71740 (α 
subunit)

PA14_71740- 
K451* 2F

aactgacccagtactcgatctaaCGCAACCCGTCGCACCTG
GC

To make the K451stop point 
mutation in PA14_71740 (α 
subunit)

PA14_71740- 
K451* 2R

ggaattgtgagcggataacaatttcacacaggaaacagctCCAGGC
CATGCTGGAGAT

To make the K451stop point 
mutation in PA14_71740 (α 
subunit)
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Table 4.3 (continued): Primers used in section 4.2

primer name sequence description

PA14_71720-
A55T 1F

ccaggcaaattctgttttatcagaccgcttctgcgttctgatCTCGAGAA
GTGCATCGTCAA

To make the A55T point 
mutation in PA14_71720 (β 
subunit)

PA14_71720-
A55T 1R

cgcacgcaggcgtcgaaggtagtGCCGCCCCAGACTTCCAG
CG

To make the A55T point 
mutation in PA14_71720 (β 
subunit)

PA14_71720-
A55T 2F

cgctggaagtctggggcggcactACCTTCGACGCCTGCGTG
CG

To make the A55T point 
mutation in PA14_71720 (β 
subunit)

PA14_71720-
A55T 2R

ggaattgtgagcggataacaatttcacacaggaaacagctCGCACG
TCGATGACTTCCT

To make the A55T point 
mutation in PA14_71720 (β 
subunit)

PA14_71720- 
K572A 1F

ccaggcaaattctgttttatcagaccgcttctgcgttctgatCTGAAGGC
CGTGGAAAAC

To make the K572A point 
mutation in PA14_71720 (β 
subunit)

PA14_71720- 
K572A 1R

gcctggacctcggtttccatggcCATCGCCTCGGTGATCAAC
A

To make the K572A point 
mutation in PA14_71720 (β 
subunit)

PA14_71720- 
K572A 2F

tgttgatcaccgaggcgatggccATGGAAACCGAGGTCCAG
GC

To make the K572A point 
mutation in PA14_71720 (β 
subunit)

PA14_71720- 
K572A 2R

ggaattgtgagcggataacaatttcacacaggaaacagctATGATGC
CCTTGAACTGCTC

To make the K572A point 
mutation in PA14_71720 (β 
subunit)
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Table 4.4: Crystallographic information and refinement statistics for section 4.3 
MapLCC

Data collection

Space group P213

Cell dimensions

  a, b, c (Å) 220.9, 220.9, 220.9

  ⍺, β, ɣ ( ˚ ) 90, 90, 90

Resolution (Å) 50-3.0 (3.1-3.0)*

Rmerge 9.6 (44.6)

I/σI 10.3 (1.9)

Completeness (%) 91 (72)

Redundancy 3.3 (2.1)

Refinement

Resolution (Å) 50-3.0

No. reflections 64,953

Rwork/Rfree 20.9/26.2

No. atoms

Protein 14632

Ligand/ion 0

Water 0

B-factors

Protein 66.4

Ligand/ion –

Water –

R.m.s. deviations

Bond lengths (Å) 0.007

Bond angles ( ˚ ) 1.4

Two crystals were used for data collection

* the highest-resolution shell is shown in parenthesis
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Table 4.5. Primers used in section 4.3 

Table 4.6. Strains used in section 4.4 

primer name sequence description

∆PA14_46320 
flank 1F

ccaggcaaattctgttttatcagaccgcttctgcgttctgat 
GCTGCCTGCTCTACATGCT

To make the in-frame markerless 
deletion of PA14_46320

∆PA14_46320 
flank 1R

ccttcaacgccttgctgat 
CCAGCTACCTGGAGATCGAC

To make the in-frame markerless 
deletion of PA14_46320

∆PA14_46320 
flank 2F

gtcgatctccaggtagctgg 
ATCAGCAAGGCGTTGAAGG

To make the in-frame markerless 
deletion of PA14_46320

∆PA14_46320 
flank 2R

ggaattgtgagcggataacaatttcacacaggaaacagct 
GGCGCGACCAGTAGAGATT

To make the in-frame markerless 
deletion of PA14_46320

strain relevant genotype/description* source/construction†

Bacillus subtilis strains

NCIB3610 phototroph BGSC

NRS2097 NCIB3610 bslA::cml Verhamme et al., 2009

NRS2299 NCIB3610 bslA:: cml amyE::Phy-spank-bslA-lacI (spc) Verhamme et al., 2009

NRS5177 NCIB3610 bslA:: cml amyE::Phy-spank-bslAC178A-lacI 
(spc)

SPP1 NRS5165 → NRS2097

NRS5178 NCIB3610 bslA:: cml amyE::Phy-spank-bslAC180A-lacI 
(spc)

SPP1 NRS5166 → NRS2097

NRS5179 NCIB3610 bslA:: cml amyE::Phy-spank-bslA 
C178AC180A-lacI (spc)

SPP1 NRS5167 → NRS2097

NRS2957 NCIB3610 bslA:: cml amyE::Phy-spank-bslA Δ172–181-
lacI (spc)

SPP1 NRS2953 → NRS2097

NRS5553 NCIB3610 bdbCD::spc bdbA::erm SPP1 NRS5139→ NRS5552

NRS5132 NCIB3610 bslA::cml amyE-Pspac-hy-gfpmut2 (spc) 
sacA::PbslA-bslA (kan)

SSP1 NRS1113→ NRS2978

NRS5136 NCIB3610 bslA::cml amyE-Pspac-hy-gfpmut2 (spc) 
sacA::PbslA-bslA C178A C180A (kan)

SSP1 NRS5149→ NRS5131

Escherichia coli strains

MC1061 E. coli F’lacIQ lacZM15 Tn10 (tet) E. coli Genetic Stock Center

BL21 (DE3) F– ompT hsdSB(rB–, mB–) gal dcm (DE3) Studier and Moffatt, 1986

*Drug resistance cassettes are indicated as follows: cml, chloramphenicol resistance; kan, kanamycin 
resistance; mls, lincomycin and erythromycin resistance; and spc, spectinomycin resistance. BSGC 
represents the Bacillus genetic stock center.

†The direction of strain construction is indicated with DNA or phage (SPP1) (→) recipient strain.
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Table 4.7. Plasmids used in section 4.4 
plasmid description * source†

pDR111 B. subtilis amyE integration vector for IPTG-induced 
expression

Britton et al., 2002

pGEX-6P-1 Vector for production of GST-fused proteins GE Healthcare

pQE70 Cloning vector for His-tag fusions Qiagen

pET15b-TEV Vector for production of His tag-fused proteins Lab sources

pSac-Kan B. subtilis sacA integration vector Middleton et al., 2004

pNW1500 pDR111-bslAC178A this study

pNW1501 pDR111-bslAC180A this study

pNW1502 pDR111-bslAC178A C180A this study

pNW1128 pGEX-6P-1-TEV-bslA42–181 Hobley et al., 2013

pNW1503 pGEX-6P-1-TEV-bslA42–181 C178A this study

pNW1504 pGEX-6P-1-TEV-bslA42–181 C180A this study

pNW1505 pGEX-6P-1-TEV-bslA42–181 C178A C180A this study

pNW1510 pGEX-6P-1-TEV-bslA42–171 (Δ172–181) this study

pNW518 pSac-Kan-PbslA-bslA this study (coding region 
amplified with primers 
NSW646 and NSW645 cloned 
into pSac-Kan)

pNW1231 pSac-Kan-PbslA-bslAC178A C180A this study(C178A and C180A 
mutations introduced into 
pNW518 with primers 
NSW1124 and NSW1125)

pNW1079 pDR111- bslAss- yweA-bslA171–181 this study (coding region from 
pNW1075 cloned into pDR111 
using HinDIII and SphI)

pNW611 pQE70-bslA signal sequence (hereafter bslAss) Ostrowski et al., 2011

pNW1075 pQE70-bslAss-yweA-bslA171–181 This work (synthetic gene 
amplified with primers 
NSW2026 and NSW645 and 
cloned into pNW611)

pNW512 pDR111-bslA Ostrowski et al., 2011

pNW621 pDR111-bslAΔ172–181- This work (coding region 
amplified with primers 
NSW626 and NSW838)
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Table 4.8. Primers used in section 4.4 
primer name sequence description

NSW12 CGATTCAAAACCTCTTTACTG amyE locus for assessing 
double crossovers

NSW13 GCTTAAGCCCGAGTC amyE locus for assessing 
double crossovers

NSW1900 TCCTCCGACTCAGCCTgcaGGTTGCAACTAAGCAT Site-directed mutagenesis 
(SDM) on pNW512 to convert 
C178 to Ala (AxC)

NSW1901 ATGCTTAGTTGCAACCtgcAGGCTGAGTCGGAGGA SDM on pNW512 to convert 
C178 to Ala (AxC)

NSW1902 GACTCAGCCTTGCGGTgcaAACTAAGCATGCAAGC SDM on pNW512 to convert 
C180 to Ala (CxA)

NSW1903 GCTTGCATGCTTAGTTtgcACCGCAAGGCTGAGTC SDM on pNW512 to convert 
C180 to Ala (CxA)

NSW1904 TCCGACTCAGCCTgcaGGTgcaAACTAAGCATGCA SDM on pNW512/pNW1079 to 
convert C178 and C180 to Ala 
(AxA)
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Chapter 5: Conclusion

5:1: Thesis summary and implications

This thesis presents data that enhance our understanding of Pseudomonas aeruginosa’s 

impressive metabolic flexibility. Specifically, this work has explored the modularity of P. 

aeruginosa’s aerobic respiratory chain and the distinct physiological roles of its terminal 

oxidases, particularly as they pertain to growth in multicellular communities called biofilms. The 

research discussed in this thesis has also considered the effects that phenazines, redox-active 

secondary metabolites, have on electron flow through the P. aeruginosa respiratory chain and 

explored other pathways of energy generation/conservation in P. aeruginosa. Because biofilm 

formation and respiratory flexibility contribute to P. aeruginosa’s potential to colonize and persist 

in hosts, a more detailed understanding of these features will support efforts to treat infections 

caused by this bacterium. 

5:2: An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas 

aeruginosa biofilm growth and virulence

The research presented in Chapter 2 focused on one type of P. aeruginosa’s five 

terminal oxidases, the Cco’s, which can contain subunits encoded by redundant genes located 

at distinct sites on the chromosome (Arai et al. 2014; Hirai et al. 2016; Jo et al. 2017). I 

identified a biofilm-specific role for the so-called “orphan” Cco terminal oxidase subunit CcoN4. 

Through genetic analyses, I demonstrated that CcoN4 functions redundantly with the canonical 

CcoN catalytic subunits CcoN1 and CcoN2 to support WT biofilm development. I showed that 

CcoN1 and CcoN2 function predominantly in liquid culture and during early stages of biofilm 

development, conditions where O2 is abundant. In contrast, CcoN4 does not contribute to 

growth in liquid culture but rather supports later stages of biofilm development, when the 

thickness of the community leads to the formation of an anoxic zone at depth. I also 

demonstrated that CcoN4-containing complexes are important for mediating reduction of 

phenazines, whose presence is necessary for the formation and maintenance of an anoxic 
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zone. These results broadened the scope of terminal oxidase function to include phenazine 

utilization in addition to the reduction of O2.  

Because biofilm formation and survival in O2-limited environments are important for P. 

aeruginosa’s success as a pathogen, I then asked whether CcoN4-containing heterocomplexes 

are involved in virulence using a nematode infection model. The results showed that CcoN4-

containing complexes do indeed contribute to P. aeruginosa pathogenicity and uncovered a 

potential target for novel drugs.  

5:3: Carbon source influences electron flow through the aerobic respiratory chain of 

Pseudomonas aeruginosa

Experiments described in Chapter 3 characterized P. aeruginosa growth on different 

carbon sources and examined how the presence of a subset of terminal oxidases and the 

production of phenazines affect electron flow through the respiratory chain. I found P. 

aeruginosa respiration and metabolism in liquid cultures to be highly adaptable to different 

carbon sources. In contrast, I found that carbon sources contribute differentially to biofilm 

development, underscoring the physiological differences between planktonic and biofilm growth.  

I identified carbon sources that support reduction of a redox dye that is typically used to 

report respiratory activity and discovered that the presence of phenazines also had a profound 

effect on dye reduction during growth on specific carbon sources. I then focused my 

experiments on three carbon sources of particular interest (glucose, succinate, and tryptone) 

and found that biofilm morphology, matrix production, terminal oxidase expression, phenazine 

production, and phenazine utilization were all affected by carbon source identity. My results 

show that the earliest steps in catabolism (i.e., initial oxidations or transformations of the 

electron donor) influence the latest steps (i.e., reduction of the terminal electron acceptor) an 

that these primary metabolic pathways do not function in the purely modular way that they are 

often presented in textbooks. Although we can elucidate the mechanistic details of a pathway by 

studying it in isolation, attempts to control bacterial growth require that we take a global view of 
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metabolism and the relationships between pathways that may, at first, appear to function 

independently. 

5:4: Other pathways of energy generation in Pseudomonas aeruginosa and the 

contribution of redox state to biofilm formation in Bacillus subtilis

The experiments described in Chapter 4 were conducted for the collaborations in which I 

participated as part of my thesis work. Some of this research explored other pathways of energy 

generation in P. aeruginosa and illustrates other facets of P. aeruginosa metabolic flexibility. 

First, I considered the fate of pyruvate, an important intermediate of central metabolism that can 

be modified in a variety of ways. While Chapters 2 and 3 describe pathways that lead to 

pyruvate oxidation through aerobic respiration, Chapter 4 investigated the contribution of 

pyruvate fermentation and carboxylation to P. aeruginosa growth under specific conditions. 

Through my collaborations with the Tong Lab, I was able to contribute in vivo functional data 

that elucidated the physiological roles of pyruvate and acetyl-CoA carboxylases.  

My work with the Stanley-Wall Lab generated data that serve as another example of how 

redox state drives community behavior. I contributed evidence that the conditions found within 

Bacillus subtilis biofilms are amenable to spontaneous disulfide bond formation between BslA 

monomers, which leads to the formation of a hydrophobic coat at the surface of the biofilm. 

These data show how chemical gradients influence the construction of B. subtilis biofilms, much 

as they do in those of P. aeruginosa, emphasizing the universality of redox-dependent 

mechanisms that influence biofilm structure.  

5:5: Concluding remarks

In conclusion, my thesis contributes to the growing body of evidence that Pseudomonas 

aeruginosa is a metabolic powerhouse, able to adjust its physiology in response to electron 

acceptor availability, carbon source, respiratory chain content, and mode of growth. The results 

presented in my thesis remind us that planktonic and biofilm growth are distinct, with specific 
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respiratory enzymes contributing differentially to optimal fitness in either condition. This 

highlights the need for more biofilm-based research when searching for anti-microbial 

compounds that might combat P. aeruginosa (and other bacterial) growth and biofilm-based 

infection in clinical settings. My thesis also serves a more fundamental purpose, to illustrate how 

bacteria are able to withstand major deviations in growth conditions and still grow efficiently. 

These “lesser” organisms are capable of fastidiously tuning their metabolism and have evolved 

to exploit diverse resources for survival and growth. 
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Appendix 

An Aerobic Exercise: Defining the Roles of Pseudomonas aeruginosa Terminal Oxidases 

This chapter is adapted from a commentary article I co-authored in 2014 in the Journal of 
Bacteriology, which was written as a companion piece to a study published in the same issue 
that characterized Pseudomonas aeruginosa’s five terminal oxidases. This chapter is referred to 
in section 1.3.4. 

The opportunistic pathogen Pseudomonas aeruginosa encodes a large and diverse 

complement of aerobic terminal oxidases, which is thought to contribute to its ability to thrive in 

settings with low oxygen availability. In this issue, Arai et al. present a thorough characterization 

of these five complexes, enabling a more detailed understanding of aerobic respiration in this 

organism. 

Although the Earth’s atmosphere contains approximately 21% oxygen, bacteria in 

environments that are ostensibly aerobic still encounter zones where the concentration is much 

lower, due to the effects of oxygen solubility, low diffusibility, and consumption by neighboring 

cells. Many bacteria cope with this in part through the use of branched respiratory chains that 

can be modulated in response to changing conditions (Poole and Cook 2000) . Aerobic terminal 

oxidases, which catalyze electron transfer from the respiratory apparatus to oxygen, vary in their 

affinities and efficiencies (Morris and Schmidt 2013). Five such enzymes have been identified in 

the opportunistic pathogen Pseudomonas aeruginosa (Fig. 1), and these are thought to 

contribute to its ability to thrive under hypoxia (Poole and Cook 2000; Matsushita et al. 1980; 

Comolli and Donohue 2004; Alvarez-Ortega and Harwood 2007; Kawakami et al. 2010; 

Williams, Zlosnik, and Ryall 2007; Arai 2011). A diverse collection of aerobic terminal oxidases 

may be especially critical for an organism that has a proficiency for persisting in biofilms, which 

are characterized by the formation of steep oxygen gradients (Xu et al. 1998; Dietrich et al. 

2013; Wessel et al. 2014). In addition to contributing to P. aeruginosa’s growth under 

microaerobic conditions, some of these complexes have been implicated in its ability to cope 

with various stresses (Kawakami et al. 2010; Cunningham and Williams 1995). In this issue of 

the Journal of Bacteriology, Arai et al. conduct a comprehensive study of these complexes, 

probing their biochemical properties and contributions to aerobic growth (Arai et al. 2014). They 
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describe a systematic investigation of the attributes of each enzyme, which clarified many 

aspects of P. aeruginosa’s aerobic biology and revealed a new potential role for a particular 

high-affinity oxidase. 

The P. aeruginosa aerobic terminal oxidases include enzymes that can use ubiquinol or 

cytochromes as electron donors, ones that have low or high affinities for O2, and a cyanide-

insensitive oxidase (CIO) that functions in the presence of this endogenously produced 

virulence factor (Cunningham and Williams 1995). Aside from CIO, the four other aerobic 

terminal oxidases encoded by the P. aeruginosa genome are the bo3 oxidase (Cyo), the aa3 

oxidase (Aa3), cbb3 oxidase-1 (Cbb3-1), and cbb3 oxidase-2 (Cbb3-2). Earlier studies predicted 

that Cyo and Aa3 (which is most similar to the mitochondrial terminal oxidase) would have low 

affinities for oxygen and that CIO and the Cbb3 enzymes would have high oxygen affinities 

(Comolli and Donohue 2004; Alvarez-Ortega and Harwood 2007; Kawakami et al. 2010; Bosma 

The P. aeruginosa membrane-bound electron transport chain can employ five different 
oxygen reductases. Ubiquinone (Ub) is reduced by a dehydrogenase (not shown) and acts as 
the electron donor for the cytochrome bc1 complex, Cyo, or CIO. The cytochrome bc1 complex 
reduces a c-type cytochrome, which then acts as the electron donor for Aa3, Cbb3-1 (or Cco1), 
or Cbb3-2 (or Cco2). Heme-copper oxidases are represented by pink shapes. Oxidases that 
support growth better under microaerobic conditions are shaded yellow, while those that support 
growth better under typical conditions are shaded blue. These roles are influenced by intrinsic 
chemical properties and expression levels of the individual complexes. Approximate affinities for 
oxygen (Km Values obtained amperometrically) are shown. 
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et al. 1987; Winstedt and von Wachenfeldt 2000). In batch cultures grown under typical 

conditions (i.e., in nutrient-rich media and atmospheric oxygen, with vigorous shaking), the low-

affinity enzymes Cyo and/or Aa3 would thus be expected to play major roles during exponential 

growth, when oxygen is relatively abundant. The high-affinity enzymes Cbb3-1 and Cbb3-2 

would be expected to function primarily in stationary phase, when oxygen is relatively scarce, 

and/or during growth in microaerobic conditions. Hypothetically, CIO would be particularly 

important in stationary phase, as it is the only terminal oxidase that functions in the presence of 

cyanide, which P. aeruginosa produces at high cell density (Williams, Zlosnik, and Ryall 2007; 

Cunningham and Williams 1995; Cunningham, Pitt, and Williams 1997). 

Using gene expression and mutant analyses, previous studies have revised and clarified 

this working model of P. aeruginosa aerobic respiration. They have shown that the Aa3 oxidase, 

which plays a major role in aerobic respiration in other bacteria ((Bosma et al. 1987; Winstedt 

and von Wachenfeldt 2000), is expressed primarily under nutrient-limited conditions and is 

otherwise a minor player under typical conditions (Kawakami et al. 2010). Rather, the Cbb3-1, 

Cbb3-2, and CIO oxidases play major roles, and their importance is exaggerated when oxygen 

becomes limiting and during growth in biofilms (Comolli and Donohue 2004; Alvarez-Ortega and 

Harwood 2007; Kawakami et al. 2010; Hamada et al. 2014). The two Cbb3 oxidases are very 

similar at the amino acid level (with a similarity of 87% for the catalytic subunit in strain PAO1), 

but they are differentially regulated: the Cbb3-1 complex is expressed constitutively, while the 

Cbb3- 2 complex is induced by oxygen limitation (Comolli and Donohue 2004; Alvarez-Ortega 

and Harwood 2007). Critically, these studies also showed that oxidase gene expression can be 

compensatory, such that loss of one or more oxidases leads to induction of others (Kawakami et 

al. 2010). 

To study the physiological roles of the P. aeruginosa aerobic terminal oxidases in 

isolation, Arai et al. took the important step of generating combinatorial mutants, each 

containing only one of these complexes, in strain PAO1. Growth experiments confirmed the 

unique primary physiological roles of the Cbb3 complexes in this bacterium (Comolli and 
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Donohue 2004; Alvarez-Ortega and Harwood 2007; Kawakami et al. 2010). Under typical 

conditions, the strain containing the Cbb3-1 oxidase grew like the wild type, while the strain 

containing the Cbb3-2 oxidase showed a defect earlier in the growth experiment before 

“catching up” to the final wild-type density. This growth profile is consistent with the prior 

observation that Cbb3-2 is induced specifically by oxygen limitation (Comolli and Donohue 

2004); basal levels of expression could support initial growth before increased oxygen 

consumption by the denser culture brings the oxygen level down and thereby enhances 

expression. The growth phenotypes of the other individual single-oxidase strains also reflected 

what was known about regulation of the P. aeruginosa terminal oxidases (Comolli and Donohue 

2004; Kawakami et al. 2010).  

Prior work looking at expression of genes encoding putative c-type cytochromes had 

provided clues as to which of these proteins might carry electrons from the cytochrome bc1 

complex to the Cbb3-type oxidases (Kawakami et al. 2010). Arai et al. used a genetic approach 

to determine that cytochrome c4, encoded by ORF PA5490 in strain PAO1, is the predominant 

mediator functioning at this step in the electron transport pathway under typical and 

microaerobic conditions. This finding fills in an important gap that was remaining in our model of 

the P. aeruginosa aerobic respiratory chain.  

To assess their positions in the electron transport chain and oxygen affinities, Arai et al. 

conducted in vitro studies with membranes prepared from strains producing each of the 

individual oxidases. Oxygen consumption assays confirmed the electron donor (ubiquinone or 

cytochrome c) predictions for each complex (Comolli and Donohue 2004), as well as the 

cyanide sensitivity of all of the oxidases but CIO. A battery of affinity assays also confirmed 

predictions for the relative affinities of the oxidases, with one exception: CIO, a cytochrome bd-

type enzyme, was found to differ from the canonical Escherichia coli cytochrome bd (D’mello, 

Hill, and Poole 1996) in that it showed a low affinity for oxygen. The physiological consequences 

of the low oxygen affinity of CIO were examined by expressing the P. aeruginosa cioAB genes in 

an E. coli mutant lacking native terminal oxidases. The growth of this strain was compared to a 
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version of the same mutant expressing the E. coli cytochrome bd under the same promoter. 

Growth rates and yields for the two strains were similar under typical conditions, but the CIO-

expressing strain showed a slower growth rate under microaerobic conditions, further 

supporting the conclusion that CIO functions optimally when oxygen availability is relatively 

high. 

By generating P. aeruginosa mutants that each expressed only one terminal oxidase, 

Arai et al. were able to address outstanding questions regarding oxygen respiration and provide 

a more complete picture of the aerobic electron transport chain in this pathogen. A particularly 

intriguing feature of the P. aeruginosa system is that a high-affinity oxidase, Cbb3-1, functions as 

the major oxygen reductase in well-aerated cultures (Fig. 1). The authors point out that this is a 

unique trait, as most other bacteria regulate high-affinity oxidases such that they are expressed 

specifically under low-oxygen conditions, with low-affinity enzymes similar to Aa3 and/or Cyo 

acting as the major oxidase(s) under high-oxygen conditions (Bosma et al. 1987; Winstedt and 

von Wachenfeldt 2000; Ugidos et al. 2008). Even the closely related Pseudomonas putida, 

which also possess two Cbb3-type enzymes, employs Cyo as its major oxidase under typical 

conditions (Ugidos et al. 2008). Though the measured proton translocation efficiency (protons 

translocated across the membrane per oxygen atom consumed) values of the Cbb3-type 

oxidases were lower than that of the Aa3 oxidase, they were higher than the efficiency value of 

CIO and comparable to that of the Cyo oxidase.  

The critical role of Cbb3-1 during exponential growth with relatively high oxygen 

availability raises the question of whether this enzyme contributes capabilities beyond oxygen 

reduction in typical P. aeruginosa cultures. The Cbb3 oxidases differ from other heme-copper 

oxidases in their subunit and binuclear active site composition exhibiting structural similarities to 

nitric oxide reductases (NORs) (Buschmann et al. 2010; Pitcher and Watmough 2004). Cbb3 

oxidase purified from P. stutzeri has been shown to have NOR activity (Forte et al. 2001), and P. 

aeruginosa’s Cbb3 oxidases have been implicated in anaerobic denitrification and NO-mediated 

effects on biofilm formation (Hamada et al. 2014). In diverse organisms, effects of the Cbb3 
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oxidases on the expression of other metabolic genes and on biomineralization have suggested 

that they may be involved in sensing and responding to changes in redox homeostasis (Comolli 

and Donohue 2004; Oh and Kaplan 2000; Li et al. 2014) Finally, results from the current study 

and others suggest that modulation of the P. aeruginosa respiratory chain is strongly influenced 

by environmental stresses, and the different oxidases provide activity under distinct, specialized 

conditions (Kawakami et al. 2010; Williams, Zlosnik, and Ryall 2007; Cunningham, Pitt, and 

Williams 1997). Aa3 is expressed during nutrient starvation, Cyo is expressed under iron 

starvation and in the presence of a NO-generating reagent, and CIO is induced by copper 

starvation and cyanide (Kawakami et al. 2010). As Arai et al. note, utilization of Cbb3-1 during 

exponential growth may provide protection from reactive oxygen species or another unknown 

source of stress. Further investigation into the ecophysiology of P. aeruginosa biofilm formation 

and infection may uncover the significance of Cbb3 activity for this bacterium, which utilizes 

oxygen preferentially and yet dominates in environments where it is in short supply. 
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