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ABSTRACT

Statistical methods for the study of etiologic
heterogeneity

Emily C. Zabor

Traditionally, cancer epidemiologists have investigated the causes of disease under the

premise that patients with a certain site of disease can be treated as a single entity. Then

risk factors associated with the disease are identified through case-control or cohort studies

for the disease as a whole. However, with the rise of molecular and genomic profiling, in

recent years biologic subtypes have increasingly been identified. Once subtypes are known,

it is natural to ask the question of whether they share a common etiology, or in fact arise

from distinct sets of risk factors, a concept known as etiologic heterogeneity. This disser-

tation seeks to evaluate methods for the study of etiologic heterogeneity in the context of

cancer research and with a focus on methods for case-control studies. First, a number of

existing regression-based methods for the study of etiologic heterogeneity in the context

of pre-defined subtypes are compared using a data example and simulation studies. This

work found that a standard polytomous logistic regression approach performs at least as

well as more complex methods, and is easy to implement in standard software. Next, simu-

lation studies investigate the statistical properties of an approach that combines the search

for the most etiologically distinct subtype solution from high dimensional tumor marker

data with estimation of risk factor effects. The method performs well when appropriate

up-front selection of tumor markers is performed, even when there is confounding structure

or high-dimensional noise. And finally, an application to a breast cancer case-control study

demonstrates the usefulness of the novel clustering approach to identify a more risk hetero-

geneous class solution in breast cancer based on a panel of gene expression data and known

risk factors.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Introduction to etiologic heterogeneity

The basic goal of most epidemiologic research is to investigate the prevalence and cause

of disease. Traditionally, epidemiologists have organized this line of research under the

premise that patients with a certain disease share an underlying etiology, or cause. In

this framework, the disease is treated as a single entity, and investigators have sought to

identify risk factors that are associated with the disease using case-control or cohort study

designs. In the early 1990s epidemiologists began to focus attention on the possibility that

risk factors, particularly occupational exposures and environmental carcinogens, may lead

to biologically-distinct subtypes of disease with respect to individual somatic mutations

(see, for example, Taylor et al. (1994)). More recently attention has increasingly focused

on identifying subtypes of disease according to disease characteristics such as molecular

markers or pathologic features. This has been especially true in cancer research because of

the growing use of molecular and genomic profiling, which give researchers access to many

more ways in which to classify a tumor. It is now widely accepted that many cancers,

including but not limited to breast (Perou et al., 2000; Sorlie et al., 2001; Sotiriou et al.,
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2003; Gaudet et al., 2011), lung (Ahrendt et al., 2001; Riely et al., 2008; Marsit et al.,

2009), colorectal (Limsui et al., 2010; Ogino et al., 2011), ovarian (Merritt et al., 2013), and

endometrial (Brinton et al., 2013; Schildkraut et al., 2013) cancers, are comprised of specific

molecular subtypes. As these subtypes are identified, it is natural to ask the question of

whether they share a common etiology, or in fact arise from distinct sets of risk factors. The

concept of differing risk factors across subtypes of disease is known as etiologic heterogeneity.

1.2 Introduction to statistical methods

There are many challenges related to the study of etiologic heterogeneity, and statistical

methods are needed not only to detect the presence of heterogeneity, but also to quantify the

extent of that heterogeneity. One challenge is the possibly high dimension of the data, which

may include information from multiple molecular profiling platforms such as expression,

copy number, mutation, and methylation data. Further, as more evidence accumulates for

subtypes of cancers with distinct risk profiles according to known risk factors, it is natural

to ask whether undiscovered risk factors will also exhibit differential associations across

subtypes. An epidemiologic investigation of etiologic heterogeneity such as a case-control

study would naturally be subject to the constraints of smaller subtype sample sizes as

compared to the aggregate case group, as well as the prospect of false discovery due to the

increasing number of statistical comparisons being made. However, such investigation also

serves to benefit from a potentially larger effect size in at least one subtype and improved

risk prediction accuracy for all patients.

Before undergoing the task of addressing these and many other statistical challenges,

it is important to identify what advantage, if any, researchers stand to gain by considering

subtypes of disease as opposed to an aggregate case group. Begg and Zabor (2012) inves-
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tigated the statistical implications of these trade-offs in the choice between a traditional

case-control design versus one that further classifies cases into subtypes using a simulation

study to examine statistical power under various study design scenarios. This study found

that over a range of risk factor prevalences and overall case-control odds ratios, only modest

heterogeneity was needed before a study design that accounts for subtypes achieved equiva-

lent power to a traditional case-control approach that considers all cases in aggregate. This

result provides a practical motivation to pursue development of statistical methods for the

study of etiologic heterogeneity.

1.2.1 Traditional approach

Early investigations of etiologic heterogeneity relied on standard statistical methods. Typ-

ically, an investigator would have data on cases and controls. The cases would then be

divided into a small number of pre-determined subtypes. These subtypes could be based on

a single disease characteristic, or on combinations thereof. Then, associations with risk fac-

tors could be examined using polytomous logistic regression (Dubin and Pasternack, 1986).

Polytomous logistic regression allows for the simultaneous estimation of subtype-specific

regression parameters, and differences in risk factor effects across subtypes can be tested.

Data on subtypes from cohort studies can be similarly analyzed using competing risks re-

gression, where those who have not yet developed the disease at the end of follow-up are

censored, and the subtypes comprise each of the possible competing events.

Shortly thereafter, Begg and Zhang (1994) proposed that in fact all of the information

needed to test for etiologic heterogeneity is contained in the cases, so it is not necessary

to include data on controls. This is an important idea since often epidemiologists have

access to case series data, with no data on a control population, especially in hospital
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research settings. Polytomous logistic regression can still be used, but now one of the

subtypes is selected to serve as the reference group. Choice of reference subtype could

be determined based on sample size, as selecting the subtype with the largest sample size

as the reference group will produce the most stable estimates, or based on subject-area

interest. Regression parameters are more difficult to interpret in the case-only setting due

to the lack of a control group, as the control group allows for interpretations with respect

to the non-diseased population, but the resulting regression parameters still allow for tests

of differences in risk factor effects across subtypes.

These approaches have the advantage of being straightforward and easy to implement

and interpret. However, they become inefficient or impossible to implement as the number

of subgroups grows, and they do not provide direct information about the extent to which

subtypes are etiologically distinct. Furthermore, the subtypes must be pre-specified, and

subtype assignment occurs in isolation from the analysis of risk factors.

1.2.2 Recent advances

In recent years a number of new methods have been proposed, some of which are extensions

of the traditional approach and others that are more novel.

1.2.2.1 Approaches that require pre-specified subtypes

Chatterjee (2004) proposed a two-stage regression model to address the analytic issue of

having a potentially large number of subtypes that cannot be handled by standard polyto-

mous logistic regression techniques while simultaneously allowing an investigator to deter-

mine which disease characteristics play a role in defining the etiologically distinct subtypes.

Use of a second-stage model for the subtype-specific regression parameters of the first-
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stage polytomous logistic regression model reduces the dimensionality problem while also

providing a testing strategy for etiologic heterogeneity. Interaction effects can be flexibly

included in the second-stage model, though most of the time interest will be limited to the

case of first-order interaction effects, which imply an additive model such that the effect

of one disease characteristic does not depend on other disease characteristics. This model

leads to a conditional interpretation, such that the degree of etiologic heterogeneity with

respect to one disease characteristic is interpreted in the context of all of the other disease

characteristics being held constant.

For estimation of the custom two-stage model, Chatterjee (2004) suggests a semipara-

metric approach that leaves the intercept parameters completely unspecified and limits the

second-stage model to the regression parameters of interest. The reasons for this are two-

fold: 1) the intercept parameters themselves are not of scientific interest and 2) simulation

studies revealed that mis-specification of the intercept parameters can lead to substantial

bias in the regression parameters of interest. Estimation can be carried out using a proposed

pseudo-conditional-likelihood approach, which Chatterjee (2004) shows to be asymptotically

valid and computationally efficient in a simulation study; however, the estimation procedure

requires customized programming.

While the original two-stage modeling approach proposed by Chatterjee (2004) is ap-

propriate for case-control data, epidemiologic research is often conducted using data from

prospective cohort studies. Chatterjee et al. (2010) extended the earlier work by proposing

a two-stage modeling approach for use with data from cohort studies. Now the first-stage

model is a competing risks regression model rather than a polytomous logistic regression

model, and the second-stage model is the same as before. An additional extension of this

work was to the case of missing data. It is common in epidemiologic studies for there to
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be missing disease characteristic data, and the proposed estimation procedure can handle

missing data with a missing-at-random assumption through an extension of the estimating

equation approach of Goetghebeur and Ryan (1995). Similarly to the unspecified intercept

parameters in the case-control setting, the baseline hazard is unspecified. Chatterjee et al.

(2010) demonstrate the asymptotic unbiasedness of the estimator and also show through

a simulation study that the estimator performs well in most cases, even when the baseline

hazard is mis-specified. These methods focus on testing for the association between a single

risk factor and a single disease characteristic, when all other disease characteristics are held

constant.

Rosner et al. (2013) proposed a single-stage approach to examining the effect of risk

factors on disease characteristics while controlling for other disease characteristics. This

has traditionally been accomplished by creating subtypes based on all possible combinations

of the disease characteristics. However, as the number of disease characteristics available

for study grows, this becomes increasingly infeasible. A regression approach that assesses

interaction effects of risk factors with specific disease characteristics while controlling for

levels of other disease characteristics for use in the setting of cohort studies was proposed,

based on a variation of a cause-specific hazard model (Rosner et al., 2013). This method is

particularly appropriate when the assumption of independence of the effects of individual

disease characteristics on the baseline hazard does not hold, as it allows for incorporation

of interaction effects between individual disease characteristics, thus accounting for the

common problem of correlation between disease characteristics. Additionally, it has the

appeal of being implemented using standard software. This method contrasts with that

of Chatterjee et al. (2010) in that it does not imply independence of the effects of disease

characteristics on the baseline hazard and no custom estimation procedure is required.
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Similarly to the problem with polytomous logistic regression, the approach of Rosner

et al. (2013) can become computationally infeasible as the number of disease characteris-

tics defining the subtypes grows. In response, Wang et al. (2015) introduced a two-stage

version of the Rosner et al. (2013) method, with applications to cohort studies, nested

case-control studies, and unmatched case-control studies. For a cohort study or nested

case-control study, the first stage of the analysis uses a cause-specific hazards model. For

an unmatched case-control study, the first stage is instead a polytomous logistic regression

model. A second-stage analysis then allows one to test whether the association between

the risk factor of interest and each subtype differs according to the levels of the individ-

ual disease characteristics that comprise the subtypes. This fixed effects two-stage method

differs from that of Chatterjee et al. (2010) in the estimation approach rather than in the

intrinsic model setup. To account for additional heterogeneity that may not be captured by

the available disease characteristics, Wang et al. (2015) proposed an alternative approach

that incorporates a random intercept in the second-stage model to account for unmeasured

variance.

1.2.2.2 Approaches that search for the most heterogeneous subtypes

The methods described so far can be used when there are pre-defined disease characteris-

tics of interest. While this approach can tell you whether individual disease characteristics

demonstrate etiologic heterogeneity with respect to each individual risk factor, there is no

intrinsic way to quantify the overall degree of etiologic heterogeneity. To provide epidemio-

logic investigators with a method that could be used to search for the set of subtypes that

best explain etiologic heterogeneity, Begg et al. (2013) introduced a scalar heterogeneity

measure that can be used to compare candidate subtyping schemes based on their overall
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degree of etiologic heterogeneity. The goal is to identify the set of subtypes that best ex-

plains the etiologic heterogeneity of the disease of interest by defining a measure of etiologic

heterogeneity. The strategy is based on the use of the coefficient of variation, which is a

measure of risk heterogeneity in the population. The proposed measure can be used to

compare different subtyping options and determine which option demonstrates the high-

est degree of etiologic heterogeneity. Once the optimal subtype solution is identified, then

traditional methods such as polytomous logistic regression can be used to investigate risk

factor effects. This method not only integrates the classification of cases into subtypes with

the examination of risk factor effects, but also provides a scalar measure of the extent to

which the subtypes are etiologically distinct with respect to the entire set of risk factors

simultaneously.

All of the preceding methods have used a regression framework to approach the study

of etiologic heterogeneity. Yu et al. (2015) proposed an approach to the study of etiologic

heterogeneity that alternatively uses binary recursive partitioning. The framework for this

method is that disease characteristics can be combined to form subtypes of disease. Subjects

are initially split into two groups. Then, at each split, one of the two terminal nodes is

selected for further splitting based on a “goodness-of-split” criteria. After all splits are

made, there is a set of candidate tree models, each of different size and complexity. The

terminal nodes of each candidate tree can then be considered as candidate subtypes, and

used as the outcome in polytomous logistic regression to accomplish effect estimation and

heterogeneity testing. Because the candidate trees have been selected based on a search of

the data for the best split, to avoid overoptimism Yu et al. (2015) propose a resampling-

based procedure to estimate the p-value for each candidate tree, where the risk factor of

interest is randomly permuted among subjects with the same observed covariates. Finally,
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the candidate tree with the smallest p-value is selected as the final definition for disease

subtyping. This approach provides a way to subtype cases in order to get a result that

maximizes etiologic heterogeneity by seeking to group cases into subtypes based on the

association between the risk factor of interest and a binary grouping of cases at each step.

This approach does not provide a way to quantify the extent of etiologic heterogeneity

according to the various candidate trees.

Whereas the approaches discussed so far assume that each patient belongs to only a

single subtype, Schildkraut et al. (2013) developed a method to examine the association

between molecular subtypes of ovarian cancer and patient demographics and epidemiologic

risk factors that allows for the possibility that membership in a subtype is not always rigid

and the tumor of each patient could have characteristics of more than one subtype. This

method is specifically motivated in cancer research by the increasing interest in intra-tumor

heterogeneity. The method was applied to identify subtypes of ovarian cancer using consen-

sus k-means clustering of gene expression data, and class prediction by k-nearest neighbors

and diagonal linear discriminate analysis, with k, the number of subtypes, determined by

the gap statistic (Tothill et al., 2008). Once the subtypes are determined, each case is

assigned a score for each subtype. The score is based on a weighted sum of the normalized

expression values for overexpressed probes in the subtype minus a weighted sum of the

normalized expression values for underexpressed probes in the subtype (Sfakianos et al.,

2013). High positive scores indicate that a case is likely to belong to that subtype whereas

low scores indicate that the case is likely not to belong to that subtype. The moderate pos-

itive correlations observed between some pairs of the six subtypes provide evidence that the

subtypes may not be mutually exclusive. The scores for each patient were then normalized,

and Schildkraut et al. (2013) applied multivariate response multiple regression models with
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unstructured covariance to assess the relationship between cancer risk factors and the iden-

tified molecular subtypes. This approach accounts for the correlation between scores for the

various subtypes from a single patient, and the unstructured covariance does not make any

assumptions about the form that correlation takes. Note that this is a case-only analysis,

and no controls or cancer-free participants are used. Testing for heterogeneity is conducted

by incorporating an interaction term for the subtypes by the risk factor of interest. A sig-

nificant interaction effect suggests that the risk factor is associated with score differently

depending on subtype whereas a non-significant interaction effect suggests that the effect

of the risk factor on score does not differ based on subtype. This approach is applicable

to situations where tumors are being classified into subtypes based on a single molecular

platform of information, rather than potentially multiple platforms or a combination of, for

example, gene expression data and histo-pathologic features.

1.3 Introduction to breast cancer heterogeneity

Breast cancer incidence in the United States remained stable from 2002-2011, at an average

age-standardized incidence of 122.8 cases per 100,000 women across all races, and breast

cancer remains one of the three leading cancer causes of death among women, together with

lung and colorectal cancers (Kohler et al., 2015). Breast tumors are biologically diverse, and

growing evidence over the past two decades supports the notion that breast cancer should

not be considered a single disease, but rather a group of diseases with distinct etiologies,

treatments, and prognoses. Numerous studies have used genomic data to classify breast

cancers into subtypes (Perou et al., 2000; Sorlie et al., 2001; Sotiriou et al., 2003), with

most classification schemes relying on hierarchical clustering of microarray data. The most

well-accepted subtyping scheme consists of four main subtypes of breast cancer, known as
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luminal A, luminal B, HER2-type, and basal-like subtypes, based on the PAM50 panel of

gene expression data (Sorlie et al., 2001). These subtypes are well-approximated by four

subtypes of breast cancer based solely on immunohistochemical (IHC) markers for estrogen

receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor

2 (HER2). Luminal A tumors are defined as ER positive (+) and/or PR+, and HER2

negative (-), luminal B tumors are defined as ER+ and/or PR+ and HER2+, HER2-type

tumors are defined as ER- and PR- and HER2+, and basal-like tumors are triple negative,

defined as ER- and PR- and HER2-.

Numerous epidemiologic studies have investigated etiologic differences according to these

subtypes, primarily in the context of case-control studies (Millikan et al., 2008; Phipps

et al., 2008a,b; Yang et al., 2007). Differential risk factor effects have consistently been

identified, particularly with respect to body size, race, and hormonal risk factors such as

menopausal status. To date such analyses have been conducted in two distinct phases,

where identification of biologic subtypes of breast cancer occurs completely separately from

epidemiologic investigation of differential risk factor effects. As a result, it is unclear if the

most etiologically distinct subtypes of breast cancer have yet been identified.

1.4 Summary of introduction

This dissertation seeks to accomplish the following goals. Chapter 2 will explicate the

similarities and differences among regression-based statistical approaches to the study of

etiologic heterogeneity when there are pre-defined subtypes, including the standard polyto-

mous logistic regression method introduced in Section 1.2, and the methods of Chatterjee

(2004), Wang et al. (2015), and Rosner et al. (2013), introduced in Section 1.2.2.1. While

these approaches utilize different modeling strategies, they all aim to test hypotheses about
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associations between risk factors and subtypes or individual disease characteristics. It is im-

portant to understand the intricacies of how these methods compare, and to enumerate the

strengths and weaknesses of each. This will be accomplished through a data example and

simulation studies. Next, Chapter 3 will explore the validity of the method for identifying

optimally etiologicallly heterogeneous subtypes based on a scalar measure proposed by Begg

et al. (2013), introduced in Section 1.2.2.2. This method is of particular interest as it is the

only approach proposed to date the allows for quantification of the extent to which subtypes

are etiologically distinct. While this method has been used in a number of applications, to

date the statistical properties have not been rigorously studied. This will be accomplished

through the use of simulation studies to explore the ability of the method to identify the

truly etiologically heterogeneous subtypes, as quantified by the misclassification rate, under

a variety of scenarios, and to examine the usefulness of upfront dimension reduction of the

disease characteristic data. Finally, Chapter 4 will conduct a comprehensive application to

data from the Carolina Breast Cancer Study, a breast cancer case-control study with avail-

able gene expression data on a subset of the cases, using the optimal D clustering method.

Optimal subtype results will be compared to the traditional four classes of breast cancer

as defined by IHC markers and the PAM50 gene expression panel, which were introduced

in Section 1.3. This data application will elucidate the real-world methodologic challenges

confronted by epidemiologists when seeking to study etiologic heterogeneity in the context

of high dimensional disease characteristic data.
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Chapter 2

Comparison of existing methods?

The results of this chapter show that when the number of tumor markers is small

enough that the cross-classification of markers can be evaluated in the traditional

polytomous logistic regression framework, then the statistical properties are at

least as good as the more complex modeling approaches that have been proposed.

The potential advantage of more complex methods is in the ability to accommodate

multiple tumor markers in a model of reduced parametric dimension.

Epidemiologic questions of interest related to the study of etiologic heterogeneity may in-

clude 1) whether a risk factor of interest has the same effect across all subtypes of disease

and 2) whether risk factor effects differ across levels of each individual disease characteristic

by which the subtypes are defined. Early investigations of etiologic heterogeneity typically

divided cases into a small number of pre-determined subtypes, based on a single molecular

marker or pathologic feature, or on combinations thereof. Associations of specific sub-

types with risk factors could be examined using polytomous logistic regression (Dubin and

Pasternack, 1986). In recent years, however, a number of new statistical methods have been

?Note that the contents of this chapter have been published in Zabor and Begg, Statistics in Medicine

2017; 36:4050-60.
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proposed for the study of etiologic heterogeneity.

In this chapter, four distinct available methods are compared: polytomous logistic re-

gression; the two-stage meta-regression method proposed by Wang et al. (2015); the two-

stage regression with simultaneous estimation approach proposed by Chatterjee (2004); and

the stratified logistic regression approach of Rosner et al. (2013). These methods have very

distinctive parametric structures and it is not immediately straightforward how results using

the different methods align with each other. The goal is to reconcile the similarities among

the methods, and to evaluate their statistical properties. To accomplish this, a simplified

data example is employed to elucidate the interpretation of model parameters and available

hypothesis tests, and a simulation study is performed to assess bias in effect size, type I

error, and power.

2.1 Analytic framework

This chapter focuses solely on methods for the analysis of case-control data, though many

of the approaches discussed can be applied in the context of other study designs. And

because the simplified data example comes from breast cancer, throughout the disease

characteristics that combine to form subtypes are referred to as “tumor markers,” though

notably these methods are generalizable to disease contexts besides cancer. Let i index

study subjects, i = 1, . . . , N , let k index tumor markers, k = 1, . . . ,K, let m index disease

subtypes, m = 0, . . . ,M , where m = 0 denotes control subjects, and let p index risk

factors, p = 1, . . . , P . Initially, for simplicity, the focus is on a setting where there are

two binary tumor markers, each of which can be either positive (+) or negative (-). These

two tumor markers are cross-classified to form four disease subtypes (-/-, +/-, -/+, and

+/+). Additionally, for conceptual simplicity in the primary exposition and simulations,



CHAPTER 2. COMPARISON OF EXISTING METHODS 15

the investigation is limited to the case of a single binary risk factor of interest. Therefore,

the setting explored here has tumor markers k = 1, 2, disease subtypes m = 1, 2, 3, 4, and

risk factor p = 1.

The first epidemiologic question of interest to be addressed is whether the risk factor of

interest has the same effect across all subtypes of disease. This is frequently the primary

question of interest in an investigation of etiologic heterogeneity and allows one to determine

whether the risk factor of interest is associated with specific subtypes of disease. From each

of the available methods, the parameters βpm can be obtained, which represent the log

odds ratio for a one-unit change in risk factor p for subtype m disease versus controls.

In the case of four subtypes and one binary risk factor, there are four such log odds ratios

β11, β12, β13, and β14 (Table 2.1). Thus a test of the hypothesis H0β : β11 = β12 = β13 = β14

is of interest. A second epidemiologic question of specific interest is whether the risk factor

effect differs across levels of each individual tumor marker. This question allows one to

evaluate whether a specific tumor marker is in part responsible for observed differences in

log odds ratios of the risk factor across the subtypes. To answer this question, estimates

of parameters γpk are obtained, each of which represents the ratio of the log odds ratios

for the risk factor defined by different levels of the kth tumor marker when each level of

the other tumor markers is held constant. In the case of two binary tumor markers and a

single binary risk factor, γ11 and γ12 are obtained (Table 2.1). Then this question can be

addressed with tests of the hypotheses H0γ11
: γ11 = 0 and H0γ12

: γ12 = 0.

This chapter addresses how each of the four methods under consideration can be con-

structed to address these two epidemiologic questions, and compares the statistical prop-

erties of the methods. Throughout, it is important to keep in mind the original purpose

of each of the four methods. Polytomous logistic regression is constructed in such a way
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Table 2.1: Interpretation of model parameters

Does the risk factor effect differ with respect to subtypes?

Parameter Interpretation

β11 log odds ratio for subtype m = 1 vs controls

β12 log odds ratio for subtype m = 2 vs controls

β13 log odds ratio for subtype m = 3 vs controls

β14 log odds ratio for subtype m = 4 vs controls

Does the risk factor effect differ with respect to tumor markers?

Parameter Interpretation

γ11 average of differences in log odds ratios when tumor marker k = 1

is + vs - and k = 2 is fixed

γ12 average of differences in log odds ratios when tumor marker k = 2

is + vs - and k = 1 is fixed

as to naturally address the question of whether risk factor effects differ across subtypes

of disease. The βpm parameters are estimated directly in polytomous logistic regression.

Section 2.2.1 shows that the γpk parameters can then be obtained indirectly as a linear

combination of the estimated βpm parameters. Conversely, the two-stage regression with

simultaneous estimation approach of Chatterjee (2004) and the stratified logistic regression

approach of Rosner et al. (2013) were originally proposed to address the question of whether

risk factor effects differ across levels of each individual tumor marker. As such, the γpk pa-

rameters are estimated directly. Both methods also allow for inclusion of interaction effects

between individual tumor markers. Sections 2.2.3 and 2.2.4 show that when all first-order

interaction terms are included in the model, the βpm parameters can be obtained indirectly

as a linear combination of the estimated γpk parameters. The two-stage meta-regression

approach of Wang et al. (2015) was specifically proposed to address both the question of

whether risk factor effects differ across subtypes of disease and the question of whether risk

factor effects differ across levels of each individual tumor marker. In this approach the βpm
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parameters are directly estimated in the first-stage model and then the γpk parameters are

directly estimated in the second-stage model. Details of model specification and estimation

for each of the four methods follow in Section 2.2.

2.2 Methods

This section presents details of the estimation of model parameters and the hypothesis

testing procedure for each approach.

2.2.1 Polytomous logistic regression

Polytomous logistic regression allows for the simultaneous estimation of subtype-specific

regression parameters. Let Yi denote the disease status for subject i such that Yi = 0 for a

non-diseased control subject and Yi = m for a subject with disease subtype m. X1i denotes

the value of risk factor p = 1 for subject i. Then a polytomous logistic regression model is

specified as

Pr(Yi = m|X1i) =
exp(β0m + β1mX1i)

1 +
∑4

m=1 exp(β0m + β1mX1i)
,m = 1, 2, 3, 4 (2.1)

where β0m is the intercept parameter for the mth disease subtype. To evaluate whether the

risk factor has the same effect across all subtypes of disease a Wald test of the hypothesis

H0β : β11 = β12 = β13 = β14 is performed.

Defining wkm as the level of the kth tumor marker corresponding to the mth disease

subtype, a linearly transformed set of parameters can be created using

βjm = γj0 + γj1w1m + γj2w2m + γj12w1mw2m (2.2)
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for j = 0, 1. It follows that estimates of the γpk parameters associated with the individual

tumor marker effects in the case of m = 4 disease subtypes can be obtained as

γ11 =
(β12 − β11) + (β14 − β13)

2
and γ12 =

(β13 − β11) + (β14 − β12)
2

.

Note that while here the case is limited to m = 4 disease subtypes formed by k = 2

tumor markers, this transformation is generalizable. Thus tests addressing the second

set of questions, whether risk factor effects differ across levels of each individual tumor

marker, can be accomplished using Wald tests of H0γ11
: β12 − β11 + β14 − β13 = 0 and

H0γ12
: β13 − β11 + β14 − β12 = 0.

It is of interest to note that when data are not available on control subjects, the test

for etiologic heterogeneity can be obtained using a case-only polytomous logistic regression

model (Begg and Zhang, 1994). In the polytomous logistic regression model one of the four

subtypes must be selected to serve as the reference group. Because there is no data on

controls, the main effects of the individual tumor markers cannot be determined, so case-

only polytomous logistic regression cannot test whether the effect of a risk factor differs

across levels of each individual tumor marker. As this method produces almost identical

results to those from polytomous logistic regression with regard to the question of whether

a risk factor of interest has the same effect across all subtypes of disease, it will not be

investigated in further detail.

2.2.2 Two-stage meta-regression

The method of Wang et al. (2015) is a two-stage approach. As noted in Section 2.1, this

method was specifically proposed to address both the question of whether risk factor effects

differ across disease subtypes and the question of whether risk factor effects differ across
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levels of each individual tumor marker. The first stage of the analysis uses the previously

introduced polytomous logistic regression model (Equation 2.1). Thus the test of whether

the risk factor has the same effect across all four subtypes of disease is identical to the one

used in Section 2.2.1 above. A second-stage analysis is then employed to directly estimate

the parameters γ10, γ11, and γ12 for risk factor p = 1 using a weighted linear regression

model,

β̂1m = γ10 + γ11w1m + γ12w2m + e1m, (2.3)

where β̂1m is the estimated log odds ratio of subtype m versus controls for risk factor

p = 1 from the polytomous logistic regression model and e1m is within study sampling

error such that V ar(e1m) = V̂ ar(β̂1m). Wald tests of the hypotheses H0γ11
: γ11 = 0 and

H0γ12
: γ12 = 0 are used to test whether the risk factor effect differs across levels of each

individual tumor marker.

Wang et al. (2015) also propose that the second stage model in Equation 2.3 can be

extended to include a random effect, which could capture variance between subtypes not

explained by the included tumor markers. Alternatively, the second stage model in Equa-

tion 2.3 can incorporate interaction terms between the individual tumor markers in order

to evaluate whether the effect of the risk factor associated with one tumor marker actu-

ally depends on the level of another tumor marker. These alternative second-stage model

specifications are not examined in depth, but may in fact prove more appropriate in certain

study settings.
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2.2.3 Two-stage regression with simultaneous estimation

The method of Chatterjee (2004) is also a two-stage approach with a similar model struc-

ture. However, unlike the preceding two-stage meta-regression method (Wang et al., 2015),

this approach specifies a joint likelihood and uses a maximum likelihood estimation pro-

cedure to simultaneously estimate the first-stage and second-stage regression parameters.

When the total number of disease subtypes is moderate, maximum likelihood estimation

of the two-stage model is relatively straightforward, though a pseudo-conditional likelihood

estimation method is also proposed for the case when the number of disease subtypes is large

(Chatterjee, 2004). This method was proposed in order to address the question of whether

risk factor effects differ across levels of each individual tumor marker. The first-stage model

is the polytomous logistic regression model defined in Equation 2.1. The second-stage model

to address the question of whether the effect of risk factor p = 1 differs across levels of each

individual tumor marker can be constructed as,

β1m = γ10 + γ11w1m + γ12w2m. (2.4)

In this framework it is of interest to test the independent effect of each tumor marker

when all other tumor markers are held constant. Score tests of the hypotheses H0γ11
: γ11 =

0 and H0γ12
: γ12 = 0 can test whether the risk factor effect differs across levels of each

individual tumor marker.

However, this model also allows for inclusion of interaction effects between individual

tumor markers. If all interaction effects are incorporated then

β1m = γ10 + γ11w1m + γ12w2m + γ112w1mw2m, (2.5)
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would be utilized, where γpk1k2 is a measure of the interaction effect between the k1th and

k2th tumor markers with respect to the pth risk factor. Note that this is equivalent to

Equation 2.2 for the case of j = 1. Analogous to Section 2.2.1, in this setting the βpm

parameter estimates can be obtained based on linear combinations of the γpk parameter

estimates using the fact that β11 = γ10, β12 = γ10+γ11, β13 = γ10+γ12, and β14 = γ10+γ11+

γ12 + γ112. Thus a test of whether the risk factor has the same effect across all four disease

subtypes can be conducted by a Wald test of the hypothesis H0β : γ11 = γ12 = γ112 = 0.

One could also test the hypothesis H0γpk1k2
: γ112 = 0 in order to determine whether the

effect of risk factor p = 1 associated with tumor marker k = 1 actually depends on the level

of tumor marker k = 2.

2.2.4 Stratified logistic regression

As an alternative to a two-stage approach, Rosner et al. (2013) proposed a single-stage

regression method. This method was originally designed to address the question of whether

risk factor effects differ across levels of each individual tumor marker using a computational

structure for which software is readily available. Let Zmi indicate the disease status for

subject i specific to subtype m disease such that

Zmi =


1 if Yi = m

0 if Yi 6= m,

for m = 1, . . . ,M . In control subjects Zmi = 0 for all m. In contrast to all previously dis-

cussed methods, here a data augmentation approach is used, such that each case contributes

m correlated outcomes, one for each combination of tumor markers, i.e. each disease sub-

type m (Rosner et al., 2013). This approach was originally designed for use in the setting of

cohort studies and was implemented using a Cox regression model stratified by the disease
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subtype. However, using the fact that a stratified Cox regression model is equivalent to a

stratified logistic regression model (Gail et al., 1981), also known as a conditional logistic

regression model, the method can easily be applied in the setting of a case-control study

when time is constant for all included subjects and data are structured as described. The

same data augmentation approach is used, and the logistic regression model is stratified by

disease subtype.

To address the question of whether a risk factor of interest, X1i, has the same effect

across levels of each individual tumor marker, the stratified logistic regression model can

be specified as

Pr(Zmi = 1|X1i,wm) =
exp (αm + γ10X1i + γ11X1iw1m + γ12X1iw2m)

1 + exp (αm + γ10X1i + γ11X1iw1m + γ12X1iw2m)
, (2.6)

where wm = {w1m, . . . , wkm} is the vector of tumor markers for the mth subtype and αm is

the stratum-specific intercept term, which cancels out in the conditional likelihood (Breslow

and Day, 1980). This model can be used to test whether the risk factor effect differs across

levels of each individual tumor marker using Wald tests of the hypotheses H0γ11
: γ11 = 0

and H0γ12
: γ12 = 0.

The stratified logistic regression approach of Rosner et al. (2013) also allows for inclusion

of interaction effects between individual tumor markers. When all interaction effects are

included, the model

Pr(Zmi = 1|X1i,wm) =
exp (αm + γ10X1i + γ11X1iw1m + γ12X1iw2m + γ112X1iw1mw2m)

1 + exp (αm + γ10X1i + γ11X1iw1m + γ12X1iw2m + γ112X1iw1mw2m)

(2.7)

is obtained, and as in Section 2.2.3 the βpm parameters can be obtained indirectly as a
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linear combination of the γpk parameters to test whether the risk factor has the same effect

across all four disease subtypes.

2.2.5 Software

All statistical analyses were conducted using R software (R Core Team, 2018). For poly-

tomous logistic regression, the multinom function from the nnet package (Venables and

Ripley, 2002) was used for estimation and the wald.test function from the aod package

(Lesnoff et al., 2012) was used for significance testing. For the second-stage model in the two-

stage meta-regression method of Wang et al. (2015), the rma.mv function from the metafor

package (Viechtbauer, 2010) was used for estimation and significance testing. Estimation

and significance testing for the two-stage regression with simultaneous estimation method

of Chatterjee (2004) was conducted using an R function provided by the authors, except in

the case of the test of H0β , which was conducted using the wald.test function from the aod

package (Lesnoff et al., 2012). Finally, following data augmentation, the clogit function

from the survival package (Therneau, 2015; Terry M. Therneau and Patricia M. Gramb-

sch, 2000) was used for estimation and testing for the stratified logistic regression method

of Rosner et al. (2013). For all methods besides that of Chatterjee (2004), other standard

software packages that support the underlying statistical models could be used. However

all require transformation of the results from one parametric configuration to another and

use the parameter estimates and variance-covariance matrices for hypothesis testing.

2.3 Data example

Data from a previous study that combined two large breast cancer case-control studies, the

Cancer and Steroid Hormone (CASH) study and the Womens’ Contraceptive and Repro-
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ductive Experiences (CARE) study, leading to a total of 984 cases and a corresponding 1592

controls, are used to illustrate the methods (Begg et al., 2013). The goal in this section is

not to conduct a detailed analysis of etiologic heterogeneity in breast cancer. Instead, the

focus is on a simplified strategy that addresses the etiologic heterogeneity of breast cancer

classified into subtypes described by estrogen receptor (ER) and progesterone receptor (PR)

status from the perspective of a single risk factor, oral contraceptive (OC) use. The purpose

is simply to contrast the various modeling strategies.

The primary results from the four methods are presented in Table 2.2. The top portion

of the table contains results relevant to the question of whether OC use has the same

effect across the four disease subtypes. This question is addressed with Equation 2.1 for

polytomous logistic regression and the method of Wang et al. (2015), Equation 2.5 for the

method of Chatterjee (2004), and Equation 2.7 for the method of Rosner et al. (2013). All

methods lead to rejection of the null hypothesis (all p-values < 0.05), so regardless of the

method the conclusion is that the effect of OC use differs across the four disease subtypes.

Of note the parameter estimates for polytomous logistic regression, the method of Wang et

al. (2015), and the method of Chatterjee (2004) are practically identical. This is expected

as the first-stage model for the method of Wang et al. (2015) is simply the polytomous

logistic regression model, and when all first order interaction effects are included in the

method of Chatterjee (2004) and maximum likelihood estimation is used, this model should

produce results that are nearly identical to those from the polytmous logistic regression

model. Finally, note that there are some small differences between the parameter estimates

from the method of Rosner et al. (2013) as compared to the other three methods, in that

the parameter estimates are all less positive in magnitude.

The lower portion of Table 2.2 displays results related to the questions of whether
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Table 2.2: Results of data example comparing existing methods

Does the risk factor effect differ with respect to subtypes?

Method Subtype Parameter Estimate p-value

Polytomous1

ER-/PR- β11 0.31 0.042

ER+/PR- β12 -0.11

ER-/PR+ β13 0.22

ER+/PR+ β14 0.03

Wang2

ER-/PR- β11 0.31 0.042

ER+/PR- β12 -0.11

ER-/PR+ β13 0.22

ER+/PR+ β14 0.03

Chatterjee3

ER-/PR- β11 0.31 0.042

ER+/PR- β12 -0.11

ER-/PR+ β13 0.21

ER+/PR+ β14 0.03

Rosner4

ER-/PR- β11 0.29 0.029

ER+/PR- β12 -0.15

ER-/PR+ β13 0.18

ER+/PR+ β14 0.00

Does the risk factor effect differ with respect to tumor markers?

Method Tumor marker Parameter Estimate p-value

Polytomous1
ER γ11 -0.30 0.046

PR γ12 0.02 0.887

Wang2
ER γ11 -0.33 0.031

PR γ12 0.05 0.731

Chatterjee3
ER γ11 -0.33 0.028

PR γ12 0.05 0.719

Rosner4
ER γ11 -0.34 0.024

PR γ12 0.05 0.739
1Polytomous logistic regression
2Two-stage meta-regression (Wang et al., 2015)
3Two-stage regression with simultaneous estimation (Chatterjee, 2004)
4Stratified logistic regression (Rosner et al., 2013)
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the effect of OC use differs across levels of ER status when PR status is held constant,

and whether the effect of OC use differs across levels of PR status when ER status is

held constant. These questions are addressed with Equation 2.1 for polytomous logistic

regression, Equation 2.3 for the method of Wang et al. (2015), Equation 2.4 for the method

of Chatterjee (2004), and Equation 2.6 for the method of Rosner et al. (2013). Again, the

parameter estimates and p-values are similar. Regardless of the method, the conclusion is

that the effect of OC use on breast cancer risk differs by ER status, but the effect of OC

use on breast cancer risk does not differ by PR status.

2.4 Simulation study

The simulation study is conducted using a similar framework to the data example, with

four disease subtypes formed by cross-classification of two tumor markers as described in

Section 2.1. There is a single binary risk factor of interest, with a prevalence among control

subjects of q = 0.3. Each simulation uses 1000 controls and 1000 cases, with the cases

divided equally among the four disease subtypes. The true regression coefficients are fixed

at β1m for subtype m disease, m = 1, 2, 3, 4. Risk factor data are randomly generated

for each subject with disease subtype m from a binomial distribution with probability

exp(qβ1m)/[1+exp(qβ1m)] and for each control subject with probability exp(q)/[1+exp(q)].

For each simulation setting, 1000 simulated data sets are generated.

To address the question of whether the risk factor effect differs across the disease sub-

types, the simulation study employs Equation 2.1 for polytomous logistic regression and

the method of Wang et al. (2015), Equation 2.5 for the method of Chatterjee (2004), and

Equation 2.7 for the method of Rosner et al. (2013). To address the question of whether

the risk factor effect differs across levels of each individual tumor marker, the simulation
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study uses Equation 2.1 for polytomous logistic regression, Equation 2.3 for the method of

Wang et al. (2015), Equation 2.4 for the method of Chatterjee (2004), and Equation 2.6 for

the method of Rosner et al. (2013).

It is important to note that some of the simulation settings imply an interaction effect

between the individual tumor markers whereas some of the simulation settings imply a

main effects model with no interaction effect. When there is no interaction between the

individual tumor markers, i.e. when γ112 = 0, then β14 = β12 + β13 − β11 and a test of

whether the risk factor effect differs across the disease subtypes can be conducted with

a test of H0β : γ11 = γ12 = 0. In settings where there is truly no interaction effect,

the method of Chatterjee (2004) is explored using both Equation 2.5 and Equation 2.4 to

determine whether there is an efficiency gain from using a model that does not incorporate

an interaction effect as compared to a model that does.

2.4.1 Data simulated under the null hypothesis

The first set of simulations is conducted under the null hypothesis for the question of whether

the risk factor effect differs across the four disease subtypes, and under the null hypothesis

for the question of whether the risk factor effect differs across levels of each individual

tumor marker. Set β11 = β12 = β13 = β14 = 0.1 and therefore γ11 = γ12 = 0. Equivalent

disease subtype effects such as this imply no interaction effect between the individual tumor

markers. For the question of whether the risk factor effect differs across the four disease

subtypes, the size of the test is 0.051 for polytomous logistic regression, the method of

Wang et al. (2015), and the method of Chatterjee (2004) whereas the method of Rosner et

al. (2013) has an inflated type I error of 0.089 (Table 2.3, upper portion). The biases in

parameter estimates are small for all methods except that of Rosner et al. (2013). When the



CHAPTER 2. COMPARISON OF EXISTING METHODS 28

main effects model of Chatterjee (2004) is applied using Equation 2.4, similarly small biases

of −0.000, −0.004, −0.001, and −0.006 are found for β11, β12, β13, and β14, respectively,

but there is a slightly inflated type I error of 0.068.

For the question of whether the risk factor effect differs across levels of each individual

tumor marker, polytomous logistic regression and the method of Chatterjee (2004) have very

similar type I errors for γ11 of 0.063 and for γ12 of 0.051 and 0.050, respectively (Table 2.3,

lower portion). The method of Wang et al. (2015) has lower type I errors, 0.037 and 0.031

for testing γ11 and γ12, respectively; conversely, the method of Rosner et al. (2013) has

inflated type I errors of 0.077 and 0.073. In this setting all methods produce parameter

estimates with comparably small biases.

2.4.2 Data simulated under the alternative hypothesis

The second set of simulations is conducted under the alternative hypothesis for the question

of whether the risk factor effect differs across the four disease subtypes, and under the

alternative hypothesis for the question of whether the risk factor effect differs across levels

of each individual tumor marker. Here let β11 = 0.2, β12 = β13 = 0.3, and β14 = 0.8 so

that γ11 = γ12 = 0.3. For the question of whether the effect of the risk factor differs across

the four subtypes, polytomous logistic regression, the method of Wang et al. (2015) and

the method of Chatterjee (2004) all have power of 0.822 whereas the method of Rosner et

al. (2013) has higher power of 0.862 (Table 2.3, upper portion). However, recall that the

method of Rosner et al. (2013) had higher type I error than the other methods, and so

calibration is needed to truly compare the signal detection srengths of the methods. While

biases are generally very small for most methods, there is substantial bias in parameter

estimates for the method of Rosner et al. (2013).
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Table 2.3: Results of simulation study comparing existing methods

Does the risk factor effect differ with respect to subtypes?

Null hypothesis Alternative hypothesis

Method Parameter Truth Bias Type I error Truth Bias Power

Polytomous1

β11 0.1 -0.000 0.051 0.2 -0.001 0.822

β12 0.1 -0.004 0.3 -0.006

β13 0.1 -0.001 0.3 -0.002

β14 0.1 -0.007 0.8 -0.007

Wang2

β11 0.1 -0.000 0.051 0.2 -0.001 0.822

β12 0.1 -0.004 0.3 -0.006

β13 0.1 -0.001 0.3 -0.002

β14 0.1 -0.007 0.8 -0.007

Chatterjee3

β11 0.1 -0.000 0.051 0.2 -0.001 0.822

β12 0.1 -0.004 0.3 -0.006

β13 0.1 -0.001 0.3 -0.002

β14 0.1 -0.007 0.8 -0.007

Rosner4

β11 0.1 0.047 0.089 0.2 0.190 0.862

β12 0.1 0.043 0.3 0.178

β13 0.1 0.046 0.3 0.182

β14 0.1 0.040 0.8 0.146

Does the risk factor effect differ with respect to tumor markers?

Null hypothesis Alternative hypothesis

Method Parameter Truth Bias Type I error Truth Bias Power

Polytomous1
γ11 0.0 -0.005 0.063 0.3 -0.005 0.589

γ12 0.0 -0.001 0.051 0.3 -0.001 0.599

Wang2
γ11 0.0 -0.005 0.037 0.3 0.005 0.483

γ12 0.0 -0.001 0.031 0.3 0.010 0.475

Chatterjee3
γ11 0.0 -0.005 0.063 0.3 0.006 0.560

γ12 0.0 -0.001 0.050 0.3 0.010 0.572

Rosner4
γ11 0.0 -0.005 0.077 0.3 -0.012 0.605

γ12 0.0 -0.001 0.073 0.3 -0.008 0.624
1Polytomous logistic regression
2Two-stage meta-regression (Wang et al., 2015)
3Two-stage regression with simultaneous estimation (Chatterjee, 2004)
4Stratified logistic regression (Rosner et al., 2013)
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For the question of whether the risk factor effect differs across levels of each individual

tumor marker, polytomous logistic regression and the method of Chatterjee (2004) again

have similar power (Table 2.3, lower portion). The method of Wang et al. (2015) has lower

power whereas the method of Rosner et al. (2013) has slightly higher power. However,

again recall that the method of Rosner et al. (2013) had inflated type I error. All methods

produce parameter estimates with small biases.

The following was done in order to compare the power of the methods in a calibrated

manner. First the effect size was varied by fixing β11 = 0.2 and β12 = β13 = 0.3, and

incrementally increasing β14 from 0.3 to 0.9. This allowed for determination of how large

the subtype four effect size, β14, needs to be in order to achieve various levels of power

to address whether the risk factor effect differs across the four disease subtypes. The

comparison was calibrated by ranking the simulated p-values under the null hypothesis and

choosing the critical value that ensured the test size was exactly 0.05, then this critical value

was used to determine power. Figure 2.1A shows the resulting power curves for the different

methods. After calibration of type I error, the four methods have indistinguishable power.

Note that one of these cases, when β14 = 0.4, implies no interaction effect between the

individual tumor markers. Whereas the calibrated power using Chatterjee’s Equation 2.5

results in a power of 0.122 in this setting, Equation 2.4 results in slightly lower calibrated

power of 0.119.

The power to address whether the risk factor effect differs across levels of each individual

tumor marker is similarly compared. Figure 2.1B shows the power to detect an effect for

γ1k. The results are similar across the four methods.
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Figure 2.1: Log odds ratio required to achieve various levels of power when type I error

is calibrated to α = 0.05 for (A) β14 to address whether risk factor effects differ across

subtypes, and (B) γ1k to address whether risk factor effects differ across levels of each

individual tumor marker.
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Table 2.4: Type I error for different risk factor prevalences q and true effect sizes β1m with

M = 4 disease subtypes formed by K = 2 individual tumor markers
q 0.3 0.6

β1m 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

Does the risk factor effect differ with respect to subtypes?

Polytomous1 0.052 0.051 0.060 0.055 0.054 0.055 0.054 0.047 0.051 0.046

Wang2 0.052 0.051 0.060 0.055 0.054 0.055 0.054 0.047 0.051 0.046

Chatterjee3 0.052 0.051 0.060 0.055 0.054 0.055 0.054 0.047 0.051 0.046

Rosner4 0.093 0.089 0.077 0.086 0.082 0.088 0.084 0.076 0.072 0.076

Does the risk factor effect differ with respect to tumor marker 1 (γ11)?

Polytomous1 0.064 0.063 0.056 0.057 0.058 0.057 0.058 0.051 0.042 0.045

Wang2 0.035 0.037 0.037 0.033 0.033 0.033 0.032 0.025 0.022 0.028

Chatterjee3 0.064 0.063 0.056 0.057 0.058 0.057 0.058 0.051 0.043 0.047

Rosner4 0.079 0.077 0.068 0.079 0.074 0.079 0.074 0.069 0.063 0.060

Does the risk factor effect differ with respect to tumor marker 2 (γ12)?

Polytomous1 0.057 0.051 0.055 0.058 0.049 0.059 0.049 0.048 0.044 0.052

Wang2 0.031 0.031 0.030 0.030 0.032 0.030 0.030 0.027 0.031 0.034

Chatterjee3 0.057 0.050 0.055 0.058 0.046 0.058 0.046 0.047 0.046 0.052

Rosner4 0.073 0.073 0.067 0.070 0.062 0.071 0.063 0.057 0.062 0.063
1Polytomous logistic regression
2Two-stage meta-regression (Wang et al., 2015)
3Two-stage regression with simultaneous estimation (Chatterjee, 2004)
4Stratified logistic regression (Rosner et al., 2013)

2.4.3 Data simulated under different configurations

Sensitivity analyses are conducted in order to further elucidate the statistical properties of

the four methods for the study of etiologic heterogeneity.

First, the sensitivity of the results in Sections 2.4.1 and 2.4.2 to the prevalence of the

risk factor are explored. Additional simulations were conducted for the case of four disease

subtypes and a single binary risk factor, with data generated as described at the beginning

of Section 2.4 using 1000 controls and 1000 cases. For each setting, 1000 simulated data

sets are generated. Here settings where the risk factor prevalence is q = 0.3 or q = 0.6 are

separately investigated. Data are first generated under the null hypothesis, and the true
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common regression coefficients (β11 = β12 = β13 = β14) are each fixed at 0, 0.1, 0.2, 0.3,

and 0.4. Results are presented in Table 2.4, with a similar pattern of results to the null

case presented in Table 2.3, which corresponds to risk factor prevalence q = 0.3 and true

common regression coefficients fixed at 0.1. Polytomous logistic regression and the methods

of Chatterjee (2004) and Wang et al. (2015) perform similarly with respect to type I error for

the test of H0β whereas the method of Rosner et al. (2013) is anti-conservative. Polytomous

logistic regression and the method of Chatterjee (2004) perform similarly with respect to

type I error for the tests of H0γ11
and H0γ12

whereas the method of Wang et al. (2015) is

conservative and the method of Rosner et al. (2013) is again anti-conservative. Data are

next generated under the alternative hypothesis. For each of the two risk factor prevalences,

three alternative scenarios are investigated, with true values for {β11, β12, β13} fixed at

{0.2, 0.25, 0.25}, {0.2, 0.3, 0.3}, and {0.2, 0.4, 0.4} and values of β14 ranging from 0.25 to

0.85, 0.3 to 0.9 and 0.4 to 1.0, respectively. Power was calibrated for all results as described

in Section 2.4.2. Results are presented in Figure 2.2 for β14 and Figure 2.3 for γ1k. In

all configurations of parametric values and risk factor prevalences, the pattern of results

is in line with those presented in Figure 1, such that all methods have similar power after

calibration for differences in type I error.

Next, the methods other than polymotomous logistic regression were created to accom-

modate multiple tumor factors, and thus have the capacity to take advantage of dimension

reduction. A limited exploration of the expansion of the number of tumor markers to K = 4

was conducted, whereby there are M = 16 subtypes that must be evaluated separately in

the logistic regression model. Data are generated for sixteen disease subtypes formed by

cross-classification of four binary tumor markers as described at the start of Section 2.4.

Again there is a single binary risk factor, and the settings where the risk factor prevalence
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Figure 2.2: Log odds ratio required to achieve various levels of power when type I error is

calibrated to α = 0.05 to address whether risk factor effects differ across M = 4 disease

subtypes
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Figure 2.3: Log odds ratio required to achieve various levels of power when type I error is

calibrated to α = 0.05 to address whether risk factor effects differ across each of the K = 2

individual tumor markers that form M = 4 disease subtypes
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is q = 0.3 or q = 0.6 are separately investigated. For each simulation setting, 500 simulated

data sets were generated using 1008 controls and 1008 cases to allow for equal subdivision of

cases into M = 16 subtypes. Data are first generated under the null hypothesis, and the true

common regression coefficients (β11 = β12 = · · · = β1(16)) are each fixed at 0.05, 0.1, 0.15,

and 0.2. Results are presented in Table 2.5. A similar pattern of results as in the case of

M = 4 subtypes was seen. Data are next generated under the alternative hypothesis. For

each of the two risk factor prevalences, three alternative scenarios are investigated, with

true values β1m = {0.2, 0.4, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 0.8, 1.0}, β1m =

{0.2, 0.4, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1.2, 1.2, 1.2, 1.2, 1.2}, and β1m = {0.2, 0.4, 0.4,

0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1.2, 1.2, 1.2, 1.2, 1.4}. Results are presented in Table 2.6.

Even as the number of subtypes increases to sixteen, a similar pattern of results is seen as

in the setting of four disease subtypes.

Finally, to investigate the setting where more than one risk factor is included, a data

example is conducted using the same data and subtypes described in Section 2.3 and in-

corporating a variety of continuous and binary risk factors of relevance to breast cancer

risk (Begg et al., 2013). Results are presented in Tables 2.7 and 2.8. The interpretation of

each risk factor must now be made in the context of adjustment for all other risk factors.

Across all risk factors, for the question of whether risk factor effects differ across disease

subtypes, polytomous logistic regression and the methods of Chatterjee (2004) and Wang

et al. (2015) result in similar parameter estimates and p-values whereas results from the

method of Rosner et al. (2013) differ slightly from the other methods. It is of interest to note

that in the context of a multivariable data analysis, the effect of oral contraceptive use is no

longer significantly different across disease subtypes (Table 2.7) whereas in the simplified

data example in Table 2.2, where only oral contraceptive use was included in the model,
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Table 2.5: Type I error for different risk factor prevalences q and true effect sizes β1m with

M = 16 disease subtypes formed by K = 4 individual tumor markers

q 0.3 0.6

β1m 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

Does the risk factor effect differ with respect to subtypes?

Polytomous1 0.052 0.050 0.038 0.034 0.036 0.028 0.030 0.044

Wang2 0.052 0.050 0.038 0.034 0.036 0.028 0.030 0.044

Chatterjee2 0.052 0.050 0.038 0.034 0.036 0.028 0.030 0.044

Rosner4 0.060 0.058 0.050 0.046 0.048 0.036 0.046 0.052

Does the risk factor effect differ with respect to tumor marker 1 (γ11)?

Polytomous1 0.060 0.054 0.040 0.032 0.050 0.054 0.040 0.042

Wang2 0.050 0.042 0.032 0.032 0.042 0.032 0.028 0.034

Chatterjee3 0.058 0.052 0.040 0.032 0.048 0.050 0.042 0.040

Rosner4 0.060 0.058 0.046 0.034 0.054 0.056 0.042 0.040

Does the risk factor effect differ with respect to tumor marker 2 (γ12)?

Polytomous1 0.044 0.052 0.050 0.042 0.050 0.058 0.050 0.058

Wang2 0.036 0.042 0.040 0.032 0.036 0.032 0.038 0.038

Chatterjee3 0.044 0.050 0.048 0.040 0.046 0.054 0.048 0.054

Rosner4 0.044 0.052 0.050 0.040 0.052 0.060 0.048 0.056

Does the risk factor effect differ with respect to tumor marker 3 (γ13)?

Polytomous1 0.058 0.042 0.058 0.048 0.046 0.048 0.044 0.042

Wang2 0.044 0.040 0.042 0.038 0.038 0.036 0.032 0.030

Chatterjee3 0.058 0.042 0.056 0.044 0.042 0.048 0.042 0.038

Rosner4 0.058 0.044 0.060 0.048 0.048 0.054 0.046 0.044

Does the risk factor effect differ with respect to tumor marker 4 (γ14)?

Polytomous1 0.058 0.042 0.058 0.048 0.046 0.048 0.044 0.042

Wang2 0.044 0.040 0.042 0.038 0.038 0.036 0.032 0.030

Chatterjee3 0.058 0.042 0.056 0.044 0.042 0.048 0.042 0.038

Rosner4 0.058 0.044 0.060 0.048 0.048 0.054 0.046 0.044
1Polytomous logistic regression
2Two-stage meta-regression (Wang et al., 2015)
3Two-stage regression with simultaneous estimation (Chatterjee, 2004)
4Stratified logistic regression (Rosner et al., 2013)
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Table 2.6: Power for different risk factor prevalences q and different alternative hypothesis

scenarios with M = 16 disease subtypes formed by K = 4 individual tumor markers

q 0.3 0.6

Alternative scenario* 1 2 3 1 2 3

Does the risk factor effect differ with respect to subtypes?

Polytomous1 0.332 0.834 0.872 0.260 0.750 0.800

Wang1 0.332 0.834 0.872 0.260 0.750 0.800

Chatterjee1 0.332 0.834 0.872 0.262 0.748 0.798

Rosner1 0.356 0.854 0.880 0.278 0.780 0.816

Does the risk factor effect differ with respect to tumor marker 1 (γ11)?

Polytomous1 0.308 0.596 0.644 0.284 0.538 0.590

Wang2 0.270 0.568 0.638 0.246 0.500 0.558

Chatterjee3 0.296 0.614 0.674 0.274 0.564 0.608

Rosner4 0.308 0.620 0.682 0.280 0.574 0.622

Does the risk factor effect differ with respect to tumor marker 2 (γ12)?

Polytomous1 0.312 0.592 0.646 0.270 0.552 0.602

Wang2 0.280 0.564 0.636 0.232 0.530 0.576

Chatterjee3 0.312 0.614 0.678 0.266 0.564 0.610

Rosner4 0.326 0.630 0.682 0.270 0.574 0.620

Does the risk factor effect differ with respect to tumor marker 3 (γ13)?

Polytomous1 0.298 0.602 0.648 0.300 0.552 0.606

Wang2 0.262 0.562 0.620 0.242 0.502 0.554

Chatterjee3 0.294 0.606 0.654 0.276 0.568 0.606

Rosner4 0.300 0.616 0.666 0.286 0.576 0.618

Does the risk factor effect differ with respect to tumor marker 4 (γ14)?

Polytomous1 0.290 0.610 0.660 0.242 0.540 0.590

Wang2 0.264 0.574 0.634 0.210 0.506 0.560

Chatterjee3 0.288 0.632 0.672 0.238 0.570 0.622

Rosner4 0.296 0.638 0.676 0.250 0.586 0.630

*Alternative scenarios:

1: β1m = {0.2, 0.4, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 0.8, 1.0}
2: β1m = {0.2, 0.4, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1.2, 1.2, 1.2, 1.2, 1.2}
3: β1m = {0.2, 0.4, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1.2, 1.2, 1.2, 1.2, 1.4}
1Polytomous logistic regression
2Two-stage meta-regression (Wang et al., 2015)
3Two-stage regression with simultaneous estimation (Chatterjee, 2004)
4Stratified logistic regression (Rosner et al., 2013)
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the effect was significantly different across disease subtypes according to all subtypes.

2.5 Discussion

This chapter defined two key questions that epidemiologists seek to answer in studies of

etiologic heterogeneity and then showed how to address these questions using each of the

methods that have been proposed. It demonstrated the distinctions of the methods by

creating a unified notation. The simulations show that the stratified logistic regression

method of Rosner et al. (2013) results in substantial biases in parameter estimation for

addressing whether risk factor effects differ across levels of the disease subtype, although it

is acknowledged that this was not a stated goal of the method by the authors. Additionally,

the method is anti-conservative. All other methods have type I error close to the nominal

level. In the simplified setting examined here, whereas the other methods all estimate eight

parameters, the method of Rosner et al. (2013) conditions out the constant terms and only

involves estimation of four parameters. The conditional nature of this model clearly has

implications for the validity of parameter estimates and hypothesis tests related to the

question of heterogeneity across disease subtypes. For addressing whether risk factor effects

differ across levels of each individual tumor marker, polytomous logistic regression and the

two-stage regression with simultaneous estimation method of Chatterjee (2004) perform

similarly with respect to type I error whereas the two-stage meta-regression method of

Wang et al. (2015) is overly conservative and the stratified logistic regression method of

Rosner et al. (2013) is anti-conservative. When differences in type I error are calibrated, all

methods achieve similar power.

In this chapter the focus was on subtypes formed by cross-classification of tumor markers,

and on the distinct influences of the individual tumor markers. In breast cancer research,
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Table 2.7: Full data application to address the question of whether each risk factor differs

across levels of subtypes formed by ER and PR status. The model is additionally adjusted

for study center.

Risk factor Method
ER-/

PR-

ER+/

PR-

ER-/

PR+

ER+/

PR+
p-value

Age at diagnosis

(per 10 years)

Polytomous1 -0.03 0.57 0.16 0.53 <.001
Wang2 -0.03 0.57 0.16 0.53 <.001
Chatterjee3 -0.03 0.57 0.16 0.53 <.001
Rosner4 -0.13 0.52 0.13 0.75 <.001

Age at menarche

(per 2 years)

Polytomous1 0.04 -0.04 -0.00 -0.14 0.065
Wang2 0.04 -0.04 -0.00 -0.14 0.065
Chatterjee3 0.04 -0.04 -0.00 -0.14 0.065
Rosner4 0.06 -0.01 0.04 -0.03 0.041

Nulliparous

Polytomous1 -0.08 0.65 0.21 0.33 0.004
Wang2 -0.08 0.65 0.21 0.33 0.004
Chatterjee3 -0.08 0.65 0.21 0.33 0.004
Rosner4 -0.16 0.59 0.16 0.29 0.002

Age at first birth

(per 5 years)

Polytomous1 0.07 0.01 0.13 0.15 0.343
Wang2 0.07 0.01 0.13 0.15 0.343
Chatterjee3 0.07 0.01 0.13 0.15 0.343
Rosner4 0.02 0.02 0.15 0.14 0.288

Months of

breastfeeding (per 6)

Polytomous1 -0.11 -0.09 -0.22 -0.08 0.566
Wang2 -0.11 -0.09 -0.22 -0.08 0.566
Chatterjee3 -0.11 -0.09 -0.22 -0.08 0.567
Rosner4 -0.09 -0.04 -0.14 -0.09 0.380

Post-menopausal

Polytomous1 -0.23 -0.12 -1.29 -0.75 <.001
Wang2 -0.23 -0.12 -1.29 -0.75 <.001
Chatterjee3 -0.23 -0.12 -1.29 -0.75 <.001
Rosner4 -0.08 0.02 -1.19 -0.64 <.001

Pre-menopausal

BMI (per 20)

Polytomous1 0.34 -0.06 0.98 -0.34 0.010
Wang2 0.34 -0.06 0.98 -0.34 0.010
Chatterjee3 0.34 -0.06 0.98 -0.34 0.010
Rosner4 0.32 -0.20 0.94 0.12 0.005

Post-menopausal

BMI (per 20)

Polytomous1 -0.17 -0.79 -0.19 -0.04 0.490
Wang2 -0.17 -0.79 -0.19 -0.04 0.490
Chatterjee3 -0.17 -0.79 -0.19 -0.04 0.489
Rosner4 -0.14 -0.68 0.09 -0.29 0.456

Oral contraceptive use

Polytomous1 0.07 0.04 -0.25 -0.08 0.497
Wang2 0.07 0.04 -0.25 -0.08 0.497
Chatterjee3 0.07 0.04 -0.25 -0.08 0.497
Rosner4 0.08 0.06 -0.23 -0.08 0.477

Family history of

breast cancer

Polytomous1 0.64 0.88 -0.02 0.73 0.226
Wang2 0.64 0.88 -0.02 0.73 0.226
Chatterjee3 0.64 0.88 -0.02 0.73 0.226
Rosner4 0.42 0.62 -0.29 0.53 0.186

1Polytomous logistic regression
2Two-stage meta-regression (Wang et al., 2015)
3Two-stage regression with simultaneous estimation (Chatterjee, 2004)
4Stratified logistic regression (Rosner et al., 2013)
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Table 2.8: Full data application to address the question of whether each risk factor differs

across levels of ER and PR status. The model is additionally adjusted for study center.
ER PR

Risk factor Method Estimate p-value Estimate p-value

Age at diagnosis

(per 10 years)

Polytomous1 0.49 <.001 0.07 0.567
Wang2 0.50 <.001 0.06 0.642
Chatterjee3 0.50 <.001 0.06 0.656
Rosner4 0.51 <.001 0.08 0.542

Age at menarche

(per 2 years)

Polytomous1 -0.11 0.225 -0.07 0.439
Wang2 -0.11 0.252 -0.08 0.402
Chatterjee3 -0.11 0.238 -0.08 0.395
Rosner4 -0.11 0.222 -0.08 0.350

Nulliparous

Polytomous1 0.43 0.019 -0.01 0.957
Wang2 0.48 0.009 -0.08 0.648
Chatterjee3 0.49 0.008 -0.09 0.604
Rosner4 0.50 0.006 -0.08 0.653

Age at first birth

(per 5 years)

Polytomous1 -0.01 0.865 0.10 0.206
Wang2 -0.02 0.830 0.11 0.194
Chatterjee3 -0.01 0.910 0.10 0.199
Rosner4 -0.01 0.947 0.11 0.168

Months of

breastfeeding (per 6)

Polytomous1 0.08 0.218 -0.05 0.400
Wang2 0.05 0.367 -0.03 0.648
Chatterjee3 0.06 0.273 -0.03 0.564
Rosner4 0.06 0.267 -0.03 0.558

Post-menopausal

Polytomous1 0.33 0.132 -0.84 <.001
Wang2 0.29 0.185 -0.80 <.001
Chatterjee3 0.30 0.158 -0.81 <.001
Rosner4 0.31 0.147 -0.84 <.001

Pre-menopausal

BMI (per 20)

Polytomous1 -0.86 0.015 0.18 0.602
Wang2 -0.96 0.007 0.29 0.418
Chatterjee3 -1.00 0.006 0.33 0.359
Rosner4 -1.02 0.005 0.31 0.383

Post-menopausal

BMI (per 20)

Polytomous1 -0.24 0.623 0.36 0.445
Wang2 -0.40 0.359 0.55 0.204
Chatterjee3 -0.41 0.311 0.56 0.155
Rosner4 -0.42 0.293 0.59 0.130

Oral contraceptive use

Polytomous1 0.07 0.692 -0.22 0.190
Wang2 0.05 0.785 -0.19 0.241
Chatterjee3 0.04 0.789 -0.19 0.240
Rosner4 0.05 0.778 -0.20 0.227

Family history of

breast cancer

Polytomous1 0.49 0.037 -0.40 0.093
Wang2 0.38 0.082 -0.28 0.198
Chatterjee3 0.38 0.054 -0.28 0.155
Rosner4 0.38 0.051 -0.26 0.173

1Polytomous logistic regression
2Two-stage meta-regression (Wang et al., 2015)
3Two-stage regression with simultaneous estimation (Chatterjee, 2004)
4Stratified logistic regression (Rosner et al., 2013)
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subtypes based on immunohistochemical staining of estrogen receptor (ER), progesterone re-

ceptor (PR), and human epidermal growth factor receptor 2 (HER2) are commonly formed.

Each of these tumor markers can be either positive (+) or negative (-) and the disease sub-

types are defined as luminal A (ER+ or PR+, HER2-), luminal B (ER+ or PR+, HER2+),

HER2-type (ER-, PR-, HER2+), and triple negative (ER-, PR-, HER2-). This configu-

ration is not congruent with the second stage models described in Equations 2.3 and 2.4

on which the methods proposed by Wang et al. (2015), Chatterjee (2004) and Rosner et

al. (2013) are based. Of the methods compared here, only polytomous logistic regression

can address whether a risk factor effect differs across subtypes that are not formed by

cross-classification of the individual tumor markers. This is important for epidemiologic

researchers, who must carefully consider whether the individual tumor markers are of in-

terest, or if it is truly a more complex aggregation of those tumor markers that is expected

to demonstrate a differential association with risk factors.

The methods of Chatterjee (2004) and Rosner et al. (2013) were clearly designed with

the goal of studying multiple tumor markers in a flexible modeling framework. Thus one

can envision a study with a number of tumor markers where the dimension is reduced by

eliminating selected, or all, interactions, and thereby permitting an analysis that would not

be possible in the context of polytomous logistic regression. Further exploration is needed

into the performance of each method under an increasing number of subtypes and risk

factors.

This investigation was limited to methods that require pre-specification of subtypes.

With increasing use of genomic profiling, often it will be of interest to first identify disease

subtypes based on a large number of either binary or continuous tumor markers. Begg et

al. (2013) proposed an approach to address this challenge by introducing a scalar measure
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of heterogeneity that allows an investigator to compare different subtyping configurations

based on, for example, gene expression data. The ultimate investigation of risk factor associ-

ations with the resulting subtypes in this approach relies on polytomous logistic regression.

The scalar measure additionally provides a quantification of the extent of heterogeneity for

a given subtype solution, which the methods discussed in this chapter cannot accommodate.

This approach will be investigated in more detail in the next chapter. Another considera-

tion is the fact that all methods investigated in this chapter use a relative risk structure for

defining and evaluating etiologic heterogeneity. An investigation of how the methods might

be adapted to formulate the issues in the context of additive models is an area of future

work.

In conclusion, the study of etiologic heterogeneity will become increasingly common in

the age of genomic profiling and personalized medicine, and statistical methods are needed

to reliably address these questions. The results of this investigation can serve to guide

selection of a method that will favorably balance statistical and practical considerations.
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Chapter 3

Validity of optimal D clustering?

The results of this chapter show when the strenth of structure in markers that

truly represents etiologic heterogeneity exceeds the strength of structure in tumor

marker data that is unrelated to disease risk, a novel method to cluster tumor

markers and identify disease subtypes that differ maximally works well. However

when this condition is not met, or when there are many tumor markers that simply

represent noise, the truly etiologically heterogeneous subtype solution can still be

identified by first performing variable selection to identify the disease markers most

strongly related to risk factors.

In the previous chapter, a data example and simulation study were used to compare the

statistical properties of methods for investigating etiologic heterogeneity by examining the

differential effects of individual risk factors on pre-defined disease subtypes, or with respect

to individual tumor markers. That study found that when the number of disease subtypes

is small, a simple polytomous logistic regression model performs comparably to the more

complex methods that have since been proposed (Zabor and Begg, 2017). Using polytomous

?Note that the contents of this chapter were submitted for publication in the Annals of Applied Statistics

in July 2018, and are currently under review.
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logistic regression, one can test for differences in relative risks of individual risk factors across

disease subtypes. Polytomous logistic regression relies on there being a small number of

disease subtypes in the context of a case-control study, but it is increasingly common for

epidemiologic studies of cancer to obtain high-dimensional tumor marker information, such

as gene expression, mutation, or copy number data. In such a setting, one must first employ

substantive dimension reduction of the tumor marker data in order to establish a meaningful

framework for examining the effects of the risk factors using a model such as polytomous

logistic regression. To address this problem, earlier work sought to develop a method to

identify the most etiologically distinct subtypes in the context of high dimensional tumor

marker data (Begg et al., 2013). This method involved two critical concepts. First, a scalar

measure that captures the extent of etiologic heterogeneity of any succinct set of mutually

exclusive subtypes was defined. Second, dimension reduction was accomplished through

the use of unsupervised k-means clustering of the tumor marker data. Finally, the scalar

measure of etiologic heterogeneity was calculated for each candidate subtype solution that

resulted from the unsupervised clustering, and the best solution was chosen as the one that

maximized the scalar measure of etiologic heterogeneity. In empirical studies using this

method in breast cancer, melanoma and kidney cancer, the method led to solutions that

were in line with relationships between risk factors and tumor markers that are already well

known to cancer epidemiologists (Begg et al., 2014, 2015; Mauguen et al., 2017).

While these results are encouraging, they do not provide definitive evidence that the

method can accomplish what it sets out to do, which is to identify the subtypes that are

truly the most etiologically heterogeneous. There are reasons to be skeptical. Unsupervised

k-means clustering is designed to identify subtypes that are distinctive with respect to the

Euclidean distances of the markers of cases in a cluster compared to the markers of cases
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in other clusters. But there may exist clusters of cases that are separated on this basis but

which have no relationship with etiology. Such “counterfeit” clusters could confound the

ability of unsupervised clustering to find the clusters of cases that are truly etiologically

distinctive. In this chapter a simulation framework is constructed to address the question

of whether or not the method can be confounded by counterfeit clusters of this nature. The

modeling framework involves creating datasets with the kind of high dimensional structure

that is identifiable by clustering. Structure is created in the data, on the basis of specified

tumor markers, that defines subtypes that are related to the risk factors, and counterfeit

structure is created, on the basis of additional tumor markers, that is unrelated to the risk

factors. Much larger numbers of tumor markers are also generated that neither possess

structure nor are related to risk factors so that they simply introduce noise. The goals

of this chapter are to understand the influences of these two sources of information that

have the potential to prevent the method from identifying the truly etiologically distinct

subtypes. Finally the influence of pre-clustering variable selection is explored as a strategy

for improving the sensitivity of the method.

3.1 Methodologic details

This chapter focuses on a method for the analysis of case-control data, though the approach

could be applied broadly by replacing polytomous logistic regression with an alternative

regression approach appropriate to the study design under consideration. Also, because the

data example comes from breast cancer, the term “tumor marker” will be used throughout,

though all methods could be applied in other disease areas.

The method involves first performing unsupervised clustering of the tumor marker data.

The goal of the unsupervised clustering is to obtain a variety of candidate sets of subtypes
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from which to choose the solution that optimizes the degree of etiologic heterogeneity ob-

served, defined by a measure of etiologic heterogeneity denoted D, which is described in

detail in the next paragraph. K-means clustering with many random starts is used to ob-

tain candidate sets of subtype solutions. K-means clustering seeks clusters that exhibit high

inter-cluster versus intra-cluster Euclidean distance. It is useful for this purpose because

it does not typically reach a global maximum, and therefore when the process is repeated

with different random starts many candidate solutions can be obtained, each at a different

local maximum. In a traditional clustering analysis, one would then select the solution that

maximizes the inter-cluster distance. However, interest is in identifying the class solution

that maximizes etiologic heterogeneity rather than Euclidean distance, and so instead D is

calculated for each of the candidate solutions that result from the different random starts

of k-means clustering, and the solution that maximizes D is chosen as optimal. While al-

ternative clustering algorithms to k-means clustering are not explored in detail, most other

clustering methods are constrained to reach the same solution on every random start and

so would not produce a variety of solutions that could be used to maximize the measure

of etiologic heterogeneity. The fact that k-means clustering produces many potential clus-

tering solutions is the feature that makes it especially useful for this purpose. Section 3.5

includes a cursory exploration of the performance of alternative clustering algorithms in the

context of an analysis of this type.

The methodologic details of the approach have been outlined previously (Begg et al.,

2013). The method involves identifying different clustering solutions, each involving a set of

M disease subtypes, and calculating a measure of etiologic heterogeneity for each solution.

To calculate the measure, denoted D, one must first perform polytomous logistic regression

of the risk factors on the subtypes and obtain estimated risk predictions from this model for
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each of the subtypes for each subject. Since the measure is population-based it is calculated

solely using the study controls. Let i denote these control subjects i = 1, . . . , NH , where

NH denotes the total number of non-diseased control subjects, and let m index the set

of disease subtypes, m = 1, . . . ,M . The risk predictions obtained from the polytomous

logistic regression model for the ith individual are denoted rmi such that the total risk

of disease for that individual is ri =
∑M

m=1 rmi. Let the coefficients of variation of the

subtype risks in the population be denoted C2
m = vm/µ

2
m where vm = N−1H

∑NH
i=1 r

2
mi − µ2m

and µm = N−1H

∑NH
i=1 rmi. Let the corresponding total coefficient of variation be denoted

C2 = v/µ2, where µ and v are the overall disease risk mean and variance. Then the measure

of etiologic heterogeneity is defined as

D =
M∑

m=1

πmC
2
m − C2, (3.1)

where πm represents the prevalence of the mth disease subtype. Further details of the ratio-

nale for this measure are provided in Begg et al. (2013). Even though absolute risks cannot

be obtained from a case-control study, the relative risks obtainable from the polytomous

logistic regression model can be used instead since all the terms in D are scale-adjusted.

3.2 Simulation methods

All statistical analyses were conducted using R software (R Core Team, 2018). An R pack-

age containing functions to perform the various calculations included in this analysis is

available on GitHub at https://github.com/zabore/riskclustr. Additional code re-

lated to the specific simulations conducted can be found at https://github.com/zabore/

manuscript-code-repository.

https://github.com/zabore/riskclustr
https://github.com/zabore/manuscript-code-repository
https://github.com/zabore/manuscript-code-repository
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3.2.1 Risk factor generation

Individual risk factors are denoted Xp, p = 1, . . . , P , and therefore X = (X1, . . . , XP ). In

order to most clearly highlight the concepts, a simplified setting is used where there are

only P = 2 risk factors, so that X = (X1, X2), and there are M = 3 disease subtypes

that are heterogeneous with respect to the risk factors, as defined below. The density

of the risk factors in the non-diseased, or control, subjects is assumed to follow f(X) ∼

N(ε0,Σ) and the density of the risk factors in diseased subjects is fm(X) ∼ N(εm,Σ), where

εm = (εm1, εm2) represents the mean vector of the two risk factors for disease subtype m.

Equal covariance matrices, Σ, are assumed for diseased and non-diseased subtype risk factor

distributions, since this is congruent with using polytomous logistic regression to model the

conditional probabilities of the disease subtypes given the risk factors (Anderson, 1972). For

convenience in the simulation studies, and without loss of generality, let Σ be the identity

matrix, I, allowing mean values to represent standardized effect sizes. In all simulations ε0,

the mean vector for the two risk factors in non-diseased subjects, will be fixed at ε0 = (0, 0)

without loss of generality. Then set ε1 = (e, 0), ε2 = (e/2, e/2), and ε3 = (0, e) for the three

disease subtypes. In this way the strength of the differential risk factor associations with

subtypes is represented by a scalar quantity, e.

3.2.2 Tumor marker generation

Risk factor data X are randomly generated from normal distributions with distinct mean

vectors for the controls and for each disease subtype, as described above in Section 3.2.1.

Etiologic heterogeneity is induced in the disease subtypes by generating the tumor marker

data in such a way that certain tumor markers are correlated with the risk factors. Tu-

mor marker data are simulated for case subjects only, and consist of tumor markers that
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are correlated with the risk factors, meaning that these markers possess etiologic het-

erogeneity, as well as tumor markers that are unrelated to the risk factors. Let k in-

dex tumor markers, k = 1, . . . ,K. Tumor markers are denoted T = (TA, TB, TC) where

TA = (T1, . . . , TKA
) denotes the set of KA tumor markers related to the risk factors and

(TB, TC) = (TKA+1, . . . , TK) denotes the set of tumor markers that are unrelated to the

risk factors. The tumor markers that are related to the risk factors are distributed as

TA ∼ N(λAm, VAm) where λAm = (λAm1, . . . , λAmKA
) represents the mean vector of tumor

markers for subtype m disease, where, as indicated above m = 1, 2, 3. Through the mean

vectors λAm, a relationship between a specific tumor marker and a specific disease subtype

is induced. In this way correlations are also induced between the risk factors X and the

individual tumor markers in TA. The covariance matrix of these markers, VAm, is set to be

the identity matrix, I, for conceptual and interpretive simplicity.

The tumor markers that are unrelated to the risk factors include KB tumor markers

that have the kind of structure that is identifiable by clustering but that are generated

independently of the risk factors. These are denoted TB = (TKA+1, . . . , TKA+KB
). Let

l index the “counterfeit” subtypes defined by the markers in TB, taking the values l =

1, . . . , L. In all included simulation studies let L = 3. Assignment of each case to one of these

L non-etiologically distinct subtypes is randomly generated from a multinomial distribution

with L equal event probabilities, independent of the etiologically distinct class label m. The

tumor markers that characterize these subtypes, TB, are distributed as TB ∼ N(λBl, VBl)

where λBl = (λBl1, . . . , λBlKB
) represents the mean vector of tumor markers for subtype l.

Again, for simplicity, let the variance matrix VBl = I throughout. Through the mean vectors

λBl, a relationship between a specific tumor marker and a specific counterfeit subtype l

is induced, but since these subtypes are assigned to each case randomly, in contrast to
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the subtypes defined by TA for which there is an induced relationship to the etiologically

heterogeneous disease subtypes, there is no relationship induced between the tumor markers

TB and the risk factors X. KC tumor markers, denoted TC = (TKA+KB+1, . . . , TK), that

have no defined structure are also generated . These markers are distributed as TC ∼ N(0, I)

and simply represent noise in the data.

3.2.3 Simulation parameters

For all included simulation studies set N = 2000 subjects, set π0 = 0.4 to be the sampling

proportion of non-diseased subjects and πm = 0.2, m = 1, 2, 3, to be the sampling propor-

tions of cases in the disease subtypes. Set e = 1.5 so that the mean vectors for the risk

factors are ε1 = (1.5, 0), ε2 = (0.75, 0.75), and ε3 = (0, 1.5) for the three subtypes. Generate

1000 simulated datasets.

The strength of the structure in TA and TB is quantified by the mean vectors λAm

and λBj , respectively, using 15 markers in each group so that KA = KB = 15. Let

λA1 = (a, a, a, a, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), λA2 = (0, 0, 0, 0, 0, a, a, a, a, a, 0, 0, 0, 0, 0), and

λA3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, a, a, a, a) be the mean vectors for TA, where a = 1.3 for

weak structure, a = 1.7 for moderate structure, and a = 2.1 for strong structure. These

mean values were selected to achieve separation in clusters, as measured by the inter-cluster

dissimilarity, that is comparable to cluster separation previously seen in real data analyses

(Begg et al., 2014, 2015; Mauguen et al., 2017). Let λB1 = (b, b, b, b, b, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

λB2 = (0, 0, 0, 0, 0, b, b, b, b, b, 0, 0, 0, 0, 0), and λB3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, b, b, b, b, b) be the

mean vectors for TB, where b will be varied from 1.275 to 2.3 by small increments, for a con-

tinuum of weaker to stronger structure. In this way the strength of the structure that truly

represents etiologic heterogeneity, and the strength of the unrelated counterfeit structure,
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are characterized by scalars a and b, respectively

3.2.4 Clustering methods

After simulating the tumor marker data, unsupervised k-means clustering with 1000 random

starts is performed on the combined tumor marker data T , or subsets thereof, to obtain a set

of candidate solutions. K-means clustering requires up-front specification of the number

of subtypes of interest, and all included simulation studies specified that 3 subtypes be

identified through clustering. In fact there is the possibility of 9 subtypes, defined by

λAm,m = 1, 2, 3, and λBl, l = 1, 2, 3. However, the goal is to identify the 3 subtypes

defined by λAm that are etiologically heterogeneous. D is calculated based on the predicted

risks from a polytomous logistic regression model that includes all risk factors X using

Equation 3.1 for each of the candidate solutions that result from k-means clustering, and the

clustering solution that maximizes D is identified. To assess the overall ability of k-means

clustering to identify a reliable solution, the number of unique local solutions that occur

among the 1000 random starts of k-means clustering is also recordeed in each simulated

data set. The method relies on being able to determine the optimal solution by selecting

the largest D from a variety of clustering solutions, so accuracy could be compromised in

settings where too few unique cluster solutions are identified.

The misclassification rate is calculated as a measure of how closely aligned the class

solution identified by k-means clustering is to the true class solution. While in a real data

analysis the true class labels would not be known, and therefore it would not be possible

to calculate misclassification rates, in the context of this simulation study misclassification

rates are used to evaluate whether the approach is able to identify the truly etiologically

heterogeneous class solution from which the data are generated. To accomplish this, the
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class labels for the subtype solution that optimizes D are cross-tabulated with the class

labels for the truly etiologically heterogeneous subtype solution. Then the misclassification

rate is calculated as 1 −
∑
d/NU , where d indicates the diagonal of the cross-tabulation

and NU indicates the total number of cases. Since the labels that result from clustering are

arbitrary, the class labels for the optimal solution must first be aligned with the true class

labels by identifying the configuration that minimizes misclassification as defined above. An

alternative measure for misclassification that is sometimes used would involve identifying

whether a pair of cases who are classified similarly according to the truly etiologically

distinct subtype solution are also classified similarly according to the subtype solution that

optimizes D. The proportion of pairs of cases classified differently to the total number of

pairs of cases would represent the misclassification. In a single simulation scenario, these

two measures of misclassification were found to be highly comparable, with the measure

based on pairs of cases consistently resulting in slightly lower levels of misclassification as

compared to the measure based on each case’s individual class membership, indicating that

this alternative measure would not lead to meaningful differences in the pattern of results.

The influence of pre-clustering variable selection is then explored. To this end KC =

70 additional tumor markers TC that have no structure and are not related to the risk

factors are included as a way to add noise to all simulation settings that were previously

described, resulting in a total of 100 tumor markers. To achieve dimension reduction, the

tumor markers are first ranked according to the D values that characterize the individual

contributions of each marker to etiologic heterogeneity. These are obtained by creating

two classes defined by high versus low values of each marker classified at the median,

and using polytomous logistic regression and Equation 3.1 to obtain D. In this way an

ordering of the tumor markers from most heterogeneous with respect to the risk factors to
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least heterogeneous with respect to the risk factors can be obtained. The analysis is then

restricted to the markers with higher heterogeneity by sequentially reducing the ordered

tumor marker set from K = 100 through K = 5 by increments of 5. The continuous

versions of all selected tumor markers are then used in the clustering and the optimal D is

identified, for each number of selected markers. This allows for exploration of the extent of

misclassification as a function of the degree of dimension reduction.

Finally the influence of including an increasingly large set of tumor markers TC that

have no structure and are not related to the risk factors is examined. To simplify the

interpretation, the KB markers with counterfeit structure are eliminated. Set a = 1.7,

representing moderate strength of structure in the KA tumor markers that are related to

the risk factors. Then increase the number of unstructured tumor markers that are included

from TC = 50 to TC = 15000 to see how many such noisy tumor markers must be present

in the data before the approach can no longer reliably identify the true class solution.

There are some additional considerations when using k-means clustering to obtain can-

didate sets of subtype solutions. It is sometimes possible for k-means clustering to result in

a local maximum that has low inter-cluster dissimilarity. These scenarios were arbitrarily

avoided by selecting the optimal class solution as the one that has maximal D from the

subset of class solutions with sufficiently high dissimilarity, defined as a dissimilarity at least

greater than the average dissimilarity across all k-means solutions. Additionally, on rare

occasions k-means clustering will result in a solution with one or more very small classes. A

class solution of this type would not be suitable for use in a polytomous logistic regression

model, therefore calculation of D was restricted to solutions where each class consisted of

at least 20 cases.
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3.3 Results

The primary measure of success is the accuracy by which the data are classified into the

three truly etiologically distinct clusters m = 1, 2, 3. This success is represented by a low

misclassification rate. Also, when the prevalence of each subtype in the source population

is known, with known risk factor distributions, the true population value of D can be

established. Given the mean vectors for the risk factors are ε1 = (1.5, 0), ε2 = (0.75, 0.75),

and ε3 = (0, 1.5) for each of three subtypes, and the prevalence of each of the three subtypes

in the population is 0.2, the true population value of D is 0.506. The simulations seek to

evaluate whether the method can achieve estimates of D that approach this true population

value.

3.3.1 Impact of counterfeit structure

First, the influence of including tumor markers with counterfeit structure, unrelated to the

risk factors, is addressed. Here the analysis is restricted to (TA, TB), the KA = 15 tumor

markers that have structure related to the risk factors and the KB = 15 tumor markers that

have structure unrelated to the risk factors, for a total of 30 tumor markers. On average

across the various simulation settings, k-means clustering results in a variety of unique

clustering solutions. The average number of unique solutions across all simulation settings

is approximately 20 unique solutions from the 1000 random starts of k-means clustering,

with a minimum number of 12, when a = 1.7 and b = 1.275, and a maximum of 48, when

a = 1.3 and b = 1.275. Recall that a variety of solutions is needed in order for the method

to produce candidate solutions with a range of etiologic heterogeneity, since identification

of the various clustering solutions is not influenced directly by the risk factors.

The average misclassification rates are shown in Figure 3.1A. Note that the scale of the
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Figure 3.1: Average minimum misclassification (A) and average maximum D (B) across

varying strengths of structure in the tumor marker data based on KA = 15 tumor markers

with structure related to the risk factors and KB = 15 tumor markers with structure

unrelated to the risk factors. a = strength of structure in tumor markers related to risk

factors, b = strength of structure in tumor markers unrelated to risk factors. A darker color

indicates a higher value.
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axis according to b is not evenly spaced but rather contains informative values. Darker colors

denote higher values, which are undesirable since minimization of the misclassification rate

is sought. As the strength of structure in the tumor markers that are unrelated to the risk

factors, denoted by b, increases, the estimated misclassification rates increase. The smallest

estimated misclassification rate of 0.001 occurs when a = 2.1, that is, when the structure in

the tumor markers that are related to the risk factors is strong. This value indicates that

on average only 1 case is being misclassified in this setting. When the strength of structure

in the tumor markers that are related to the risk factors is weak and moderate, minimum

misclassification rates of 0.039 and 0.007, respectively, are achieved. As b equals and then

surpasses a, the misclassification rates increase rapidly. For example when a = 2.1 and

b = 2.3 the misclassification rate is 0.647, which means that the chance of a misclassification

is essentially random since there are three subtypes of which only one is the correct subtype.

Clearly the method is preferentially selecting the counterfeit subtypes that are defined by

the markers in TB.

The average maximum values of D are shown in Figure 3.1B. Darker colors denote higher

values, which are desirable since maximization of D is sought. As b increases, estimates of

D decrease. The largest estimated D of 0.561 occurs when a = 2.1, where the structure

in the tumor markers that are related to the risk factors is strong. This value exceeds the

true population value of D of 0.506. This overoptimism is presumably due to the effect of

picking the largest value of D in a setting where these are estimated and thus subject to

statistical variation. Also, when a = 2.1 the estimated D drops quickly as b approaches and

then exceeds a, similar to the trends seen in Figure 3.1A. When the strength of structure in

the tumor markers that are related to the risk factors is weak and moderate, maximum D

estimates of 0.479 and 0.547, respectively, are achieved and similar patterns to those seen
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for the misclassification rates are seen with respect to the rapid drop in estimated D as the

strength of structure in the tumor markers that are unrelated to the risk factors equals and

then surpasses the strength of structure in the tumor markers that are related to the risk

factors. Overall these results indicate that the clustering will identify with high probability

the class solution with the strongest signal, regardless of whether the solution represents

clusters that are related to risk factors or not.

3.3.2 Pre-clustering variable selection

To try to improve these properties, the influence of pre-clustering variable selection is ad-

dressed. In these simulations KC = 70 tumor markers in TC that have no structure and are

not related to the risk factors are included in addition to the tumor markers with structure

in TA and TB, for a total of 100 tumor markers. The first observation is that when the full

data T = (TA, TB, TC) are included in k-means clustering, there is no substantial impact

on the results described in Section 3.3.1 (Figure 3.2). Next it is examined whether variable

selection of tumor markers prior to clustering, based on their individual relationships with

the risk factors as measured by their individual values of D, can improve the properties of

the method. After rank-ordering the individual tumor markers based on their individual

contributions to heterogeneity and reducing the set sequentially from 100 to 5 by increments

of 5 tumor markers, the resulting misclassification rates are found to be uniformly low when

a relatively small number of tumor markers are included, since most of the included tumor

markers in this setting are selected to have structure related to the risk factors (Figure 3.3).

Additionally, when the strength of structure in the tumor markers in the counterfeit clus-

ters (represented by b) is less than the strength of structure in the tumor markers that

are related to the risk factors (represented by a), all 100 tumor markers can be included
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Figure 3.2: Average minimum misclassification (A) and average maximum D (B) across

varying strengths of structure in the tumor marker data based on KA = 15 tumor markers

with structure related to the risk factors and KB = 15 tumor markers with structure

unrelated to the risk factors and KC = 70 tumor markers that represent noise. a = strength

of structure in tumor markers related to risk factors, b = strength of structure in tumor

markers unrelated to risk factors. A darker color indicates a higher value.
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Figure 3.3: Average minimum misclassification for varying strengths of structure in the

tumor markers with structure unrelated to the risk factors (denoted b), across different

numbers of tumor markers included in k-means clustering based on univariate D ranking,

according to the strength of structure in the tumor markers with structure related to the

risk factors (denoted a). The color represents the difference in strength for the two types

of markers, b− a.

with little to no impact on the results (green lines in Figure 3.3). When the strength of

structure in the tumor markers in the counterfeit clusters is approximately equal to the

strength of structure in the tumor markers that are related to the risk factors, reasonable

misclassification rates can be achieved by reducing the dimension of the tumor marker set

by about half (yellow lines in Figure 3.3). However, when the strength of structure in the

tumor markers in the counterfeit clusters surpasses the strength of structure in the tumor

markers that are related to the risk factors, much more stringent dimension reduction is

required before reasonable misclassification rates can be achieved (red lines in Figure 3.3).

Since neither noisy markers in TC nor the undesirable structured markers in TB are

related to disease risk, these markers compete with each other on an equal footing in the
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variable selection strategy, while the markers related to the risk factors in TA are selected

preferentially, as desired. This suggests a somewhat paradoxical result, that a larger number

of noisy markers is beneficial by making it increasingly difficult for the confounding markers

to be selected, provided that the variable selection is sufficiently strict (Figure 3.4). However,

logic suggests that if there are too many noisy markers it will be increasingly difficult for

the structure defined by markers with the true signal to be identified. To examine this,

the number of noisy tumor markers, TC , is increased incrementally from 50 to 15000 to see

when the truly etiologically heterogeneous structure defined by the 15 markers in TA can no

longer be successfully identified. As the number of unstructured tumor markers increases,

average minimum misclassification increases, with large changes in misclassification between

1500 and 5000 tumor markers (Figure 3.5). The impact of additional tumor markers is more

pronounced at the smaller numbers when the strength of structure in the tumor markers

related to the risk factors is weak.

3.4 Data application

The goal in the data application is to cluster gene expression data to identify breast cancer

subtypes that demonstrate the highest degree of etiologic heterogeneity. Data from the

Cancer and Steroid Hormone (CASH) breast cancer case-control study are analyzed. This

study includes data from 2990 population controls and 551 breast cancer cases with a panel

of gene expression data related to estrogen receptor status, 202 genes in total. The data also

include standard breast cancer risk factors. In line with previous research (Gaudet et al.,

2011) age at diagnosis, race, premenopausal body mass index (BMI), postmenopausal BMI,

family history of breast cancer, prior benign breast disease, age at menarche, nulliparity,

number of live births (parity), age at first birth, months of breastfeeding, and menopausal
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Figure 3.4: Number of each type of tumor marker (TA, TB, TC) selected as the size of the

selected tumor marker set increases, averaged across all simulation settings.

Figure 3.5: Average minimum misclassification as the number of unstructured tumor mark-

ers KC increases, according to the strength of structure, a, in tumor markers related to risk

factors.
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status are included as risk factors, and estimates are additionally adjusted for study center.

Results based on individual gene expression values were reported in Begg et al. (2015).

As in the simulation studies, k-means clustering on the full set of gene expression data

is performed using 1000 random starts. Then D is calculated for each candidate solution

based on a polytomous logistic regression model incorporating all risk factors and using

Equation 3.1, and the optimal solution is identified as the one with maximal D. Next, to

examine pre-clustering variable selection, D is calculated for each tumor marker individually

to test for etiologic heterogeneity based on the gene expression values dichotomized at the

median, using 500 permutations of the data, and these p-values are adjusted for multiple

comparisons using the false discovery rate method. A reduced gene set is selected for k-

means clustering based on the genes that have an adjusted p-value < 0.05. This method

differs from that used in the simulation study because in a real data analysis interest is in

selecting only genes that are believed to carry a meaningful heterogeneity signal whereas in

the simulations the effect of including different numbers of noisy markers was being studied.

Because there is a well-established set of four breast cancer molecular subtypes, based on

immunohistochemical staining for estrogen receptor (ER), progesterone receptor (PR) and

human epidermal growth factor receptor 2 (HER2), clustering is focused on M = 4 classes.

Clustering the full set of 202 genes, a value of D = 0.198 is obtained. Limiting the gene

set to those genes with a permutation-based p-value < 0.05 after adjustment for multiple

comparisons results in a reduced set of 33 genes. Clustering the reduced gene set leads

to a considerably higher optimal D of 0.331. In line with the simulation results, excluding

tumor markers that are not associated with etiologic heterogeneity prior to clustering allows

for identification of a more strongly heterogeneous solution. In a real application of this

nature misclassification rates cannot be evaluated since the true subtypes are unknown.
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However, the alignment of the class solutions can be examined with the established set

of four breast cancer molecular subtypes: luminal A (ER+ or PR+, HER2-), luminal B

(ER+ or PR+, HER2+), HER2-type (ER-, PR-, HER2+), and triple negative (ER-, PR-

, HER2-) (Table 3.1). While there are differences between the class solutions based on

the optimal D approach and the standard IHC-based molecular subtypes, there is more

alignment of results after performing up front selection of gene expression values to include

in the clustering, with the alignment increasing from 47% to 50%. Interestingly, the D

estimate for the standard set of subtypes is 0.268, considerably lower than the optimal

classification.

Table 3.1: Cross-tabulation of optimal D clustering results on full and reduced gene sets

according to a well-established set of four subtypes in the CASH data.

Standard molecular subtypes

Optimal class solutions HER2-type Luminal A Luminal B Triple negative

Full gene set

1 23 102 15 34

2 24 134 17 12

3 1 19 2 7

4 18 17 11 82

Reduced gene set

1 46 60 27 27

2 8 118 12 13

3 1 89 6 4

4 11 5 0 91

3.5 Additional clustering algorithms

In the primary results, the use of a novel clustering strategy that involved performing

k-means clustering with 1000 random starts, calculating D for each resulting candidate

class solution, and then selecting the solution that results in maximal D as the optimal
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clustering solution was proposed. However, there are alternative clustering algorithms

available. The original results based on this novel clustering strategy, referred to here

as optimal D (“optD”), are compared with results produced from standard k-means clus-

tering (“Kmeans”), partitioning around medioids (“PAM”), and model-based expectation-

maximization (EM) clustering (“Mclust”).

K-means clustering, when used in its standard form, selects the clustering solution

that minimizes the ratio of the within-cluster sum of squares to the between-cluster sum

of squares based on squared Euclidean distance (MacQueen, 1967). PAM is similar to

k-means clustering, except it minimizes a sum of dissimilarities rather than the sum of

squared Euclidean distances (Kaufman and Rousseeuw, 1987). Finally, model-based EM

clustering (Fraley and Raftery, 2002) relies on Gaussian mixture modeling fitted via the EM

algorithm. This approach fits numerous models and then selects the best model according

to the Bayesian information criterion (BIC).

In all simulation settings there are P = 2 risk factors with the same mean vectors as

described in the primary results. The sample size is N = 2000 and 1000 simulated datasets

are generated. The proportion of controls is π0 = 0.4. When k-means clustering is used, it is

used with 1000 random starts. Up-front variable selection is performed as described in the

primary methods. In all settings there are KA = 15 tumor markers with structure related

to the risk factors, which comprise M = 3 etiologically distinct subtypes with moderate

strength of structure defined by a = 1.7.

This section seeks to accomplish two things:

1. To compare optimal D clustering to other clustering methods when there is structure

related to the risk factors in addition to counterfeit structure
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Figure 3.6: Misclassification rate according to strength of counterfeit structure, comparing

clustering methods.

2. To evaluate optimal D clustering in comparison to other clustering methods when

assumptions including constant variance, balanced class sizes, and normality do not

hold

3.5.1 Clustering comparison in the presence of counterfeit structure

First, optimal D clustering is compared to other clustering methods when there is structure

related to the risk factors in addition to counterfeit structure. To accomplish this, the perfor-

mance of the different clustering algorithms is compared in the presence of KB = 15 tumor

markers with counterfeit structure that comprise L = 3 classes. Let b = 1.75, 1.775, or 1.8

to explore several strengths of counterfeit structure. There are equal proportions of cases

π1 = π2 = π3 = 0.2 in each class related to the risk factors.

To assess the ability of the different clustering methods to identify the truly etiologically

heterogeneous subtype solution as the strength of counterfeit structure varies, misclassifi-

cation rates are examined. Figure 3.6 shows that optimal D clustering always performs at
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least as well as the other clustering algorithms in this setting, and when 30 or 25 of the 30

tumor markers are included in the clustering, optimal D clustering outperforms the other

approaches (orange line). When dimension reduction to 20 or 15 of the tumor markers is

performed, k-means clustering and model-based EM clustering perform approximately as

well as optimal D clustering. PAM does not perform as well as the other approaches even

with dimension reduction.

3.5.2 Clustering comparison under assumption violations

Next, optimal D clustering is evaluated in comparison to other clustering methods when

assumptions do not hold. In the following sections counterfeit structure is not included, but

rather the performance of the clustering methods under different assumption violations in

the presence of KC = 15 unstructured tumor markers is compared.

3.5.2.1 Heteroskedastic data

Because it is widely believed that k-means clustering does not perform as well when data are

heteroskedastic, the influence of unequal variance in the tumor markers that comprise the

different classes is examined. To accomplish this, in two of the three classes, the variance

of the five tumor markers related to each class is fixed at VA1 = VA2 = 1 as in the primary

results. However for the third class, the variance of the five tumor markers that comprise

this class is varied from VA3 = 1.5 to VA3 = 2 to VA3 = 2.5 to explore the impact of

increasing the variance for the tumor markers in only one of the three classes.

Figure 3.7 shows that optimal D clustering, k-means clustering, and model-based EM

clustering have similar misclassification rates across all numbers of included tumor markers,

though model-based clustering performs slightly better when the variance of the third class is
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Figure 3.7: Misclassification rate according to variance of the third class, VA3, comparing

clustering methods.

VA3 = 2.5 (note that the y-axis is on the log scale). PAM always has higher misclassification.

3.5.2.2 Unbalanced class size

Next the impact of unbalanced class sizes is examined. To accomplish this the proportions

of cases in each class are varied such that two of the three classes have equal size and the

third contains a larger proportion of cases. In the first setting π1 = π2 = 0.15 and π3 = 0.3,

in the second setting π1 = π2 = 0.125 and π3 = 0.35, and in the third setting π1 = π2 = 0.1

and π3 = 0.4.

Figure 3.8 shows that optimal D clustering, k-means clustering, and model-based EM

clustering have similar misclassification rates, with model-based clustering having slightly

lower misclassification when the third class contains π3 = 0.4 of the cases. PAM has

uniformly higher misclassification.



CHAPTER 3. VALIDITY OF OPTIMAL D CLUSTERING 69

Figure 3.8: Misclassification rate according to proportion of cases in the third class, π3,

comparing clustering methods.

3.5.2.3 Non-normal tumor marker distributions

Because k-means clustering relies on Euclidean distance it is commonly understood that it

is optimized for normally distributed data, which has been used in all results in the primary

analyses. To examine this, the different clustering methods are compared under a variety

of data distributions. Specifically, data from a log-normal distribution with mean 0 and

standard deviation 0.5, binary data based on a dichotomization at the median of normally

distributed tumor markers with mean 0 and standard deviation 1, and binary data based

on a dichotomization at the median of log-normally distributed tumor markers with mean

0 and standard deviation 0.5 are clustered.

Figure 3.9 shows that in most cases, optimal D clustering, k-means clustering, and

model-based EM clustering result in very similar misclassification rates. PAM results in

uniformly higher misclassification rates.
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Figure 3.9: Misclassification rate according to different data distributions, comparing clus-

tering methods.

3.5.3 Clustering comparison conclusions

Overall, because optimal D clustering results in a variety of class solutions from which

the solution that maximizes D, a measure of etiologic heterogeneity, is selected, in some

circumstances this method is able to identify a class solution with lower misclassification

as compared to other clustering methods. Additionally, though the optimal D clustering

approach relies on k-means clustering, which in recent years has been utilized less than

more modern clustering techniques such as model-based EM clustering, this analysis found

that k-means clustering is not impacted by assumption violations more strongly than any

of the other clustering methods examined here. Therefore, the novel clustering approach,

optimal D clustering, which is based on k-means clustering, can reliably be used across a

variety of data types and is able to identify the truly etiologically heterogeneous subtype

solution in the presence of counterfeit structure more often than other clustering methods.
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3.6 Discussion

In this chapter the performance of the optimal D clustering method was examined with

respect to its ability to identify etiologically heterogeneous subtypes. When the structure

in the tumor markers defining etiologic heterogeneity is strong, these etiologically distinct

subtypes can be identified successfully with low misclassification even in the presence of

weaker “counterfeit” structure. As the strength of the true structure decreases, misclas-

sification rates increase. When the strength of the counterfeit structure surpasses that of

the true structure, the desired etiologically heterogeneous subtypes can no longer be identi-

fied without variable selection to reduce dimension purposefully. Misclassification rates are

not substantially impacted by the inclusion of a relatively small number of unstructured

tumor markers, but this impact increases as the number of unstructured tumor markers

becomes large. Since the ability of the method to identify the truly most etiologically dis-

tinct subtypes is impacted by both inclusion of tumor markers with strong structure that

are unrelated to the risk factors and inclusion of a large number of unstructured tumor

markers, a method to filter out such tumor markers will play an important role in any anal-

ysis of this type. Initial selection of tumor markers on the basis of their association with

the risk factors led to improved performance across all simulation settings, and in the data

application. This suggests that with careful use of up-front selection of tumor markers, the

clustering method can reliably identify the truly etiologically distinct subtypes from high

dimensional tumor marker data, although clearly the accuracy of the method will depend

on the strength of the signal in the etiologic heterogeneity that distinguishes the subtypes.

However, there is no obvious strategy for determining where to draw the line in selecting

tumor markers for inclusion, and so in practice analyses of this type will require judgment.
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Because of the inherent complexity of unsupervised clustering in high-dimensional data

of this type, these simulation studies were conducted in a highly simplified context. In real-

ity, genomic tumor marker data frequently have a much higher dimension and will possess

much more complex structure than represented by this idealized framework. However, it is

difficult to simulate complex structures meaningfully. The intent in this investigation has

been to create a framework to permit one to infer generalizable messages that are relevant

to the data analytic strategy.

An important area of future work will focus on how to estimate the optimal number of

subtypes in a clustering analysis of this type. Estimation of the correct number of clusters

is a challenge in any unsupervised clustering analysis, no matter the goal. One popular

method is to use the gap statistic, which compares the within-cluster sum of squares to

that expected under a null reference distribution for the data (Tibshirani et al., 2002). In

the included simulation studies the true number of etiologically distinct disease subtypes

was fixed at three and a search for three clusters was specified in the k-means algorithm.

However in a real data analysis the true number of subtypes will not be known. Future work

is needed to create an appropriate method for estimating the optimal number of subtypes.

In summary, this chapter supports the following conclusion about the use of this cluster-

ing method for identifying etiologically heterogeneous subtypes. The method is capable of

finding the true subtypes if they exist. However, the accuracy will depend on the strength

of the heterogeneity signal, and the method is greatly enhanced with minimal cost by using

pre-clustering variable selection of the tumor markers that are observed to be most strongly

associated with the risk factors.
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Chapter 4

Application to Carolina Breast

Cancer Study

The results of this chapter show that by using a novel method to cluster gene

expression data and identify disease subtypes that differ maximally with respect

to etiologic heterogeneity using data from the Carolina Breast Cancer Study, an

etiologically distinct 4-subtype solution was identified in a discovery stage, and in a

validation sample showed reasonable validation in terms of both the highest-ranked

individual genes and the subtypes formed by selected genes. PSPHL was the most

important gene in defining etiologically distinct subtypes, and age, postmenopausal

body mass index, ever use of oral contraceptives, and race are the risk factors that

demonstrate etiologic differences across the optimal subtype solution.

As described in the Introduction (Section 1.3), there are four well-defined subtypes of breast

cancer, known as luminal A, luminal B, HER2-type, and basal-like/triple negative. These

subtypes have been used in numerous epidemiologic studies of etiologic heterogeneity, but

they were originally discovered with the goal of separating patients according to prognosis,

not risk. In previous work an approach that combines a search for candidate subtypes of
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cancer based on genomic information with use of a scalar measure to identify the most

etiologically heterogeneous subtype solution was proposed (Begg et al., 2013), and the

previous chapter established that with rigorous up front selection of the tumor marker

data the method identifies the true subtype solution with high probability. This chapter

seeks to apply this approach to data from a large population-based breast cancer case-

control study with available gene expression data to determine the optimally heterogeneous

subtype solution with respect to risk for disease. Defining etiologically distinct subtypes of

disease based on known risk factors will yield improved power to identify new risk factors,

especially germline risk factors, that are expected to demonstrate etiologic heterogeneity

and therefore will have increased effect sizes associated with certain subtypes of disease,

thus leading to smaller and more efficient studies.

4.1 Carolina Breast Cancer Study data

The Carolina Breast Cancer Study (CBCS) was conducted in three phases from 1993

through 2013. The details of the study methodology, including sampling stratification

and sampling frequencies, have been previously described in detail (Furberg et al., 2002,

2003; Newman et al., 1995). Briefly, women aged 20-74 living in certain counties in North

Carolina and diagnosed with a first primary breast cancer were identified from the North

Carolina Central Cancer Registry. Black women and women < 50 years old were over-

sampled with specific sampling probabilities. Controls were frequency matched to cases by

race and 5-year age group. Phase 2 of the study included cases of DCIS, but the following

analyses are limited to invasive breast cancer cases. Additionally, the analyses are limited

to cases with available data on a panel of gene expression values. The analysis includes

available, known risk factors for breast cancer.
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Phases 1 and 2 had case-control designs whereas phase 3 was a case-only study design

and thus did not include a sample of matched control subjects. There were a total of 861

cases and 790 controls in phase 1, 947 cases and 774 controls in phase 2, and 2976 cases in

phase 3. Because an analysis of this type is already quite complex, methods to account for

missing data such as multiple imputation are not feasible to implement, so a complete case

analysis was conducted. See Figure 4.1 for details of patient exclusions.

4.1.1 Gene expression processing

The gene expression data in this study were obtained using a custom NanoString codeset

for 406 genes of interest. See Section 4.5 for a full list of genes included in this analysis. Per-

formance of the nCounter assay was assessed for efficiency and sub-optimal hybridization.

Expression levels below the mean of negative controls were set to the mean background

expression. Then positive control normalization multiplied all counts for a sample by the

ratio of the average geometric mean of positive controls across all samples to the geometric

mean of the sample-specific positive controls. Reference gene normalization was done in

a similar way based on a set of 11 housekeeping genes. Batch effects were corrected by

calibrating each lot based on a scaling factor calculated as the average geometric mean of

endogenous genes across the three lots to the geometric mean of endogenous genes within

lot. Finally, expression counts were log2 transformed.

Visualizations using 1-way dendograms and principal components analysis were used

to identify major outliers. A sample was considered a major outlier if, after all of the

pre-processing described in the previous paragraph was complete, the sample demonstrated

extreme expression across all genes. During the quality control process 126 samples were

flagged and excluded from analysis as major outliers according to principal components
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analysis (Figure 4.1). In a sensitivity analysis clustering a set of cases that included the

major outliers, when compared to the results from the primary analysis with the major

outliers excluded, between 94% and 99% of cases were classified similarly, suggesting that

these major outliers did not comprise a separate etiologically distinct class. Gene expression

values were standardized within sample by subtracting the mean gene expression for that

sample and dividing by the sample standard deviation. Finally each gene’s expression

was median centered. Twenty cases from phases 1 and 2 and 20 cases from phase 3 were

randomly selected for removal from the case group to test for differences between the various

phases of the study, which were conducted at different times, without compromising the

overall type I error of the primary results. The overall gene expression distributions between

the different phases were compared using histograms and a Wilcoxon rank-sum test.

The final sample sizes for analysis are 83 cases and 739 controls from phase 1, 287 cases

and 716 controls from phase 2, and 467 cases from phase 3 (Figure 4.1).

4.2 Methods

The analysis is conducted in two stages:

1. Cluster discovery stage. The 467 phase 3 cases with available gene expression and risk

factor data are used to determine the optimally etiologically heterogeneous clustering

solution using a case-only analytic setting.

2. Cluster validation stage. The 370 cases with available gene expression and risk factor

data and the 1455 controls with available risk factor data from phases 1 and 2 are

pooled, and the cases are assigned to a class solution based on the discovery results.

Polytomous logistic regression is performed in the case-control setting to identify risk
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Figure 4.1: Study exclusions
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factors with heterogeneous effects.

The goal of conducting the analysis in two stages, with discovery followed by independent

validation, is to ultimately be able to obtain valid odds ratio estimates and p-values testing

for heterogeneity across the subtypes. If the subtypes were discovered using the same data

in which testing for heterogeneity was then conducted, the resulting p-values would be

over-optimistic, since the risk factor distributions are pivotal in selection of the optimal

subtype solution. The data were split into discovery and validation stages based on the

original CBCS study design, which in phase 3 collected data only on cases with no matched

controls, and in phases 1 and 2 collected data on cases with frequency matched controls.

This approach of using the phase 3 data for discovery and the phases 1 and 2 data for

validation is consistent with the original design of the study, which collected these data

in different years and with different study designs. Use of the phases 1 and 2 data for
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validation additionally allows for calculation of standard case-control odds ratios.

4.2.1 Clustering methods

In the cluster discovery stage, a novel clustering method that uses unsupervised k-means

clustering of the gene expression data in combination with calculation of a scalar measure of

etiologic heterogeneity based on all available risk factors is applied to identify the optimally

etiologically heterogeneous subtype solution, as detailed in Section 3.1 of Chapter 3. In

the setting of a case-control study, the scalar measure of etiologic heterogeneity, denoted

D, is calculated according to Equation 3.1. An approximation of this measure, denoted

D∗, can be applied in the case-only setting, and details of this approach can be found in

Begg et al. (2013). Briefly, whereas the variance and covariance terms in Equation 3.1 are

averaged over the controls in a case-control setting, in a case-only setting they are averaged

over the cases, which represent a risk-biased sample from the population. The goal of an

analysis of this type is not to interpret the magnitude of D, but rather to use D to rank

different subtyping schemes and identify the one that maximizes etiologic heterogeneity,

and rankings based on D and D∗ are expected to be broadly similar in practice.

K-means clustering is performed with 1000 random starts on the gene expression data

in the discovery cases, to obtain a variety of class solutions. For each candidate solution

identified by k-means clustering, D∗ is calculated and the solution that maximizes D∗ is

selected as the optimal solution. To avoid solutions with subtypes with very small sample

sizes, clustering solutions where a class had fewer than 20 cases were not considered. Ad-

ditionally, because the true number of subtypes is unknown, the optimal 2-class, 3-class,

4-class, and 5-class solutions were identified and the ideal number of classes was later se-

lected from these options. Solutions with more than 5 classes were not considered due to
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sample size limitations and in order to avoid overfitting.

4.2.2 Gene selection

The simulation studies presented in Chapter 3 found that when there exists strong multi-

variate structure in the tumor marker data that is unrelated to the risk factors of interest,

or when there are many tumor markers that simply represent noise, the optimal D clus-

tering method can fail to identify the subtype solution that is truly the most etiologically

heterogeneous. However, this problem was relatively easily overcome by performing up-

front variable selection on the tumor marker data. To accomplish the selection of genes,

the individual D∗ value for a 2-class solution is calculated for each gene. The 2-class solu-

tion for each gene is identified using standard k-means clustering optimized by inter-cluster

distance and searching for two classes in the entire case sample (i.e. all phase 1, 2, and 3

cases combined). The genes are then rank-ordered according to their individual D∗ values

from the most heterogeneous to the least heterogeneous gene.

Because some genes in the included NanoString codeset are known to be highly corre-

lated, an adjustment to the ranking based on correlation is considered. First, the top-ranked

gene was used as the predictor in a linear model and each remaining gene was used as the

outcome. The R2 value was obtained from each linear model, where a larger R2 represents

a situation where the top-ranked gene better predicts the value of the gene under consider-

ation in the outcome of the model. Each gene’s individual D∗ value was then weighted by

the inverse of the resulting R2 so that genes strongly related to the top-ranked gene would

be down-weighted and genes weakly related to the top-ranked gene would be up-weighted.

The remaining genes were then re-ranked. Next, the top two genes were used as predictors

in a linear model and each remaining gene was used as the outcome. The R2 values were
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obtained and used to weight the individual D∗ values and adjust the ranking accordingly.

This process was repeated until the top 10% of genes, or 40 genes, was obtained for inclusion

in the reduced gene set. Solutions with fewer than 40 genes were investigated subsequently,

as described in Section 4.2.6.

4.2.3 Validation

In the validation stage, each validation case (i.e. cases from CBCS phases 1 and 2) is

assigned to the discovery class solution to which it is most similar. To accomplish this,

the cluster centroids are first calculated in the discovery cases by averaging the data points

within each of the M subtypes. Next, the Euclidean distance between each validation

case and each of the M discovery cluster centroids is calculated. Each validation case is

assigned to the closest cluster, defined as the one that demonstrates minimum Euclidean

distance. D is calculated for each resulting subtype solution for comparison with the extent

of heterogeneity as quantified by the traditional IHC and the traditional PAM50 subtype

solutions.

To validate the subtypes identified in the discovery stage, the process of ranking the genes

to obtain a reduced set and identifying the optimal solutions of different sizes is repeated

in the phases 1 and 2 data, to obtain a validation solution. Both selection of the included

genes and clustering of the reduced gene set to identify the optimal solution are conducted

independently in the discovery and validation data. The optimal discovery class solution

and the optimal validation class solution are then cross-tabulated, with validation cases

assigned to discovery cluters as described above, to examine the alignment of validation

cases according to the two independent classifications, as a way to assess the replicability

of the identified subtypes.
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The rest of the analyses are conducted in the validation data using the subtypes defined

by the discovery class solution. Univariable associations between risk factors of interest

and the resulting subtypes are examined using the Wilcoxon rank-sum test for continuous

variables and the Chi-squared test for categorical variables. Then a polytomous logistic

regression model is fit for the subtypes versus controls using all risk factors of interest, and

adjusting for study phase 1 versus 2. For each risk factor p, p = 1, . . . , P , the regression

parameters β̂pm are obtained from the polytomous logistic regression model (Equation 2.1).

These regression parameters are exponentiated to obtain odds ratios exp (β̂pm) as a measure

of effect size. Finally, a heterogeneity p-value is calculated for a test of the null hypothesis

H0β : βp1 = · · · = βpm, which addresses the question of whether each risk factor has the same

effect across all subtypes of disease. Traditional logistic regression models are additionally

fit for each subtype separately versus the controls, allowing for incorporation of the offset

terms required to correct for the original sampling design used in CBCS in order to obtain

interpretable and generalizable odds ratio estimates. More details of the need for offset

terms follow in Section 4.2.5.

4.2.4 Identifying the ideal number of classes

After identifying the optimal 2-class, 3-class, 4-class, and 5-class solutions in the discovery

stage, permutation tests were used to test whether the optimal D∗ for each class size carries

a significant heterogeneity signal. To conduct the permutation tests, for each class size

the unique k-means clustering solutions from the 1000 random starts are retained. Then

the rows of the candidate class solutions are permuted so that the class label is rendered

independent of the risk factor data, D∗ is re-calculated for each candidate solution, and the

solution that maximizes D∗ is selected. This process is repeated 1000 times to obtain a null
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reference distribution for D∗ for each class size. The p-value is calculated as the proportion

of times the observed optimal D∗ is less than the optimal D∗ obtained from the permuted

data, and serves as a test of H0 : D∗ = 0, i.e. a test of the hypothesis that none of the risk

factors have differing effects across the classes. Failure to reject this null hypothesis implies

that the candidate discovery class solution did not demonstrate etiologic heterogeneity with

respect to the risk factors included in this analysis. Any candidate discovery class solution

that results in a failure to reject this null hypothesis was not considered further.

Next the ideal number of classes must be selected from among the candidate discovery

class solutions that demonstrate significant etiologic heterogeneity. To do so, the process of

ranking the genes to obtain a reduced set and identifying the optimal solutions of different

sizes is repeated in the phases 1 and 2 data, as described in Section 4.2.3. The two resulting

2-class, 3-class, 4-class, and 5-class validation class solutions are cross-tabulated with the

discovery class solutions. The alignment of the two sets of class labels is used to select the

ideal number of classes.

4.2.5 Additional methodologic considerations

Because black and young breast cancer cases were oversampled in CBCS, it is necessary to

make some adjustments to the statistical analyses to account for this study design. Sampling

weights were defined as the inverse of the sampling probability, and are required for inference

to the general population. Offset terms were defined as the natural log of the ratio of

the sampling probability for a case in a specific stratum of age and race to the sampling

probability for a control in the same stratum of age and race, and are required to obtain

valid odds ratio estimates. Polytomous logistic regression does not allow for incorporation

of offset terms, so polytomous logistic regression will be utilized in identification of the
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optimal subtype solution, and to conduct statistical tests of the null hypothesis that risk

factor effects are the same across the subtypes. Individual binary logistic regression models

comparing each subtype to all controls, and incorporating the offset term, will be used to

obtain corrected odds ratios.

4.2.6 Sensitivity analyses

To examine the reliability of the primary results, a number of sensitivity analyses are con-

ducted. The first is to assess the presumption that similar gene rankings would be obtained

using the case-only D∗ value and the case-control D value. In the primary analysis, the

original design of the CBCS study was used to split the data into a discovery stage that

included the phase 3 cases and a validation stage that included the phases 1 and 2 cases

and controls. Because CBCS phase 3 was a case-only design, a case-only design was used in

the discovery stage, where one subtype was used as the reference group in the polytomous

logistic regression model to calculate D∗ as described in Section 4.2.1. CBCS phases 1

and 2 included controls who were frequency matched to cases, allowing for calculation of

D using a case-control design in the validation stage. By ranking the genes and obtaining

the optimal subtype solutions using D∗ in the discovery stage, and then applying the class

labels to the validation cases, it is presumed that the results of a case-only approach are

applicable to a case-control setting. This presumption is examined in two ways, with the

goal of showing that similar gene rankings would be obtained using either a case-only or

case-control design. First, a random sample of the phases 1 and 2 controls is obtained to

use as an unmatched control sample for the phase 3 cases, and the genes are re-ranked

according to their individual case-control D values calculated in the phase 3 cases and this

random sample of phases 1 and 2 controls. This ranking is compared to the primary ranking
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obtained using the individual gene case-only D∗ values based on the phase 3 cases. Second,

the genes are re-ranked according to their individual case-only D∗ values calculated in the

phases 1 and 2 cases. This ranking is compared to the primary ranking obtained using the

individual gene case-control D values calculated in the phases 1 and 2 cases and controls.

This allows for assessment of the sensitivity of the method to the use of case-only D∗ in

the discovery stage and case-control D in the validation stage to obtain rankings for the

individual genes. Because the primary goal of this sensitivity analysis is to compare rank-

ings of individual genes according to different approaches for quantifying heterogeneity, the

individual gene etiologic heterogeneity measures have not been adjusted for correlation.

A second sensitivity analysis assesses the impact of adjusting the selection of included

genes for correlation. Some subsets of genes included in the study are known to be highly

correlated. Therefore adjustment for correlation was used to avoid a situation where many

genes carrying a similar heterogeneity signal were selected for inclusion, thus eliminating

other genes that could provide more independent information. To examine the impact

of this adjustment for correlation, with the goal of assessing whether a more etiologically

heterogeneous solution can truly be identified based on selecting a more independent set

of genes for inclusion in the clustering, the top 40 genes ranked by their individual D∗

values in the discovery data, without adjustment for correlation, are used in clustering

as described in Section 4.2.1. Validation D values based on these clustering results are

calculated as described in Section 4.2.3 for the primary results, and the alignment of the

class results based on the selected genes accounting for correlation and the selected genes

not accounting for correlation is compared.

The third sensitivity analysis assesses whether the level of variable selection, which was

somewhat arbitrarily set at 10% of the overall gene list, was sufficiently strict. Simulation
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studies presented in Chapter 3 revealed that problems of “counterfeit” structure and noise

in the data can be overcome through pre-clustering selection of tumor marker data, so the

goal of this sensitivity analysis is to try to assess whether the selection was sufficiently

stringent, or if more etiologically heterogeneous solutions could be identified with further

selection. To examine the impact of more stringent variable selection, the number of genes

included in the analysis is systematically reduced. In the discovery cases, beginning with the

list of 40 genes ranked from highest to lowest based on their individual D∗ values adjusted

for correlation, genes are removed from the bottom of the list one at a time. Each time

a gene is removed the remaining genes are used in clustering as described in Section 4.2.1

to identify the optimal solution for the various class sizes. The validation cases are then

assigned to these optimal classes based on different numbers of included genes as described

in Section 4.2.3. The resulting subtype solutions based on different numbers of genes are

compared according to their D values, as well as the alignment between discovery and

validation class labels.

The etiologic heterogeneity of breast cancer has been examined in a previous study using

gene expression data from the Cancer and Stereoid Hormone (CASH) case-control study

(Begg et al., 2015), and the final sensitivity analysis compares the rankings of common

genes between the CASH and CBCS studies. The CASH study was a case-control study of

breast cancer that assessed a panel of 202 gene expression values on the cases. Using the

same risk factors as in the primary analysis of the CBCS data, D values are calculated for

the individual genes in CASH. For the 38 genes that are in common between the CASH and

CBCS studies, the rankings are obtained according to etiologic heterogeneity as measured

in the CBCS phases 1 and 2 case-control study and the CASH case-control study. The goal

is to determine whether any genes are commonly ranked highly across the two independent
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Figure 4.2: Comparison of gene expression distributions in 20 held-out samples from phase

3 and 20 held-out samples from phases 1 and 2

studies, and as such the rankings in this sensitivity analysis have not been adjusted for

correlation since interest is not in identifying a reduced gene set.

4.2.7 Software

All statistical analyses in this chapter were conducted using R software (R Core Team, 2018).

An R package containing functions to perform specific calculations related to calculation

of D and etiologic hetereogeneity p-values is available on GitHub at https://github.com/

zabore/riskclustr.

4.3 Results

Figure 4.2 shows the distributions of gene expression values for the 20 held-out samples from

phase 3 and the 20 held-out samples from phases 1 and 2, which do not differ significantly

(p-value = 0.295). As a result, the discovery and validation cases can be combined to

https://github.com/zabore/riskclustr
https://github.com/zabore/riskclustr
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obtain the 2-class splits for each gene, since expression levels are similarly distributed.

Differences in risk factor distributions between the discovery and validation case sets are

tested using the full case population (Table 4.1). Validation cases have significantly younger

age at first birth, lighter premenopausal and postmenopausal body mass index (BMI),

lower frequency of nulliparity, lower frequency of ever oral contraceptive use, and are less

frequently black as compared to the discovery cases. However these differences should not

impact the primary analyses as some were invoked by the design of the study and interest

is in relative measures of risk for breast cancer. Note that the frequencies presented in

Table 4.1 are not generalizable to the population as a whole, but rather represent descriptive

information about the study sample, as sampling weights have not been taken into account

in these calculations.

Before beginning an investigation of subtypes in these data, it is of interest to examine

the overall case-control odds ratios for the risk factors using logistic regression with the

offset term incorporated to account for the oversampling in the study design, using the

validation cases and controls from phases 1 and 2. Table 4.2 shows that increased age

at diagnosis, first degree family history of breast cancer, and black versus white race are

significantly associated with increased odds of breast cancer in this population. Increased

postmenopausal BMI is significantly associated with decreased odds of breast cancer. The

other risk factors have been implicated in other studies in the literature, though their

effects in the CBCS data are small and not statistically significant (Huang et al., 2000).

It is possible that the sampling design of CBCS, which oversampled black women and

women < 50 years old, could have led to distributions of hormonal risk factors that are not

representative of the general population, thus obscuring common associations with risk for

breast cancer.
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Table 4.1: Comparison of risk factor distributions between the discovery and validation case

sets. Numbers presented are median (minimum, maximum) for continuous variables and

frequency (percent) for binary variables.

Variable Discovery (n = 467) Validation (n = 370) p-value

Age at diagnosis 49 (23, 74) 49 (23, 73) 0.77

Age at menarche 12 (8, 18) 13 (8, 21) 0.07

Age at 1st birth 23.5 (13, 44) 22.4 (14, 39) 0.001

Months breastfeeding 0 (0, 95) 0 (0, 58) 0.11

Premenopausal BMI† 30 (17.7, 62.5) 29.1 (15.1, 53) <.001

Postmenopausal BMI† 31.2 (17.7, 51.4) 29.7 (14.3, 53.5) <.001

Nulliparous 88 (18.8) 50 (13.5) 0.04

Postmenopausal 233 (49.9) 188 (50.8) 0.83

Ever use of OCs‡ 372 (79.7) 250 (67.6) <.001

Family history* 84 (18) 64 (17.3) 0.86

Black race 275 (58.9) 179 (48.4) 0.003

†BMI = body mass index

‡OC = oral contraceptive

*First degree family history of breast cancer

4.3.1 Discovery results

First, in Figure 4.3 the correlation among the top 40 genes based on ranking the genes

according to their individual D∗ values (Figure 4.3A) is compared to the correlation among

the top 40 genes based on ranking the genes with adjustment for correlation (Figure 4.3B).

The correlation among the top genes was very strong, but after weighting D for correlation

and re-ranking the genes, a set of genes that carry more independent information is selected.

These top 40 genes, along with their individual D∗ values, are listed in Table 4.3. PSPHL

is the top-ranked gene, with a D∗ value of 0.285. Note that some genes known to play a
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Table 4.2: Overall case-control logistic regression results in validation data. Additionally

adjusted for study phase. OR = odds ratio; CI = confidence interval.

Variable OR (95% CI) p-value

Age at diagnosis (per 10 years) 1.68 (1.41 - 1.99) <.001

Age at menarche (per 2 years) 0.91 (0.78 - 1.06) 0.21

Age at 1st birth (per 5 years) 1.06 (0.93 - 1.20) 0.40

Months breastfeeding (per 6) 0.95 (0.87 - 1.02) 0.17

Premenopausal BMI† (per 20 units) 0.90 (0.56 - 1.46) 0.67

Postmenopausal BMI† (per 20 units) 0.45 (0.27 - 0.77) 0.004

Nulliparous 1.03 (0.71 - 1.49) 0.88

Postmenopausal 1.08 (0.74 - 1.58) 0.69

Ever use of OCs‡ 1.17 (0.87 - 1.57) 0.31

Family history* 1.53 (1.11 - 2.13) 0.01

Black vs white 1.31 (1.00 - 1.71) 0.046

†BMI = body mass index

‡OC = oral contraceptive

*First degree family history of breast cancer



CHAPTER 4. APPLICATION TO CAROLINA BREAST CANCER STUDY 90

Figure 4.3: Heatmaps of correlation among the top 40 genes in the discovery data (A) based

on ranking the genes using their individual D∗ values and (B) based on ranking the genes

with adjustment for correlation.

role in subtyping breast cancer, including ESR1 with a D∗ value of 0.119 and SCUBE2

with a D∗ value of 0.100, are not included in the list of selected genes after accounting for

correlation, as they were strongly correlated with the top-ranked gene. Next the selected 40

genes are clustered using the original continuous data, and for each class size the candidate

solution that maximizes D∗ is selected as the optimal solution. The true optimal D∗ value

is signficantly greater than the null reference distribution for all class sizes, as indicated by

the purple asterisks denoting the observed optimal D∗ lying far from the null distribution

of D∗ (Figure 4.4) and by the significant permutation-based p-values (Table 4.4).

Next the ideal number of classes to use in the remaining analyses is determined by

examining the alignment between the optimal solutions identified using the discovery phase

3 data and the optimal solutions identified independently using the validation data from
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Table 4.3: Top 40 genes in the discovery data, selected by ranking genes according to D∗

values weighted to adjust for correlation.
Gene D∗ Rank

PSPHL 0.285 1

ERBB2 0.034 2

MDM2 0.027 3

CXCR4 0.040 4

PGE3 0.039 5

LEPRE1 0.008 6

IL1B 0.045 7

PGAM5 0.076 8

AMH 0.052 9

PVRL2 0.051 10

F7 0.060 11

CLDN4 0.074 12

FMO5 0.109 13

IL12 0.015 14

UGT1A10 0.066 15

DSP 0.048 16

KRT8 0.081 17

NCR1 NKP46 0.023 18

FLVCR2 0.053 19

ACOX2 0.068 20

VAV3 0.101 21

ISLR2 0.052 22

CMC2 0.128 23

KCNMA1 0.078 24

RNASE4 0.114 25

UBE2C 0.142 26

REPS2 0.073 27

SLC7A5 0.136 28

ABCC8 0.072 29

POLD1 0.095 30

TMSB15B 0.075 31

ZEB1 0.069 32

PTPRT 0.094 33

C1QTNF3 0.040 34

LOC400043 0.087 35

FANCA 0.138 36

EPCAM 0.097 37

PUF60 0.077 38

CD10 0.046 39

LRP8 0.094 40
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Figure 4.4: Histograms of the null reference distributions of D∗ for each class size in the

discovery data. The purple asterisk denotes the observed optimal D∗ values.

Table 4.4: Optimal D∗ in the discovery data for each class size, with permutation-based

p-values.

Number of classes D∗ p-value

2 0.154 < .001

3 0.248 < .001

4 0.303 < .001

5 0.348 < .001
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Figure 4.5: Alignment over benchmark level between optimal class labels identified inde-

pendently in the phase 3 and phases 1 and 2 data, by class size.

phases 1 and 2, as described in Section 4.2.4. The alignment is calculated by cross-tabulating

the two sets of class labels for each class size and then obtaining the proportion of cases on

the diagonal. Since class labels from k-means clustering are arbitrary, the two sets of class

labels must first be aligned, as desribed in Section 3.2.4 of Chapter 3. Additionally, because

it is easier to achieve alignment when there are fewer classes, a benchmark level of alignment

is established for each class size based on the sum of the squared relative frequencies of the

discovery classes. Figure 4.5 shows the amount of additional alignment achieved above

the benchmark level, and indicates that the 4-class solution achieves the highest level of

additional alignment. This strong alignment combined with the fact that the traditional

IHC and PAM50 4-class solutions are already well-accepted in breast cancer, the 4-class

solution is selected for use in the validation stage of this analysis. In the discovery data

there are 114 (24.4%) cases in subtype 1, 174 (37.3%) cases in subtype 2, 135 (28.9%) cases

in subtype 3, and 44 (9.4%) cases in subtype 4.
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4.3.2 Validation results

Each validation case from the phase 1 and 2 data is assigned to its subtype based on the

4-class discovery solution as described in Section 4.2.3. There are 84 (22.7%) cases assigned

to subtype 1, 110 (29.7%) cases assigned to subtype 2, 107 (28.9%) cases assigned to subtype

3, and 69 (18.6%) cases assigned to subtype 4. The high alignment of 66% between the

4-class solutions identified independently in the phase 3 and phases 1 and 2 cases indicates

that the subtypes are reasonably replicable (Table 4.5).

Table 4.5: Alignment between the optimal discovery 4-class solution and the optimal vali-

dation 4-class solution, in the validation cases.

Validation 4-class

Discovery 4-class 1 2 3 4

1 74 0 11 12

4 0 60 26 7

2 7 46 66 6

3 3 4 4 44

The D value for the optimal discovery 4-class solution in the validation cases is 0.271.

Table 4.6 shows the alignment between the traditional 4-class subtyping system based on

three IHC markers (ER, PR, and HER2) and the optimal 4-class solution. 52.5% of cases are

classified similarly according to the two subtyping schemes. The D value for the traditional

IHC 4-class system is 0.165, which is much lower than the D value of 0.271 for the optimal

4-class solution. Similarly, Table 4.7 shows the alignment between the traditional 4-class

subtyping system based on the PAM50 gene expression panel and the optimal validation 4-

class solution. 60.2% of cases are classified similarly according to the two subtyping schemes.

The D value for the traditional PAM50 4-class system is 0.153, which again is much lower



CHAPTER 4. APPLICATION TO CAROLINA BREAST CANCER STUDY 95

Table 4.6: Cross-tabulation of traditional 4-class subtypes based on IHC markers and op-

timal 4-class solution in phase 1 and 2 cases. Note that 10 cases are missing values for the

traditional IHC 4-class solution.

Optimal 4-class

Traditional IHC 4-class 1 2 3 4

Triple negative 68 7 17 21

Luminal A 13 95 47 39

HER2-type 1 1 21 1

Luminal B 0 3 21 5

than the D value of 0.271 for the optimal 4-class solution. These results suggest that

while the optimal 4-class solution is fairly well-aligned with the more traditional 4-class

subtyping solutions, the most etiologically heterogeneous subtyping solution had not yet

been defined, as the identified optimal solution demonstrates a substantially larger etiologic

heterogeneity signal. It is of interest to note that optimal class 1 is particularly well aligned

with the triple negative and basal-like subtypes, and optimal class 2 is quite strongly aligned

with the luminal A subtype.

Table 4.7: Cross-tabulation of traditional 4-class subtypes based on the PAM50 gene ex-

pression panel and optimal 4-class solution in phase 1 and 2 cases. Note that 26 cases

classified as normal-like by the traditional PAM50 solution are excluded.

Optimal 4-class

Traditional PAM50 4-class 1 2 3 4

Basal-like 79 0 7 43

Luminal A 1 93 43 15

HER2-type 1 0 32 2

Luminal B 3 4 18 3

Next the univariable associations between the risk factors of interest and the optimal
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Table 4.8: Risk factor distributions in phase 1 and 2 cases according to the optimal 4-class

solution. Numbers presented are median (minimum, maximum) for continuous variables

and frequency (percent) for binary variables.

Optimal 4-class

Variable 1 (n = 84) 2 (n = 110) 3 (n = 107) 4 (n = 69) p-value

Age at diagnosis 45 (24, 73) 53 (24, 73) 49 (27, 73) 50 (23, 73) <.001

Age at menarche 12 (9, 16) 13 (8, 18) 13 (9, 21) 13 (9, 16) 0.13

Age at 1st birth 20 (14, 36) 22.4 (14, 35) 22.4 (14, 39) 22 (14, 36) 0.14

Months breastfeeding 0 (0, 58) 0 (0, 54) 0 (0, 31) 0 (0, 58) 0.18

Premenopausal BMI† 29 (18, 47) 29 (20, 53) 29 (15, 46) 29 (18, 53) 0.44

Postmenopausal BMI† 30 (18, 48) 30 (14, 49) 30 (18, 53) 29 (18, 33) <.001

Nulliparous 8 (9.5) 17 (15.5) 18 (16.8) 7 (10.1) 0.37

Postmenopausal 28 (33.3) 64 (58.2) 54 (50.5) 42 (60.9) 0.001

Ever use of OCs‡ 63 (75) 73 (66.4) 64 (59.8) 50 (72.5) 0.12

Family history* 14 (16.7) 21 (19.1) 18 (16.8) 11 (15.9) 0.95

Black race 54 (64.3) 42 (38.2) 56 (52.3) 27 (39.1) 0.001

†BMI = body mass index

‡OC = oral contraceptive

*First degree family history of breast cancer

4-class solution are presented in Table 4.8. Note that these results are not generalizable to

the population as a whole, but rather represent descriptive information about the included

study sample, as sampling weights have not been taken into account in these calculations.

Age at diagnosis, postmenopausal BMI, postmenopausal status, and race are all significantly

associated with the optimal 4-class solution on univariable analysis. Cases in optimal class

1 appear to be younger, less frequently postmenopausal, and more frequently black. Cases

in optimal class 2 appear to be older, more frequently postmenopausal, and more frequently

white. Odds ratios and 95% confidence intervals from multivariable logistic regression mod-
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els separately comparing each optimal class to the controls, and accounting for offset terms,

are shown in Figure 4.6. The p-values on the plot are from the test for heterogeneity based

on a multivariable polytomous logistic regression model, as described in Section 4.2.3. Age

at diagnosis, postmenopausal BMI, ever use of oral contraceptives, and race all demonstrate

significant heterogeneity across the four subtypes in multivariable analysis. Older women

have increased odds of class 2 breast cancer, women with higher postmenopausal BMI have

decreased odds of class 4 breast cancer, women who ever used oral contraceptives have

decreased odds of class 3 breast cancer, and black women have increased odds of class 1

breast cancer and decreased odds of class 2 breast cancer.

A heatmap of expression values for the 40 included genes according to the optimal 4-

class solution in the validation cases is shown in Figure 4.7. Optimal class 4 tends to have

lower expression levels, especially for PSPHL, a gene with known race associations (Parada

et al., 2017). Recall that class 4 has a lower frequency of black women, and PSPHL is

known to be more highly expressed in black women. Notably, optimal class 3 has higher

expression of ERBB2, the gene that represents human epidermal growth factor receptor 2

(HER2). Tables 4.6 and 4.7 had previously indicated that HER2-type cancers were almost

exclusively classified into optimal class 3.

4.3.3 Sensitivity to use of case-only data to identify subtypes

Because phase 3 of CBCS did not include frequency matched controls, the subtypes in the

discovery stage of this analysis were identified in a case-only setting. The phases 1 and 2

cases were then assigned to a discovery class, and risk factor associations were tested in a

case-control context. To address this design difference between the discovery and validation

stages, a sensitivity analysis is conducted to assess the presumption that similar rankings
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Figure 4.6: Odds ratios and 95% confidence intervals from multivariable binary logistic

regression with offset term incorporated, in the validation data. Additionally adjusted for

study phase. P -values are tests for etiologic heterogeneity from a multivariable polytomous

logistic regression model. OR = odds ratio; CI = confidence interval.
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Figure 4.7: Heatmap of expression values for the selected 40 genes according to the optimal

4-class solution in the validation data.

Table 4.9: Comparison of rankings according to case-only D∗ in the phase 3 cases, and

case-control D in the phase 3 cases and a random sample of phases 1 and 2 controls.

Gene D∗ rank D rank

PSPHL 1 1

UBE2C 2 2

FANCA 3 4

SLC7A5 4 3

CDC20 5 6

CMC2 6 5

ESR1 7 8

CENPN 8 7

MYBL2 9 9

RNASE4 10 11
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would be obtained in a case-only or case-control setting. First, rankings are compared

based on individual gene D∗ values calculated in the phase 3 cases only versus individual

gene D values calculated in the phase 3 cases and a random sample of the phases 1 and 2

control subjects. All 40 of the top 40 genes overlap according to the two rankings, and more

specifically, the top-ranked gene is PSPHL according to both rankings and 9 of the top 10

genes are the same between the two rankings (Table 4.9). Next, rankings are compared

based on individual gene D values calculated in the phases 1 and 2 cases and controls

versus individual gene D∗ values calculated in the phases 1 and 2 cases only. Thirty-seven

of the top 40 genes overlap according to the two rankings, and more specifically, PSPHL

is again the top-ranked gene according to both rankings, and in both rankings SLC7A5 is

the 2nd ranked gene and ESR1 is the 3rd ranked gene, and 8 of the top 10 genes are the

same according to the two rankings (Table 4.10). These results support the use of D∗ in the

discovery stage and D in the validation stage, and suggest that the obtained rankings would

be similar even if a case-only approach or case-control approach had been consistently used

across the two stages of analysis.

4.3.4 Sensitivity to gene selection adjusting for correlation

As some of the genes included in the CBCS codeset were known to be highly correlated,

an adjustment for correlation was used when ranking the genes in the primary analysis. A

second sensitivity analysis was conducted to assess the impact of accounting for correlation

among genes when selecting the top-ranked genes for inclusion in clustering. Table 4.11

shows that the optimal 4-class solution in the validation data based on clustering the top

40 genes ranked by individual D∗ ignoring correlation has 62% alignment with the optimal

4-class solution in the validation data based on clustering the top 40 genes after adjusting
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Table 4.10: Comparison of rankings according to case-control D in the phases 1 and 2 cases

and controls, and case-only D∗ in the phases 1 and 2 cases.

Gene D rank D∗ rank

PSPHL 1 1

SLC7A5 2 2

ESR1 3 3

FOXA1 4 5

PGR 5 4

REEP6 6 6

MAPT 7 17

TMEM158 8 8

UCHL1 9 10

BIRC5 10 11

individualD∗ values for correlation. Encouragingly, the validationD of 0.271 for the optimal

4-class solution from the primary results surpasses the D of 0.221 for the optimal 4-class

solution based on clustering the top 40 genes selected without adjustment for correlation,

suggesting that more risk heterogeneity signal is picked up by selecting a more independent

set of genes for inclusion in clustering.

Table 4.11: Cross-tabulation of validation optimal 4-class solutions when correlation is

considered or not in selecting the top 40 genes.

Optimal 4-class

Ignoring correlation 1 2 3 4

1 66 0 3 2

2 0 83 15 17

3 1 27 53 23

4 17 0 36 27



CHAPTER 4. APPLICATION TO CAROLINA BREAST CANCER STUDY 102

4.3.5 Sensitivity to level of variable selection

In the primary analysis a set of 40 genes, representing the top 10% of genes, were selected

for inclusion in the clustering. Next a sensitivity analysis to examine the impact of the

extent of variable selection on the results is conducted, as described in Section 4.2.6. As

shown in Figure 4.8, there are a number of 4-class solutions with higher D values than the

primary 4-class solution based on 40 genes, and the maximum D value of 0.395 is achieved

when only the top 12 genes are included. When the top 40 genes are identified separately

in the phase 3 discovery data and the phases 1 and 2 validation data, only 9 genes (22.5%)

are common between the two lists (Table 4.12). Reassuringly, PSPHL is the top-ranked

gene when ranking is done independently in the discovery and validation data. PGE3 is

the only other gene included in the top 10 according to both rankings. Figure 4.9 shows

the proportion of aligned cases according to class labels assigned based on the optimal

discovery 4-class solution and class labels based on the optimal 4-class solution identified

independently in the validation cases, as the number of included genes is reduced. The

proportion of aligned cases increases as the number of included genes is reduced, such that

85% of cases are classified similarly with an 8-gene or 6-gene solution, 91% of cases are

classified similarly with a 4-gene solution, and 95% of cases are classified similarly with

a 1-gene solution. These results combine to suggest that perhaps more stringent variable

selection, to just the top 8 or 6 genes, would lead to a more etiologically heterogeneous

solution with high alignment between two independent class labels, suggesting stability in

the clustering based on this small number of genes.
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Figure 4.8: D values in the validation data when different numbers of genes are included in

identification of the optimal 4-class solution.

Figure 4.9: Alignment between optimal class labels identified independently in the phase 3

and phases 1 and 2 data, as the number of included genes is reduced.
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Table 4.12: Similar genes according to discovery and validation rankings.

Gene Discovery D∗ Discovery rank Validation D Validation rank

PSPHL 0.285 1 0.228 1

PGE3 0.039 5 0.076 8

F7 0.060 11 0.063 16

FMO5 0.109 13 0.096 32

DSP 0.048 16 0.076 37

NCR1 NKP46 0.023 18 0.052 20

REPS2 0.073 27 0.088 38

SLC7A5 0.136 28 0.137 18

LOC400043 0.087 35 0.076 17

4.3.6 Comparison of gene rankings in the CBCS and CASH studies

A final sensitivity analysis compares gene rankings according to CBCS phases 1 and 2 case-

control rankings and CASH case-control rankings (Table 4.13). Of the 38 common genes

between the CBCS and CASH studies, several are consistently highly ranked, including

SLC7A5, ESR1, PGR, IL6ST, AR, GATA3, and BCL2. The Spearman correlation between

the two rankings was 0.449, a moderate correlation that differed significantly from zero

(p-value = 0.005). Interestingly only SLC7A5 remained in the top 40 selected genes in the

CBCS phase 3 discovery rankings after adjustment for correlation, as the other genes com-

mon between the two studies were all highly correlated with the top-ranked gene, PSPHL.

4.4 Discussion

In this data application a novel clustering strategy was used to identify a set of breast cancer

subtypes that have clearly distinctive etiology that surpasses that of traditional molecular

subtypes in breast cancer. Etiologic differences in these data appeared to be driven by the
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Table 4.13: Comparison of gene rankings for the 38 common genes in the CBCS phases 1

and 2 case-control study and the CASH case-control study.
Gene CBCS phase 1/2 CASH

SLC7A5 1 8

ESR1 2 2

PGR 3 7

IL6ST 4 3

AR 5 13

STC2 6 19

MKI67 7 12

GATA3 8 1

BCL2 9 4

SCGB1D2 10 15

TOP2A 11 23

PTEN 12 27

CCNE1 13 14

TFF3 14 5

IL6 15 25

VEGFA 16 35

EGFR 17 38

CYP19A1 18 30

CCNA2 19 16

BRCA1 20 18

BAG1 21 33

UGT1A10 22 29

KIT 23 26

CDKN1A 24 21

CLDN7 25 20

CDH1 26 36

RAD50 27 10

FANCA 28 34

UGT2B7 29 32

SULT2A1 30 6

ERBB2 31 28

KRT19 32 9

PTGS2 33 37

CCND1 34 11

SULT1E1 35 24

MUC1 36 17

UGT1A4 37 31

RAD17 38 22
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PSPHL gene, which was consistently ranked as the top gene across multiple approaches to

ranking, and demonstrated a high level of etiologic heterogeneity when used as an individual

gene. PSPHL is known to be associated with race, such that black women have higher

expression of PSPHL as compared to white women (Parada et al., 2017; Costantino et al.,

2016; Field et al., 2012), and there were clear differences in PSPHL across subtypes in

this study. ESR1 and PGR were two of the genes identified in the top 10 of the common

genes between the CBCS and CASH studies, and these encode estrogen receptor (ER) and

progesterone receptor (PR), which are both known to play a role in breast cancer risk and

in determining subtypes of breast cancer. ER and PR help form the traditional IHC 4-class

subtype solution and similarly ESR1 and PGR are part of the PAM50 gene expression panel

that forms the basis of the traditional PAM50 4-class subtype solution. Similarly, ERBB2

is the gene that encodes human epidermal growth factor receptor 2 (HER2), and was the

2nd-ranked gene in this study after adjustment for correlation. HER2 is also involved in

formation of the traditional IHC 4-class subtype solution and, correspondingly, ERBB2 is

included in the PAM50 gene expression panel.

One gene that is thought to play an important role in breast cancer but was not consid-

ered in the primary results of this analysis is TP53. While not emphasized in the primary

results, in the validation cases the 2-class solution based on a TP53 multigene signature

has a D value of 0.029. This would lead to a ranking of 345/407 individual genes, when

no adjustment is made for correlation. Because RNA expression of the TP53 gene is not

believed to capture the biologic mechanism through which TP53 acts in breast cancer, it

is therefore not recommended for analysis as a single gene in a study of this type. Instead,

a multigene signature for TP53 is used, and each case is assigned to a “mutant” or “wild-

type” class based on a principal components analysis of the multigene signature. While
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this multigene signature for TP53 does not appear to contribute strongly to distinguishing

etiologically heterogeneous subtypes when considered alone in these data, it is possible that

it could be important when considered together with other genes, and future work should

determine how best to incorporate this type of information that is on a different scale (i.e.

binary versus continuous) into the novel clustering strategy.

Risk factors that contributed the most to distinguishing the optimal 4-class solution

included age at diagnosis, postmenopausal BMI, ever use of oral contraceptives, and race.

In a pooled analysis across multiple cohort studies, Gaudet et al. (2018) found that parity,

age at first live birth, years between menarche and first birth among parous women, age at

menopause, and first degree family history of breast cancer were risk factors that demon-

strated etiologic heterogeneity according to the traditional IHC 4-class subtypes. Race was

not included in their analysis. Interestingly, none of these risk factors are the ones that

demonstrated etiologic heterogeneity according to the optimal 4-class solution in this anal-

ysis. This could be an artifact of the somewhat artificial risk factor distributions in the

CBCS study population, induced as a result of the study design that oversampled black

women and young women. Alternatively, the differences could be caused by shifting risk

factor distributions over time, especially with respect to hormonal risk factors, and changes

in the way immunohistochemical markers have been categorized as positive or negative.

There are some remaining methodologic challenges. The first challenge is how to deter-

mine the number of tumor markers to include in the clustering analysis. In this application

the top 10% were selected based on their individual measures of etiologic heterogeneity, and

thus 40 genes were clustered. However, sensitivity analyses indicated that solutions based

on even fewer genes led to higher measures of explained variation, as well as better alignment

between optimal class solutions identified in two independent datasets. This suggests that
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the ideal solution in these data may be based on only 8 or 6 genes, rather than the 40 used

in the primary analysis. A more objective approach to determining a cutoff for inclusion is

needed to determine the appropriate level of upfront variable selection. A second challenge

is how to select the ideal number of subtypes. In any unsupervised clustering analysis, the

number of classes must be pre-specified, though the true number of underlying classes of

interest is unknown. In this data example 2-class, 3-class, 4-class, and 5-class solutions

were compared. Solutions with more than five classes were not considered to avoid model

overfitting given the number of available cases. However the approach used to select the

4-class solution as ideal, based on the alignment between solutions from two independent

datasets as well as permutation tests for significant differences in the amount of explained

variation, was somewhat arbitrary. Additionally, the 4-class solution was selected in part

based on the knowledge that there are existing 4-class breast cancer subtyping schemes, and

so using four classes would make comparisons with these other classification systems easier.

More rigorous and objective methods to select the ideal number of classes in an analysis of

etiologic heterogeneity are needed, and this will be an area of future work.

Overall, this data application demonstrates that when the proposed novel clustering

strategy is used, which combines a search for candidate subtypes with a measure of etiologic

heterogeneity based on the available risk factor data, subtype solutions with higher levels of

etiologic heterogeneity can be discovered. This is important for epidemiologists who seek to

identify solutions that maximize risk heterogeneity across subtypes. While components of

this analysis are still subjective, this is in line with the real challenges faced when conducting

complex real-world epidemiologic studies, and is therefore not a major limitation.
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4.5 Gene expression panel

ABAT F7 OCLN ADM KRT14

ABCB1 FAM54A PCSK6 AMH KRT17

ABCC8 FAM63A PD L1 AMHR2 KRT19

ACADSB FAM64A PDCD1 ANGPTL4 KRT5

ACTG1P3 FANCA PDSS1 ANLN KRT8

ADCY1 FBXL6 PDZK1 APH1B LEPRE1

AKR7L FCRL2 PFKP ATAD2 LHFP

ALDH1A1 FLJ20152 PGAM5 AURKA LOC400043

APBB2 FMNL2 PGE3 AXL MAD2L1

AQP5 FMO5 PINK1 BAG1 MAP2K4

AR FN1 PKIB BCL2 MAPT

AURKB FOXC2 PLK1 BIRC5 MCM3

BLK FOXP3 PPBP BLVRA MDM2

BLR1 CXCR5 FPRL1 PRF1 BRCA1 MELK

BMP2 FSCN1 PRRG2 BTG2 MET

BOP1 FUT8 PRRT2 CAV1 MIA

BTG3 GALT PTDSS1 MIS18A C21ORF45 CCNA2

BUB1 GCNT2 PTGER3 CCNB1 MKI67

C10ORF116 GFRA1 PTGS2 CCND1 MLPH

C11ORF75 GPR44 PTPRT CCNE1 MMP11

C14ORF45 GTSE1 PUF60 CD24 MPP1

C16ORF45 GUCA1 PVRL2 CDC20 MSH3

C1QTNF3 GZMM RAD54L CDC25B MUC1

C1ORF106 HGH1 RAI2 CDC25C MYBL2

C2ORF27A HJURP RBM24 CDC6 MYC

C4A HLA DOB REEP6 CDCA7L NAT1

C4ORF31 HPN REPS2 CDH3 NCAPH2

C8ORF33 HRC RIMS4 CDK1 NDC80

C9ORF98 ICOS RNASE4 CDKN1A NDRG1

CACNB3 IDO1 RPS6KB2 CDKN3 NEO1

CALCP IFRD1 RSPH1 CENPF NPEPPS

CAPN13 IGF2BP2 S100A8 CEP55 NT5E

CAPN9 IGF2BP3 SCGB1D2 CKS1B NUDT1

CASKIN1 IL12 SCUBE2 CLDN3 NUF2

CCDC103 IL1B SDCBP CLDN4 ORC6L

CCL7 IL2RB SEC14L2 CLDN7 PGR

CCNB2 IL5RA SEMA3B CRMP1 PHGDH

CCR3 IL6 SERPINB5 MASPIN CRYAB PIK3CA

CD10 IL6ST SH2D1A CRYBB2 PLOD1

CD19 IL8RA SHCBP1 CXXC5 PNP
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CD2 IL8RB SHROOM3 DAPK1 POLD1

CD246 CD3Z INPP4B SIRPG DDB2 PREP

CD28 IRS1 SKAP1 DDIT4 PSPH

CD3E ISLR2 SLC1A2 DDR1 PSPHL

CD3G ITGB5 SLC52A2 DSP PTEN

CD4 KCNMA1 SLC7A5 EGFR PTTG1

CD6 KCNN4 SNAI1 EMP3 PVRL3

CD68 KDM4B SNAI2 EPCAM RAB25

CD84 KIAA0125 SNRPD1 ERBB2 RAD17

CD8A KIF3A SOX10 ERBB3 RAD50

CD96 KLHDC9 STC2 ERBB4 RB1

CDC45 KLHL7 SULT1E1 ESR1 RFC4

CDCA5 LAG 3 SULT2A1 ESRP1 RNF103

CDCA7 LCK SYBU EVI2A RRAGD

CDCA8 LILRB2 SYT1 EXO1 RRM2

CDH1 LOX TBC1D9 F11R SFRP1

CELSR1 LRG1 TFF3 FABP5 SH2B3

CENPA LRP8 TIM 3 FAM177A1 SLC16A3

CENPN LRRC50 TMSB15B FAM198B SLC39A6

CMC2 MAF TNFRSF17 FAM214A KIAA1370 SPINT1

CMYA5 MAGED2 TPX2 FBN1 SPINT2

CTSL2 MAGI2 TRAF1 FGFR4 SQLE

CXCL13 MARVELD2 TRAT1 FLVCR2 STK38

CXCL5 MCM10 TRPC1 FNBP1 TCEAL1

CXCR4 MMP1 TRPM7 FOXA1 TMEM158

CYBB MMP2 TWIEST2 FOXC1 TMEM45B

CYP19A1 MMP3 TWIST1 FOXM1 TNIK

CYP27A1 MND1 UGT1A10 GAL TOP2A

CYP2D6 MRPS17 UGT1A4 GATA3 TRIP13

CYP3A4 MS4A1 UGT1A8 GGH TUBA4A

CYP3A5 MSR1 UGT2B7 GNG11 TYMS

CYP4B1 MYB VAV3 GPR160 UBE2C

CYP7B1 NCAPG WDR12 GRB7 UBE2T

DEPDC1 NCR1 NKP46 WDR19 GRHL2 UCHL1

DLGAP5 NCS1 XBP1 GSTP1 ULK1

DNM2 NFKB1 XCL1 GSTT2 VEGFA

DOCK3 NLN ZAP70 JUP VIM

DTX3 NME5 ZEB2 KIAA0040 ZEB1

ECE2 NR1H3 ZG16B KIF23

EFHD1 NTN4 ACOX2 KIF2C

ELOVL2 NXNL2 ACTR3B KIFC1

EZH2 NXPH4 ADHFE1 KIT
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Chapter 5

Conclusion

This dissertation investigated statistical methods related to the study of etiologic hetero-

geneity. Disease subtyping is increasing in importance, especially in cancer research, due

to the rising use of molecular and genomic profiling as part of standard patient care. As a

result, statistical methods are needed to identify risk factors that have a differential effect

across subtypes of disease, when subtypes may be formed from high dimensional disease

characteristic data.

After reviewing existing methods for the study of etiologic heterogeneity, regression-

based methods that rely on pre-specified subtypes of disease were compared, including

polytomous logistic regression, the two-stage meta-regression method of Wang et al. (2015),

the two-stage regression with simultaneous estimation method of Chatterjee (2004), and the

stratified logistic regression method of Rosner et al. (2013). The primary challenge to this

was unifying the notation of the various methods so that the similarities and differences

could be examined. After doing so it became clear that the methods can all estimate similar

parameters {βpm} to address the question of whether a risk factor of interest has the same

effect across all subtypes of disease, and similar parameters {γpk} to address the question



CHAPTER 5. CONCLUSION 112

of whether risk factor effects differ across levels of each individual disease characteristic

by which the subtypes are defined. A simplified data example showed that the methods

result in similar parameter estimates and conclusions, and simulation studies found that

while the stratified logistic regression method of Rosner et al. (2013) results in substantial

bias in parameter estimation for addressing whether risk factor effects differ across levels of

the disease subtype, all methods have similar power to address both questions of interest.

These results indicate that polytomous logistic regression, which is easy to implement with

standard software, performs at least as well as more complex methods and therefore is an

acceptable approach to the study of etiologic heterogeneity when data arise from a case-

control study. These results can serve to guide epidemiologists and other researchers seeking

to study etiologic heterogeneity in selection of an appropriate statistical method.

Next, the statistical properties of a novel clustering method were examined. Optimal D

clustering seeks to identify, from high dimensional disease characteristic data, the subtypes

that maximize etiologic heterogeneity. The method is conducted in two stages. In the first

stage, the disease characteristic data are clustered using unsupervised k-means clustering

with many random starts so that a variety of candidate sets of subtype solutions are found.

Then for each candidate solution, a scalar measure of etiologic heterogeneity, denoted D,

is calculated based on risk predictions from a polytomous logistic regression model with

the candidate class solution as the outcome and the known risk factors as predictors. The

subtype solution that maximizes D is selected as the optimal class solution. This approach

had been used previously in several applications, including to breast cancer (Begg et al.,

2015), melanoma (Mauguen et al., 2017), and kidney cancer (Begg et al., 2014), but this

was the first time the statistical properties had been evaluated in detail. Simplified simu-

lation studies found that the method cannot identify the truly etiologically heterogeneous
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subtype solution when the strength of counterfeit structure surpasses the strength of the

truly etiologically heterogeneous structure, or when the number of disease characteristics

representing noise is very large. However, this can be overcome with up-front reduction of

the set of disease characteristics included in the clustering, selecting the subset of charac-

teristics that show strong heterogeneity signals individually, after which the etiologically

distinct subtypes can successfully be identified with high probability.

Finally, the optimal D clustering approach was applied to data from the Carolina Breast

Cancer study. The available gene expression data was reduced up-front based on individual

gene D values, and only the top 10% of genes according to their individual contributions to

risk heterogeneity were included in the clustering, after an adjustment for correlation among

genes was applied. A 4-class solution was identified, which contained disease subtypes that

are significantly different with respect to the effects of age at diagnosis, postmenopausal

BMI, ever use of oral contraceptives, and race. PSPHL, a gene with known race asso-

ciations (Parada et al., 2017), was the gene that was most significant in distinguishing

these subtypes under a variety of approaches to gene ranking. ERBB2, the gene that en-

codes HER2, was the second ranked gene in the discovery stage of the analysis. HER2 is

known to play a role in subtyping breast cancer. The optimal 4-class solution identified in

this application demonstrated a much larger degree of etiologic heterogeneity, as quantified

by D, as compared to that seen in the traditional IHC 4-class solution or the traditional

PAM50 4-class solution. This result indicates that optimal D clustering can identify more

heterogeneous class solutions than existing breast cancer subtypes.

While this work has contributed to understanding the appropriate uses of available

statistical methods for the study of etiologic heterogeneity, there are some needed areas

of future work. The first relates to the extent of up-front disease characteristic selection.
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In the simulation studies disease characteristics were included based on a cut-off value for

permutation-based p-values, and in the data application genes were included based on a

fixed percentage of top-ranked genes. However, sensitivity analysis in the data application

revealed that solutions demonstrating even greater levels of etiologic heterogeneity could be

found after more stringent reduction of the gene set. An objective approach to selection of

disease characteristics for inclusion in the clustering stage of the analysis is needed. The

second area of future work relates to identification of the ideal number of classes. In any

unsupervised clustering analysis, the number of classes must be pre-specified. However,

the true number of etiologically distinct subtypes is not known in real-world applications.

Statistical methods exist to identify the ideal number of classes in traditional clustering

analyses, but they are not tailored to this application. An approach that considers both the

distance between clusters as well as information from the risk factors is needed. Finally, an

R package, referenced throughout this dissertation, is in development to make calculation

of D and heterogeneity p-values broadly accessible, and will be freely available for public

use.
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