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ABSTRACT 

Behavioral and neural selectivity for acoustic signatures of vocalizations 

Lam Tsz Nina So 

 

Vocal communication relies on the ability of listeners to identify, process, and respond to 

vocal sounds produced by others in complex environments. In order to accurately recognize these 

signals, animals’ auditory systems must robustly represent acoustic features that distinguish vocal 

sounds from other environmental sounds. In this dissertation, I describe experiments combining 

acoustic, behavioral, and neurophysiological approaches to identify behaviorally relevant 

vocalization features and understand how they are represented in the brain. First, I show that vocal 

responses to communication sounds in songbirds depend on the presence of specific spectral 

signatures of vocalizations. Second, I identify an anatomically localized neural population in the 

auditory cortex that shows selective responses for behaviorally relevant sounds. Third, I show that 

these neurons’ spectral selectivity is robust to acoustic context, indicating that they could function 

as spectral signature detectors in a variety of listening conditions. Last, I deconstruct neural 

selectivity for behaviorally relevant sounds and show that it is driven by a sensitivity to deep 

fluctuations in power along the sound frequency spectrum. Together, these results show that the 

processing of behaviorally relevant spectral features engages a specialized neural population in the 

auditory cortex, and elucidate an acoustic driver of vocalization selectivity. 
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Chapter 1  

INTRODUCTION 

1.1  ABSTRACT 

Vocal communication relies on the ability of listeners to detect, process, and respond 

appropriately to others’ vocal sounds. A thorough understanding of this process involves 

characterizing the acoustics of vocal sounds, understanding listeners’ responses to these sounds, 

and identifying neural mechanisms that support vocalization processing. This chapter provides an 

overview of current literature on the generation, perception, and neural processing of vocalization-

typical acoustic features, with a particular focus on acoustic structure in the frequency domain. 

Vocal acoustic signatures seen in animals across taxa result from shared vocal production 

mechanisms involving periodically oscillating sound sources. The perception of spectral features 

characterizing vocalizations has been most extensively studied in humans. Psychophysical and 

speech perception studies have revealed that spectral structure is important for pitch perception, 

sound segregation, and extraction of social information from voices. Studies in other animals 

suggest that sensitivity to vocalization-typical spectral features may be a shared attribute among 

vocal communicators.  

In the realm of auditory neuroscience, much progress has been made in identifying brain 

structures and neural populations that represent and process complex spectral features. These 

studies commonly utilize synthetic sounds, leaving open the question of whether the principles 

derived apply to the processing of natural vocalizations. Understanding how sensory processing 

supports social communication will require the combination of neural and behavioral approaches, 
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as well as the design and use of stimuli that capture and isolate behaviorally salient parameters of 

complex vocalizations. 

1.2  ACOUSTIC HALLMARKS OF VOCALIZATIONS 

1.2.1 Acoustic signals function in social communication 

Vocalizations are used for communication by animals ranging from mammals (Ehret & 

Riecke, 2002; Eliades & Miller, 2016) to birds (Brainard & Doupe, 2013) and frogs (Kelley, 2004). 

These acoustic signals serve critical social functions, including mate choice (Holveck & Riebel, 

2007), parental care (Ehret & Riecke, 2002), territory and resource defense (Hall, 2004), species 

recognition (Charrier & Sturdy, 2005), and individual recognition (Rendall et al., 1996; Vignal et 

al., 2008). For human beings, perceiving others’ vocal sounds is also an important component of 

social interaction. The verbal content of speech allows us to recognize others’ intentions, thoughts, 

and ideas. The vocal quality of speech, outside of verbal comprehension, can convey emotional 

states (Thompson & Balkwill, 2006).  

1.2.2 Common vocal production mechanisms result in shared vocal acoustics across 

species 

While remarkable diversity in vocal sounds is found across taxa, shared vocalization 

production mechanisms result in common acoustic signatures. Vocal sounds of tetrapods originate 

from vocal fold oscillations resulting in the production of harmonic sounds. Harmonic sounds 

contain energy at integer multiples of a fundamental frequency (F0), leading to the appearance of 

evenly spaced frequency components along the linear spectral axis. For example, a harmonic sound 

with F0 of 500 Hz can contain energy at 500 Hz, 1000 Hz, and 1500 Hz as the three lowest 

frequency components. A natural consequence of harmonicity is a non-uniform distribution of 
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energy across frequencies; distinct peaks and valleys can be observed in the spectra of harmonic 

sounds. Deep modulations in the spectral profile distinguishes harmonic sounds from flat spectra 

sounds such as white noise. Harmonic and spectrally modulated sounds are found in the vocal 

repertoires of many birds and mammals; examples include songbirds (Elie & Theunissen, 2016), 

chickens (Marler, 2004), pigeons (Alonso et al., 2016), rodents (Ehret & Riecke, 2002; Fernández-

vargas & Johnston, 2015), cats (Shipley et al., 2005), elephants (Soltis, 2010), humpback whales 

(Cazau et al., 2016), and non-human primates (Eliades & Miller, 2016; Kikuchi et al., 2014). 

Below I provide an overview of vocal production in mammals and birds.  

Most current knowledge on mammalian vocal production has stemmed from studies of the 

physics of human vocal production. The mammalian vocal organ is the larynx, which is positioned 

at the top of the trachea. The larynx contains a pair of vocal folds composed of mucous membranes. 

The harmonic structure and F0 of human vocal sounds rely on two types of vocal-fold movement. 

First, the alternation between abduction (the separation of vocal folds) and adduction (bringing 

vocal folds together at the midline) controls whether airflow causes the vocal folds to vibrate. 

Abduction allows the production of unvoiced (aperiodic) sounds which lack harmonic structure. 

Adduction brings vocal folds into the air stream, thus allowing them to vibrate in the presence of 

airflow and resulting in the production of voiced (periodic) sounds containing harmonic structure. 

Second, during adduction, the stretching and relaxing of vocal folds lead to higher or lower 

periodicities of vibrations. The periodicity of vibration controls the F0 of the resulting vocal sound. 

(Belyk & Brown, 2017). 

The syrinx, the avian vocal organ located at the base of the trachea where it branches into the 

bronchi, is functionally analogous to the mammalian larynx and supports a similar vocal 

production mechanism. The syrinx contains two pairs of labia (a medial and a lateral labium), 
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which function similarly to the vocal folds in humans. During sound production, these labia are 

set into vibration by passing air. The F0 of labial vibrations determine the F0 of sound, and the 

range of F0s are limited by the material properties of the labia. Changes in labial configuration, 

analogous to abduction and adduction observed in human vocal production, are assumed to occur 

in models of bird vocal production, though they have not been empirically demonstrated. The 

activity of syringeal muscles are thought to control the rate of labial vibration and thus impact the 

F0 of vocal sounds generated (Elemans, 2014; Riede & Goller, 2010).  

The harmonic sounds generated by both mammalian and avian sound sources are subject to 

subsequent filtering to emphasize or de-emphasize certain frequencies. During human speech 

production, the position of the tongue, lips, and jaw can serve to suppress certain frequency 

components composing the harmonic sound. In birds, filtering can occur by controlling the vocal 

tract length, beak gape, and regulating the volume of the oropharyngeal-esophageal cavity 

(Elemans, 2014). 

1.2.3 Different modes of vocal fold coupling generate diverse vocal acoustics 

While vocal sounds are typically harmonic, resulting from periodic vocal-fold vibrations, in 

some instances, humans and other animals also produce noisy sounds. Noisy sounds are 

characterized by broadband spectra with energy at many different frequencies, and are sometimes 

described as rough and harsh-sounding. This acoustic structure is observed in human infant cries 

and in the vocalizations of adults with voice disorders, as well as in the vocalization repertoires of 

nonhuman animals such as rhesus macaques, piglets, and domestic dogs (Fitch et al., 2002; Owren, 

2002). Noisy vocalizations are thought to result from intrinsic properties of the vocal production 

system, which is capable of creating highly complex and variable acoustic output from relatively 

simple neural commands. 
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The vocal folds can couple their oscillations in various ways to result in diverse acoustic 

outputs. Three modes of coupling are reviewed here. First, in the “standard” state, the vocal folds 

synchronize their vibrations at the same frequency, leading to periodic oscillations that result in 

the production of harmonic sounds. Second, in the “subharmonic” state, the two vocal folds can 

be synchronized but have different vibratory frequencies. This could result in the appearance of 

additional frequency components termed “subharmonics” in the resulting sound signal. Third, in 

the “chaotic” state, desynchronized coupled oscillators can result in aperiodic vibrations. This 

results in noisy vocal sounds that have wide regions of broadband energy, though they generally 

do not have equal energy at all frequencies as does white noise (Fitch et al., 2002).  

It has been shown that vocal folds can rapidly transition between different oscillatory states, 

such as from the “standard” state to the “chaotic” state. Zebra finches (Taeniopygia guttata), for 

example, can produce continuous sound elements with harmonic segments that are directly 

followed by noisy segments without any period of silence in between. In an in vitro preparation of 

the syrinx, continuous variation in simple control parameters caused sudden jumps in acoustic 

output, such that vocal signals could transition rapidly from harmonic to noisy. Hence, fast intra-

syllable transitions between harmonic and noisy sounds can be at least partially attributed to 

intrinsic dynamics of the syrinx (Fee et al., 1998).  

1.3  PERCEPTUAL AND BEHAVIORAL IMPORTANCE OF VOCALIZATION-

TYPICAL SPECTRAL FEATURES IN HUMANS 

Vocalizations are a behaviorally important category of sounds, containing social information 

beneficial for animals’ survival and reproduction. Hence, it is important to understand how the 

acoustic features characterizing vocalizations are perceived by listeners. The previous section 

reviewed vocal production mechanisms, establishing that oscillation of vocal folds results in sound 
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spectra characterized by 1) harmonicity: frequency components that are integer multiples of an F0, 

and 2) spectral modulations: a spectral profile with regular variations in energy across frequencies. 

Note that harmonic sounds are by default spectrally modulated, but spectrally modulated sounds 

are not necessarily harmonic, since their energy could be concentrated at frequencies that are not 

harmonically related. Nonetheless, in vocalizations and other natural sounds generated by periodic 

vibrations, harmonicity and spectral modulation tend to co-occur. Here, we review the current 

literature surrounding how humans (Section 1.3) and other animals (Section 1.4) perceive 

harmonic and spectrally modulated sounds, two typical features of natural vocalizations.  

1.3.1 Perception of pitch in harmonic sounds 

An exploration of harmonic sound perception would not be complete without discussing 

pitch perception. In human listeners, harmonic sounds are perceived as a single fused sound with 

pitch corresponding to the F0, instead of a combination of many different frequencies (Bendor & 

Wang, 2005). Importantly, the lowest-frequency component (corresponding to F0) need not be 

present to evoke the perception of a pitch corresponding to F0. This perceptual phenomenon, 

termed the “pitch of the missing fundamental”,  suggests that the perception of F0 from a harmonic 

sound is not merely due to the detection of the lowest-frequency component (Plack & Oxenham, 

2005). In the spectral domain, F0 is equal to the highest common denominator of the frequencies 

composing the spectrum. In the temporal domain, F0 is equal to the inverse of the period of 

repetition of the sound waveform. Spectral and temporal mechanisms have been proposed for how 

the auditory system extracts F0.  

According to the spectral theory of F0 extraction, an incoming sound is matched to 

internal harmonic templates corresponding to a range of F0s, and the best match harmonic template 

determines the perceived F0 of the sound. This mechanism requires the presence of resolved 
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harmonics – adjacent frequency components that fall into separate auditory filters in the cochlea 

at the auditory periphery. Auditory filters generally become broader at higher frequencies; in 

humans only the lowest 5-10 frequency components in a harmonic sound are generally resolved 

(Plack & Oxenham, 2005; Song et al., 2016).  

According to the temporal theory of F0 extraction, unresolved harmonics – adjacent 

frequency components of a harmonic sound that fall within the same auditory filter in the cochlea 

– interact at the peripheral auditory system to generate a temporal envelop with periodicity equal 

to the F0 of the sound. The periodicity is detected by the auditory system to determine F0 (Song 

et al., 2016).  

Pitch strength, defined as the inverse of the smallest change in F0 that can be detected by 

human listeners, depends on the presence of resolved harmonics. A previous study showed that 

pitch strength decreased as spectral components were shifted from resolved to unresolved. 

However, even when all components were unresolved, a weaker pitch could still be perceived 

(Houtsma & Smurzynski, 1990). Therefore, both spectral and temporal extraction of F0 are 

thought to play a role in human pitch perception.  

1.3.2 Perception of spectral modulation depth in broadband sounds 

Spectral modulations, which refer to variations in energy along the frequency axis, are 

present in speech sounds and may provide cues for perception. Low-rate spectral modulations 

result from emphasized frequency ranges, known as formants, that are a consequence of filtering 

by the vocal tract. Higher-rate modulations result from harmonic structure, generated by vibration 

of the vocal cords. In this dissertation, we mainly focus on spectral modulations at higher rates that 

are introduced by harmonic structure. 
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The predominant way in which spectral modulation perception in humans has been 

assessed is by measuring the minimum spectral modulation depth (spectral peak-to-valley distance 

in dB) required for listeners to detect a spectrally modulated sound from a flat spectrum sound. 

Spectrally modulated sounds used in these experiments usually consist of a noise carrier modulated 

by a sinusoidal spectral envelop. The amplitude of the sinusoidal envelop specifies modulation 

depth, and the frequency specifies the modulation density. When spectral modulation depth 

detection thresholds were measured over a range of modulation densities, it was found that 

listeners’ modulation depth detection was the finest at modulation densities of 2 to 4 cycles per 

octave. At the optimum modulation densities, listeners could detect spectral modulations as low 

as 2.5 dB (Eddins & Bero, 2007). 

Spectral modulation detection may play a role in speech recognition. In a study that 

measured both spectral modulation detection and speech recognition in the same subjects, 

modulation detection thresholds at 2 cycles per octave was a significant predictor of speech 

recognition performance (Davies-venn et al., 2015). In addition, spectral modulation depth 

detection was improved through practice, but the benefit of practice was only apparent at specific 

modulation densities. The effect of practice on detection did not generalize across modulation 

densities nor across frequency ranges (Sabin et al., 2012). 

1.3.3 Effect of spectral degradation on speech perception  

 Many studies in human speech perception utilize spectral degradation to reduce the spectral 

information of speech sounds into a small number of frequency channels. This method is termed 

vocoding. Within each channel, signals can be reproduced with a variety of carriers, the most 

common ones being sine waves centered at each channel and noise bands matching the frequency 
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range of the channel. These methods are often aimed at mimicking hearing from cochlear implants, 

which provide impoverished spectral information delivered through a limited number of channels. 

Spectral degradation of harmonic sounds using a noise vocoder causes adjacent frequency 

components to “blend in” with one another when the number of channels is low. This concurrently 

diminishes the harmonic structures and deep spectral modulations characterizing natural 

vocalizations.  

 Speech recognition was found to be remarkably robust to spectral degradation. Reducing 

speech to only three spectral channels, consisting of temporally modulated noise bands, still 

permitted near-perfect identification of vowels, consonants, and words. This finding illustrates that 

speech can be understood in the absence of harmonic structure and spectral modulations (Shannon 

et al., 1995).  

 The perception of speaker characteristics, however, is more sensitive to spectral 

degradation. One study found that at least 16 spectral channels in a sine-wave vocoder were 

required for listeners to discriminate between female and male speakers (Fu et al., 2005). Another 

study found that the accuracy of speaker sex discrimination from noise-vocoded speech increased 

when the number of channels was increased from 4 to 10. Listeners’ ability to identify the speaker 

also increased with the number of channels. Speaker sex discrimination and speaker identification 

with sine-wave vocoded signals were shown to be less sensitive to number of channels than with 

noise-vocoded signals (Gonzalez & Oliver, 2005).  

In a related study, a modulation filtering technique was used to selectively degrade spectral 

modulations of particular densities in speech. Speech comprehension and voice sex discrimination 

were found to be affected by spectral degradation at different resolutions (Elliott & Theunissen, 

2009). In this study, sentences embedded in Gaussian white noise were presented, and listeners 
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were asked to type all the words that they could hear, and whether they perceived the speaker to 

be male or female. While speech comprehension was impaired when low density spectral 

modulations were removed (< 4 cycles/kHz), speaker sex discrimination was impaired by removal 

of higher modulation densities (3 - 7 cycles/kHz) (Elliott & Theunissen, 2009). 

 Taken together, the current literature suggests that different aspects of speech 

communication rely on different vocalization-typical spectral features. While harmonic structure 

and fine spectral modulations are not necessary for speech intelligibility, they contribute 

significantly to the extraction of speaker characteristics (sex and identity) from vocal quality.  

1.3.4 Importance of spectral features of speech in the cocktail party problem 

 In real-world listening, we often encounter sounds from different sources that overlap in 

frequency and time. One important task of listeners in complex auditory environments is to parse 

and track sounds coming from different sources, despite spectral and temporal overlap. This 

challenge is also referred to as the “cocktail party problem.”  

 Harmonicity is thought to be an important cue in grouping sounds from a common source. 

For example, perceptual grouping of harmonically related frequencies could aid in separating 

speech sounds from two speakers whose voices have different F0s. A recent study investigated 

how harmonicity contributes to sound source segregation (Popham et al., 2018). In this study, 

human listeners were presented with two concurrent words. The words were either harmonic or 

inharmonic, with frequencies components randomly shifted up or down. The intelligibility of 

concurrent words was lower for inharmonic speech compared to harmonic speech.  Inharmonic 

speech was also more difficult to identify and track over time. Listeners were presented with 

concurrent sentences uttered by different speakers, and asked to focus on one target speaker and 

report the last word spoken. The accuracy of word reporting was lower for inharmonic speech 
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compared to harmonic speech, and listeners were more likely to report a word from the non-target 

speaker when speech was inharmonic.  

 In addition to investigating the effects of inharmonicity on sound segregation, the authors 

of this study also studied noise-excited speech, where the discrete frequency components in speech 

were replaced by noise. In addition to removing harmonicity, this manipulation also removed the 

spectral modulations resulting from distinct frequency components composing speech. Noise 

excitation further reduced concurrent word intelligibility beyond the effect of inharmonicity 

(Popham et al., 2018). These results indicate that while concurrent voice segregation depends on 

harmonic frequency relationships, the presence of spectral modulations may play an additional 

role.  

1.4  PERCEPTUAL AND BEHAVIORAL IMPORTANCE OF VOCALIZATION-

TYPICAL SPECTRAL FEATURES IN NON-HUMAN ANIMALS 

1.4.1 Perception of pitch in harmonic sounds 

Some of the strongest parallels between pitch perception in humans and that of a nonhuman 

animal have been described in studies of the common marmoset (Callithrix jacchus). The 

marmoset is a New World primate that has emerged as a prominent model for studying auditory 

perception and coding. Robust vocal communication behavior in the laboratory setting and recent 

development of molecular and neurophysiological techniques allow for rich experimental 

opportunities (Eliades & Miller, 2016).  

A recent study has shown that marmosets perceive pitch from harmonic complex sounds 

in a similar way as do humans (Song et al., 2016). Marmosets, like humans (Section 1.2.1), rely 

more on resolved harmonics than unresolved harmonics to perceive pitch; the lower limit for F0 

difference detection was smaller for stimuli with resolved harmonics than for stimuli with 
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unresolved harmonics. When discriminating F0 of harmonic sounds with only resolved harmonics, 

marmosets are sensitive to the integer frequency ratios between frequency components. When 

frequency components were shifted up or down to render the sound inharmonic, the ability to 

discriminate F0 differences decreased. When discriminating F0 of harmonic sounds with only 

unresolved harmonics, marmosets were sensitive to the temporal structure of the waveform. When 

the phase of individual frequency components was varied such that the composite waveform of 

the sound is flattened, marmosets had greater difficulty in discriminating F0. Taken together, these 

studies show that marmosets likely utilize both spectral and temporal cues of harmonic sounds to 

extract F0.  

 Some species of non-human animals have been shown to perceive the pitch of the missing 

fundamental, similar to that described in humans. In these studies, animals were typically trained 

to perform certain behavioral tasks that required associating certain behaviors with either pure 

tones (where frequency equals F0), or “missing fundamental” harmonic sounds (MF harmonics; 

these sounds lack the lowest frequency component, but contain higher frequency components that 

are integer multiples of the F0). After training, animals are required to generalize behavioral 

associations either from pure tones to MF harmonics, or from MF harmonics to pure tones with 

the same F0. Since pure tones and MF harmonics do not have overlapping spectral components, 

generalization of behavior between the two types of stimuli are taken to indicate that animals 

extracted F0 from these sounds to perform the behavioral task. Studies of the missing fundamental 

percept in songbirds and cats are described below.  

In a study of missing fundamental percept in European starlings (Sturnus vulgaris), birds 

were trained to discriminate between two pure tones with different frequencies. When they were 

tested with two MF harmonics with F0 that matched the frequency of the training tones, the 
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discrimination persisted. Similar behavioral results were obtained when starlings were trained with 

MF harmonics and tested with pure tones (Cynx & Shapiro, 1986).  

 Cats were also shown to perceive the missing fundamental in a study where they were 

trained to either lick or not lick a drinking spout based on the frequencies of a pair of pure tones, 

where the second one was either lower or higher in frequency than the first one. Cats were tested 

with MF harmonics, in which the direction of absolution frequency changes in its spectral 

components were the opposite of the direction of F0 change. When tested with these stimuli, cats 

behaved according to the direction of F0 changes, indicating that cats perceived the F0 of these 

sounds instead of the frequency of individual components (Heffner & Whitfield, 1976).  

1.4.2 Perception of spectral modulation depth in broadband sounds 

Studies of spectral modulation depth detection in non-human animals are relatively scarce 

compared to those in humans. Here we describe two studies that have probed the detection of 

spectral modulation in avian species, budgerigars (Melopsittacus undulatus) and zebra finches.  

 Spectral modulation detection was tested in budgerigars using broadband rippled sounds 

with sinusoidal spectral envelops. The minimum modulation depths allowing birds to detect 

rippled sounds from flat-spectrum noise were measured as a function of the spectral modulation 

density. At low spectral modulation densities (0 - 4 cycles per octave), birds’ discrimination 

thresholds ranged between 2 to 3 dB peak-to-valley modulation depth, whereas human thresholds 

obtained with the same procedure ranged from 3 to 4 dB. Though modulation depth sensitivity 

was similar between budgerigars and humans at low modulation densities, at higher modulation 

densities, budgerigars were more sensitive to modulation depth than human listeners (Amagai et 

al., 1999).  
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 A more recent study in both budgerigars and zebra finches also tested modulation depth 

discrimination with spectrally rippled sounds (Osmanski et al., 2009). Unlike the previous study 

described, which used rippled sounds whose spectral envelops were static over time, this study 

utilized rippled sounds with sinusoidal spectral envelops that moved up or down in frequency at a 

constant rate. Budgerigars, zebra finches, and humans showed similar modulation depth 

discrimination thresholds, and all three species’ discrimination ability worsened with increasing 

modulation density and increasing rate of frequency movement. Interestingly, both species of birds 

were more sensitive in discriminating rippled sounds that moved down in frequency than those 

that moved up in frequency. It was postulated that this directional preference was due to the greater 

prevalence of downward frequency modulations in these birds’ natural vocalizations.  

 While budgerigars and zebra finches show spectral modulation depth sensitivities greater 

than or comparable to humans, macaques (Macaca mullata) have found to show worse spectral 

modulation depth discrimination ability than humans: modulation depth detection thresholds were 

12-20 dB in macaques, compared to 3.5-7.4 dB in humans (O’Connor et al., 2000).  

1.4.3 Importance of spectral features in sound recognition and categorization 

 Human studies have extensively tested the effect of spectral degradation on communication 

tasks including speech recognition and speaker identification. In non-human animals, the effect of 

spectral degradation on communication-related behavior is less well understood. However, recent 

studies have investigated the effect of spectral degradation on animals’ ability to navigate the 

auditory world. Below we review two examples of recent studies that describe how songbirds 

utilize spectral cues to recognize sound sequences and classify sounds into distinct categories.  

 One recent study identified the spectral cues that starlings use to recognize sound sequences 

(Bregman et al., 2016). In this study, starlings were trained to recognize sequences of four 
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harmonic sounds that either increased or decreased in frequency. Each element in the sequence 

was a computer-generated sound corresponding to a different musical instrument, such that 

spectral shape, in addition to F0, differed between elements. Birds were trained to discriminate 

between sound sequences with ascending and descending F0, then tested with spectrally degraded 

sound sequences. When tested with vocoded versions of the training sequences, birds were still 

able to perform the discrimination. It was thus concluded that starlings relied on coarse spectral 

shape, which was preserved in vocoded versions of sound sequences, to perform sound sequence 

recognition. Hence, harmonic structure and associated spectral modulations, which were disrupted 

by the vocoding manipulation, were not required for starlings to recognize sound sequences. 

 Another study conducted in zebra finches examined the categorization of artificial vowel 

sounds by either F0 or spectral shape (Burgering et al., 2018). Birds were trained to classify six 

harmonic vowel sounds into two categories, either based on their F0, or based on their spectral 

shape, which depended on the relative amplitude of frequency components. Birds that were trained 

to categorize based on spectral shape were able to categorize novel vocoded sounds based on 

spectral shape and ignore the absence of harmonic structure. Birds that were trained to categorize 

vowel sounds based on F0 were able to generalize to novel harmonic sounds and ignore spectral 

shape. Taken together, this shows that zebra finches can categorize sounds using either F0 or 

spectral shape. When spectral shape was the relevant parameter, birds’ categorization was robust 

to spectral degradation. Hence, the dependency of sound categorization on spectral structure is 

flexible and dependent on behavioral context.  



16 

 

1.5  NEURAL PROCESSING OF VOCALIZATION-TYPICAL SPECTRAL 

FEATURES 

1.5.1 Enhanced representation of harmonic sounds in the auditory cortex 

 The observation that harmonic structure is abundant in natural vocalizations gives rise to 

the question of whether they are represented and processed by specialized neural populations in 

the auditory system. The strongest evidence to date for neural sensitivity to harmonic structures 

have been described in non-human primates. However, it is unknown whether the neurons 

representing harmonic structure play a role in vocalization processing and in animals’ perception 

of harmonic sounds.  

 Neurons that may represent harmonic templates have been identified in the marmoset 

primary auditory cortex (Feng & Wang, 2017). These neurons' responses were facilitated by 

combinations of harmonically related tones, and could not be predicted by responses to pure tones 

alone. Harmonic template neurons were sensitive to perturbations of equal spacing between 

spectral components of a harmonic; their responses decreased with increasing amounts of 

frequency perturbation. Harmonic template neurons were spatially mingled with other neurons in 

the primary auditory cortex, and their preferred frequencies spanned the entire hearing range of 

marmosets. It is possible that harmonic template neurons serve to recognize harmonic sound 

patterns in incoming sounds.  

 Beyond neurons that recognize harmonic templates, another population of neurons in the 

marmoset auditory cortex have been found to encode F0 of harmonic sounds (“pitch neurons”) 

(Bendor & Wang, 2005). These neurons provided the first demonstration of a neural correlate of 

the “pitch of the missing fundamental” phenomenon; they responded to pure tones with a particular 

frequency (corresponding to its F0), and also to MF harmonics with the same F0 but that do not 
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contain the lowest frequency component. In contrast to harmonic template neurons, pitch neurons 

were spatially clustered; they were located near the anterolateral border of the primary auditory 

cortex, in the low-frequency-tuned areas of the tonotopic map.  

 “Pitch-sensitive” neural structures have also been identified in the human auditory cortex 

using functional magnetic resonance imaging (fMRI). Several studies have converged on the idea 

that these neural populations reside at the border of primary auditory cortex, extending out to non-

primary auditory cortex (Lewis et al., 2009; Norman-Haignere et al., 2013; Norman-haignere et 

al., 2016; Penagos et al., 2004; Puschmann et al., 2010). However, the definitions of “pitch-

sensitive” regions in human studies have tended to be less restrictive than those used in 

neurophysiological studies in non-human primates. For example, in one recent study, pitch-

sensitive brain areas were defined as those that showed a greater response to synthetic harmonic 

stacks than to noise (Norman-Haignere et al., 2013). Hence, while pitch neurons in Bendor and 

Wang (2005) refer to neurons tuned to a specific F0, pitch-sensitive regions in this study refer to 

neural structures that respond to periodic sounds that have F0 (i.e. those that are known to evoke 

the perception of pitch). In this study, “pitch-sensitive” brain areas responded more to sounds with 

resolved harmonics (which is known to elicit a stronger pitch percept) than sounds with unresolved 

harmonics (which evoke weaker pitch). “Pitch-sensitive” responses were localized to a specific 

area within the auditory cortex, extending from the low-frequency-tuned regions of primary 

auditory cortex (anterolateral Heschl’s gyrus) anteriorly to non-tonotopic nonprimary auditory 

cortex (Norman-Haignere et al., 2013). The location of “pitch-sensitive” brain areas may 

correspond to the location of pitch neurons found in Bendor and Wang (2005), potentially 

indicating a conserved center for harmonic pitch processing in the primate brain.  
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Another study assessed human auditory cortex fMRI responses to a suite of natural and 

synthetic sounds that varied in harmonic-to-noise ratio (HNR), which quantifies the strength of 

periodic energy in a sound relative to aperiodic energy (Lewis et al., 2009). For example, animal 

screeches and howls have greater HNR than hisses, and human singing has greater HNR than 

whispered speech. HNR-sensitive brain areas, which respond more to synthetic and natural sounds 

with increasing HNR, were localized to portions of Heschl’s gyrus and medial superior temporal 

gyrus (mSTG). Because HNR-sensitive regions were situated in between primary auditory cortex 

and speech-selective areas, it was proposed that the detection of HNR could serve as an 

intermediate step to extract vocalizations in humans.  

1.5.2 Neural sensitivity to spectral modulations 

Previous studies in non-human mammals including ferrets and cats have characterized 

auditory cortex neurons by their responses to parameters of spectral modulation in broadband 

sounds. Here we focus on studies that examine spectral modulations in the absence of temporal 

modulations (Schreiner & Calhoun, 1994; Shamma et al., 1995). In these studies, stimuli were 

broadband sounds with spectral envelops that were sinusoidal along the logarithmic axis. Spectral 

modulation density is determined by the frequency of the envelop sinusoid, with higher envelop 

frequency resulting in more closely spaced spectral peaks. Spectral modulation depth is determined 

by the amplitude of the envelop sinusoid, with greater envelop amplitude resulting in greater 

contrast between spectral peaks and valleys. Spectral modulation phase is determined by the 

starting phase of the envelop phase, with a positive shift in phase moving all peaks and valleys to 

lower frequencies.  

In the ferret primary auditory cortex, the majority of neurons were found to be tuned to 

specific modulation densities, indicating that different neurons may specialize in detection of 
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spectral structure at different resolutions (Shamma et al., 1995). Neural responses were also 

sensitive to ripple phase, showing the highest responses at particular spectral peak placements. The 

modulation density response function (showing how neural responses varied with modulation 

density) generally increased in amplitude with increasing modulation depth, but their shape did 

not change with depth. Neurons in the cat primary auditory cortex were also similarly sensitive to 

modulation density, depth, and phase (Schreiner & Calhoun, 1994). They exhibited tuning to 

specific modulation densities, and preferred modulation phases where spectral peaks matched the 

preferred frequency. When modulation density and phase was held constant, responses increased 

with modulation depth and plateaued when a maximum depth is reached.  

1.6  THE SONGBIRD AS A MODEL FOR VOCAL COMMUNICATION 

 The study of auditory mechanisms mediating vocal communication necessitates the use of 

multidimensional approaches in an experimentally tractable system. A critical aspect of human 

vocal communication is the ability to learn to produce speech during early life. Few other animals, 

including cetaceans (Janik, 2014), bats (Prat et al., 2015), elephants (Joyce et al., 2005), and 

songbirds (Brainard & Doupe, 2013), are known to possess the ability to learn to produce complex 

vocalizations. Songbirds, in particular, have become a prominent system to study the neural 

mechanisms of vocal learning. Research in songbirds throughout the past decades have uncovered 

specialized motor and sensory brain regions underlying vocal production and perception (Brainard 

& Doupe, 2013). Anatomical and electrophysiological studies showing parallel organization 

between avian and mammalian auditory cortices provide further support for the informative value 

of songbirds as a model system (Calabrese & Woolley, 2015; Y. Wang et al., 2010).  

 The zebra finch is a songbird species commonly used to study the mechanisms of vocal 

communication. Male zebra finches learn to produce complex vocalizations termed song in early 
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life through a process of hearing, imitation, and practice. Song is typically learned during a closed 

critical window and crystallizes at adulthood. Learned song is used in courtship and is a critical 

cue for mate selection by females (Hauber et al., 2010; Zann, 1996). Besides song, both female 

and male zebra finches have a wide repertoire of vocalizations used in distinct behavioral contexts. 

Distinct vocalizations categories are used between mates during pair bonding and nest building, 

between birds to establish contact over short and long distances, and between adults during 

aggressive encounters or threatening situations (Elie & Theunissen, 2016). Zebra finches readily 

and consistently exhibit certain communicative behaviors in the laboratory, providing a solid 

platform to understand how experimental variables contribute to animals’ use of vocalizations in 

an ethologically relevant setting (Vicario et al., 2001; Vignal & Mathevon, 2011). 

 Much effort has also been dedicated to understanding how songbirds (not limited to zebra 

finches) perceive complex auditory stimuli. As described in earlier sections, starlings have been 

shown to perceive the pitch of the missing fundamental (Cynx & Shapiro, 1986), and to recognize 

complex sound sequences based on spectral shape (Bregman et al., 2016). Zebra finches can detect 

modulations in the spectral envelop with comparable sensitivity to human listeners (Osmanski et 

al., 2009), as well as detect very slight mis-tuning in harmonic frequency components with 

sensitivity beyond that of human listeners (Lohr & Dooling, 1998). Much remains to be learned 

about how songbirds engage complex auditory perceptual mechanisms in vocal communication 

and the neural mechanisms governing this process. 

1.7  CONCLUSIONS 

Vocalization processing is a critical component of acoustic communication. The vocal 

sounds of many animals are characterized by harmonicity and deep spectral modulations, 

suggesting that specialized neural mechanisms may be in place to extract these features. 
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Remarkable advances have been made in understanding how complex spectral features are 

perceived, and in identifying possible neural substrates of perception. However, many previous 

studies address perception and neural mechanisms in isolation, without considering the behavioral 

relevance of the stimuli used. The following two considerations are proposed for further studies of 

auditory processing in vocal communication.  

First, neurophysiological and neuroimaging studies of complex spectral processing have 

predominantly utilized synthetic sounds to probe neural function. The ability to easily control and 

manipulate stimulus parameters in synthetic sounds has proven useful in understanding the 

principles of auditory processing. Studying neural responses to vocalizations or vocalization-like 

sounds with known behavioral significance will allow a better understanding of auditory 

mechanisms active in vocal communication. In Chapters 2 and 3, I describe our use of acoustic 

stimuli that capture behaviorally relevant features of vocalizations. These stimuli are used to 

identify neural populations that could support vocal communication. Second, a common approach 

has been to contrast responses to harmonic sounds with responses to noise in order to identify brain 

regions sensitive to pitch and harmonic structure. As harmonic sounds contain deep spectral 

modulations, selectivity for harmonic sounds over noise could in fact be driven by spectral 

modulations instead of harmonicity. Dissociating harmonic structure and spectral modulations 

form the basis of studies described in Chapter 4.  
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Chapter 2  

ACOUSTIC, BEHAVIORAL, AND NEUROPHYSIOLOGICAL 

METHODS TO INVESTIGATE AUDITORY PROCESSING OF 

VOCALIZATIONS 

2.1  INTRODUCTION 

The quest to understand how the auditory system functions during social communication 

necessitates a combination of acoustic, behavioral, and neurophysiological approaches. The choice 

of acoustic stimuli – the sounds used to investigate neural and behavioral responses, is particularly 

important. Synthetic stimuli, such as pure tones (e.g. Kikuchi et al., 2014), two-tone combinations 

(e.g. Shamma et al., 1993), and band-passed noise (e.g. Rauschecker et al., 1995) offer the 

advantage of permitting easy control over stimulus parameters. On the other hand, natural or 

naturalistic stimuli, such as vocalizations, are more representative of the challenges that the 

auditory system encounters and must resolve in real-world situations, and are often more reliable 

at eliciting responses from auditory neurons, especially at higher levels of the auditory system such 

as the cortex (Theunissen & Elie, 2014).  

In addition to the acoustic structure and complexity of sound stimuli, it is also important to 

consider what sounds are behaviorally important to animals whose neural systems are being 

studied, before investigating the neural activity patterns elicited by these sounds. Using stimuli 

that engage natural communication behaviors lends support to the potential relevance of our 

studies in real-world listening situations. Three overarching considerations in experimental design 
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are described below, and details of methodologies are further discussed in the subsequent sections 

of this chapter. 

First, I designed synthetic acoustic stimuli that varied systematically in acoustic features 

of interest, using natural vocalizations as templates. Noise-vocoded calls, where spectral 

information in natural vocalizations was reduced into a limited number of channels, were 

generated and used in behavioral and neural experiments. Inharmonic calls, in which the harmonic 

relationships between frequency components are disrupted, were used in behavioral experiments. 

While both noise-vocoded calls and inharmonic calls were synthetic sounds, they elicited social 

responses from birds. This indicated that these stimuli sufficiently captured the behaviorally 

relevant qualities of natural vocalizations, making them appropriate for studying auditory 

processing in the context of social communication. Further, both types of stimulus design have 

been used in studies of perception in humans and other animals. Noise-vocoded vocalizations have 

been used to study speech perception in humans (Gonzalez & Oliver, 2005; Shannon et al., 1995), 

in a behavioral study in European starlings (Bregman et al., 2016),  and in a neurophysiological 

study in gerbils (Ter-mikaelian et al., 2018). Inharmonic versions of speech and music sounds have 

been generated and used recently for perceptual studies in humans (McDermott et al., 2012; 

McPherson & McDermott, 2018; Popham et al., 2018), paving the way for investigating the 

validity of long-standing theories about the role of harmonicity in sound segregation and pitch 

perception of natural sounds. Parallels between acoustic manipulations between our studies and 

previous studies allow us to relate our findings to studies in other species and in other behavioral 

contexts.  

Second, I implemented a behavioral paradigm that utilizes a natural behavior, namely, the 

tendency of birds to produce contact calls in response to other birds’ vocalizations (Vicario et al., 
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2001), in order to identify important acoustic features driving social responses. This behavioral 

paradigm does not involve operant conditioning and allowed me to determine what types of sounds 

are intrinsically behaviorally relevant (i.e. evoking significant responses), and what sounds are not. 

Then, when presenting the same set of sounds and analyzing the responses of auditory neurons, I 

was able to identify which neurons in the auditory system can effectively process the acoustic 

parameters that distinguish behaviorally relevant sounds from irrelevant ones.  

Third, I assessed auditory cortical responses to sound stimuli with a range of acoustic 

complexity. These stimuli included pure tones – sinusoids with a constant frequency; ripples – 

broadband stimuli whose frequency structure varied systematically; calls (natural and synthetic) –

communication signals with known behavioral importance, as assessed from behavioral 

experiments; and finally, songs – a combination of sound elements with diverse acoustics. 

Experiments with various stimulus sets, combined with a neurophysiological approach that 

allowed simultaneous recordings of single neuron responses from 32 sites in the auditory cortex, 

allowed me to derive fundamental principles that govern neurons’ responses across divergent 

stimuli. 

2.2  MANIPULATING SPECTRAL FEATURES OF VOCALIZATIONS 

2.2.1 Recording and selecting natural vocalizations  

For behavior and electrophysiology experiments, natural distance calls were used as 

stimuli. Distance calls were recorded from adult female zebra finches and band-pass filtered 

between 300 and 8000 Hz. For call recordings, females were housed in isolation in a sound-isolated 

chamber (Industrial Acoustics), with ample access to food and water. Their vocalizations were 

recorded through a microphone (Sennheiser MKE 2-60) connected to an audio interface (Focusrite 

Saffire Pro 40) using the recording function in Sound Analysis Pro software (Tchernichovski et 
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al., 2000). Sounds in the booth were continuously monitored and recording was automatically 

initiated when the sound amplitude exceeded a user-determined threshold. All audio recordings 

were subsequently manually sorted to extract distance calls and to separate them from other 

vocalizations and non-vocalizations sounds resulting from the birds’ movement. Nine natural calls 

from nine different females were included as stimuli in behavioral and neurophysiological 

experiments and were used as templates to create synthetic calls.  

I chose to use female distance calls as acoustic stimuli for all experiments because of their 

known behavioral function, as well as well-defined and relatively simple acoustic features. 

Distance calls are classified as long-range contact calls that are used for communication over long 

distances. They are commonly produced when birds are out of visual range with the colony, their 

mate, or the offspring that they care for (Elie & Theunissen, 2016). Distance calls contain 

individual signatures, and zebra finches can recognize their mates using these calls (Vignal et al., 

2008).  

Compared to other vocalizations in the zebra finch repertoire, distance calls have the 

strongest harmonic structure. In addition, they tend to be louder and longer in duration than the 

other class of contact calls (also known as tet calls), which are used for short-range communication 

(Elie & Theunissen, 2016). Distance calls are sexually dimorphic, with female calls having lower 

fundamental frequencies, less frequency modulation, and longer duration than male calls. Female 

calls have been shown to elicit greater vocal responses than male calls from both female and male 

zebra finches (Vicario et al., 2001). Females calls were thus considered ideal stimuli for behavioral 

experiments, as they provide a higher ceiling to test for the effect of acoustic manipulations on 

behavioral responses. Acoustic manipulations will be described in the following sections.  
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To confirm that the 9 distance calls that we chose (stimulus calls) were generally 

representative of female distance calls, we analyzed the acoustic features of the chosen calls 

against a pool of other distance calls from 17 females (reference calls). Nine of these reference 

calls were collected from females in our lab’s colony at Columbia University, while the other 8 

were collected from females from other universities’ colonies and provided by E.C. Perez. 

Stimulus calls did not differ from reference calls in all the acoustic features analyzed, including 

duration, aperiodicity, fundamental frequency, goodness of pitch, entropy, mean frequency, and 

frequency modulation (two-sample t-tests, all p > 0.05). 

For electrophysiology experiments, we additionally included five songs recorded from 

male zebra finches in our colony. Songs are produced by male birds as a courtship signal, and 

young males learn to sing from adult tutors in early life (Zann, 1996). Song is composed of acoustic 

elements termed syllables, separated by inter-syllable periods of silence and arranged sequentially 

into motifs. Song stimuli in my experiments were 1.7 to 2.4 seconds in length and chosen to include 

a range of syllable acoustics. Song were presented as stimuli to a subset of recorded units (1008 

single units out of 1825; 4 out of 6 birds). Song syllables are generally broadband, ranging from 

harmonically structured to noisy (Fee et al., 1998). This provided an opportunity to test how 

neurons’ responses are modulated by natural variations of spectral structure across syllables (and 

in some cases within syllables). A previous study in our lab has shown that local acoustic context 

(i.e. the acoustic elements preceding the sound of interest) can affect how individual sound 

elements are processed (Schneider & Woolley, 2013). By relating call responses to song responses, 

we could also assess whether neurons’ spectral processing properties are specific to certain 

acoustic contexts. 
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2.2.2 Generation of noise-vocoded calls 

Noise-vocoded calls were generated from the 9 female natural calls using a vocoder 

implemented in MATLAB (Gaudrain, 2016). For behavioral experiments, the frequency axis of 

natural calls was divided into 16, 20, 27, 40, 80 linearly-spaced bands. These channel numbers 

resulted in channel widths that decreased approximately linearly; channel widths were 481 Hz, 

385 Hz, 285 Hz, 183 Hz, and 96 Hz respectively (Figure 2.1A). Stimuli for electrophysiology 

experiments included the same vocoded calls as in behavioral experiments, with the addition of 

120-channel stimuli (channel width = 64 Hz).  

The noise-vocoding procedure included an analysis step and a synthesis step. In the 

analysis step, the natural distance call was divided into a certain number of channels, and the lower 

and upper frequency edges of each channel was determined. Within each channel, the frequency-

limited distance call was obtained by bandpass-filtering with 12th order Butterworth filters between 

the lower and upper frequency edges of the channel. Then, the amplitude envelop of the filtered 

distance call was extracted by half-wave rectification and smoothed by low-pass filtering at 150 

Hz with 4th order Butterworth filters. This filtering, envelop extraction, and smoothing process was 

repeated for each channel and the resulting amplitude envelops were stored for use in the 

subsequent synthesis step.  

In the synthesis step, bandpass-filtered noise signals were created for each channel using 

lower and upper frequency edges matching those used in the analysis step. Within each channel, 

bandpass noise was modulated by the amplitude envelopes extracted from natural signals in the 

analysis step. Finally, all the amplitude-modulated noise bands across all frequency ranges were 

combined to form a noise-vocoded call (Fig 2.1B).  
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This analysis and synthesis procedure resulted in noise-vocoded calls that show conserved  

coarse spectral structure and time-varying amplitude envelops. The power differences across 

channels are maintained during the synthesis of vocoded calls from natural calls, resulting in 

spectral shapes that overlapped between vocoded calls with different numbers of channels (Figure 

2.1C). The amplitude envelop of vocoded calls were highly correlated to that of natural calls, 

indicating that vocoded calls retain the natural temporal structure of distance calls (Figure 2.1E). 

The main feature that is altered by changing the number of channels is the fine spectral structure 

that arises from distinct harmonic components found in the natural calls. At low channel numbers 

(16-27 channels), adjacent frequency components of the natural call fall within the same channel, 

causing a spectral blurring effect. At higher channel numbers (40-80 channels), adjacent frequency 

components are resolved by separate channels and result in the emergence of vocalization-typical 

spectral structure (Figure 2.1C-D).  

 

  



29 

 

 

Figure 2.1 Generation of noise-vocoded calls with differing spectral resolution. 

(A) Example spectrograms showing frequency content of vocoded calls and natural call against 

time. Spectrograms show how spectral structure varies with change in channel number. Red bar 

indicates the width of one spectral channel. (B) Schematic showing how a vocoded call is 

generated from a natural call. The example depicts generation of a 4-channel vocoded call. The 
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same process is used to generate vocoded calls with any number of channels. The natural call 

(left spectrogram) was decomposed into four spectral bands, and the amplitude envelop of each 

was extracted. Bandpass filtered noise carriers were modulated by the extracted amplitude 

envelops and recombined to form a vocoded call (right). Red bar indicates the width of one 

spectral channel. (C) Frequency power spectrums (FPSs) of vocoded calls with varying channel 

numbers. FPSs of vocoded calls with different channel numbers were overlaid and shown in the 

rightmost graph. While fine spectral structure changed with increases in channel number, coarse 

spectral shape was maintained. (D, E) Correlation coefficient between (D) FPSs and (E) 

amplitude envelops of vocoded calls and those of their natural call counterparts (mean ± SEM, 

N=9). The spectral similarity of vocoded calls with natural calls increased with channel number. 

Amplitude envelops of vocoded calls were highly correlated with those of natural calls 

regardless of channel number; correlation decreased only slightly with increases in channel 

number. 
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2.2.3 Generation of inharmonic calls 

Inharmonic calls were generated in collaboration with M.J. McPherson (Harvard-MIT 

Program in Speech and Hearing Bioscience) from the same 9 stimulus calls as above, using the 

modified STRAIGHT framework for speech analysis and synthesis (McDermott et al., 2012; 

McPherson & McDermott, 2018; Popham et al., 2018). Under the modified STRAIGHT 

framework, the input signal (a distance call) was decomposed into three time-varying components: 

spectral envelope, periodic excitation (voiced component), and aperiodic excitation (unvoiced 

component). The periodic excitation was modelled as a sum of sinusoids, and each sinusoid was 

then individually modified in frequency. These sinusoidal components were then recombined with 

the original aperiodic component and time-varying spectral envelop to produce an inharmonic call.  

We included synthesized inharmonic calls with varying degrees of inharmonicity, defined 

by maximum frequency shifts of frequency components. Frequencies of individual components in 

a distance call were shifted up or down by a random amount (i.e. jittered), and the amount of jitter 

was constrained within 10%, 30%, or 50% of the F0. For each distance call and maximum jitter 

amount, we included three variants with different random jitter patters. There was an additional 

constraint of 30 Hz imposed on the minimum spacing between adjacent frequency components. 

We also included synthesized harmonic calls, which were generated in the same manner as 

inharmonic calls, except that frequency shifts were not introduced in the sinusoidal components 

before synthesis. Synthesized harmonic calls were included to control for any artifacts that may be 

introduced by the synthesis procedure, which could cause differences between behavioral 

responses to inharmonic calls and to natural calls, thus confounding our results.  
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2.3  NON-VOCALIZATION STIMULI FOR AUDITORY NEUROPHYSIOLOGY 

EXPERIMENTS 

2.3.1 Pure tones 

In order to characterize the basic frequency response properties of individual neurons, we 

presented pure tone stimuli in electrophysiology experiments. Pure tone stimuli are sinusoidal 

signals with a single frequency that does not vary over time. Tones in our stimulus set were 200 

ms in duration, including 10 ms linear onset and offset ramps. Pure tone stimuli were generated 

with frequencies ranging from 500 Hz to 8000 Hz, varying in 500 Hz intervals, and with intensities 

ranging from 30 dB SPL to 70 dB SPL, varying in 10 dB steps.  

2.3.2 Spectrally modulated ripples 

Spectrally modulated ripples are broadband sounds consisting of sinusoidal modulations 

along the frequency axis, and no modulations along the temporal axis. They are considered the 

auditory equivalent of visual gratings. As described in previous studies (Schreiner & Calhoun, 

1994; Shamma et al., 1995), the spectral envelop of ripple stimuli used in our study are determined 

by three modulation parameters:  

1) Density: the frequency of the sinusoidal spectral envelop, which determines how closely 

spaced the spectral peaks are to one another 

2) Depth: the amplitude of the sinusoidal envelop, which determines the peak-to-valley 

distance in the spectrum 

3) Phase: the starting phase of the sinusoidal envelop, which determines the placement of 

spectral peaks 

In our stimulus set, all ripples were 200 ms in duration including10 ms linear onset and offset 

ramps. All ripples were presented at 60 dB SPL. Ripple stimuli consisted of stacked tones between 
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250 Hz to 8000 Hz, spaced 1 Hz apart. The relative amplitudes of each tone composed the spectral 

envelop, which was specified by the spectral modulation density, depth, and phase (Figure 2.2).  

Our ripple stimulus set included ripples with modulation densities of 1.2, 1.6, and 2.0 

cycles/kHz, with modulations applied along a linear frequency scale. We chose to use a linear 

frequency scale instead of a logarithmic scale, which was used often in previous experiments 

(Schreiner & Calhoun, 1994; Shamma et al., 1995), because this allows for ripple spectra to be 

fully aligned with the harmonic spectrum when the maximally-aligning phase is chosen.  

The amplitude of sinusoidal modulations was specified on a logarithmic scale, and we included 

ripples with modulation depths (peak-to-valley distance) of 5 dB, 10 dB, 20 dB, 40 dB, and 80 dB. 

We also included ripples with 8 different evenly spaced starting phases.  

Ripples with different phases had the same spacing between spectral peaks, but the placement 

of spectral peaks varied. Harmonic ripples were generated when the phase was chosen such that 

each spectral peak was an integer multiple of a common F0, and the F0 equaled the spacing 

between peaks. Inharmonic ripples were generated when the phase was chosen such that spectral 

peaks are shifted with respect to harmonic frequencies. In the case of inharmonic ripples, spectral 

peaks were still spaced evenly from one another, but the absolute frequencies of each peak were 

not integer multiples of a common number (F0). Ripples were generated using custom software 

provided by S. Andoni (University of Texas). 
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Figure 2.2 Schematic of spectrally modulated ripples with varying depth, phase, and density.  

(A) Spectrograms and spectral profiles of example ripple stimuli that vary in spectral modulation 

depth and phase. Ripples shown have modulation density of 1.2 cyc/kHz. Spectral profiles are 

shown to the right of each spectrogram. Depth is varied along the vertical axis. Left column 

shows ripples with harmonic phase, and right column shows ripples with inharmonic phase. At 

the harmonic phase, spectral peaks align with integer multiples of a fundamental frequency. 

Harmonic frequencies (integer multiples of a F0, 833 Hz) are indicated by gray horizontal lines 

on each spectral profile. (B) Spectrograms and spectral profiles of ripple stimuli that vary in 

spectral modulation density. Shown ripples are of harmonic phase and have modulation depth of 

80 dB. Spectral modulation densities are 1.2 cyc/kHz, 1.6 cyc/kHz, and 2.0 cyc/kHz from left to 

right.  
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2.4  TESTING BEHAVIORAL RELEVANCE OF VOCALIZATIONS AND 

VOCALIZATION-LIKE STIMULI 

2.4.1 Animals 

Vocal responses to call playback were tested in adult male zebra finches (>120 days old; 

N = 14 for experiment 1, N = 12 for experiment 2). Across all tested birds, 3 were used in both 

experiments 1 and 2. Prior to testing, birds were isolated for three to five days in an anechoic 

sound-attenuation booth (Industrial Acoustics) with free access to food and water.  

2.4.2 Call-and-response behavioral testing 

Experimental sessions for all birds began within three hours following the onset of the light 

phase of the light/dark cycle and lasted approximately 80 minutes (behavioral experiment 1: 

vocoded calls) or 90 minutes (behavioral experiment 2: inharmonic calls). For both experiments, 

stimulus playback and audio recording were controlled by a custom MATLAB program. A 

maximum of four birds were tested simultaneously in individual sound-attenuation booths. Stimuli 

sampled at 44.1 kHz were delivered in the free field at 60 dB SPL through a speaker (Kenwood 

KFC-1377) placed ~24 cm away from the perch in the experimental cage. Birds’ vocalizations 

were recorded using a microphone (Sennheiser MKE 2-60) connected to an audio interface 

(Focusrite Saffire Pro 40). 

2.4.3 Stimulus selection 

Behavioral experiment 1: vocoded calls. Each birds’ stimulus set contained four natural 

calls (a subset of the 9 stimulus calls; varied across birds), five vocoded versions of each natural 

call (with 16, 20, 27, 40, and 80 channels), and a white noise sample that matched the average 

duration of the four natural calls. Ten repetitions of each unique stimulus were presented in 
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pseudorandom order. Inter-stimulus intervals were sampled from a uniform distribution between 

15 s and 22 s.  

Behavioral experiment 2: inharmonic calls. For inharmonic call experiments, each birds’ 

stimulus set contained three natural calls (a subset of the 9 stimulus calls; varied across birds). 

Also included were nine synthesized inharmonic versions of each natural call. Maximum jitter 

values were 10%, 30%, and 50%, and three different jitter patterns were included for each 

maximum jitter value. We also included three synthesized harmonic versions of each natural call, 

and a white noise sample that matched the average duration of the three natural calls. Eight 

repetitions of each unique stimulus were presented in pseudorandom order. Inter-stimulus intervals 

were sampled from a uniform distribution between 15 s and 22 s.  

2.4.4 Extracting vocal responses from audio recordings 

For both experiments 1 and 2, with each onset of stimulus presentation, audio recording 

was initiated by a custom MATLAB program to record vocal responses of the subject bird to 

presented stimuli. Following behavioral testing, audio recordings of the first 10 seconds following 

stimulus onsets were pre-processed to extract birds’ vocalizations using a custom graphical user 

interface in MATLAB (Figure 2.3). First, each audio sample was filtered to remove low-frequency 

ambient noise. The absolute values of the waveforms were taken, smoothed with a 10 ms moving 

average, and normalized to have maximum and minimum values of 1 and 0. Second, an amplitude 

threshold was manually chosen that best separates the birds’ vocalizations from stimulus playback 

and any background noise that was present. Continuous bouts of sound above the manually chosen 

threshold that corresponded to vocalizations were then selected (Figure 2.3C). The onset and 

offset time of each detected vocalization was then recorded and used for further analysis.  
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Consistent with previous reports of zebra finches’ behavior inside and outside of playback 

experiments, we found that birds sometimes produced more than one type of call during the 

experiment, including the louder and longer distance calls, and softer and shorter calls that may 

represent tet calls (Elie & Theunissen, 2016; Vicario et al., 2001). To distinguish between distinct 

call types, we extracted each vocalization using their detected time stamps and subjected them to 

acoustic analysis. For each bird, we isolated distance calls from shorter calls on the basis of 

duration and mean frequency using k-means clustering on all extracted vocalizations. Details of 

this analysis are presented in Chapter 3.  

2.4.5 Quantification of vocal responses 

Distance call responses were quantified using the following two measures of behavior:  

1) Average number of distance calls: the number of distance calls recorded within the 

first 5 seconds, averaged across trials 

2) Proportion of trials with response(s): the number of trials where at least one distance 

call was emitted in the first 5 seconds, divided by the total number of trials 

During pilot experiments we observed that some birds produced weak responses overall, 

which did not permit reasonable comparison of response strengths to different stimulus types. 

Because of this, we defined criteria to determine which birds to include in further data analysis. In 

both Experiments 1 and 2, only birds whose behavioral responses met both of the following criteria 

were included in our dataset:  

1) Produced at least one distance call in the first 5 seconds in ≥10% of all trials, across 

stimulus types 

2) Produced at least one distance call in the first 5 seconds in ≥50% of all trials for at least 

one specific stimulus  
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By these criteria, 10 out of 14 birds were included in Experiment 1, and 8 out of 12 birds 

were included in Experiment 2.  
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Figure 2.3 Extracting response calls in the call-and-response experiment.  

(A) Example spectrogram of a 10 s recording collected from a single trial of the call-and-

response experiment. The audio recording includes the call playback, followed by 15 

vocalizations emitted by the bird being tested. (B) Sound pressure waveform of the same audio 

recording shown in (A). (C) Smoothed absolute value of the sound pressure waveform, 

normalized to range between 0 (minimum) and 1 (maximum). The red horizontal line indicates a 

user-defined amplitude threshold applied to extract vocalizations. Gray rectangular outlines 

indicate continuous bouts of sound with amplitude above the user-defined threshold. 
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2.5  RECORDING AND ANALYZING NEURAL ACTIVITY IN AUDITORY 

CORTEX 

2.5.1 Animals 

Recordings were conducted in 6 adult male zebra finches (>120 days old); 5 out of 6 were 

used in call-and-response experiments prior to electrophysiology experiments.   

2.5.2 Surgery  

For surgeries, anesthesia was induced with 2% isoflurane and maintained with 0.5-1.5% 

isoflurane delivered in 100% oxygen. For induction, isoflurane was delivered through gas tubing 

connected to an outlet composed of a 50 mL conical tube, which was placed over the bird’s head. 

After birds were unresponsive to a toe pinch, they were enclosed in a custom jacket and placed in 

a stereotaxic holder. A feeding needle inserted into the bird’s beak was used to deliver 0.5 - 1.5% 

isoflurane for maintenance of anesthesia.  

An incision was made on the skin overlaying the skull, and the outer layer of the skull was 

removed as needed to reveal anatomical landmarks. The bifurcation of the midsagittal sinus was 

used as the reference point for measuring anatomical coordinates. Then, 2.5 mm by 2.5mm 

bilateral craniotomies were made, centered at 1.25 mm lateral and 1.25 mm from the reference 

point on each hemisphere. Using dental acrylic, a metal pin was attached to the skull directly 

behind the craniotomies. A silver ground wire was inserted beneath the skull and affixed with 

dental acrylic at a position ~0.2 mm caudal to the bifurcation of the midsagittal sinus. After 

surgeries, birds recovered for 2 days before the first recording session. Before the first recording 

session and between sessions, craniotomies were covered with Kwik-Cast Sealant (World 

Precision Instruments).  
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2.5.3 Auditory electrophysiology  

Neurophysiological recordings were conducted in a walk-in sound-attenuating booth 

(Industrial Acoustics) in non-anesthetized, head-fixed animals. Prior to each penetration, electrode 

arrays were coated with CM-DiI (C7000, Molecular Probes) or SP-DiO (D7778, Molecular 

Probes) dissolved in 100% ethanol. We alternated the use of DiI and DiO between adjacent passes 

along the medial-lateral axis such that they can be resolved in subsequent histological analysis. 

One to two electrode penetrations were made per day, with probes oriented along the rostral-caudal 

axis. Probes were composed of 4 shanks with 8 recording contacts on each shank (Neuronexus 

A32; Figure 2.4B). The spacing was 200 μm between shanks and 100 μm between contacts on the 

same shank.  

Acoustic stimuli were sampled at 24.4 kHz and delivered through a speaker (JBL Control 

I) placed 23 cm in front of the bird. All non-tone stimuli including natural calls, vocoded calls, 

ripples, and songs were delivered at 60 dB SPL. During recording sessions, 10 repetitions of each 

stimulus were presented in pseudorandom order, with inter-stimulus intervals sampled from a 

uniform distribution spanning 0.75 s and 1 s. Neural responses were recorded at three or four 

depths along the same pass, with the base of the probe positioned at 1.2 mm, 2.0 mm, and 2.8 mm, 

or 0.8 mm, 1.6 mm, 2.4 mm, and 3.2 mm below the surface of the brain. Continuous voltage traces 

were amplified, bandpass filtered between 300 and 5000 Hz, digitized at 24.4kHz (RZ5, Tucker-

Davis Technologies), and stored for subsequent data analysis.  

2.5.4 Histology and construction of neural maps 

After the last recording session, a bird was given an overdose of Euthasol and transcardially 

perfused with saline followed by 10% formalin. The brain was extracted, separated into the left 

and right hemispheres, and post-fixed in 10% formalin. After at least 24 hours, the brain was 
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transferred to 30% sucrose/10% formalin solution for cryoprotection. After cryoprotection, 40 µm 

parasagittal sections were made using a freezing microtome.  

Microtome sections were mounted and, while wet, imaged under CY3 and FITC filters to 

localize fluorescent DiI and DiO tracks. A bright field image was additionally taken for each brain 

section as the thalamorecipient region L2a can be distinctly identified from these images as an area 

of dark fibers (Figure 2.4A). After obtaining fluorescent and bright-field images, the sections were 

dried, stained with cresyl violet (Nissl staining), and imaged to delineate cortical regions by 

examining cytoarchitectural features. 

 By visualizing the laminae, cellular appearance (Nissl stain) and dark fibers (from bright 

field images taken prior to Nissl staining), we determined the boundaries between regions (Figure 

2.4B). The intermediate region L2a (intermediate-a) is characterized by densely packed cells with 

small, oblong cell bodies in Nissl images, and by the termination of dark thalamic fibers in wet 

bright-field images. The intermediate region L2b (intermediate-b) is a population of densely 

packed, darkly Nissl-stained cells dorsal to the tip of intermediate-a. Deep region L3 is ventral to 

the border of intermediate-a, and is surrounded dorsally by intermediate-b and caudally by L, 

which is characterized by dark, densely packed cells. Cells in the deep region are larger and less 

densely packed than intermediate-a, intermediate-b, and L. The cells are organized into clusters, 

giving the region a punctate appearance. The ventral border of the deep region is the dorsal 

medullary lamina (LMD). The secondary region NC is the area posterior to intermediate-b and L.   

 To create anatomical maps of single unit SSI in the auditory cortex, we estimated the 

coordinates of each unit by measuring the location of recording sites relative to anatomical 

reference points that we defined. Reference points were anatomical landmarks that could be 
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identified in each hemisphere for each bird, serving to standardize recording location estimates 

across birds. 

  To estimate the medial-lateral coordinates of all units recorded from a single electrode 

penetration, we determined a reference plane, which is the parasagittal section at which the ventral 

tip of L2a fully intersects with and fans out at the LMD when moving laterally from the midline 

(Figure 2.4A). For each identified DiI or DiO probe track, the medial-lateral coordinate was 

determined based on the relative position of the DiI or DiO track compared to the reference plane. 

When DiI or DiO signals spanned multiple sections (either due to the spread of dye across sections, 

or due to the orientation of the probe not being exactly aligned with the plane of sectioning), the 

most medial and most lateral section containing fluorescent signal was determined, and the section 

in the middle of those two endpoints was used to determine the medial-lateral coordinate of the 

units recorded from the corresponding penetration.  

To estimate the rostral-caudal and dorsal-ventral positions within a parasagittal section, the 

reference point was defined as the point at which the ventral tip of L2a is closest to, or intersects 

with, the LMD. Identified DiI and DiO tracks were used to reconstruct the anterior-posterior and 

dorsal-ventral coordinates relative to the reference point. The position of the center of the probe 

base (center-base) was measured relative to the reference point, and a coordinate was assigned to 

each unit based on the known positional difference between the site containing the units’ signal 

and the center-base of the probe. When necessary, a heatmap was constructed with the standard 

deviation (SD) of the spontaneous multi-unit activity (MUA) or the stimulus-driven MUA of each 

channel (Figure 2.4B), arranged according to the spatial positioning of different channels. Higher 

standard deviation and stimulus-driven MUA firing rates characterize L2a and L2b recording sites, 
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giving them a distinct appearance on the heatmaps. These heatmaps were used to adjust the depth 

estimate of the probe center-base.    
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Figure 2.4 Anatomical reconstruction of recording sites in the auditory cortex.  

(A) Example bright-field microscopic images (4x) of parasagittal sections of the auditory cortex. 

Consecutive images of 40 μm sections are arranged from medial to lateral, ordered left to right 

and top to bottom. As sections progress from medial to lateral, the ventral tip of L2a increasingly 

intersects with the LMD and appears to fan out and fuse with the LMD. Green outline indicates 

the section that was selected as the medial-lateral reference plane, and green dots indicate the 

rostral-caudal and dorsal-ventral reference point. Reference points were determined for each 

hemisphere in each bird and used to standardize recording coordinates across birds. (B) Example 

Nissl (top) and bright-field images (bottom) taken at the reference plane. DiI signal appears as 

orange fluorescent tracks in the bottom two images. Microscopic images on the right are overlaid 

with traced lines delineating auditory regions, and the estimated position of numbered recording 

channels. Red lines indicate the depths at which recordings were conducted within the same 

penetration. The bottom-right image is overlaid with a heatmap showing the standard deviation 

of the multi-unit activity trace recorded from each channel (note that channel 10 was defective). 

L2a and L2b are characterized by relatively higher standard deviation than surrounding regions. 

The schematic on the top-right corner shows the geometrical arrangement of recording channels 

on the 32-channel multielectrode array. LMD, dorsal medullary lamina; MUA, multi-unit 

activity; SD, standard deviation.  
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2.5.5 Pre-processing of multichannel recording data  

Data analysis was carried out in MATLAB (Mathworks). Spikes were detected and sorted 

offline using the WavClus automated sorting algorithm followed by manual refinement (Calabrese 

& Woolley, 2015; Quiroga et al., 2004). The WavClus algorithm is an unsupervised and fast 

method developed by researchers at the University of Leicester to detect and sorts spikes from 

multiunit recordings (Quiroga et al., 2004). To increase the signal-to-noise ratio (SNR), we applied 

a nonlinear filter on the bandpass-filtered voltage trace in order to emphasize high-amplitude and 

high-frequency voltage deflections. We then applied the WavClus algorithm to automatically 

detect and sort spikes on each channel, and manually refined the output by inspecting the waveform 

shape and amplitude of each cluster. Lastly, single units were identified on the basis of signal-to-

noise ratio (SNR; the difference between mean of spike amplitudes and noise amplitudes divided 

by the geometric mean of their SDs), inter-spike interval distribution (the percentage of inter-

spike-intervals shorter than 1 ms), and stability of recordings across trials. The 95% confidence 

interval of SNRs for single units in our dataset was 6.64 to 7.14, and that for the percentage of 

inter-spike intervals below 1 ms was 0.04% to 0.06%. This procedure identified a total of 1825 

single units across L2a, L2b, L3 and NC.  

Units were only included in the analysis of calls (vocoded and natural), ripple, and tone 

responses if they showed significant responses to at least 5% of all stimuli in each respective set. 

For the analysis of song responses, units were included if they showed significant responses to 

calls.  

Significant responses were determined as following. Each unit’s spontaneous firing rate 

was computed for the 200 ms periods preceding each trial. Driven firing rates were computed with 

spikes occurring between stimulus onset and 20 ms after stimulus offset. Onset firing rates were 
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computed with spikes occurring within the first 50 ms following stimulus onset. Evoked responses 

were considered significant if either the driven firing rate or the onset firing rate was significantly 

higher or lower than spontaneous rates at p < 0.05. This procedure yielded 847 call-responsive, 

674 ripple-responsive, and 1184 tone-responsive units across L2a, L2b, L3 and NC.  

2.5.6 Analyzing neural selectivity for spectral structure 

Spectral selectivity index (SSI). SSI was computed from responses to vocoded calls with 

the following formula, 

SSI =
FR40,80 −  FR16,20

FR40,80 + FR16,20

 

where FR40,80 represents the average firing rate evoked by 40 and 80-channel vocoded calls, and 

FR16,20 represents the average firing rate evoked by 16 and 20-channel vocoded calls. Based on 

their SSI, units were segmented into low-resolution-selective (LS; SSI < -0.2), unselective (US; -

0.2 < SSI < 0.2) and high-resolution-selective (HS; SSI > 0.2) groups. An SSI of 0.2 indicates 50% 

response enhancement to 40 and 80-channel calls compared to 16 and 20-channel vocoded calls, 

and an SSI of -0.2 indicates the opposite. 

Response selectivity for call stimuli was defined as the proportion of natural and vocoded 

call stimuli that did not evoke driven firing rates significantly above spontaneous activity from a 

given unit. Response selectivity was computed for all call stimuli, as well as by stimulus type (for 

natural calls and vocoded calls by channel number).  

2.5.7 Analyzing response dynamics to calls 

Population peri-stimulus time histograms (PSTHs). Single-unit PSTHs were 

constructed by calculating the trial-averaged instantaneous firing rates in 1 ms bins and smoothing 

the responses with a 5 ms Hanning window. Population peri-stimulus time histograms (pPSTHs) 

were computed by averaging the raw or min-max normalized PSTHs across a population of single 
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units. For visualization purposes, pPSTHs were further smoothed by applying a 10 ms moving 

average. 

First-spike latency. The latency of neural responses to a call stimulus was estimated by 

identifying the first time after stimulus onset at which spiking activity significantly deviated from 

spontaneous activity (p < 0.05), assuming that the neuron was firing spontaneously with Poisson 

statistics (Chase & Young, 2007; Schumacher et al., 2011). Since the onset ramps of natural and 

vocoded calls were not standardized, we defined each call stimulus’ onset time as the time at which 

the sound pressure waveform amplitude first reached 5% of the maximum amplitude of the call, 

and quantified the time of first spike relative to this onset time. Call response latency was taken as 

the shortest latency among those computed for all natural and vocoded call stimuli.  

We also related call response latencies to tone and ripple response latencies. Latencies of 

response to each tone and ripple stimulus was calculated using the same method as used to 

calculate latencies to call stimuli. Tone response latency of a neuron was determined by averaging 

latencies across sound intensities and taking the shortest average latency across tone frequencies. 

Ripple response latency of a neuron was taken as the shortest average latency across ripple depths, 

phases, and densities.  

Onset index. Onset index was calculated from responses to natural and vocoded calls using 

the following formula,  

Onset Index =
FRonset − FRsustained

FRonset + FRsustained

 

where FRonset represents the average firing rate during the first 50ms after stimulus onset, and 

FRsustained represents the average firing rate during the subsequent period until stimulus offset 

(Schumacher et al., 2011). For each neuron, onset indices were averaged across all call stimuli that 
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elicited a significant response (either the driven firing rate or the onset firing rate was significantly 

higher or lower than spontaneous rates at p < 0.05). 

2.5.8 Analysis of pure tone responses 

Pure tone responses were analyzed to obtain the best frequency (BF) and bandwidth (BW) 

of tone-responsive neurons. Response strength (evoked spike rate minus spontaneous spike rate) 

was computed for each frequency-level combination. A frequency response curve was computed 

by averaging response strengths across levels for each frequency. The BF of each neuron was taken 

as the frequency eliciting the maximum response. The BW of each neuron at each level was 

calculated by first obtaining the frequency response curve at that sound level, and then obtaining 

the width of the portion (s) of the curve that exceeds half of its peak value.  

2.5.8 Analyzing responses to spectrally modulated ripples 

Construction of depth-phase matrices. For each spectral modulation density (1.2, 1.6 

and 2.0 cyc/kHz), a single unit’s driven firing rates were computed for each depth-phase 

combination and used to construct a response matrix with depth on the Y axis and phase on the X 

axis (Figure 2.5). Averaging the depth-phase matrices within LS, US, and HS neurons resulted in 

group depth-phase matrices.  

To construct population ripple response matrices, each units’ depth-phase matrices were z-

scored and averaged across the three spectral modulation frequencies. Standardized average depth-

phase matrices for all units were averaged to obtain the population depth-phase matrix. 

Best spectral modulation density. Best spectral modulation density was determined for 

each neuron by averaging the firing rates evoked by all ripples, across phases and depths, for each 

density, and selecting the modulation density with the highest average firing rate.  
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Best phase. A phase-response curve was generated by taking the average of responses 

across modulation depths at the neurons’ best modulation density. The phase evoking the maximal 

response was taken as the neuron’s best phase.  

Modulation depth dependency. Modulation depth dependency of single-unit responses 

was computed via Spearman’s tests of correlation between driven firing rates and ripple 

modulation depths at each tested modulation density and at the neurons’ preferred phase (the phase 

eliciting maximal average response). A ρ of 1 indicates that firing rate increases monotonically 

with modulation depth, and a ρ of -1 indicates that firing rate decreases monotonically with 

increases in modulation depth.   

Quantifying harmonicity of spectrally modulated ripples. The spectral theory of pitch 

extraction posits that the auditory system extracts the fundamental frequency of a sound by 

analyzing the neural pattern of activation along the tonotopic axis (Duifhuis et al., 1982; Scheffers, 

1983; Shamma & Klein, 2000); the sound spectrum is compared to internally stored spectral 

templates, which contain the frequency component placement patterns for a range of possible 

fundamental frequencies. My harmonic template matching quantification of harmonicity was 

based on this idea. This analysis was applied to each ripple stimulus to estimate how well the 

stimulus power spectrum matches the spectral profile of harmonic sounds, where component 

frequencies are integer multiples of a common fundamental frequencies.  

1) Construction of harmonic templates. A series of “harmonic sieves” were constructed 

with F0s varying from 300 to 1000 Hz in 5 Hz increments. For each sieve, “windows” 

were centered at the first 8 integer multiples of the F0 (F0*1, F0*2, F0*3 … F0*8), and 

shaped according to a Gaussian function with standard deviation of 30 Hz. The sieve 
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had a maximum value of one in each window and a value of zero outside of the 

windows.  

2) Obtain match quality with each harmonic template. Each ripple was “passed through” 

all possible harmonic sieves by multiplying its frequency power spectrum (FPS) with 

the value of the harmonic sieve at each frequency. The multiplication products were 

then summed across frequencies to generate the match index, which represents how 

well the spectral profile of a ripple matched the harmonic template with a given 

fundamental frequency.  

3) Find best-matched template and determine match quality. The maximal match index 

across all F0s was taken as the harmonic template match index for a given ripple. The 

more stimulus frequency components passing through the best-matching harmonic 

sieve, and the more energy contained in each component passing through, the greater 

the resulting harmonic template match index.  

Determining the spectral feature driving population responses to ripples. To 

investigate whether modulation depth and/or harmonicity explained the variance in population 

responses to ripple stimuli, we carried out comparisons of nested regression models.  

To test the relationship between harmonic template match and population firing rates, we 

first conducted multiple linear regression with only modulation density and modulation depth as 

predictor variables. Then, we conducted a second multiple linear regression, with harmonicity as 

an additional variable. An F test was used to compare the second model (with 3 predictor variables, 

plus an intercept) to the first one (with 2 predictor variables, plus an intercept), which indicated 

whether the addition of harmonic template match significantly increased the predictive power of 

the model. To test the relationship between modulation depth and population firing rates, we 
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carried out the same procedure, except that the first model included modulation density and 

harmonicity as predictor variables, and modulation depth was added in the second model.  
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Figure 2.5 Construction of depth-phase ripple response matrices.  

(A) Raster plots showing an example single neuron’s spikes aligned to presentations of ripple 

stimuli with different modulation depths, varied along the Y axis, and phases, varying along the 

X axis. Blue bars and shading indicate duration of stimulus presentation. Data shown are 

responses to ripples with modulation density of 1.6 cyc/kHz (B) Depth-phase matrices in which 

each pixel is colored-coded according to the firing rate evoked by a ripple of the corresponding 

depth-phase combination. The best modulation density of this neuron is 1.6 cyc/kHz. 
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Figure 2.6 Quantification of harmonicity by harmonic template matching 

(A) Heat map showing how harmonicity of ripple stimuli varies with spectral modulation depth 

and phase. Squares outlined by black and yellow dashed lines indicate correspondence between 

shown ripples’ position in the depth-phase matrix and its harmonic template match schematic in 

(B). (B) Schematic of harmonic template analysis. Spectral profiles (left) of three representative 

example ripples with modulation density of 1.6 cyc/kHz and their alignment with two example 

harmonic templates/sieves (right) are shown. Note that only frequencies up to 5 kHz are shown. 

Rose-colored ^ symbols indicate the sieve for which the ripple was the best match. For the most 

closely matched sieve, rose-colored squares indicate positions where spectral peaks of the 

stimulus “falls through” the sieve. (C) Relative harmonic template match index for harmonic 

sieves with different fundamental frequencies. Red filled circles indicate the maximum match 

index and the corresponding best-match harmonic sieve. The high modulation depth and 

harmonic phase ripple (left) matches the 625 Hz template best and has the maximal match index. 

The high modulation depth and shifted phase ripple (middle) matches the 600 Hz template best 

and has intermediate match index. The low modulation depth and harmonic phase ripple (right) 

matches the 625 Hz template best and has the lowest match index.  
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2.5.9 Analyzing population responses to songs  

 Population peri-stimulus time histograms (pPSTHs). Single-unit song PSTHs evoked 

were obtained by calculating the trial-averaged instantaneous firing rates in 1 ms bins. pPSTHs 

were computed by averaging single unit PSTHs across a population of single units. pPSTHs 

were smoothed by applying a 15 ms moving average. To examine response transformations 

between auditory regions, we computed pPSTHs to each song for the L2a, L2b, L3, and NC 

populations. To examine how spectral selectivity for vocoded calls translates to the encoding of 

song, we computed pPSTHs separately for LS, US, and HS neurons in L3.  

We quantified how fast each regions’ and each cell types’ population responses increased 

and decreased with syllable onsets and offsets within songs. Syllable onsets and offsets of each 

song were determined by applying an amplitude threshold on the smoothed and normalized 

absolute values of song waveforms. To determine population response rise time, pPSTHs were 

first normalized to range from 0 to 1. The pPSTH segment from each syllable onset until 20 ms 

after stimulus offset was obtained, and the earliest peak in population response was determined 

using the MATLAB function findpeaks( ) with minimum peak prominence of 0.1. The timing of 

this earliest pPSTH peak relative to syllable onset was taken as the rise time for each syllable. 

Population response fall times were determined similarly using the MATLAB findpeaks( ) on the 

negative image of the pPSTH segments during the 100 ms after syllable offsets. The timing of 

the earliest pPSTH trough relative to syllable offset was taken as the fall time for each syllable.  

 Analyzing time-varying song acoustics. In order to relate population responses to time-

varying acoustic features, we calculated the goodness of pitch, frequency modulation, mean 

frequency, and Wiener entropy of each song using the Sound Analysis Tools (SAT) for 

MATLAB package (Tchernichovski et al., 2000). The SAT package is the MATLAB 
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implementation of the Sound Analysis Pro (SAP) software, which has been widely used as a 

standardized method to analyze the acoustic features of zebra finch song. The SAP and SAT 

methods makes acoustic measurements based on frequency derivatives, which serves as “edge 

detectors” of frequency traces in a spectrogram. While a traditional spectrogram shows the 

power of sound in each time-frequency combination, the frequency derivative shows the change 

of power. The four acoustic features that we measured are described below.  

Goodness of pitch is defined as the peak of the derivative-cepstrum. It measures how 

periodic or harmonic a sound is. The cepstrum is the result of taking the inverse Fourier 

transform of the logarithm of the spectrum of a sound. The cepstrum has been used for the 

detection of voiced and unvoiced speech and for the detection of F0 in speech (Noll, 1964); 

unvoiced signals show no peak in its cepstrum, whereas voiced signals show a cepstral peak at 

the fundamental period.  Noisy sounds (with relatively flat spectra) and pure tones give low 

values for goodness of pitch, while harmonic stacks give high values.  

Frequency modulation is a measure of how fast frequencies change over time; it 

estimates the slope of the frequency traces with respect to a horizontal line. Mean frequency 

represents the center of distribution of power across frequencies, calculated by estimating the 

central tendency of the derivative power distributions. It provides a smooth estimate of where the 

power in the sound is concentrated.  

Wiener entropy measures how wide and uniform the sound spectrum is. It is defined as 

the ratio of the geometric mean to the arithmetic mean of the sound spectrum. Entropy is 

expressed on a logarithmic scale, ranging from 0 (white noise) to negative infinity (complete 

order in the spectrum, such as a pure tone). Noisy sounds, with sound energy smeared within the 

frequency range, are more uniform in their spectrum and give values close to zero; harmonic 
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stacks, which contain organized peaks and valleys and thus are less uniform in their frequency 

structure, give moderately negative values; tonal sounds give larger negative values. 

For each of the 4 acoustic features described above, a feature vector sampled at 1 ms 

intervals was extracted for each song. Feature vectors were smoothed with the same time 

window as for pPSTHs, and used to relate neural responses to acoustic features. In order to avoid 

including silent segments in acoustic analysis, SAT acoustic features were analyzed only for 

segments of song where the amplitude envelop exceeded 5% of the maximum amplitude of the 

song.  

2.6  CONCLUSIONS 

In this chapter, I described methods used to study how the auditory system functions during 

social communication. A combination of natural vocalizations, vocalization-like stimuli, and 

synthetic stimuli were curated for use in behavioral and neural experiments. Natural vocalizations 

have known behavioral value and function to the animal, which provided us the ability to establish 

a behavioral baseline for assessing the effectiveness of vocalization-like stimuli in driving natural 

behaviors. Vocalization-like stimuli were generated using natural vocalizations as templates, with 

specific spectral manipulations to identify critical acoustic cues for social communication. Using 

a call-and-response behavioral paradigm, we identified behaviorally relevant spectral parameters 

of vocalizations, which motivated us to study how these parameters were processed by the auditory 

system. In our neurophysiological experiments, we utilized multichannel recording methods that 

enabled us to map the spatial organization of response properties in the brain. Emphasis was placed 

on identifying consistent landmarks permitting the mapping of recording sites and standardizing 

the measurement of anatomical locations across animals. Our neural response analyses focused on 

separating two commonly confounded spectral parameters of vocalizations using synthetic stimuli, 
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then using synthetic stimuli responses to predict neurons’ encoding of natural vocalizations. 

Chapters 3 and 4 will describe our identification of spectral parameters of vocalizations important 

for social communication, and our findings on how the auditory cortex processes these 

behaviorally relevant acoustic features.  
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Chapter 3   

BEHAVIORAL AND NEURAL SELECTIVITY FOR THE 

SPECTRAL STRUCTURE OF VOCAL SOUNDS 

3.1  ABSTRACT 

Vocal communication relies on the ability of listeners to identify, process, and respond 

appropriately to vocal sounds produced by others in complex environments. In order to accurately 

recognize these social signals, animals’ auditory systems must robustly represent acoustic features 

that distinguish vocal sounds from other sounds in the environment. The spectra of vocalizations 

contain certain structural features that could contribute to auditory processing and extraction of 

vocal signals. Vocalizations typically contain spectral modulations, or regular fluctuations in 

power along the frequency axis. Spectral modulation is closely related to harmonicity, which refers 

to spectral energy concentrated at integer multiples of a fundamental frequency. Harmonic sounds 

give rise to the perception of pitch and constitute vocalizations of animals ranging from humans 

to frogs. Reduction of spectral information into a limited number of channels, a manipulation that 

diminishes both spectral modulation and harmonicity, affects human listeners’ perception of social 

information from these signals. The neural mechanisms underlying the perceptual reliance on 

spectral resolution are not well understood.  

Here, we test the role of vocalization-typical spectral features in behavioral recognition and 

neural processing of vocal sounds, using songbirds. We found that the spectral resolution of natural 

communication calls must be preserved to a certain degree to elicit vocal responses from songbirds. 

To elicit responses, call stimuli must contain distinct spectral peaks and valleys, but the spectral 
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peaks need not be harmonically related. We further identify a population of neurons in the deep 

region of auditory cortex that represents a neural correlate of birds’ behavioral sensitivity to the 

spectral resolution of calls.  

3.2  INTRODUCTION 

Vocal communication relies on auditory processing of vocalizations, which convey social 

information to listeners (Belin et al., 2004; Seyfarth & Cheney, 2017). Vocalizations are composed 

of characteristic acoustic features that distinguish them from other sounds in the environment 

(Attias & Schreiner, 1997; Rieke et al., 1995; Singh & Theunissen, 2003; S. M. N. Woolley et al., 

2005). To enable effective processing of vocalizations for social communication, the auditory 

system may be tuned to the acoustic signatures of vocal sounds. 

The spectral features that distinguish vocalizations from other sounds may facilitate their 

processing and perception. Vocal sounds generally contain regular fluctuations in power across 

the frequency axis, a property known as spectral modulation (Singh & Theunissen, 2003). Regular 

spectral modulation along the linear frequency axis results in distinct and evenly spaced peaks and 

valleys in the sound spectrum. In natural sounds, spectral modulations are closely tied to 

harmonicity, which refers to simultaneous frequency components at integer multiples of a 

fundamental frequency (F0) (X. Wang, 2013; X. Wang & Walker, 2012). Harmonic vocal sounds 

result from periodic oscillations of the vocal folds, whose frequency of vibrations determine the 

F0 (Riede & Goller, 2010; Titze, 2017). Such sounds constitute human speech and the 

communication vocalizations of other animals, including frogs, birds, bats, cats, elephants, and 

non-human primates (Simmons & Simmons, 2011; Soltis, 2010; X. Wang, 2013). Harmonicity 

gives rise to the perception of pitch, and is thought to contribute to auditory object identification 

(Walker et al., 2011).  
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In order for a signal to convey the typical spectral structure of vocalizations, including 

spectral modulations and harmonicity, a certain level of spectral resolution must be achieved. In 

other words, the frequency axis must be sampled at sufficiently small bins, in order to reconstruct 

the spectral details that characterize vocal sounds. The perceptual relevance of spectral structure 

has been studied in the context of human speech perception and is reviewed in Section 1.3.3. 

In animal models, neural and behavioral discrimination of complex sounds appear to be 

robust to spectral degradation. In Mongolian gerbils (Meriones unguiculatus), primary auditory 

cortex neurons were able to distinguish between different categories of communication calls even 

with substantial spectral degradation (frequencies from 2 to 40 kHz reduced to 4, 8, or 16 channels) 

(Ter-mikaelian et al., 2018). In a study of European Starlings (Sturnus vulgaris; further reviewed 

in Section 1.4.3), birds were able to recognize sound sequences despite spectral degradation 

(Bregman et al., 2016). While previous studies looked at whether spectral details were used for 

sound classification and recognition, our studies addressed whether they contribute to the 

behavioral relevance of vocalizations. We defined behaviorally relevant sounds as those that evoke 

vocal responses from the listener. By determining the behavioral relevance of spectrally altered 

calls, we aimed to identify the spectral cues animals use in vocal communication. 

In this chapter, I detail behavioral experiments examining the role of two different aspects 

of spectral structure in vocal communication of the zebra finch (Taeniopygia guttata; further 

reviewed in Section 1.6), a social songbird used as a model system for studies of vocal 

communication and learning (Brainard & Doupe, 2013). I also describe neurophysiological studies 

where we identified a neural correlate for behavioral sensitivity to the spectral resolution of 

vocalizations.  



63 

 

3.3  RESULTS 

3.3.1 Birds produce distinct call types in call-and-response experiments 

 Zebra finches exchange distance calls when visually separated (Zann, 1996), and birds 

recognize their mates’ voices using these calls (Vignal et al., 2004). Socially-isolated birds readily 

respond to distance call playbacks by vocalizing (Perez et al., 2015; Vicario et al., 2001; Vignal & 

Mathevon, 2011). The “call and response” behavioral test assessed how birds’ responses differed 

with variations in the spectral properties of acoustic stimuli.  

The vocalizations that birds produced during call-and-response experiments were not 

homogenous. We identified distinct types of vocalizations from audio recordings, which contained 

all sounds produced by birds within the first 10 s after stimulus onset. We extracted all call 

vocalizations by identifying their onset and offset times within a trial, and then used these 

timestamps to extract calls for acoustic analysis.  

 When vocalizations of each bird were plotted along the dimensions of mean frequency and 

duration, two or more clusters were present (Figure 3.1A and Figure 3.2A). Previous studies have 

shown that distance calls have higher mean frequencies and are longer in duration than other types 

of contact calls (Elie & Theunissen, 2016). To isolate distance calls from other call types, we 

performed k-means clustering for each birds’ vocalizations based on mean frequency (measured 

using SAT, see Section 2.5.9) and duration (measured by subtracting response call onset time from 

offset time). The number of clusters for each bird, ranging from 2 to 3, was chosen by visual 

inspection of the joint mean frequency-duration distribution of the birds’ vocalizations. After 

vocalizations were assigned to clusters, the cluster with greater average mean frequency and longer 

mean duration was taken to represent distance calls.  
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Vocalizations that were not classified as distance calls could correspond to Tet or Stack 

calls, which are acoustically distinct categories (Elie & Theunissen, 2016; Maat et al., 2014). 

However, we treated all non-distance calls as a single group of “short calls” for two reasons. First, 

the birds in our experiments did not consistently produce two distinct shorter call types. Second, a 

previous study has shown that these two call types were performed in the same behavioral contexts: 

in a seemingly automatic and continuous fashion, when zebra finches move around in their 

surroundings (Elie & Theunissen, 2016).  

 In order to verify that distance call responses were the appropriate vocalization category to 

treat as stimulus-evoked responses, we compared distance calls and short calls in two aspects:  

their time course relative to stimulus presentation, and whether birds’ production of these calls 

after playbacks of noise differed from that after playbacks of other birds’ calls.  

We found that distance calls and short calls had different time courses. The average number 

of distance calls showed a strong peak within the first second after presentation of stimuli, while 

the number of short calls were relatively evenly distributed across time after stimulus presentation 

(Figure 3.1B and Figure 3.2B). This shows that birds’ production of distance calls was likely a 

direct response to preceding stimulus, while short calls were emitted continuously regardless of 

stimulus presentation.  

In addition to differences in their timing, distance calls and short calls also differ in stimulus 

dependency. Birds produced distance calls in greater numbers (Figure 3.1C and Figure 3.2C; 

paired t-tests, p < 0.05) and in a greater proportion of trials (Figure 3.1D and Figure 3.2D; paired 

t-tests, p < 0.05) to natural calls than they did to noise stimuli. In contrast, the number of short 

calls produced and proportion of trials with short calls did not differ between noise and natural call 
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trials. This shows that distance calls constituted a specific response to social stimuli, while short 

calls were not modulated by stimulus type.  

In the two experiments that we conducted with largely non-overlapping birds (Figure 3.1-

3.2), we identified the same distinct call types using the same acoustic features. In addition, 

distance calls and short calls differed in time course and stimulus dependency in the same ways 

across these two experiments. Thus, these behavioral phenomena are robust and replicate across 

studies.  
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Figure 3.1 Time course and stimulus dependency of distance call responses.  

(A) Scatter plots showing the mean frequency and duration of all recorded calls during 

Behavioral Experiment 1. We acoustically analyzed vocalizations within the first 10s after 

stimulus onset. Each plot shows data from one bird, and each data point represents one 

vocalization. Square, diamond, and triangle outlines on the top-right corner of scatter plots 

denote the birds that were used in both behavioral experiments and correspond with birds shown 

in Figure 3.2. Vocalizations formed clusters and distance calls (blue) were identified as the 

cluster with higher mean frequency and duration. Other vocalizations had lower mean 

frequencies and shorter durations, and were collectively classified as “short calls” (tan). 

Spectrograms show representative examples of distance calls (blue) and short calls (tan) 

respectively. (B) Average number of distance calls (blue) and short calls (tan) in the first 5s 
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following the onset of stimulus presentation, presented in 100ms time bins. The production of 

distance calls showed a prominent peak within the first second, while the production of short 

calls was less temporally locked to stimulus onset. (C, D) Average number of vocalizations (C) 

and proportion trials with at least one vocalization (D) in response to noise or natural call stimuli, 

shown separately for distance calls and short calls (mean ± SEM, N=10 birds). Birds produced 

more distance calls and produced them in a greater proportion of trials in response to natural 

calls than to noise. In contrast, the number of and proportion of trials with short calls did not 

differ in response to noise and natural calls (* p < 0.05, paired t test). 
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Figure 3.2 Replication of time course and stimulus dependency of distance call responses.   

(A) Scatter plots showing the mean frequency and duration of all recorded calls during 

Behavioral Experiment 2. Data presented as in Figure 3.1A. Square, diamond, and triangle 

outlines on the top-right corner of scatter plots denote the birds that were used in both behavioral 

experiments and correspond with birds in Figure 3.1. (B) Average number of distance calls 

(blue) and short calls (tan) in the first 5s following the onset of stimulus presentation, presented 

in 100ms time bins. The production of distance calls showed a prominent peak within the first 

second, while the production of short calls was less temporally locked to stimulus onset. (C, D) 

Average number of vocalizations (C) and proportion trials with at least one vocalization (D) in 

response to noise or natural call stimuli, shown separately for distance calls and short calls (mean 

± SEM, N = 8 birds). Birds produced more distance calls and produced them in a greater 

proportion of trials in response to natural calls than to noise. In contrast, the number of and 

proportion of trials with short calls did not differ in response to noise and natural calls (* p < 

0.05, paired t test). 
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3.3.2 Behavioral experiment 1: the effect of spectral degradation on vocal responses to 

communication calls 

We first tested how spectral degradation affects the behavioral relevance of vocal 

communication sounds. Birds reliably responded to presentations of natural calls by producing 

their own distance calls (Figure 3.3A). The occurrence of response calls peaked within 1 s of 

stimulus call onset. The average strength of responses to natural calls was significantly higher than 

the average strength of responses to noise in the first 3 s (Figure 3.3B, two sample t-tests, p < 

0.01). Responses to noise and natural calls provided the behavioral baseline against which the 

effects of spectral manipulations on response calls could be assessed.  

To determine whether spectral degradation affects birds’ vocal responses, we created 

vocoded calls that varied in spectral resolution (noise-vocoding procedure detailed in Section 

2.2.2). Briefly, vocoded calls were composed of linearly spaced spectral channels. Each channel 

consisted of band-pass filtered noise whose amplitude modulation matched that of the 

corresponding natural call. The presence of distinct and evenly spaced frequency components was 

apparent in vocoded calls with 40 and 80 channels, as spectral channels were narrow enough for 

adjacent frequency components to fall into different channels (Figure 3.3C).  

We presented natural calls, vocoded calls, and filtered noise segments to isolated male 

birds. With increasing spectral resolution (channel number), the probability of a bird responding 

with a distance call (Figure 3.3D) and the number of response distance calls (Figure 3.3E) 

increased. The effect of stimulus type on both behavioral measures was significant (repeated-

measures ANOVA, proportion trials: F(6, 54) = 26.92, p < 0.001; no. of response calls: F(6, 54) = 

25.73, p < 0.001). Birds responded to a greater proportion of vocoded calls with 40 and 80 spectral 

channels than to noise (Figure 3.3D, p < 0.001, Tukey’s test). The 80-channel vocoded calls 
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elicited more response calls than did noise (Figure 3.3E, p < 0.001, Tukey’s test). For both 

behavioral measures, natural calls elicited significantly more responses than did vocoded calls or 

noise (all p < 0.05, Tukey’s test). These results showed that birds responded more to vocoded calls 

with higher spectral resolution, indicating that the presence of discrete frequency components was 

necessary for eliciting behavioral responses. 
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Figure 3.3 Spectral degradation decreases vocal responses to calls.  
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(A) Example of a single trial in the call-response behavior paradigm, in which presentation of a 

natural call evoked four response calls. (B) Average number of response calls in the first 5s 

following the onset of natural call and noise presentation, shown in 100ms time bins. Asterisks 

indicate significant differences between responses to natural calls and noise for each 1s period (* 

p < 0.05, two sample t-tests). (C) Example spectrograms of noise, vocoded versions of a call and 

the natural call show the differences in acoustic structure across test stimuli. Red bars indicate 

the width of each channel for each vocoded call shown. (D) Proportion of trials in which birds 

produced at least one response call (left) and (E) average number of response calls in the first 5 s 

for each stimulus type (mean ± SEM, N=10). Cyan and gray asterisks indicate significant 

differences from natural calls and noise respectively in stimulus-evoked responses. Black 

asterisks and brackets denote significant differences between responses evoked by vocoded calls 

with different channel numbers (* p < 0.05, Repeated-measures ANOVA with Tukey tests). 
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3.3.3 Behavioral experiment 2: the role of harmonicity in vocal responses to 

communication calls  

Spectral degradation with 27 or fewer channels reduces both modulation depth (distance 

between peaks and valleys in the call spectrum) and harmonicity (presence of frequency 

components that are integer multiples of a F0). To determine whether harmonicity was a salient 

feature for eliciting behavioral responses, we tested birds with inharmonic calls in which harmonic 

frequency ratios between spectral peaks were disrupted, but the discrete spectral components were 

maintained (Figure 3.4A). For inharmonic calls, each frequency component was randomly shifted 

up or down by a maximum amount of 10%, 30%, or 50% of the F0.  

Using the “call and response” paradigm, we presented natural calls (Nat), synthesized 

harmonic calls (Harm), synthesized inharmonic calls (with maximum frequency shifts of 10%, 

30% or 50%), and filtered noise segments. As in the previous behavioral experiment, stimulus type 

had a significant effect on birds’ responses (repeated-measures ANOVA, proportion trials: F(5, 

35) = 12.97, p < 0.001; no. of response calls: F(5,35) = 9.8, p < 0.001). Responses to inharmonic 

calls, regardless of maximum frequency shift, did not differ significantly from responses to Harm 

and Nat calls (Fig 3.4B-C; Tukey’s tests, all p > 0.9 for proportion trials and no. of response calls). 

Responses to all inharmonic calls were significantly above noise-evoked responses (Fig 2B-C, 

Tukey’s tests, all p < 0.001). These results show that birds’ responses to communication calls did 

not depend on harmonicity. 
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Figure 3.4 Vocal responses to calls are not affected by inharmonicity. 

(A) Example spectrograms of noise, synthesized inharmonic calls, synthesized harmonic call, and 

natural call. Gray dashed lines indicate harmonic placement of frequencies for the 4 components 

with highest amplitude. (B) Proportion of trials in which birds produced at least one response call 

and (C) average number of response calls for each stimulus type (mean ± SEM, N=8). Gray 

asterisks indicate significant differences from noise in stimulus-evoked responses (* p < 0.05, 

Repeated-measures ANOVA with Tukey’s tests). 
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3.3.4 Call responses show hierarchical progression in the auditory cortex 

Because we found that birds’ responses to communication sounds were dependent on 

spectral resolution, we sought to identify neurons in the auditory cortex whose responses were 

similarly modulated by spectral resolution. Using 32 channel multi-electrode arrays, we recorded 

the extracellular activity of single auditory neurons in awake birds presented with natural and 

vocoded calls (Figure 3.5B). Similar to mammalian cortex, zebra finch auditory cortex (AC) 

processes sound hierarchically (Figure 3.5A-B). Field L intermediate regions, L2a and L2b 

(hereafter intermediate-a and intermediate-b), receive input from the auditory thalamus and relay 

information to the superficial (L1/CM) and deep (L3) regions; the superficial regions also project 

to the deep region (Vates et al., 1996). The deep region is a major source of projections to the 

secondary auditory cortex (NC) and subcortical regions (Mello et al., 1998).  

Single neurons’ spiking responses to calls (natural and vocoded) were progressively lower 

and more selective along the cortical processing pathway (Figure 3.5C), in agreement with 

previous reports of song encoding in these regions (Calabrese & Woolley, 2015; Meliza & 

Margoliash, 2012). Stimulus-evoked firing rates differed significantly across brain regions (Figure 

3.5C, Left, ANOVA, F (3,843) = 23.09, p < 0.001); neurons in the intermediate-a region fired at 

higher rates than did neurons in all other regions (Tukey’s test, p < 0.001), and secondary-region 

neurons fired at lower rates than did neurons in other regions (Tukey’s test, p < 0.05). Response 

selectivity, defined as the proportion of calls (natural and vocoded) that failed to evoke significant 

driven firing rates, was significantly lower in the intermediate-a region than in all other regions 

(Figure 3.5C, Right, ANOVA, F (3, 843) = 13.11, p < 0.001; Tukey’s test, p < 0.001).  
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Figure 3.5 Anatomical organization, major connections, and neural responses of the 

songbird auditory cortex (AC).  

(A, Left) Cresyl violet stained parasagittal section of the songbird brain. Dashed lines delineate 

major anatomical subdivisions. (Middle) Traced diagram of the same section, with color and 
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labeling denoting cortical regions. (Right) Circuit diagram of major projections in the songbird 

AC. Adapted from: (Calabrese & Woolley, 2015; Y. Wang et al., 2010) (B) Histological section 

showing locations of the four electrode shanks, labeled with DiI (orange). Electrode shanks show 

recording sites spanning multiple AC regions. (C) Average driven firing rates (left) and 

selectivity (right) in different regions computed from single neuron responses to natural and 

vocoded calls (* p < 0.05, one-way ANOVA with Tukey tests; intermediate-a, N = 111; 

intermediate-b, N = 189; deep, N = 411; secondary, N = 136 call-responsive units). Bar graphs 

show mean ± SEM. (D) Example spike trains of single neurons in intermediate and deep regions 

illustrating responses evoked by vocoded and natural calls. Spectrograms of stimuli are shown 

above the spike trains.  
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3.3.5 Auditory cortex tonotopy differs along the medial-lateral axis 

 Tonotopy, the systematic variation in best frequencies (BFs) of neurons from low to high 

values along a spatial axis, is a fundamental organizing principle of the primary auditory cortex 

(Bendor & Wang, 2005; Terleph et al., 2006; Tsukano et al., 2017).  We sampled units broadly in 

the auditory cortex, using electrode arrays where 32 recording sites were arranged in a dense grid 

with known positional differences from each other. This allowed us to investigate the extent of 

tonotopic organization and relate it to spectral resolution selectivity. We anatomically mapped BFs 

along the sagittal plane by plotting neurons by their reconstructed recording coordinates, color 

coding them by best frequency, and overlaying these plots on anatomically traced sagittal sections 

of the auditory cortex (Figure 3.6A).  

In the medial portion of auditory cortex (estimated 0.7 mm – 1.3 mm from the midline), 

neurons were organized by BFs along the sagittal plane (Figure 3.6A-B). Best frequencies 

increased from caudal-dorsal to rostral-ventral, along the long axis of intermediate-a. To quantify 

spatial progressions in BF, we used multiple linear regression to predict BFs using the rostral-

caudal (RC) and dorsal-ventral (DV) coordinates. For neurons that were 0.7 mm to 1.0 mm from 

the midline, a linear model with RC and DV as predictor variables were significantly predictive of 

BFs (Figure 3.6A, bottom; Table 3.1; F = 22.0, p < 0.001, R2 = 0.47). For neurons that were 1.0 

mm to 1.3 mm from the midline, the model was likewise a significant predictor of BFs, but the 

percentage of variance explained was lower (Figure 3.6B, bottom; Table 3.2; F = 23.3, p < 0.001, 

R2 = 0.19). For neurons that lie further than 1.3 mm from the midline, RC and DV coordinates did 

not predict BFs (Figure 3.6C-D; 1.3 mm - 1.6mm & 1.6 mm - 1.9 mm: F = 1.8 & 2.0, p > 0.1, R2 

= 0.01 & 0.05). 
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Figure 3.6. Tonotopic organization along the sagittal plane is restricted to the medial aspects 

of the auditory cortex.  

(A, B, C, D top) show tone-responsive single units, color-coded by their best frequencies, 

overlaid on anatomical tracings of sagittal sections. Neurons were segmented by their distance 

from the midline into the following groups: (A) 0.7 mm to 1.0 mm, (B) 1.0 mm to 1.3 mm, (C) 

1.3 mm to 1.6 mm, and (D) 1.6 to 1.9 mm. Shown below each anatomical plot are scatter plots 

showing how best frequencies vary with rostral-caudal (RC) coordinate (left) and how best 

frequencies vary with dorsal-ventral (DV) coordinate (middle). Gray lines show best fit least-

squares regression lines. Best frequencies predicted by a multiple linear regression model with 

RC and DV coordinates are plotted against actual best frequencies (right).  
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 b SE b β Sig. 

Intercept -1249.1 775.9 -0.04  

Rostral-caudal coordinate 1958.6 430.3 0.52 *** 

Dorsal-ventral coordinate 1551.0 246.8 0.71 *** 

 

Table 3.1. Spatial variation of best frequencies in the auditory cortex (0.7 - 1.0 mm from 

midline).  
Table shows results of multiple linear regression using rostral-caudal and dorsal-ventral coordinates to 

predict best frequencies of auditory cortical neurons 0.7 to 1.0 mm from the midline. b = coefficient 

for the given predictor variable; SE b = standard error of coefficient; β = standardized coefficient; 

Sig = significance level of coefficient. *** P < 0.001 

 

 b SE b β Sig. 

Intercept 797.9 428.8 -0.02  

Rostral-caudal coordinate 1763.2 344.7 0.34 *** 

Dorsal-ventral coordinate 571.7 209.6 0.19 ** 

 

Table 3.2. Spatial variation of best frequencies in the auditory cortex (1.0 - 1.3 mm from 

midline). 

Table shows results of multiple linear regression using rostral-caudal and dorsal-ventral coordinates 

to predict best frequencies of auditory cortical neurons 1.0 to 1.3 mm from the midline. b = 

coefficient for the given predictor variable; SE b = standard error of coefficient; β = standardized 

coefficient; Sig = significance level of coefficient. *** P < 0.001, ** P < 0.01 
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3.3.6 Anatomical organization of spectral selectivity for call stimuli 

To assess neuronal sensitivity to spectral degradation, we compared each neuron’s 

responses to vocoded versions of the natural calls (e.g. Figure 3.5D). A spectral selectivity index 

(SSI) was used to compare units’ responses to high-resolution vocoded calls (40 and 80 channels) 

and low-resolution vocoded calls (16 and 20 channels). The SSI was defined as the average firing 

rates evoked by high-resolution vocoded calls minus that evoked by low-resolution vocoded calls, 

normalized by their sum (SSI further detailed in Section 2.5.6).  

To determine the spatial organization of response selectivity, we anatomically mapped SSI 

by plotting the locations of recorded neurons based on reconstructed recording coordinates and 

overlaying these plots on tracings of AC regions (Figure 3.7B). Maps showed that SSI was 

spatially organized, with neurons with positive selectivity (blue) concentrated in the region ventral 

and caudal to intermediate-a (Figure 3.7B, top-right and bottom-left). Neurons with positive 

spectral selectivity did not appear concentrated along particular iso-frequency columns along the 

tonotopic map; further analysis of the relationship between best frequencies and SSI is described 

in Section 4.3.3. The medial-lateral planes with the strongest clustering of positive spectral 

selectivity (1.0 mm - 1.6 mm, Figure 3.7B, top-right and bottom-left) traversed the planes that we 

identified as tonotopic along the sagittal plane (1.0 mm - 1.3 mm, Figure 3.6B) and the planes 

where we did not identify tonotopic organization along the sagittal plane (1.3 – 1.6 mm, Figure 

3.6C). 
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Figure 3.7 Neurons selective for high spectral resolution were localized to the deep region.  

(A) Normalized peri-stimulus time histograms (PSTHs) of three single units that were classified 

as low-resolution-selective (LS), unselective (US), and high-resolution-selective (HS). 

Responses to natural calls and their vocoded versions are overlaid and color-coded according to 

the rightmost legend. (B) Spatial organization of SSI in the AC (N = 1154 call-responsive units). 

Each of the four sagittal brain diagrams show single units within a 0.3mm range on the medial-

lateral axis (estimated medial-lateral coordinates: 0.7 - 1.0mm, 1.0 - 1.3mm, 1.3 - 1.6mm, and 

1.6 - 1.9mm), plotted according to their rostral-caudal and dorsal-ventral coordinates. Each data 

point represents a single unit and is color-coded according to its SSI. To the right of each brain 

section diagram, average SSIs (mean ± SEM) for each dorsal-ventral position bin are plotted. 

Note that average SSI was only computed for bins with at least 5 single units recorded.  
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3.3.7 Spectral selectivity differs between auditory regions, but not between putative 

excitatory principal cells and putative inhibitory interneurons  

 Given our observation that spectral selectivity is spatially organized in the auditory cortex, 

we compared the distribution of SSIs across anatomically defined brain regions. We also tested 

whether SSIs differed between the two major cell types in the auditory cortex.  

As in mammals, the songbird auditory cortex is comprised of two major 

electrophysiological cell types that differ in action potential width and average firing rate. Neurons 

with narrower action potentials and higher firing rates are thought to be excitatory principal cells, 

and neurons with broader action potentials and lower firing rates are thought to be inhibitory 

interneurons (Araki et al., 2016; Harris & Mrsic-Flogel, 2013; Meliza & Margoliash, 2012). 

Because the correspondence between electrophysiological cell type and morphological or 

biochemical features has not been experimentally established in the songbird, we refer to them as 

putative excitatory principal cells (pPCs) and putative inhibitory interneurons (pINs).  

In all four regions examined, neurons showed a bimodal distribution of action potential 

widths (the width at half-height of the negative peak, plus the width at half-height of the positive 

peak) (Figure 3.8C, top). Neurons were separated into two clusters based on action potential width 

using a Gaussian mixture model (Figure 3.8A, C).  

We assessed whether each region’s pINs and pPCs were significantly low-resolution- or 

high-resolution-selective by testing whether the mean SSIs were significantly different from zero 

(Figure 3.8A-B). There were no significant differences between pINs and pPCs in any region 

examined. In the deep region, both pINs and pPCs were selective for high-resolution calls (p < 

0.001, one sample t-test). In the intermediate-b region, both pINs and pPCs in were selective for 
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low-resolution calls (p < 0.001, one-sample t-test). SSIs in the intermediate-a region and secondary 

region did not differ significantly from zero (p > 0.5, one-sample t-test).  

Similar to previous studies, we found that neurons with greater action potential width have 

lower firing rates to auditory stimuli (Araki et al., 2016; Calabrese & Woolley, 2015). A significant 

negative correlation was found between call-evoked firing rates and action potential width in all 

four regions examined (Figure 3.9C, middle; Pearson’s r between -0.57 and -0.51, all p < 0.001). 

There was no correlation between action potential width and SSI in all four regions examined 

(Figure 3.9C, bottom, Pearson’s r between 0.04 to 0.16, all p > 0.05).  

As cell types did not differ in spectral selectivities, we combined them in subsequent data 

analyses in this chapter. For the four regions examined, we analyzed neurons’ response 

selectivities (proportion of stimuli that did not evoke significant responses, as in Figure 3.5C) for 

each stimulus category (Figure 3.9). We found that only the deep region had response selectivities 

that differed between stimulus categories. A greater proportion of high-resolution- than low-

resolution vocoded calls evoked significant responses from deep-region neurons (Figure 3.9C, 

ANOVA, F (6, 2870) = 9.21, p < 0.001; Tukey’s test, p < 0.05). 

Taken together, these results indicate that high-spectral-resolution-selective neurons are 

localized to the deep region, but do not correspond to one particular auditory cortical cell type. 
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Figure 3.8 Call firing rates and spectral selectivity by cell type and auditory region. 

(A) Average action potential waveforms (mean ± SEM) of putative inhibitory interneurons 

(pINs, magenta) and putative excitatory principal cells (pPCs, green). Amplitudes were scaled to 

range between -1 and 1. (B) Boxplots showing the distribution of spectral selectivity indices 

(SSIs) for pINs and pPCs in four auditory cortex regions. Asterisks show significant differences 

from zero (one-sample t-test, p < 0.001). Deep region selectivities are significantly positive and 

Int-b region selectivities are significantly negative. (C, top) Histogram of action potential 

durations for each auditory region examined. (C, middle) Scatter plots of action potential 

duration against firing rate for each region examined. (C, bottom) Scatter plots of action potential 

duration against SSI for each region examined. Pearson’s r correlation coefficients are shown on 

the top-right of each scatter plot.  
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Figure 3.9 Response selectivity for call stimuli in the songbird auditory cortex.  

Selectivity, defined as the proportion of stimuli that did not elicit a significant response, for 

different stimulus categories in (A) intermediate-a (N = 111), (B) intermediate-b (N = 189), (C) 

deep (N = 411), and (D) secondary regions (N = 136). Bar graphs show mean ± SE. Asterisks 

denote significant differences revealed by Tukey tests following one-way ANOVA, P < 0.05. 
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3.3.8 Spectral selectivity is time-window dependent 

 To investigate deep region responses to call stimuli in more detail, we segmented neurons 

into three groups by their SSI and compared their spontaneous firing rates, as well as stimulus-

evoked firing rates in different time windows. Neurons with SSI < -0.2, indicating 50% greater 

response to low-resolution vocoded calls (16 and 20 channels) were classified as low-resolution-

selective (LS). Neurons with SSI > 0.2, indicating 50% greater response to high-resolution 

vocoded calls (40 and 80 channels), were classified as high-resolution-selective (HS). The 

remaining neurons with -0.2 < SSI < 0.2 were classified as unselective (US) (Figure 3.10A). 

 LS, US, and HS neurons differed significantly in spontaneous firing rates, with US neurons 

having higher spontaneous rates than LS and HS neurons (Figure 3.10B, ANOVA, F(2, 408) = 

7.34, p < 0.001; Tukey’s tests, p < 0.05). Call-evoked firing rates, taken as the highest firing rate 

elicited by vocoded or natural calls for each neuron, did not differ significantly between the three 

groups of neurons (Figure 3.10C, ANOVA, F(2,408) = 2.93, p > 0.05). Call-evoked response 

strength (call-evoked firing rate minus spontaneous rate for each neuron) did not differ between 

the three groups of neurons (Figure 3.10D, ANOVA, F(2,408) = 1.93, p > 0.05). 

 We investigated how neurons’ responses vary with spectral resolution by plotting average 

response strengths of LS, NS, and HS neurons for each stimulus category (Figure 3.10E). We 

considered different time windows to calculate spike rates, and found that neurons’ stimulus 

response curves differ by time window.  

When considering a broad time window – including all spikes between stimulus onset and 

20 ms after stimulus offset – we found that there was a significant main effect of neuron group on 

firing rates (Figure 3.10E, left, ANOVA, F(2,  2856) = 27.57, p < 0.001). While there was no 

significant main effect of stimulus type (Figure 3.10E, left, ANOVA, F(6, 2856) = 0.65, p > 0.05), 
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there was a significant interaction between selectivity group and stimulus type (Figure 3.10E, left, 

ANOVA, F(12, 2856) = 0.65, p < 0.001). This indicates that the effect of stimulus type on neural 

responses is dependent on the selectivity group of neurons.  

During the onset period (first 50 ms after stimulus onset), US neurons had higher responses 

than LS and HS neurons (Figure 3.10E, second left, ANOVA, F(2, 2856) = 83.08, p < 0.001), but 

there was no significant effect of stimulus type or interaction effect between neuron group and 

stimulus type (both p > 0.1).  

Response during the sustained time window (between 50ms after stimulus onset, and 

stimulus offset) and during the offset period (first 50 ms after stimulus offset) were similar to that 

of the broad time window (Figure 3.10E, two right figures). For both sustained and offset 

response strengths, there was a significant main effect of selectivity group (p < 0.001), no 

significant main effect of stimulus type (p > 0.7), and a significant interaction between selectivity 

group and stimulus type (p < 0.01).  

These results indicate that sensitivity to spectral resolution develops after the first 50 ms 

of stimulus presentation. Spectral resolution sensitivity during the sustained and offset periods 

drives overall sensitivity.  
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Figure 3.10 Deep region response strengths to different stimuli and at different time 

windows.  

(A) Histogram showing distribution of spectral selectivity index (SSI) of deep region neurons. 

Dotted lines show SSI cutoffs for segmentation. Red, low-resolution-selective (LS); gray, 

unselective (US); blue, high-resolution-selective (HS). (B, C, D) Spontaneous firing rates (B), 

stimulus-evoked firing rates (C), and response strengths (D) of LS, US, and HS neurons. 

Asterisks indicate significant differences between groups (ANOVA and Tukey’s tests, p < 0.05). 

(E) Response strengths of LS, US, and HS at different time windows relative to stimulus 

presentation. Schematics above each graph show the time window during which spike rates were 

quantified. Overall window (left): from stimulus onset until 20 ms after stimulus offset; onset 

window (second left): the 50 ms following stimulus onset; sustained window (second right): the 

time subsequent to the onset window until stimulus offset; offset window (right): the 50 ms after 

stimulus offset.  

  



90 

 

3.4  Discussion 

We found that spectral resolution of communication calls is behaviorally relevant, and is 

represented by a distinct neuronal population within the auditory cortex. A robust neural sensitivity 

to spectral resolution emerges within the cortical circuit between the thalamorecipient and deep 

regions. Spectral selectivity of neurons in the deep output region may serve the extraction of 

vocalizations from the environment and the perception of social information carried in those 

signals. 

The spectral structure of speech is important for human communication (further reviewed 

in Section 1.3.3). It contributes to the extraction of social information from voices, as well as the 

ability to understand speech in the presence of interfering signals (Gonzalez & Oliver, 2005; 

Popham et al., 2018). Our experiments demonstrate that for zebra finches, the spectral features of 

calls must be preserved to a certain degree to elicit vocal responses. To elicit responses, calls must 

contain distinct spectral peaks and valleys, but the spectral peaks need not be harmonically related.  

Our results add to existing knowledge on acoustic features that drive social responses to 

vocalizations in the zebra finch. In the spectral domain, call stimuli that have F0s within the range 

of about 550-750 Hz (Vicario et al., 2001) evoke stronger behavioral responses. Wideband calls 

are preferred to narrowband calls, with at least four frequency components required to elicit typical 

behavioral responses (Vignal & Mathevon, 2011). Temporally, calls with longer duration (Vicario 

et al., 2001) and naturalistic amplitude modulation (Vignal & Mathevon, 2011) evoke stronger 

responses. In our study, only 40- and 80-channel vocoded calls had distinct frequency components, 

and only those vocoded calls evoked significant vocal responses. This selectivity is likely not a 

response to coarse spectral shape and amplitude envelope, as vocoded calls with differing channel 
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numbers have similar coarse spectral shapes and amplitude envelopes that are highly correlated to 

those of natural calls (see Figure 2.1).  

We also found that birds treated inharmonic calls similarly to harmonic calls, despite their 

ability to detect fine frequency shifts in harmonic sounds (discrimination thresholds < 1Hz) (Lohr 

& Dooling, 1998) . Hence, while birds likely discriminate between inharmonic and harmonic calls, 

this difference may not lead to differences in vocal responses to these sounds. However, since 

birds can perceive the difference between inharmonic and harmonic calls, our results do not 

preclude the possibility that harmonicity may be important for behaviors other than vocal 

responses to call playbacks. For example, female preference for male song (S. C. Woolley & 

Doupe, 2008) may depend on the presence of harmonically related frequencies in harmonic stack 

syllables, and birds may preferentially elicit playbacks of harmonic vocalizations over inharmonic 

vocalizations. In addition, birds could use harmonicity as a grouping cue to extract individual 

vocalizations from a mixture of different birds’ vocalizations (Schneider & Woolley, 2013). Study 

of the perception of inharmonic signals in a variety of behavioral contexts would aid in further 

understanding how birds use harmonic structure for communication.  

The importance of spectral structure could differ between types of auditory tasks. A 

previous study showed that birds trained to recognize harmonic musical tone sequences recognized 

noise-vocoded versions that lack deep spectral modulations and harmonicity, as long as the coarse 

spectral shape was preserved (Bregman et al., 2016). In contrast, our study shows that coarse 

spectral shape is insufficient to elicit vocal responses. Further studies are needed to determine the 

significance of spectral resolution for other communication tasks such as extracting signals from 

sound mixtures.  
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In addition to tonotopic organization, which we found to be more prominent in the medial 

portion than in the lateral portion of auditory cortex, we also identified robust anatomical 

localization of spectral resolution sensitivity. Our identification of high-resolution-selective 

neurons in the deep region of primary auditory cortex suggests that the processing of behaviorally 

relevant sounds engages specialized neural pathways. Spectral resolution sensitivity in deep region 

neurons is not apparent in the first 50 ms after stimulus onset but emerges subsequently.   

To understand the tuning properties driving spectral resolution selectivity, and to link 

neural responses to birds’ behavioral preferences, we further characterized neural responses in the 

deep region using a wide array of synthetic and natural stimuli. These analyses form the basis of 

Chapter 4.   
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Chapter 4  

SPECTRAL MODULATION DEPTH SENSITIVITY UNDERLYING 

SELECTIVITY FOR BEHAVIORALLY RELEVANT 

VOCALIZATIONS  

4.1  ABSTRACT 

 Harmonicity and spectral modulation are omnipresent and often intertwined in natural 

vocalizations. However, they may differ in importance for communication behavior and engage 

fundamentally different auditory processing mechanisms. Therefore, it is important to understand 

which of these spectral properties underlie the neural processing and perception of vocalizations. 

Spectral degradation – reducing frequency information into a small number of spectral channels – 

affects the perception of social information from vocalizations. Our behavioral studies described 

in Chapter 3 showed that spectral degradation of vocalizations reduces evoked vocal responses 

from songbirds. Rendering vocalizations inharmonic did not impair vocal responses, indicating 

that birds require spectral modulations (fluctuations in power along the frequency axis), but not 

harmonicity (integer ratios among frequency components), for behavioral responses.  

 In the previous chapter, we described a distinct population of neurons in the deep region 

whose responses decrease with spectral degradation. Here, we further characterize the responses 

of these neurons to calls and a range of other stimuli to understand their response dynamics and 

spectral tuning properties. First, we investigated whether neurons that show spectral selectivity for 

calls can function as detectors of particular spectral structure in the context of song, where 

individual sound elements (syllables) range from noisy to spectrally modulated and harmonic. We 



94 

 

found that high-resolution-selective responses were robust, persisting with changes in acoustic 

context. By analyzing responses to broadband spectrally rippled sounds (“ripples”), we identified 

sensitivity to spectral modulation depth, instead of to harmonicity, as a driver for these neurons’ 

selectivity for behaviorally relevant vocalizations. Finally, by characterizing the temporal response 

properties of neural responses to calls, ripples, and tones, we reveal that neurons with high spectral 

selectivity are characterized by distinct temporal response patterns, suggesting a difference in the 

inputs that they receive.  

4.2  INTRODUCTION 

The previous chapter (Chapter 3) established that birds’ vocal responses to 

communication calls require spectral resolution to be sufficiently high to reconstruct spectral peaks 

and valleys. Neurons in the deep region, but not those in thalamorecipient regions, show 

corresponding selectivity for calls with high spectral resolution.  

Here, we begin by characterizing deep region neurons’ responses to song, which is a 

complex string of acoustic elements (syllables) that show divergent acoustics. Syllables naturally 

range from noisy to deeply spectrally modulated and harmonic, providing an opportunity to test 

whether spectral selectivity (as assessed using vocoded calls) generalizes to the processing of 

natural variations in spectral structure. In addition, previous studies have shown that auditory 

cortical neurons’ responses to particular syllables can be modulated by whether they are preceded 

by silence or by other syllables (Schneider & Woolley, 2013), so it is possible that spectrally 

selective responses, which we quantified by presenting isolated sound elements, may differ when 

neurons are processing song. We asked whether deep region neurons’ spectral selectivity would 

persist in the context of song, and showed that spectral selectivity is robust to acoustic context; 



95 

 

neurons that are selective for high-resolution calls also show elevated responses to syllables with 

more prominent spectral modulations and harmonic structure within songs.  

Spectral selectivity as exhibited by deep region neurons requires identifying and 

representing specific differences in acoustic structure between high-resolution vocoded calls (40 

and 80 channels) and low-resolution ones (16 and 20 channels), and between noisy syllables and 

harmonic stack syllables in song. Spectral degradation, achieved by reducing the number of 

channels in a noise vocoder, decreases both spectral modulation depth and harmonicity. Similarly, 

harmonic stack syllables in a zebra finch song contain deeper spectral modulations and greater 

harmonicity than noisy syllables. While deep spectral modulations and harmonicity typically co-

occur in vocalizations, their neural processing may engage fundamentally different neural 

mechanisms. Our studies investigating neural responses to spectrally modulated ripples (“ripples”) 

with varying phases and depths aimed to dissociate these two spectral features and determine how 

each feature contributes to spectral selectivity for behaviorally relevant communication calls.  

We defined spectral modulation depth as the difference in amplitude (dB) between peaks 

and valleys of spectral energy. AC neurons that are sensitive to amplitude differences across 

frequencies have been identified in guinea pigs (Catz & Noreña, 2013) and marmosets (Barbour 

& Wang, 2003), and enhanced neural representation of spectral peak-to-valley differences is 

predicted by computational models to result from lateral inhibition (Shamma, 1985; Yost, 1986).  

Harmonicity was defined as the alignment between frequency components of a stimulus 

with integer multiples of an F0 (harmonic template). Previous studies have shown that a sensitivity 

to harmonic structure can result from non-linear facilitation of neural responses to combinations 

of harmonically related tones (Feng & Wang, 2017). The detection of harmonically related 

frequency components is a proposed mechanism in spectral models of pitch extraction (Duifhuis 
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et al., 1982; Scheffers, 1983). Through analyzing deep region population responses to ripples and 

relating ripple responses to calls spectral selectivity, we established that selectivity for behaviorally 

relevant calls is driven by sensitivity to modulation depth, and not to harmonicity. 

In addition to identifying spectral features driving selectivity for communication calls, we 

also characterized how neural responses developed over time. We measured first-spike latencies 

to tones, ripples, and calls, and the temporal dynamics of neural responses to call stimuli. Latencies 

of response can be an indicator of the neurons’ hierarchical position along the processing pathway, 

and may encode stimulus features (Kikuchi et al., 2014; Mormann et al., 2008; Phillips, 2000). 

Neural responses at different time windows have been shown to differ in stimulus selectivity, with 

onset firing playing different roles than sustained firing in stimulus representation (X. Wang et al., 

2005).  

4.3  RESULTS 

4.3.1 Song representation transforms along the auditory cortical pathway 

 In order to investigate how neurons in the auditory cortex encode complex vocalizations in 

which acoustic features naturally vary over time, we recorded auditory cortical neurons’ responses 

to song. For a subset of neurons that we collected call response data from, we also presented five 

zebra finch songs as stimuli (e. g. Figure 4.1). 

 We examined the pPSTHs of intermediate-a, intermediate-b, deep, and secondary regions 

evoked by song stimuli. Call-responsive neurons in all regions examined showed population 

activity that fluctuated during song presentation (Figure 4.2). Average firing rates to song differed 

significantly between regions and between putative principal cells (pPCs) and putative inhibitory 

interneurons (pINs) (Figure 4.3A; ANOVA, Fregion(3, 395) = 43.2, p < 0.001; Fcell type(1, 395) = 

119.0, p < 0.001). Specifically, intermediate-a pPCs had stronger responses to song than pPCs in 
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all other examined regions, and intermediate-a pINs had stronger responses to song than pINs in 

all other examined regions (Tukey’s tests, all p < 0.001). pINs showed greater firing rates to song 

than pPCs in all brain regions (Tukey’s tests, all p < 0.001).   

Intermediate-a population responses showed sharp increases and decreases corresponding 

to syllable onsets and offsets. Intermediate-b, deep, and secondary region population responses 

were less temporally precise; responses to the edges of syllables were relatively “softened” in these 

regions compared to those in intermediate-a (e.g. Figure 4.2). We quantified each region’s pIN 

and pPC population activity rise times (how fast the pPSTH peaks after stimulus onset) and fall 

times (how fast the pPSTH reaches a trough after stimulus offset) for each syllable onset and offset 

across the five songs. Rise times differed between brain regions (Figure 4.3B; ANOVA, F(3, 516) 

= 14.4, p < 0.001). The intermediate-a pPC population had shorter rise times than those in all other 

regions (Tukey’s tests, p < 0.01), and the intermediate-a pIN population had shorter rise times than 

those in the deep and secondary regions (Tukey’s tests, p < 0.05). There were no significant 

differences in rise times between pPCs and pINs within any region. Fall times differed between 

brain regions and cell types (Figure 4.3C; ANOVA, Fregion(3, 465) = 9.95, p < 0.001; Fcell type(1, 

465) = 10.2, p < 0.01). In intermediate-a and -b, fall times of the pIN population were significantly 

shorter than those of the pPC population (Tukey’s tests, p < 0.05). Further, intermediate-a pIN 

population fall times were significantly shorter than those in the deep and secondary regions 

(Tukey’s tests, p < 0.01). Taken together, these results indicate that population responses are more 

strongly time-locked to syllable onsets in intermediate-a than all other regions. Population 

responses to syllable offsets were cell-type specific; intermediate-a and -b pIN population 

responses decayed faster with stimulus offsets compared to pPC responses within regions, and to 

pIN responses in the secondary region.  
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 Our findings on population responses in different auditory regions are largely consistent 

with previous findings. A previous study found that individual intermediate-a neurons show 

synchronous responses to song, leading to population responses that were deeply modulated in 

time (Lim et al., 2016). Individual neurons in higher regions, compared to those in intermediate-

a, were shown to have more diverse responses to song, such that the population-averaged responses 

were relatively weakly modulated over time (Lim et al., 2016). Our data show that intermediate-a 

population responses were stronger and more rapidly modulated than that of other regions by 

syllable onsets and offsets, consistent with these previous results. Secondary region neurons have 

been shown to represent song with a sparse and distributed code, such that each neuron respond 

with spikes during narrow segments of song, collectively covering the entire song (Schneider & 

Woolley, 2013). Low average responses to song in the secondary region observed from our data 

could result from a low fraction of the population being active at any particular moment during 

song presentation. Population coding, as assessed by the spike timing correlation between pairs of 

neurons, was found to differ between brain regions and cell types (Calabrese & Woolley, 2015). 

Stimulus-evoked and spontaneous correlations, thought to result from shared input and direct 

synaptic connections respectively, are greater in pINs compared to pPCs, and greater in the deep 

region compared to the intermediate regions (note that intermediate-a and intermediate-b units 

were analyzed in combination in this previous study). Our findings show that population response 

dynamics to song, as assessed by the rise and decay times of neural responses after syllable onsets 

and offsets, also differ between cell types and between deep and intermediate-a regions.   
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Figure 4.1 Single 

neuron responses to 

call and song stimuli. 

Shown example is a HS 

neuron from the deep 

region. (A) Raster plots 

showing spikes fired 

before, during and after 

the presentation of 

vocoded (16 to 80 

channels) and natural 

calls. Responses are 

shown over 10 

repetitions of each 

stimulus. Black bars 

below raster plots 

indicate duration of 

stimulus. (B) Raster 

plots showing spikes 

fired before, during and 

after the presentation of 

five songs. Responses 

are shown over 10 

repetitions of each song. 

Black bars below raster 

plots indicate duration 

of stimulus.  
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Figure 4.2 Population responses to song in auditory cortical regions.  

(A, B) Population PSTHs of intermediate-a (N = 38), intermediate-b (N = 95), deep (N = 210), 

and secondary (N = 57) regions in response to two out of five presented songs. Spectrograms of 

song stimuli are shown directly above intermediate-a pPSTHs. Normalized amplitude envelope 

and feature vector for goodness of pitch are shown above spectrograms. Note that the Y-axis 

range for intermediate-a population responses differs from the ranges for all other regions. 
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Figure 4.3 Song response magnitude and 

dynamics across brain regions and cell 

types.  

(A) Bar plots (mean ± SE) showing 

average song-evoked firing rates of pINs 

(dashed outlines) and pPCs (solid 

outlines) in different auditory cortical 

regions. (N [pIN, pPC] = [21, 17], [31, 

64], [44, 166], [12, 45] for intermediate-a, 

intermediate-b, deep, and secondary 

regions) (B) Bar plots (mean ± SEM) 

showing average time to peak population 

response after syllable onsets (N = 67 

syllables). (C) Bar plots (mean ± SEM) 

showing average time to trough in 

population response after syllable offsets 

(N = 67 syllables). For all panels, 

asterisks directly above pairs of bars 

indicate significant differences between 

pINs and pPCs in the same brain region 

(Tukey’s tests). Bar brackets extending 

over multiple bars indicate significant 

differences in pairwise comparisons 

between the same cell type in different 

brain regions (Tukey’s tests). * p < 0.05, 

** p < 0.01, *** p < 0.001. Note that 

when multiple significant comparisons are 

shown with the same bar brackets, the 

lowest significance level is displayed. 
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4.3.2 Spectral selectivity to calls persists in the context of song 

After characterizing the transformation of song responses across auditory regions, we 

examined population responses in the deep region and how they differed between neuron groups 

with differing call spectral selectivity. pPSTHs for LS (N = 27), US (N = 122), and HS neurons 

(N = 122) were constructed for each song and two examples are shown in Figure 4.4.  

LS, US, and HS neurons’ response patterns differed throughout the presentation of song 

stimuli. US neurons responded significantly above spontaneous firing (p < 0.05) during larger 

proportions of total song duration than did HS and LS neurons (Figure 4.4C; ANOVA, F(2, 

207) = 7.55, p < 0.001, Tukey’s tests, p < 0.01 for US vs. LS and US vs. HS). Observations from 

the group pPSTHs suggested that at times when response diverged among the three groups, US 

responses were higher than LS and HS responses. At other times, US responses largely 

overlapped with HS or LS responses.  

In order to determine whether response divergences and convergences were driven by 

specific acoustic features in song elements, we segmented the non-silent portions of song into 

parts where US responses significantly exceeded HS responses (US > HS; p < 0.05 in two-

sample, one-sided t -test) and parts where US responses were not significantly different from HS 

responses (US = HS; p > 0.05 in two-sample, one-sided t-test), and compared the acoustic 

features of song elements during these response portions (Figure 4.5). For this analysis, pPSTHs 

were shifted in time according to the time lag of maximum correlation between pPSTHs and the 

amplitude envelope of each song, in order to account for the latency of neural responses. We did 

not further analyze LS responses in this manner as the sample size was small (N = 27) and 

because LS neurons constitute the smallest portion of deep region neurons.  
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The song segment analysis revealed that response divergence and convergence between 

HS and US neurons are correlated with variations of multiple acoustic features in song. The song 

segments where US > HS significantly differed from the song segments where US = HS in 

frequency modulation, goodness of pitch, and entropy (Figure 4.5D; two sample t-tests, all p < 

0.001). Specifically, US responses and HS responses were comparable during segments of song 

with lower frequency modulation, higher goodness of pitch, and more negative Wiener entropy. 

These are features characterizing the “harmonic stack” syllables in song. US responses were 

significantly higher than HS responses during portions of song with greater frequency 

modulation, lower goodness of pitch, and less negative entropy. Mean frequency did not differ 

between periods of divergence and convergence between HS and US neurons (Figure 4.5D; 

two-sample t-test, p > 0.05).  

These results show that HS neurons maintain similar spectral selectivity when processing 

songs as that seen for the processing of vocoded calls. HS neurons preferentially respond to song 

elements characterized by low frequency variations over time, strongly harmonic frequency 

structure, and deeply modulated spectra, showing responses that are comparable in magnitude to 

those of US neurons. During the presentation of syllables that do not match this acoustic profile, 

HS responses were suppressed relative to US responses.  
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Figure 4.4 Deep region population responses to songs by call spectral selectivity group.  

(A, B) Population PSTHs of LS (N = 27), US (N = 122), and HS neurons (N = 61) to two out of 

five songs presented. Spectrograms are shown above pPSTHs. Shown songs correspond with 

those in Figure. 4.2.  (C) Bar graphs (mean ± SEM) showing the average percentage of the total 

duration across 5 song stimuli where neurons showed responses significantly above spontaneous 

rates at p < 0.05. Asterisks indicate significant differences between LS, US, and HS neurons 

(Tukey’s tests, p < 0.01).  
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Figure 4.5 Deep region population responses diverge and converge at acoustically distinct 

song segments.  

(A, B, C) pPSTHs of HS and US neurons to three out of five song stimuli, with song 

spectrograms shown directly above pPSTHs. pPSTHs were shifted in time according to the time 

lag of maximum correlation between pPSTHs and the amplitude envelope of each song. Tan 

lines above pPSTHs indicate non-silent segments of song (5 ms bins) where US responses were 

significantly higher than HS responses (p < 0.05, two-sample, one-sided t-tests). Tan lines below 

pPSTHs denote non-silent segments (5 ms bins) of song where US responses were not 

significantly different than HS responses. Green dashed outlines and symbols in (C) denote 

syllables that are used to illustrate acoustic features in (D). (D) Box plots showing differences in 

frequency modulation (FM), goodness of pitch, Wiener entropy, and mean frequency between 

song segments (across all five song stimuli) where HS and US responses did not differ (HS = 

US), and song segments where US responses were significantly higher than HS responses (US > 

HS). Example song syllables illustrating variations in each acoustic feature are shown to the right 

of each box plot. Asterisks indicate significant differences in acoustic features between HS = US 

and HS > US pPSTH segments (t-tests). * p < 0.001; FM = frequency modulation. 
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4.3.3 Selectivity for call spectral structure is explained by sensitivity to spectral modulation 

depth 

HS neurons, which responded more to high-resolution calls than low-resolution calls, also 

showed a sensitivity to Wiener entropy and goodness of pitch in song. Wiener entropy, which 

measures how uniform the sound spectrum is, becomes more negative when syllables vary from 

noise-like to harmonic, because harmonic stacks contain deeper spectral modulations. Goodness 

of pitch, which measures the strength of harmonic structure, also varies between noise-like and 

harmonic syllables, taking higher values for syllables with stronger harmonic structure. Hence, 

entropy (related to spectral modulation depth) and goodness of pitch (related to harmonicity) are 

naturally correlated in song, even though they measure two different aspects of spectral structure.  

We analyzed responses to spectrally rippled sounds (Shamma et al., 1995), where spectral 

modulation depth and harmonicity were varied separately. Spectral ripples (auditory equivalent of 

visual gratings) are composed of sinusoidal modulations along the frequency axis. In our ripple 

stimuli, we varied spectral modulation depth and phase parametrically, and included spectral 

modulation densities of 1.2, 1.6, and 2.0 cyc/kHz (see Section 2.3.2). As shown in Figure 4.6A, 

we defined the phase at which frequency peaks aligned with integer multiples of an F0 as zero. 

Phase-shifted ripples were defined by the amount of shift (in proportion of a cycle) relative to the 

phase-aligned ripple.  

Harmonicity is highest for the phase-aligned ripple (phase = zero) with maximum 

modulation depth, and decreases as phase deviates from zero and as spectral modulation becomes 

shallower (Figure 4.6B, left). Modulation depth specifies the peak-to-valley distance in the 

acoustic spectrum, and remains constant with variations in phase (Figure 4.6B, middle). Methods 
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for quantifying harmonicity by assessing stimulus alignment with a harmonic template are detailed 

in Section 2.5.9. 

Deep region population responses to ripples. To obtain an overview of deep region 

responses to ripples, we constructed depth-phase matrices of population firing rates. Population 

firing rates were higher in response to ripples with larger modulation depth, irrespective of phase 

(Figure 4.6B, right). To determine the respective contributions of spectral modulation depth and 

harmonicity, we tested whether adding each one as a predictor variable would significantly 

improve the ability of a multiple linear regression model to predict population firing rates (See 

Section 2.5.9). Harmonicity was not a significant factor in predicting population responses (Partial 

F-test, F(1, 116) = 0.19, P = 0.66; Table 4.1 and Figure 4.6C, left); modulation depth was a 

significant factor in predicting population responses (Partial F-test, F(1,116) = 136.62, P < 0.001; 

Table 4.2 and Figure 4.6C, right). By comparing the additional predictive value conferred by the 

inclusion of each factor, we concluded that population responses were primarily sensitive to 

modulation depth and insensitive to harmonicity. 
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Figure 4.6 Deep region population responses to ripples are predicted by spectral modulation 

depth and not by harmonicity.  

(A) Spectral profiles of ripple stimuli with varying phases and modulation depth. Shown spectral 

profiles are taken from ripple stimuli with spectral modulation density of 1.2 cyc/kHz. Gray lines 

indicate the expected locations of frequency components if they were integer multiples of an F0 

that matches the spacing between components (F0 = 1 kHz / 1.2 = 833 Hz). (B) Heat maps 

showing how spectral modulation depth (left) and harmonicity (middle) of ripple stimuli vary 

with the depth and phase parameters. (B; right) Heat map of population firing rates in response 

to ripples with varying phase and depth. Each pixel represents the mean z-scored firing rate 

across all deep region units (N = 315 ripple-responsive units). (C). Scatter plots showing how 

population firing rates scale with harmonicity (left) and spectral modulation depth (right). R2 

values of a linear model incorporating modulation density plus either harmonicity (left) or 

modulation depth (right) are shown. 
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b SE b β Sig. 

Step 1 
    

Constant -0.42 0.05 
  

Modulation density (cyc/kHz) 0.16 0.03 0.28 *** 

Modulation depth (dB) 0.0054 0.00036 0.78 *** 

Step 2 
    

Constant -0.42 0.05 
  

Modulation density (cyc/kHz) 0.16 0.03 0.28 *** 

Modulation depth (dB) 0.0055 0.00047 0.8 *** 

Harmonicity -0.024 0.055 -0.03 
 

 

Table 4.1 The effect of harmonicity on model prediction of deep region population responses 

to ripples.  

Table shows multiple linear regression results for reduced model (Step 1, omitting harmonicity) 

and full model (Step 2, adding harmonicity). Adding harmonicity did not significantly increase in 

the R2 (0.68 to 0.69; ΔR2 = 0.01; P = 0.66 for difference between reduced and full models). b = 

coefficient for the given predictor variable; SE b = standard error of coefficient; β = standardized 

coefficient; Sig = significance level of coefficient. *** P < 0.001 

 

 
b SE b β Sig 

Step 1 
    

Constant -0.33 0.073 
  

Modulation density (cyc/kHz) 0.14 0.044 0.24 ** 

Harmonic template match 0.39 0.061 0.49 *** 

Step 2 
    

Constant -0.42 0.05 
  

Modulation density (cyc/kHz) 0.16 0.03 0.28 *** 

Harmonic template match -0.024 0.055 -0.03 
 

Modulation depth (dB) 0.0055 0.00047 0.8 *** 

 

Table 4.2 The effect of modulation depth on model prediction of deep region population 

responses to ripples.  

Table shows multiple linear regression results for reduced model (Step 1, omitting modulation 

depth) and full model (Step 2, adding modulation depth). Adding modulation depth significantly 

increased the R2 (0.31 to 0.69; ΔR2 = 0.38, P < 0.001 for difference between reduced and full 

models). Value labels are as in Table 1. ** P < 0.01; *** P < 0.001  
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Relating single neurons’ ripple responses to spectral selectivity for calls. To relate spectral 

tuning parameters to selectivity for behaviorally relevant vocalizations, we compared the ripple 

response properties of LS, US, and HS neurons. Example single neuron ripple depth-phase 

response matrices and raster plots showing responses to vocoded and natural calls are shown in 

Figure 4.7.  

To determine whether deep region neurons preferred sounds with high harmonicity, we 

looked at their distribution of preferred phases. The best phase distributions of LS, US, and HS 

neurons did not differ significantly from an even distribution (Fig 4.8A-C, left; Pearson’s chi-

squared test, p > 0.05 for all neuron groups and all modulation densities); we did not find that 

neurons preferred ripples with harmonically aligned phase. The phase-response curves of LS, US, 

and HS neurons likewise do not indicate that neurons show maximal responses to the harmonically 

aligned phase (Fig 4.8A-C, right). 

We then analyzed tuning to modulation density and depth in LS, US, and HS neurons. Fig 

4.9A shows the depth-phase matrices for each group for the three modulation densities examined. 

Each neuron’s matrix was centered such that the phase evoking the highest firing rate (best phase) 

was treated as zero. We also examined ripple response curves of LS, US, and HS neurons (Figure 

4.9B), where firing rates to ripples with a given modulation density were normalized to range from 

0 to 1 within each neuron. For LS neurons, phase modulation of responses was most apparent at 

1.2 cyc/kHz. Responses generally decreased with increasing modulation depth (Figure 4.9B, left). 

For US neurons, phase and depth modulation of responses were relatively weak (Figure 4.9B, 

middle). For HS neurons, responses were higher to deeper modulations and phase modulation of 

responses was apparent at 1.6 cyc/kHz and 2.0 cyc/kHz (Figure 4.9B, right). 
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LS, US, and HS units showed distinct tuning profiles to modulation density. LS neurons 

largely preferred ripples with the lowest modulation density of 1.2 cyc/kHz (69.7%; Fig 4.10A, 

left). US neurons showed a relatively even distribution of preferred modulation density (Figure 

4.10A, middle). HS neurons predominantly preferred ripples with higher modulation densities of 

1.6 or 2.0 cyc/kHz (58.8% and 31.3% respectively; Figure 4.10A, right). 

We examined modulation depth sensitivity in isolation by plotting depth response curves 

(firing rate by depth at a neurons’ best phase for a given modulation density, normalized to range 

from 0 to 1). LS neurons decreased their responses with increasing modulation depth from 5 dB to 

20 dB, and responses remained relatively constant from 20 dB to 80 dB (Figure 4.10B, left). US 

neurons increased their responses monotonically with modulation depth (Figure 4.10B, middle), 

though the increase was more moderate than for HS neurons (Figure 4.10B, right). Sensitivity for 

modulation depth was a strong predictor of SSI. Modulation depth dependency (Spearman’s ρ) 

was used to quantify the monotonicity of the association between firing rate and modulation depth 

at a neuron’s preferred phase for a given modulation density. Positive values indicate that firing 

rates increase with depth, while negative values indicate that firing rates decrease with increases 

in depth. HS neurons had significantly more strongly positive ρ than LS and US neurons for all 

spectral modulation densities examined (Figure 4.10C; ANOVA, F1.2 cyc/kHz (2, 278) = 22.0, P < 

0.001; F1.6 cyc/kHz (2, 278) = 50.1, P < 0.001; F2.0 cyc/kHz(2, 278) = 44.2, P < 0.001; Tukey’s tests, P 

< 0.001 for all pairwise comparisons and all modulation densities). 

Because previous studies have shown a relationship between broader frequency tuning and 

lower preferred modulation density (Shamma et al., 1995), we tested whether SSI was related to 

frequency tuning bandwidth. We found a weak but significant negative relationship between the 

two when bandwidth was measured at 60 dB SPL and 70 dB SPL (Figure 4.11A-B, Pearson’s r = 
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0.14 & 0.15, both p < 0.01), but not when bandwidth was measured at lower sound levels (Figure 

4.11C-E, - 0.06 < Pearson’s r < 0.03, all p > 0.05). SSI was unrelated to best frequencies of neurons 

(Figure 4.11F, Pearson’s r = 0.01, p > 0.05).  

Modulation depth dependency was significantly correlated with call SSI at all modulation 

densities examined (Figure 4.12; Pearson correlations, r1.2 cyc/kHz = 0.35, p < 0.001; r1.6 cyc/kHz = 

0.56, p < 0.001; r2.0 cyc/kHz = 0.50, p < 0.001). For all three modulation densities, a majority of units 

(68.3%, 71.2%, and 74.0%) had modulation depth dependencies that matched the sign of 

selectivity for vocoded calls (i.e. positive ρ and positive SSI, or negative ρ and negative SSI).  

Based on the strong preference for high modulation depth characterizing HS neurons, and 

the close relationship between modulation depth dependency and SSI, our results suggest that 

sensitivity to modulation depth underlies selectivity for the spectral structure of communication 

calls.  
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Figure 4.7 Call and ripple responses of deep region neurons with varying spectral selectivity. 

* Figure and legend continued on next page 
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Figure 4.7 (continued). Responses of deep region neurons with varying spectral selectivity to 

ripples and calls. (A) Responses from an example low-resolution-selective (LS) neuron. Top-left 

plot shows the action potential waveform (mean ± SD) of the example neuron. Depth-phase 

matrices, which are heatmaps of the neuron’s firing rates to individual ripples, are shown to the 

right of the action potential waveform. Raster plots (bottom) show the timing of spiking events 

before, during, and after the presentation of vocoded and natural calls. Two out of nine sets of 

vocoded (16 - 80 channels) and natural calls are shown as examples. Spectrograms of stimuli are 

shown above the raster plots. Black lines below each raster plot denote the duration of stimulus 

presentation. (B) Responses from an example unselective (US) neuron. Data are organized 

identically as in (A). (C) Responses from an example high-resolution-selective (HS) neuron. Data 

are organized identically as in (A). 
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Figure 4.8 Deep region neurons do not show an enhanced representation of harmonic ripples.  

(A, B, C) Left: Distribution of best phase (the phase that elicited maximal response averaged 

across depths) for the three tested modulation densities. Distributions are shown separately for 

(A) low-resolution-selective (LS), (B) unselective (US), and (C) high-resolution-selective (HS) 

neurons. Right: Average phase response curves for (A) LS, (B) NS, and (C) HS neurons. Phase 

response curves were taken at each neurons’ best modulation density and best depth, then scaled 

to range from 0 to 1.  
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Figure 4.9 Deep region neurons’ responses to ripples with varying density, depth, and phase.  

(A) Depth-phase matrices for low-resolution-selective (LS, left), unselective (US, middle), and 

high-resolution-selective (HS, right) neurons for ripples with modulation densities of 1.2 (top), 

1.6 (middle), and 2.0 cyc/kHz (bottom). (B) Average normalized response curves (mean ± SE) 

showing responses of LS, US, and HS neurons to ripples. Data organized as in (A). Line color 

indicates ripple modulation depth. Depth-phase matrices and response curves were centered at 

each neurons’ best phase (best phase = zero).  
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Figure 4.10 Neurons with differing spectral selectivity for calls are differentially modulated 

by ripple density and depth.  

(A) Proportions of LS, US and HS neurons showing maximal response to each modulation density 

tested. (B) Normalized firing rates (mean ± SEM) of LS, US, and HS neurons evoked by each 

modulation depth, measured at modulation densities of 1.2, 1.6, and 2.0 cyc/kHz and at each 

neuron’s best phase. Firing rates were normalized to range from 0 to 1 for each unit. (C) 

Modulation depth dependencies (mean ± SEM) of LS, US, and HS units, measured at each 

modulation density and at each neuron’s best phase. Positive ρ indicates that driven responses 

increase with modulation depth, and negative ρ indicates that driven responses decrease with 

increases in modulation depth. * p < 0.001, ANOVA followed by Tukey’s tests 
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Figure 4.11 Correlation between call spectral selectivity index (SSI) and tone response 

properties.  

(A-E) Scatter plots showing the relationship between SSI and bandwidths (widths of frequency 

response curve at half of the maximal height) measured at (A) 70 dB SPL, (B) 60 dB SPL, (C) 50 

dB SPL, (D) 40 dB SPL, and (E) 30 dB SPL. Pearson’s r correlation coefficients are shown on the 

top left of each plot. Significant negative correlations were observed between SSI and bandwidths 

at 60 dB SPL and 70 dB SPL (p < 0.01). (F) Scatter plot showing the relationship between SSI 

and best frequency measured from tones. Pearson’s r correlation coefficients are shown on the top 

left of scatter plots.  
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Figure 4.12 Correlation between spectral selectivity index (SSI) for calls and sensitivity to 

modulation depth of ripples.  

(A-C) Scatter plots showing the relationship between SSI and modulation depth of ripples with 

modulation densities of (A) 1.2 cyc/kHz, (B) 1.6 cyc/kHz, and (C) 2.0 cyc/kHz. Shaded quadrants 

include units whose direction of modulation depth sensitivity matched the sign of call SSI; the 

percentage of units that fall in these quadrants are indicated.   Pearson’s r correlation coefficient is 

shown on the top left of each scatter plot. Correlation between SSI and modulation depth 

dependency was significant at all three modulation densities (all p < 0.001; N = 281 ripple- and 

call-responsive units).   
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4.3.4 Temporal response properties vary with spectral structure selectivity  

To provide insight on the mechanisms of high-resolution selectivity in deep-region 

neurons, we identified temporal response properties that co-varied with SSI. We compared HS, 

US and LS units in three measures of response dynamics: 1) latencies to first spike during call 

presentation; 2) population peri-stimulus time histograms (pPSTHs) of responses to call stimuli; 

and 3) onset index of call responses.  

First spike latencies of responses to calls differed significantly between groups while 

controlling for onset firing rates (Figure 4.13C, ANCOVA, F(2, 404) = 6.46, p < 0.01). Call 

response latencies were significantly longer in HS and NS units than in US units (Tukey’s tests, p 

< 0.05). A similar pattern of latency differences can be seen in responses to pure tones (Figure 

4.13A) and to ripples (Figure 4.13B), but these differences were not statistically significant after 

controlling for onset responses (ANCOVA, p > 0.05). Response latencies to calls were highly 

correlated with latencies to pure tones (Figure 4.13D; Pearson’s r = 0.59, p < 0.001) and spectrally 

modulated ripples (Figure 4.13E; Pearson’s r = 0.75, p < 0.001). Because calls, tones, and ripples 

have divergent acoustic features, the observation that latencies to these stimuli are highly 

intercorrelated suggests that latency differences are not due to neurons’ preferences for particular 

time-varying acoustic features in calls.  

The pPSTHs of responses to natural and vocoded calls differed between HS, US and LS 

units (e.g. Figure 4.14B). The population of US neurons showed a strong response that was aligned 

with stimulus onset, followed by a weaker, sustained response thereafter. In contrast, the 

population responses of HS and LS neurons were not the strongest at stimulus onset. We computed 

an onset index that weighed the onset response against sustained (post-onset) responses 

(Schumacher et al., 2011; X. Wang et al., 2005). We defined the onset period as the first 50 ms 
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following stimulus onset, and the sustained period as the following period until stimulus offset 

(Figure 4.14A). Onset index ranged from -1 to 1, with more positive values indicating stronger 

onset responses than sustained responses, and negative values indicating stronger sustained 

responses than onset responses. Onset index values were significantly higher in US neurons than 

in HS or LS neurons (Figure 4.14C, ANOVA, F(2, 408) = 19.15, P < 0.001; Tukey’s tests, P < 

0.05). These results showed that temporal response patterns were correlated with spectral 

selectivity; neurons that were insensitive to spectral resolution (US) had onset-dominant responses, 

while those that were sensitive to spectral resolution (LS and HS) exhibited stronger sustained 

responses. 
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Figure 4.13 Response latencies vary with spectral selectivity and are consistent across 

stimulus types.  

(A-C) First-spike latencies in response to (A) pure tones, (B) spectrally modulated ripples, and 

(C) natural and vocoded calls. Latencies are shown for NS, US and HS neurons (one-way 

ANCOVA with Tukey tests, * p < 0.05). (D) Scatter plot showing the relationship between call 

response latencies and tone response latencies (N = 355 tone- and call-responsive neurons). 

Pearson’s r correlation coefficient is shown on the top left of scatter plot. (E) Scatter plots 

showing the relationship between call response latencies and ripple response latencies (N = 281 

ripple- and call-responsive neurons). Pearson’s r correlation coefficient is shown on the top left 

of scatter plot. 
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Figure 4.14 Temporal dynamics of call responses differ by spectral selectivity.  

(A) Quantification of onset index and example PSTHs of single units with negative (left), near-

zero (middle), and positive (right) onset indices. The formula for calculating onset index is 

shown above the PSTHs. Colored bars above each PSTH indicate the onset (pink) and sustained 

(brown) periods used to calculate onset index. (B) Example call-evoked pPSTHs for HS, US and 

NS neurons. pPSTHs to different stimulus groups are color-coded according to the legend. 

Responses of US neurons peak at stimulus onset, while HS and NS responses increase after 

stimulus-onset and are sustained over the duration of the stimulus. (C) Scatter plot and box plots 

showing the relationship between onset index and SSI. Onset responses are stronger in US 

neurons than in HS or LS neurons (one-way ANOVA with Tukey tests, * p < 0.05). 
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4.4 DISCUSSION 

High-spectral-resolution selective neurons in the deep region maintained their selectivity 

in the context of song, showing population responses that closely tracked spectral parameters of 

song. Therefore, neural sensitivity to spectral resolution of vocoded calls generalizes to the 

processing of natural variations in spectral structure of vocalizations. Further, spectral selectivity 

was maintained across acoustic contexts – it is observed when vocal elements are presented in a 

dynamic sequence, as well as when they are presented in isolation. HS responses were lower than 

US responses during non-preferred song segments, and similar to US responses during preferred 

song segments.  

Our analysis of neural responses to spectrally modulated ripples showed that spectrally 

selective neurons preferred sounds with deeper and denser modulations, but showed no preference 

for harmonic placement of spectral peaks. These neural response properties are consistent with our 

findings on birds’ behavioral responsiveness in Chapter 3 – birds responded similarly to harmonic 

and inharmonic calls, indicating that the preservation of deep spectral modulations was sufficient 

to elicit vocal responses.  

Previous studies, reviewed further in Section 1.5.2, have characterized AC neurons by their 

responses to spectral modulation density, depth, and phase (Schreiner & Calhoun, 1994; Shamma 

et al., 1995). Other studies have reported anatomical organization of complex response properties, 

such as preferred bandwidth (Rauschecker et al., 1995), spectro-temporal modulation tuning 

(Hullett et al., 2016), and F0-specific responses (Bendor & Wang, 2005). Our study builds on 

previous work by providing evidence for robust anatomical grouping of neurons tuned to high 

modulation depth, and further establishing that modulation depth sensitivity contributes to the 

selective representation of behaviorally-relevant sounds. Though the deep region resides within a 
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primary sensory region and hence is unlikely to directly control behavioral output, neurons 

selective for modulation depth may send information to downstream regions for further processing, 

shaping behavioral sensitivity to high modulation depth signals.  

To establish whether neurons in the deep region are involved in the modulation of vocal 

behavior by spectral resolution, it would be informative to inhibit neural activity in the deep region 

using pharmacological or electrolytic methods while birds are tested with the call-and-response 

behavioral paradigm. While the role of the deep region or other cortical regions in call-and-

response behavior has not been previously tested, one study has investigated the role of a vocal 

control nucleus, the robustus archistriatalis (RA), in male zebra finches’ vocal responses to 

distance calls. While male zebra finches normally respond more to female distance calls compared 

to male distance calls, males with RA lesions did not discriminate between female and male 

distance calls (Vicario et al., 2000). Interestingly, previous studies have identified deep region 

projections to areas that lie in close proximity to major nuclei of the vocal production pathway, 

including RA (Kelley & Nottebohm, 1979; Mello et al., 1998; Vates et al., 1996). 

Our results can also be discussed with regard to the concept of contrast gain control and 

existing theories of natural sound processing. A previous study showed that AC neurons can 

dynamically adjust gain to compensate for changes in spectral contrast (variation in sound pressure 

across frequencies), but this compensation is incomplete (Rabinowitz et al., 2011). In our dataset, 

deep region responses clearly scaled with spectral modulation depth, indicating that if any 

compensatory gain control was present, it did not result in invariance to modulation depth. We 

characterized ripple responses at three spectral modulation densities, and found that HS neurons 

tend to prefer higher densities (1.6 cyc/kHz to 2.0 cyc/kHz). The preferred range corresponds 

roughly to modulations resulting from typical F0s of zebra finch calls, which range from ~500Hz 
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to ~700Hz (Mouterde et al., 2014; Vicario et al., 2001). While a more comprehensive sampling of 

the modulation space is needed to reach a firm conclusion, current results are consistent with the 

theory that the auditory system is sensitive to the statistical properties of vocalizations (Singh & 

Theunissen, 2003).  

Given that deep region neurons did not prefer harmonic ripples (with clear F0) over 

inharmonic ripples (with ambiguous F0), we do not have evidence that they encode F0 by a firing 

rate code. Songbirds can perceive F0 from harmonic sounds with missing fundamentals (Cynx & 

Shapiro, 1986), indicating that F0 must be represented in the brain. It is possible that F0 is encoded 

outside of the auditory cortex or by auditory cortical neurons that we did not find because we did 

not sample enough neurons or cover its entire extent. F0 could also be encoded temporally by 

neurons’ synchrony to F0-related envelope cues, as reported for avian midbrain neurons (Henry et 

al., 2017). However, cortical temporal representation of F0 is unlikely, given that these neurons 

can only synchronize to modulations up to 320 Hz (Knipschild et al., 1992), which is insufficient 

to encode the F0 of zebra finch calls (~500 Hz or above). It is possible that the temporal encoding 

of pitch occurs in subcortical structures, with that information being transformed into a rate code 

carried by AC neurons that remain to be identified.  

Longer call response latencies in HS and LS neurons compared to US neurons suggest that 

input projections to these neurons may differ. In the songbird AC,  deep-region neurons receive 

input from multiple pathways: 1) the superficial region (Vates et al., 1996); 2) the thalamorecipient 

regions (Y. Wang et al., 2010); and 3) the shell region of the auditory thalamus, a relatively sparse 

projection (Vates et al., 1996). Our results are consistent with a model of connectivity in which 

HS and LS neurons receive input from the superficial region, undergoing more intracortical 

processing than US neurons. The US neurons, in contrast, may receive input from the 
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thalamorecipient regions, and serve to encode the onsets of sounds regardless of spectral details. 

Sustained firing in the AC has been proposed to occur as a result of recurrent or interlaminar, 

intracortical processing, as well as feedback connections from higher cortical areas (X. Wang et 

al., 2005). Because HS and LS neurons show a more sustained firing profile than US neurons, 

intracortical processing could contribute to their selectivity. Consistent with this hypothesis, 

reciprocal connections between deep and superficial regions have been identified (Vates et al., 

1996).  
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Chapter 5  

CONCLUDING REMARKS 

 In this dissertation, I identified a behaviorally salient acoustic feature of vocal sounds and 

showed that it drives communication behavior and neural selectivity for vocalizations. Harmonic 

structure and deep spectral modulations both characterize call vocalizations in songbirds and the 

vocalizations of many other species. My studies established that deep spectral modulations are 

critical for behavioral responses to vocalizations, and are represented by a population of neurons 

in the auditory cortex as an attribute distinct from harmonic structure. 

In Chapter 3, I showed that reduction of spectral resolution of communication calls, which 

diminishes both harmonic structure and spectral modulations, decreases the vocal responses 

evoked by these calls. While birds were sensitive to spectral degradation of calls, their responses 

were not impaired by disruption of harmonicity, indicating that vocal responses require the 

presence of distinct peaks and troughs in the power spectrum, but do not require frequency 

components to be harmonically related. I then reported the results of neurophysiological 

experiments where I identified an anatomically localized population of neurons in the auditory 

cortex whose responses decreased with spectral degradation of calls in a manner mirroring that of 

behavior. Spectral selectivity for behaviorally relevant calls was found in the deep output region 

of the primary auditory cortex, but not in the upstream thalamorecipient region. This finding 

suggested that spectral selectivity for behaviorally relevant calls is generated by neural 

mechanisms operating within the auditory cortex.  

In Chapter 4, spectrally-selective neurons (those that show selectivity for calls with high 

spectral resolution) in the deep region were further found to maintain their selectivity when 
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processing complex, acoustically diverse song. In addition, deep region spectrally-selective 

neurons were sensitive to modulation depth and not to harmonicity. These response properties 

point to a connection between deep region spectral processing and birds’ behavioral responses to 

vocalizations.  

Our behavioral results indicating that birds’ vocal responses are not impaired by 

inharmonicity was surprising, given that they are known to discriminate very small deviations from 

harmonicity (Lohr & Dooling, 1998). It is possible that harmonicity is not important in this 

behavioral context but is important for other listening situations. Further insights on how birds 

react to harmonic and inharmonic signals can be derived from an auditory preference test, where 

birds’ tendency to actively elicit playbacks of different stimuli are compared. This experiment 

would establish whether birds show a preference for listening to harmonic calls over inharmonic 

calls, akin to the way that human listeners prefer to listen to consonant musical chords, whose 

spectra are more similar to harmonic structures, over dissonant musical chords (Bowling et al., 

2018).  

 Two lines of inquiry on the neural processing of vocalizations arise from our studies, and 

can be further addressed by future studies in the songbird and in other vocal communicators. First, 

what are the neural mechanisms leading to sensitivity to modulation depth? Our studies of song 

responses indicate that while spectrally selective neurons in the deep region respond with similar 

magnitude as unselective neurons to preferred stimuli, their responses are suppressed relative to 

unselective neurons when processing non-preferred stimuli. This suggests that spectral selectivity 

could be shaped by inhibition that is recruited by non-preferred stimuli. A combination of 

electrophysiology and pharmacological techniques to locally manipulate inhibitory circuits could 

serve to test this hypothesis. Second, do spectrally selective neurons in the deep region have 
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distinct morphological properties and downstream projections? To answer this question, single-

unit electrophysiology can be combined with injection of neural tracers into single cells following 

recording. Examining the somatic and dendritic morphologies of filled single units will elucidate 

whether spectral selectivity is associated with cell-specific morphological properties. By 

contrasting the anatomical projection targets of filled spectrally-selective and unselective neurons, 

one could gain further understanding on how spectrally-selective neurons could drive behavior by 

sending information to other processing centers in the brain.  
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