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ABSTRACT

Systems Genetics of DNA Damage Tolerance – Cisplatin, RAD5 & CRISPR-mediated Nonsense

Eric Bryant

DNA sequence information is constantly threatened by damage. In the clinic, intentional DNA damage is

often used to treat cancer. Cisplatin, a first-line chemotherapy used to treat millions of patients, functions

specifically by generating physical links within DNA strands, blocking DNA replication, and killing dividing

cells. To maintain genome integrity, organisms have evolved the capacity to repair, respond, or otherwise

resist change to the DNA sequence through a network of genetically encoded DNA damage tolerance path-

ways. In chapter 1, I present advances in experimental design and current progress for a systems genetics

approach, using Saccharomyces cerevisiae, to reveal relationships between cisplatin tolerance pathways.

Additionally, recent efforts to sequence thousands of cancer genomes have revealed recurrent genetic

changes that cause overexpression of specific cisplatin tolerance genes. In chapter 2, I present a submitted

manuscript that models overexpression of an essential cisplatin tolerance gene. This study uses a systems

genetics approach to reveal the genetic pathways that are essential for tolerating this perturbation, which

ultimately led to mechanistic insights for this gene. Convenient genome engineering in Saccharomyces

has made this organism an ideal model to develop systems genetics concepts and approaches. In chap-

ter 3, I present a published manuscript that demonstrates a new approach to disrupting genes by making

site-specific nonsense mutations. Importantly, this approach does not require cytotoxic double-strand DNA

breaks and is applicable to many model organisms for disrupting almost any gene, which may advance sys-

tems genetics into newmodel organisms. Systems genetics provides a framework for determining how DNA

damage tolerance pathways act together to maintain cellular fitness and genome integrity. Such insights

may one day help clinicians predict which cancers will respond to treatment, potentially sparing patients

from unnecessary chemotherapy.
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Preface

Deoxyribonucleic acid (DNA) holds the instructions for life on Earth. Its code consists of only four letters –

Adenine (A), Guanine (G), Thymine (T) and Cytosine (C) – the sequence of which determines ribonucleic

acids (RNA) to be transcribed, and proteins to be translated in living cells (Dahm 2005; Avery et al. 1944;

Crick et al. 1961; Nirenberg et al. 1966). Transcribing DNA into RNA and translating RNA into protein forms

the foundation for the central dogma of molecular biology (Crick 1970), which emphasizes an important

feature of DNA – its sequence can store the information necessary to reproduce the chemistry of life. This

feature, along with fortuitous structural properties (Watson and Crick 1953), makes DNA a molecule that can

not only reproduce the chemistry of life, but can also be reliably copied and passed to the next generation.

However, to reliably and faithfully pass DNA to the next generation, cells must overcome a constant barrage

of DNA damage (Lindahl 1993). Fortunately, the genomes of most cells contain instructions to build a large

number of proteins that can work together to repair broken DNA, or enable DNA damage tolerance (Cleaver

2016). This genetically encoded capacity for cells to maintain genome integrity and viability in the face of

damaged DNA is the focus of my thesis. In particular, I am interested in understanding how cells resist

treatment to the DNA damaging agent, cisplatin – one of several platinum-based chemotherapeutic drugs

that have been used to treat cancer in millions of patients (Galanski et al. 2005; Simon et al. 2000; Wu et

al. 2004; Kelland 2007).

Decades of work by geneticists have revealed DNA damage tolerance to consist of hundreds of genes

that operate in numerous pathways that collectively enable cells to resist DNA lesions caused by cisplatin

treatment (reviewed by Ciccia and Elledge 2010; Heyer et al. 2010; Rocha et al. 2018). While the mech-

anisms for many of the major pathways responsible for cisplatin tolerance are well established, how these

genetic pathways relate to each other as a system to maintain fitness and DNA integrity when responding

to cisplatin treatment remains poorly understood. Moreover, many individual genes known to affect cellular

fitness of cisplatin treated cells have no known role in any of the major cisplatin tolerance pathways. And,
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while much is known about how loss of individual gene function can affect cisplatin tolerance, recent efforts

to genomically characterize thousands of tumors has revealed recurrent DNA copy number amplification

events that can result in overexpression of specific genes (Cancer Genome Atlas Research Network 2008).

The genomic repercussions of gene overexpression, and how this could alter cisplatin tolerance, remains a

largely unexplored area in genetics.

The work described here attempts to address some of these unexplored and poorly understood aspects

of DNA damage tolerance using systems genetics approaches. Chapter 1, describes the experimental

design and current results for an ongoing collaborative effort to map all cisplatin specific DNA damage

tolerance pathway relationships by systematically measure fitness of double-mutants to identify genetic in-

teractions (i.e. double-mutant combinations that cause an unexpected change in fitness). Chapter 2, is a

submitted manuscript that utilizes a genetic interaction profile to reveal the genomic repercussions of RAD5

overexpression, one of the most important cisplatin tolerance genes, whose human homolog is frequently

overexpressed in specific cancers. Chapter 3, is a published manuscript that describes a new approach

to efficiently disrupt the function of genes, which will open new avenues for studying the systems genet-

ics of DNA damage tolerance in a diverse range of organisms. An introduction to the scientific and thesis

context for each chapter is provided below in Sections 0.1, 0.2 & 0.3. Ultimately, understanding the fun-

damental genetic determinants of cisplatin tolerance may one day help clinicians predict which cancers will

respond to cisplatin treatment, thus informing treatment decisions, and sparing patients from unnecessary

chemotherapy (O’Connor 2015).

0.1 Epistasis and cisplatin tolerance

The field of genetics seeks to answer one simple question – how does DNA sequence, combined with envi-

ronmental exposure, result in the observable features of an organism? In other words, how does genotype,

plus environment, produce phenotype? Historically, geneticists have approached the “genotype to phe-

notype” question systematically using genetic screens. In such screens, changes to an organism’s DNA

sequence would be made randomly using some kind of DNA damaging agent to produce mutants. Mu-
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tants that gained the phenotype of interest would be cataloged, and the tedious process of characterizing

each mutant allele to identify the causative DNA sequence change would commence. The classic genetic

screen began to lose prominence with the advent of high-throughput sequencing technologies that allowed

scientists to produce the first complete sequence assemblies for the human genome and several model or-

ganisms (Lander et al. 2001). Having sequenced a genome, scientists could computationally predict all of

an organism’s protein coding genes – no known phenotype was necessary. Researchers could now perform

their genetic screens in reverse. Instead of asking, “given a phenotype, what are the alleles?” scientists

could now ask, “given the alleles, what are the phenotypes?” Thus, the reverse genetic screen was born.

Geneticists studying the budding yeast, Saccharomyces cerevisiae, were early adopters of the reverse

genetic screen, which first required the construction of a large collection of defined alleles. Only a few short

years after sequencing the yeast genome, every gene in yeast had been individually deleted to produce the

non-essential gene disruption collection (Winzeler et al. 1999; Giaever et al. 2002). Remarkably, of the

6,000 protein coding genes in the yeast genome, approximately 5,000 were not essential for the organism

to survive, which left a big open question – are these genes important for anything? The reverse genetic

screen was the perfect tool for quickly answering this question. After exposing this strain collection to over

350 different chemicals, a group of researchers reassuringly found that indeed these genes were important,

as 97% of genes showed a growth defect, or advantage, in at least one treatment condition (Hillenmeyer

et al. 2008). This reverse genetic screening strategy, known as chemogenomic profiling, when used with a

comprehensive collection of gene deletions, produces a list, or “profile”, of genes that contribute to fitness

when treated with a particular chemical. Importantly, information gained from chemogenomic profiling is a

two-way street; as we learn more about gene function, a chemogenomic profile can tell us something about

the biological impact of the chemical or treatment itself. For example, early genetic screens in yeast from

the 1960s and 1970s had already identified genes that are essential to tolerate exposure to ultraviolet, x-ray,

and gamma radiation (Snow 1967; Cox and Parry 1968; Lemontt 1971; Game and Mortimer 1974). These

genes were given names starting with “RAD” and given a number (e.g. RAD3, RAD6, RAD52, etc.). Later

work had determined that many of the RAD genes produced proteins that performed various DNA repair

processes to combat DNA damage (Haynes and Kunz 1981). With this knowledge of RAD gene function
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in mind, when we generate a new chemogenomic profile for an uncharacterized compound and find that its

profile includes many RAD genes, we can infer that this new compound likely causes DNA damage. Thus,

the more knowledge we have of gene function, the more powerful chemogenomic profiling becomes.

Cisplatin, being a critically important and clinically relevant drug, received plenty of attention during the

heyday of chemogenomic profiling (Birrell et al. 2002; Wu et al. 2004; Lee et al. 2005; Huang et al. 2005;

Hastie et al. 2006; Liao et al. 2007). However, while chemogenomic profiling has identified over 100

genes in yeast that are important for cisplatin tolerance, this list of genes does not tell us the biological

process, or pathway, in which each gene participates. Moreover, a chemogenomic profile alone cannot

tell us how the collection of pathways that affect fitness in response to cisplatin relate to each other as a

complete system. For this, we leverage the power of double-mutants to identify which genes have shared

contributions, or compensatory contributions to cisplatin sensitivity. This strategy was elegantly used by

Brendel and Haynes (1973) to group genes known at the time to be involved in DNA repair into three major

pathways, later defined as theRAD3,RAD6 andRAD52 epistasis groups. An epistasis group, in this context,

refers to a set of mutations that share a contribution to the phenotype of DNA damage tolerance and can

thus be grouped into shared damage tolerance pathways. Epistasis itself is a class of genetic interaction,

a relationship between two genetic perturbations, that geneticists use to determine pathway membership.

In the context of fitness, epistasis is most often observed when two deleterious genetic perturbations result

in better fitness than expected when the two perturbations are combined. Thus, for clarity, I often describe

such epistasis as a positive fitness interaction. In addition to identifying positive fitness interactions, double-

mutant analysis can also identify negative fitness interactions – pairs of mutations that cause worse than

expected fitness and indicate that each gene contributes to fitness in parallel compensatory pathways.

The major limitation to double-mutant analysis is time and energy. For example, in yeast, with a collec-

tion of 5,000 non-essential gene deletions, a researcher would have to perform approximately 12.5 million

crosses to identify all possible fitness interactions among these gene deletions for a single treatment condi-

tion. Remarkably, after developing the Synthetic Genetic Array (SGA) method, researchers managed to use

cleverness and robotics to produce a genetic interaction profile for nearly every gene deletion in budding
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yeast (Tong et al. 2001; Tong and Boone 2006; Pan et al. 2006; Costanzo et al. 2010; Baryshnikova et

al. 2010). The combined interaction profiles generate an interaction network that represents the genetic

landscape of Saccharomyces cerevisiae (Usaj et al. 2017; Costanzo et al. 2016).

Unfortunately, this genetic landscape only reveals genetic relationships for pathways that contribute to fit-

ness in standard laboratory conditions. To produce this network for the same drug treatment conditions

used by Hillenmeyer et al. (2008) to reveal a phenotype for nearly every single gene deletion, one would

have to phenotype all 12.5 million crosses 350 times, generating over 4 billion measurements. Even worse,

gene deletions are only one type of genetic perturbation. To generate an interaction landscape for every

single nucleotide change in yeast, and for 350 treatment conditions, one would need to generate more than

a quadrillion fitness measurements (>1015). Needless to say, a more focused approach for characterizing

pathway relationships for genes involved in cisplatin tolerance is warranted. The strategy here is simple –

focus on a set of genes that share a phenotype as single mutants and only generate crosses among this

small set of genes. This strategy, when combined with SGA, is known as epistatic mini-array profiling, or

E-MAP (Schuldiner et al. 2005, 2006; Collins et al. 2006, 2007; Fiedler et al. 2009; Braberg et al. 2013).

And, when combined with a treatment it is referred to as a differential E-MAP, or dE-MAP (St. Onge et al.

2007; Bandyopadhyay et al. 2010; Guénolé et al. 2013; Srivas et al. 2013; Hustedt et al. 2015)

Chapter 1 presents an advancement in the experimental design for a cisplatin dE-MAP. Currently published

dE-MAPs typically use only one, or two, fixed concentrations of drug treatment. However, detectable sensi-

tivity for cisplatin tolerance mutants ranges across nearly two orders of magnitude of cisplatin concentration.

For example, the most sensitive mutants, rad5∆, rad6∆ and rad18∆, have a measurable phenotype at 2 µM

cisplatin, and are completely dead at 25 µM. Whereas, psy4∆, a gene named for cisplatin sensitivity, has a

barely detectable phenotype at 80 µM. To measure a genetic interaction, ideally the experiment uses a treat-

ment condition where at least one of the two mutations has a phenotype, and neither mutation causes death.

Therefore, to optimize detection of genetic interactions, we use a common “low” concentration where most

strains will remain viable, and an optimized “high” concentration that produces a phenotype of the query

mutation – the gene deletion being crossed to the mini-array of cisplatin tolerance genes. While this project
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remains ongoing, we have successfully used this strategy to produce a high-resolution set of genetic inter-

actions covering 70% of the cisplatin tolerance network.

0.2 Genomic repercussions of RAD5 overexpression

When I beganmy PhD, I spent a fewmonths meeting with professors looking for scientific inspiration. Having

a background in de novo gene synthesis, I was naturally drawn to the topic of DNA recombination and repair,

so I set up a meeting with Professor Rodney Rothstein – a leader in this field. During our meeting, Rodney

described a project that had nothing to do with DNA repair. Instead, he described an ongoing project in his

lab that aimed to identify genetic interactions that could be used to treat cancer. Fundamentally, the project

was an extension of the genetic screening for cancer drug targets approach described by Hartwell et al.

(1997). The described approach attempts to address a major problem in the current strategy for treating

cancers, which is that typical chemotherapy and radiation treatment programs have many dangerous side-

effects because they do not specifically kill cancer cells, rather they preferentially kill all dividing cells. The

logic of the genetic approach described by Hartwell, begins with the observation that there are numerous

recurring genetic alterations that are observed in cancer, which represent an an attack surface for selectively

killing cancer cells. Geneticists had long observed a phenomenon they called synthetic lethality, wherein

combining two otherwise harmless mutations results in cell death (i.e. an extreme example of a negative

fitness genetic interaction). So the theory goes, if a cancer has a mutation and we know the synthetic

lethal interactions of that mutation, then we can selectively target the cancer cell by inhibiting a synthetic

lethal interactor with a drug. This drug would selectively kill only cancer cells harboring the interacting

mutation, while leaving normal cells unharmed. Remarkably, this approach has received some traction with

the development of clinically approved PARP inhibitors, which exploit a synthetic lethal genetic interaction

between PARP and commonly observed mutations in the breast cancer susceptibility genes, BRCA1 and

BRCA2 (Ashworth and Lord 2018; Lord et al. 2015). Needless to say, I found the synthetic lethality approach

to targeted cancer therapy to be incredibly interesting, so I asked to join the Rothstein lab.

The first major challenge to using synthetic lethality for treating cancer is to identify common genetic al-
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terations in cancer. Then, by pairing these common genetic alterations with a collection of mutant strains

one can identify synthetic lethal interactions. When I started in the Rothstein lab, the project I joined was

attempting to leverage yeast genetics to identify synthetic lethal interactions for genes that are commonly

overexpressed in PTEN deficient cancer. After performing a number of these genetic screens, it became

clear that the data we were using to identify these overexpressed genes could not distinguish between

genes that are overexpressed in individual cells, and genes that are just overrepresented in the population

of cells used to measure expression (e.g. S-phase regulated genes will be overrepresented in a sample that

has more dividing cells). Sadly, this issue undermined the initial motivation for performing my first synthetic

lethal screens. Undeterred, I looked to other sources to find data for frequent genetic alterations in cancer.

Around this time, The Cancer Genome Atlas consortium (Cancer Genome Atlas Research Network 2008)

had released data for thousands of genomically characterized tumors. Importantly, these data included not

only gene expression information, but also copy number information. After diving into the data, it became

clear that each cancer cohort had distinct patterns of recurrent focal and chromosomal copy number amplifi-

cations resulting in overexpression of specific genes. Importantly, because gene copy number amplification

is a physical change that occurs within individual cells, the change in expression could be attributed to an

actual increase in transcript levels within cells rather than just a population level change.

In Chapter 2, I present a submitted manuscript that was motivated by the observation that the RAD5 hu-

man homolog, HLTF, incurs frequent copy number amplification and corresponding overexpression in sev-

eral types of human cancer (typically squamous cell carcinoma). RAD5 is a member of the most essential

cisplatin tolerance pathway, and, when overexpressed, we found that Rad5 bypasses canonical regulatory

signals to cause cisplatin sensitivity and genome instability by driving hyperactive recombination at replica-

tion forks.

0.3 CRISPR-mediated nonsense

Yeast has been an ideal model organism for studying genetic interactions at scale to identify genetic deter-

minants of phenotype, and to reveal pathway relationships between genes. One reason yeast has achieved
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such traction as a genetic model arises from the ease with which scientists can modify the yeast genome

in the lab. The ability to make targeted changes in an organism’s genome emerged from pioneering work

in the field of genetic recombination, which led to the development of one-step gene disruption – a fast and

efficient approach to knockout a gene (Rothstein 1983; Baudin et al. 1993; Wach et al. 1994). Eventually,

with the release of the S. cerevisiae genome (Goffeau et al. 1996; Goffeau and Vassarotti 1991) – the first

complete DNA sequence assembly of any eukaryotic organism – work began to construct a comprehensive

collection of yeast knockout mutants representing nearly all of the roughly 5,000 non-essential genes found

in budding yeast (Winzeler et al. 1999; Giaever et al. 2002). This collection paved the way for the devel-

opment of reverse genetic screening approaches, which utilize a large set of defined mutants to identify

those that give rise to a particular phenotypic feature, such as cisplatin sensitivity (see Chapter 1), or a

genetic interaction profile (see Chapter 2). In principle, one-step gene disruption should be feasible in any

recombination proficient organism, which includes most of the tree of life. In fact, adaptation of the one-step

gene disruption approach in mice was the basis of the 2007 Nobel Prize in Physiology or Medicine (Vogel

2007; Koller et al. 1990; Zijlstra et al. 1990, 1989; Koller and Smithies 1989), and the mouse genetics

community has followed suit in sequencing the mouse genome (Waterston et al. 2002), and constructing

their own large collections of knockout mice (Grimm 2006). However, one-step gene disruption, and other

recombination mediated genome engineering methods, rely on rare DNA repair events, rendering these ap-

proaches inefficient in most organisms – entire PhDs could be dedicated to constructing a single knockout

mouse. Thus, at the beginning of my PhD in the fall of 2011, yeast remained a dominant model in the field of

systems genetics and was the focus of my research on the genetic relationships between cisplatin tolerance

pathways and the genetic repercussions of RAD5 overexpression.

However, in the spring of 2013, when I was working as a teaching assistant for Professor Ron Prywes and

Professor Songtao Jia’s course in molecular biology, a fellow teaching assistant, Ling Ye, informed me of a

new advancement in the field of genome engineering that he was sure would change the future of genetics

research. This new advancement in genome engineering technology that Ling described to me is the now

famous CRISPR-Cas9 system, which has indeed changed the face of genetics and biomedical research

(Jinek et al. 2012; Gasiunas et al. 2012; Deltcheva et al. 2011; Sapranauskas et al. 2011; Garneau et
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al. 2010; Cong et al. 2013; Mali et al. 2013). The elegance of the CRISPR-Cas9 system for genome

engineering is that it consists of a single protein (Cas9) and a short programmable guide RNA that targets

Cas9 to a specific location in the genome where, upon recognition of the target sequence, it will generate a

DNA double-strand break (DSB).

Suddenly, that rare DNA repair event necessary for recombination mediated genome engineering could be

efficiently induced, opening up new avenues for modifying the genomes of almost any organism. Moreover,

this simple system was amenable to simple modifications which allowed scientists to localize other proteins

to specific DNA sequences without causing DNA breaks. Using this approach, Komor et al. (2016) and

others, modified the CRISPR system to localize an enzyme that would directly convert cytosines (C) to

thymines (T) in a small window of five nucleotides near the guide targeted sequence without having to

create a DSB – an attractive feature for those interested in modifying cells that might already be deficient

in DNA repair. When this system, known as CRISPR-mediated base editing, was first described, I had

recently begun a collaboration with Dr. Alberto Ciccia’s lab to help with sequence analysis for a pilot run

of a CRISPR-Cas9 based reverse genetic screen. Dr. Ciccia and a postdoctoral research associate in his

lab, Dr. Pierre Billon, realized that CRISPR-mediated base editing of C to T could be used to disrupt gene

function by converting four specific codons to premature stop codons in protein coding genes. What was

unclear though, was whether this approach for knocking out gene function would be generalizable given the

limited number of targetable codons and other technical restrictions dictated by the CRISPR system.

Chapter 3 is a published manuscript I co-authored with Dr. Billon and Dr. Ciccia addressing the scope and

feasibility of CRISPR-mediated base editing for disrupting gene function (Billon et al. 2017). The title of the

original publication –CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through

induction of STOP codons (iSTOP) – sums up the ultimate conclusion; CRISPR-mediated C to T base

editors allow DSB free induction of stop codons at 23 different codons per gene on average (i.e. 1 iSTOP

targetable codon for every 26 codons in the human genome). Thus, iSTOP provides a new tool alongside

CRISPR-Cas9, and classic one-step gene disruption, that no longer relies on DSBs and recombination to

efficiently knockout gene function. iSTOP, and other gene editing tools, will enable scientists to look beyond
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the humble baker’s yeast, to many other branches of life, to gain insight from systems genetics into the

genetic determinants of life.
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Chapter 1

Epistasis and cisplatin tolerance

Cisplatin, is one of several platinum-based drugs used in an estimated 50% of all chemotherapeutic regi-

mens. Its anticancer activity derives predominantly from intrastrand crosslinks, which physically link bases

on the same strand of DNA, causing distortions that impede replication fork progression in rapidly dividing

cancer cells. In Saccharomyces cerevisiae, over 100 genes have been identified to be important for cisplatin

tolerance or resistance. Many of these genes are known to function in major DNA damage tolerance path-

ways. However, there remain a number of individual genes that are known to affect cisplatin sensitivity, but

have no known role in any of the major cisplatin tolerance pathways. And, while much of the major cisplatin

tolerance pathways are independently well studied, how these pathways relate to each other to maintain

fitness and genome integrity remains poorly understood. To address these unknown aspects of cisplatin tol-

erance we are constructing a cisplatin differential epistasis mini-array profile (dE-MAP). This approach uses

double-mutant colony fitness to reveal novel pathway membership and provides insight into how damage

tolerance pathways work together to establish fitness in the face of cisplatin crosslinks. The experimental

design of our dE-MAP differs from prior epistasis mapping strategies in that it optimizes cisplatin concentra-

tions tested for each query mutant crossed to the mini-array of mutant strains. This optimization enhances

detection of genetic interactions by ensuring that each query mutation has been screened at a concentration

of cisplatin that induces a phenotype. Currently 89 queries, of 202 strains present in the mini-array, have

been scored for fitness interactions, resolving approximately 70% of the network. Both well characterized

and novel pathway relationships have begun to emerge. Current results indicate that, genetically, cisplatin

mimics UV damage, and that postreplication repair is a central node in the cisplatin tolerance network.
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1.1 Introduction

cis-Diamminedichloroplatinum (II), commonly known as cisplatin, is the first discovered member of the

platinum-based group of chemotherapeutics used to treat millions of cancer patients worldwide (Galanski

et al. 2005; Simon et al. 2000; Wu et al. 2004; Kelland 2007). The ability of cisplatin to inhibit growth of

dividing cells was discovered during studies of electromagnetism’s effect on Escherichia coli cell division. In

this study, Dr. Barnett Rosenberg realized that growth of E. coli in his experiments was not in fact inhibited

by electromagnetic fields, but by a compound, cisplatin, leaching into the buffered solution from platinum

electrodes (Rosenberg et al. 1965). From this insight, Rosenberg made the logical leap that if cisplatin

could inhibit growth of E. coli, perhaps it could also inhibit growth of cancer cells. Testing this hypothesis,

Rosenberg demonstrated that tumors in mice were indeed responsive to cisplatin treatment (Rosenberg et

al. 1969). Cisplatin and its derivatives are now used daily in the clinic and have inspired decades of scientific

inquiry into the mechanism of action for, and acquired resistance to, this critically important small molecule

(Kelland 2007).

Cisplatin causes damage to DNA primarily by causing intrastrand crosslinks (90% of lesions) typically be-

tween adjacent guanines on the same strand (Wong et al. 2010). Interstrand DNA crosslinks, covalent

linkage between the two strands of DNA, can also occur, but is considered a minor contribution to the total

number of lesions (5%) (Eastman 1986). While cisplatin is an immensely effective treatment for many tu-

mors, acquired resistance can develop through a number of vaguely identified mechanisms (Siddik 2003;

Kelland 2007). Known mechanism of cisplatin resistance fall into three basic categories, (1) reduced cis-

platin uptake, (2) increased repair, and (3) increased lesion bypass. In Saccharomyces cerevisiae, individual

genetic requirements for cisplatin resistance have been well established through several independently per-

formed chemogenomic screens utilizing the complete yeast gene disruption collection (Birrell et al. 2002;

Wu et al. 2004; Lee et al. 2005; Huang et al. 2005; Hastie et al. 2006; Liao et al. 2007). Genes required for

cisplatin tolerance can be grouped into the following canonical pathways (reviewed by Ciccia and Elledge

2010; Heyer et al. 2010; Boiteux and Jinks-Robertson 2013; Rocha et al. 2018):
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• Lesion bypass via Post Replication Repair (PRR). PRR involves post-translational modifications per-

formed by Rad6-Rad18 and Rad5-Ubc13-Mms2 on proliferating cell nuclear antigen (PCNA – Pol30

in budding yeast) at stalled DNA replication forks. These modifications determine choice between two

PRR sub-pathways.

– Error-prone PRR performed by translesion synthesis (TLS) (e.g. Rev1, Rev3 & Rev7) that allows

synthesis across from damaged bases.

– Error-free template switching (TS) that allows replication bypass on a nascent sister chromatid.

This pathway is thought to be activated by Rad5-Ubc13-Mms2 to engage homology directed

repair (HDR) machinery (e.g. Rad51, Rad52, Sgs1 etc.).

• Lesion repair via Nucleotide Excision Repair (NER) (e.g. Rad1, Rad10, Rad14 etc.). NER can be

categorized into two sub-pathways, differing in their mechanism for lesion recognition, but sharing

downstream repair machinery:

– Transcription Coupled NER (TC-NER), which surveils DNA during transcription (involving Rad26).

– Global Genomic NER (GG-NER), which can recognize lesions independently from transcription

(Involving Rad23 & Rad4).

Of course, other DNA repair mechanisms also exist including Mismatch Repair (MMR), Non-Homologous

End Joining (NHEJ), and Base Excision Repair (BER). And, each pathway, whether it be PRR, TLS, TS,

NER, MMR, NHEJ, or BER, is important in the context of specific DNA lesions. While all of these pathways

are independently well studied, how the various repair and damage tolerance pathways relate to each other

to establish cisplatin tolerance and fitness remains unclear. Moreover, more than 100 genes have been

identified as important for cisplatin tolerance, yet the role of many of these genes in establishing a cisplatin

tolerance network remains to be determined.

To address these gaps in understanding, we are currently constructing a cisplatin differential epistasis mini-

array profile (dE-MAP) (St. Onge et al. 2007; Bandyopadhyay et al. 2010; Guénolé et al. 2013; Srivas et

al. 2013; Hustedt et al. 2015) – see schematized experiment in Figure 1.1. This variation on the standard

E-MAP is a systems genetics approach for optimizing detection of genetic interactions – pairs of mutant
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alleles that have an unexpected phenotypic consequence. In simple terms, an E-MAP just involves making

all pair-wise combinations for a set of alleles to identify synergistic or epistatic relationships to a phenotype

(Schuldiner et al. 2005, 2006; Collins et al. 2006, 2007; Fiedler et al. 2009; Braberg et al. 2013). Typically,

the Synthetic Genetic Array (SGA) method is used to generate the double mutants, and colony size or

density is used for the phenotype as a proxy for cellular fitness (Tong et al. 2001; Tong and Boone 2006).

In this context, a synergistic relationship between two mutant alleles represents unexpectedly low fitness in

the double-mutant (sometimes referred to as synthetic lethality, or a negative fitness interaction), and the

alleles are interpreted as having parallel compensatory contributions to fitness (i.e. the alleles impact closely

related parallel pathways). Conversely, an epistatic relationship between two mutant alleles represents

unexpectedly high fitness in the double-mutant (sometimes referred to as suppression, or a positive fitness

interaction), and the alleles are interpreted as having a shared contribution to fitness (i.e. the alleles impact

the same pathway). The differential extension of the E-MAP approach involves scoring the phenotype after

exposure to a treatment. Constructing a dE-MAP reveals (1) the quantitative fitness for all alleles in the

set as single mutants, with and without exposure to treatment, (2) genetic interactions that exist between

alleles, with and without exposure to treatment. Importantly, being able to account for existing double-mutant

interactions and drug sensitivity allows detection of treatment specific genetic relationships.

A number of dE-MAPs have been constructed for varying size sets of alleles and under different treatment

conditions (mostly DNA damaging agents). Notable examples cited above include (in order of publication):

1. A 26 query × 26 array treated with 0.002% methyl methanesulfonate (MMS) (St. Onge et al. 2007).

2. A 418 query × 418 array treated with 0.002% MMS (Bandyopadhyay et al. 2010).

3. A 55 query × 2,022 array treated with 0.01% MMS, 5 μg/ml camptothecin, or 75 μM zeocin [2013-01-

Gunol-vanAttikum].

4. A 37 query × 1,397 array treated with 20, or 80 J/m2 of ultraviolet radiation (Srivas et al. 2013).

5. A 35 query × 1,311 array treated with 20, or 100 mM hydroxyurea (Hustedt et al. 2015).

Here we present the design, execution, current insights and progress in constructing a 202 query × 202 array

cisplatin dE-MAP. Importantly, we highlight a key limitation in published dE-MAP studies. These studies all
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use fixed treatment concentrations, which impacts the resolution for detecting genetic interactions, and

affects interpretation of these existing dE-MAP networks (Figure 1.2). We propose a solution by optimizing

cisplatin concentrations to generate a phenotype in for the query allele, while minimizing lethality caused by

alleles in the array. Results from the cisplatin dE-MAP will reveal how multiple genetic pathways function

as a network to establish a robust system for tolerating cisplatin mediated DNA damage.

1.2 Results

1.2.1 Designing the cisplatin strain collection

The E-MAP and dE-MAP methods are powerful systems genetics approaches for identifying genetic rela-

tionships because they leverage the observation that most genetically interacting alleles share a common

phenotype (Schuldiner et al. 2005; Collins et al. 2006). Using this observation, we can focus our search for

cisplatin specific genetic relationships by identifying genes that share a common phenotype. The phenotype

we are specifically interested in is that of cisplatin sensitivity. Therefore, we first identified the set of genes

that, when deleted, cause a change in cisplatin sensitivity. These genes were identified from three sources:

1. Genes annotated in the Saccharomyces genome database as being sensitive, or resistant to cisplatin.

2. Genes identified by other groups as modifying cisplatin sensitivity using the CLIK algorithm to identify

lenient screen cutoffs (Birrell et al. 2002; Wu et al. 2004; Lee et al. 2005; Huang et al. 2005; Hastie

et al. 2006; Dittmar et al. 2013).

3. Our own chemogenomic screens of the MATa and MATα gene disruption collections at cisplatin con-

centrations of 0, 50, 100 and 125 μM.

Since some mutants might only show cisplatin sensitivity when paired with deletion of a redundant pathway,

we also bootstrapped genes that had evidence for being involved in DNA replication, recombination or repair

using the following two sources of evidence:
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1. Gene ontology annotation to DNA replication, recombination, or repair.

2. Genes having shown strong genetic interactions in previously published differential epistasis maps of

other DNA damaging treatments (MMS, camptothecin, zeocin, ultraviolet radiation, and hydroxyurea)

(Bandyopadhyay et al. 2010; Guénolé et al. 2013; Srivas et al. 2013; Hustedt et al. 2015).

From this set, some members of overrepresented pathways were removed (e.g. 6 subunits of the vacuolar

membrane ATPase were removed from the set). Dubious ORFs were also removed. The resulting mini-

array consisted of 202 strains, allowing for 182 wildtype control strains to be spread evenly across a single

16×24, 384 strain plate. All query and array strains were independently verified as described in theMethods

1.4.1.

1.2.2 Strategy for optimizing detection of genetic interactions

Before beginning the dE-MAP experiment, we were faced with the challenge of selecting the best concen-

tration of cisplatin to use for detecting interactions. Previous dE-MAP studies were performed using one

(sometimes two) fixed concentrations of a treatment (Bandyopadhyay et al. 2010; Guénolé et al. 2013; Sri-

vas et al. 2013; Hustedt et al. 2015). However, when we assayed our mini-array to determine the optimal

range for the cisplatin dE-MAP, we observed sensitivity across nearly two orders of magnitude of cisplatin

concentration (e.g. rad5∆ and rad18 show sensitivity at 2.5 µM, whereas other mutants did not display a

phenotype until 125 µM). No pair of cisplatin concentrations would be sufficient to detect genetic relation-

ships for both the most sensitive mutant strains, and weakly sensitive strains. Unfortunately, performing a

full cisplatin titration for every round of SGA was also not feasible as each additional treatment condition

multiplies the number of plates to an unmanageable scale. Instead, as a compromise, we decided to opti-

mize the cisplatin concentrations based on the phenotype of each query strain. The final concentrations, in

addition to untreated, would correspond to a low concentration that would minimize lethality of strains in the

array, and a high concentration that would produce a cisplatin sensitive phenotype in the query strain. The

resulting protocol is schematized in Figure 1.1. The choice for optimizing the high cisplatin concentration

was determined based on the observation that colony fitness interactions, under the multiplicative null model,
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are best detected when one or both alleles have a fitness phenotype, but neither allele has caused lethality.

This is illustrated in Figure 1.2. We therefore performed a pilot round of SGA by crossing a leu2::NatMX

control query to the mini-array andmeasuring cisplatin sensitivity at concentrations ranging from 5 to 100 µM.

Since all strains in the array are leu2, this reference query allowed us to identify the single mutant cisplatin

dose response profiles for each allele as they would be observed at the end of SGA.

1.2.3 Single-mutant cisplatin sensitivity

From the cisplatin titration results we observed very few strains that showed strong sensitivity to 25 µM

cisplatin (Figure 1.3 left). Interestingly, the most acutely sensitive strains were rad5∆, rad18∆, and rad6∆

– all members of postreplication repair (PRR) that are involved in post-translationally modifying PCNA (S.

cerevisiae Pol30) to regulate how replication forks respond to a DNA lesion (Xiao et al. 2000). This obser-

vation alone underscores the importance of enabling DNA replication forks to respond appropriately when

encountering cisplatin mediated damage. Furthermore, when increasing the concentration to 80 µM, we

observed more than 55 strains that displayed at least a 35% growth defect (Figure 1.3 right). At 80 µM,

we also observed complete lethality for mutants of genes in both the error-free and error-prone branches of

PRR corresponding to sister-chromatid template switching (TS – rad51∆, rad52∆, rad54∆, rad57∆, sgs1∆)

and translesion synthesis (TLS – rev1∆, rev3∆, rev7∆, pol32∆) respectively. Additionally, the MRX complex

(mre11∆, rad50∆, xrs2∆), involved in an early step of homology directed repair (HDR), and nucleotide exci-

sion repair (NER – rad1∆, rad10∆, rad2∆, rad4∆, rad14∆), responsible for excising damaged DNA bases,

were both inviable when treated with 80 µM cisplatin. Lastly, the slx5∆ and slx8∆ complex, a SUMO-targeted

ubiquitin ligase, known to degrade HDR/TS members rad52∆ and rad57∆, also showed near lethality at this

higher cisplatin concentration. All of these genes, owing to having the strongest response to cisplatin treat-

ment, represent the core cisplatin tolerance pathways.
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1.2.4 Insights from the static E-MAP

In constructing the cisplatin dE-MAP, a static untreated E-MAP is also generated, allowing detection of ge-

netic fitness relationships in standard laboratory growth conditions. When focusing on the major cisplatin

tolerance pathways, we see many genetic relationships that reaffirm known relationships between repair

pathways (Figure 1.4 left). For example, we see epistasis amongst the MRX complex and strand inva-

sion components of HDR. We also detect some epistasis between members of NER (e.g. between rad2∆ &

rad14∆ and between rad14∆ & rad1∆). Unexpectedly, given the well established role of MRX in recognizing

broken ends to initiate resection for HDR, we see some considerable positive interactions between MRX

and NER (e.g. between rad50∆ and rad2∆, rad14∆, rad10∆ and rad4∆). HDR and NER are thought to act

as parallel repair pathways and thus one would reasonably predict that there would be negative fitness inter-

actions between these two pathways. Counter to the observed epistasis between MRX and NER, crossover

resolution shows evidence for synergy between HDR and NER, as expected (e.g. between sgs1∆, top3∆

and NER). Without cisplatin challenge, we see no evidence for epistasis between members of error-prone

PRR (rev3∆ & rev7∆), but they do share a consistent pattern of negative genetic interactions with the error-

free PRR branch, and Rad5’s E2 ubiquitin ligase partners, mms2∆ & ubc13∆. This is consistent with the

canonical model of Rad5-Ubc13-Mms2 polyubiquitinating PCNA to activate error-free template switching

as an alternative to error-prone translesion synthesis. With respect to PRR, we see rad18∆ and rad5 show

negative interactions with NER, MRX, and HDR, indicating that PRR acts redundantly to these processes

to maintain fitness in standard growth conditions. Overall, with only a few exceptions, the untreated E-MAP

largely confirms some of the well established genetic relationships between the core cisplatin tolerance path-

ways. However, the network is relatively sparse, and many known pathway relationships are not revealed

through epistasis, likely owing to a lack of fitness phenotypes for some of these mutant alleles, thus limiting

detection of positive genetic relationships (Figure 1.2 left).
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1.2.5 Insights from the cisplatin differential E-MAP

The cisplatin dE-MAP reveals pathway relationships specific to cisplatin treatment after accounting for ge-

netic interactions observed in the untreated condition (Methods 1.4.5). Again focusing on the core cisplatin

tolerance pathways, we see clear epistasis and synergistic relationships emerge (Figure 1.4 right). For ex-

ample, epistasis amongst most of NER becomes very clear (purple box including rad2∆, rad14∆, rad10∆ &

rad1∆). Remarkably, the dE-MAP is also able to resolve NER into its two canonical pathways, transcription-

coupled and global-genomic (TC-NER & GG-NER) represented by rad26∆ and rad23∆ respectively. Com-

bining these mutations results in synergy, indicative of parallel compensatory contributions to cisplatin toler-

ance. And, when looking at the remaining profile of synergistic interactions, GG-NER appears to be more

essential than TC-NER for maintaining cisplatin tolerance. With respect to the epistatic relationship between

MRX and NER observed in the E-MAP, this relationship is reversed in the context of cisplatin. MRX and

NER clearly synergize, acting in parallel compensatory pathways for responding to cisplatin damage. In

fact, NER represents a clearly distinct parallel pathway to all of the other core cisplatin tolerance pathways.

Since NER can act independently to excise intrastrand DNA crosslinks, it stands to reason that defects in

NER increase the effective dose of cisplatin resulting in an increased burden on the other mechanisms for

cisplatin tolerance.

While the matrix approach to visualizing the dE-MAP is rich in detail, it can be difficult to discern overall

pathway relationships. As an alternative visualization, we have distilled the major patterns of genetic re-

quirements between the core cisplatin tolerance pathways as a summary network diagram shown in Figure

1.5. From this diagram, we see that HDR, acting in conjunction with crossover resolution, forms a pathway

with many members acting redundantly to both TLS, NER and PRR. We also see that NER, as mentioned

above acts completely independently of all other tolerance pathways, synergizing strongly with defects in

HDR, crossover resolution, PRR, MRX and DNA replication fork stability. Interestingly, the early PRR regula-

tory members, Rad5 and Rad18, form a central pathway, bridging crossover resolution, TLS, MRX and fork

stability into a larger meta pathway of cisplatin tolerance. This coordination of multiple tolerance pathways

may explain why rad5∆ and rad18∆ show the strongest sensitization to cisplatin (Figure 1.3 left).
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1.2.6 Current progress and novel pathway membership

Currently 89 query mutations have been crossed to the array with four complete biological replicates. The

analysis of the core cisplatin tolerance pathways described above does not include many of the alleles in-

cluded in the current network. To visualize pathway memberships for all alleles in the network, dimension

reduction was performed using t-SNE (van der Maaten and Hinton 2008), to cluster genes in two dimen-

sions (Figure 1.6). From this clustering we can see evidence for some novel, or unappreciated pathway

memberships, in some of the core pathways. For example, we see saw1∆ clustering with TLS, which is

surprising given its known role in recruiting NER members, Rad1 & Rad10, to perform a role in single-strand

annealing and double-strand break repair (Li et al. 2013). Additionally, we see Slx8, part of the Slx5-Slx8

SUMO-targeted ubiquitin ligase complex clustering with the error-free HDR branch of PRR. Since Slx5-Slx8

is known to target Rad52, and Rad57 for degradation (Xie et al. 2007), this clustering suggests that an in-

ability to degrade Rad52 and Rad57 at the correct time may be just as important as having these proteins at

all for efficient HDR. Another remarkable feature, briefly mentioned above, is that the MRX complex (acting

early in HDR), and crossover resolution (acting late in HDR), are easily distinguished genetically from the

strand invasion components of HDR. While crossover resolution tends to cluster independently, MRX tends

to cluster with chromatin remodelers, fork stability, and sister-chromatid cohesion factors. This observation

provides support for a role of MRX acting to stabilize replication forks, possibly by tethering sister strands

and other DNA ends that may be generated during PRR at replication forks (Mirzoeva and Petrini 2003;

Tittel-Elmer et al. 2009). Lastly, while much of the literature for the PRR member, Rad5, focuses on its

role in poly-ubiquitinating PCNA to activate error-free sister-chromatid recombination (Hoege et al. 2002;

Branzei et al. 2004), loss of the Rad5 E2 ubiquitin ligase partners (Ubc13-Mms2) is genetically distinct from

loss of Rad5 itself. Some might argue that this could be due to Rad5 playing a role in recruiting TLS poly-

merases (Kuang et al. 2013). However, this would predict that rad5∆ should be genetically similar to TLS

mutants. This is not the case, rather, one of the major distinguishing features between deletion of RAD5

and its E2 partners is having opposite genetic interactions with MRX – rad5∆ shows evidence for epistasis

with MRX whereas deletion of the Rad5 E2 partners shows stronger evidence for synergy. This observation
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could suggest that Rad5, one of the most critical cisplatin tolerance proteins, may work with MRX to promote

stability of a cisplatin challenged replication fork.

1.3 Discussion

Cisplatin is an essential first-line chemotherapeutic effective in treating many types of cancer. Encoded

within cells, cancer or otherwise, are multiple cisplatin tolerance pathways that enable repair, or bypass,

of intrastrand crosslinks on DNA (Deans and West 2011). In yeast, over 100 genes take part in enabling

cisplatin tolerance, some of which have no known role in this process. This study has provided a clearer

picture of how the core cisplatin tolerance pathways relate to each other to create a cisplatin tolerance

network.

1.3.1 NER is the dominant repair pathway

Importantly, nucleotide excision repair (NER), and not base excision repair (BER), or mismatch repair (MMR),

is clearly the dominant pathway for repair of the lesions caused by cisplatin. This observation makes sense

given that 90% of DNA lesions caused by cisplatin are thought to occur between bases on the same strand

(Eastman 1986). These interstrand crosslinks are amenable to repair by NER, whereas MMR can recognize

but not repair these lesions (Rocha et al. 2018). Additionally, a cisplatin crosslink, even when on the same

strand, creates a bulky adduct that would likely be preferentially recognized by NER, rather than BER, which

typically repairs individually damaged bases that do not distort the DNA double-helix (Todd and Lippard

2010; Baute and Depicker 2008; Deans and West 2011). The overall single-mutant cisplatin sensitivity

profiles are consistent with these notions – NER is essential, whereas BER and MMR are not (Figure 1.3).

In some sense, cisplatin treatment can be likened to ultraviolet radiation induced DNA damage, which often

covalently links adjacent thymines on the same strand. In fact, there have been some proposals to treat

cancers with NER inhibitors specifically as a combination therapy with cisplatin (Gentile et al. 2016), and a

UV based assay has been used to detect efficacy of such inhibitors (Szalat et al. 2018).
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1.3.2 PRR is the most critical pathway for cisplatin tolerance

NER, and specifically global-genomic NER, clearly plays an important role in repairing cisplatin lesions.

Additionally, our cisplatin differential epistasis mini-array profile (dE-MAP) has revealed unequivocally that

NER acts in parallel to all of the other core cisplatin tolerance pathways (Figure 1.4). This is consistent

with a model whereby the efficiency of NER dictates the effective damage burden passed to the lesion

bypass machinery. While NER is important for repairing cisplatin lesions, it cannot be understated how

acutely sensitive mutations in the lesion bypassing postreplication repair pathway are to the lowest doses

of cisplatin treatment (Figure 1.3). The current dE-MAP provides a clue as to why this may be the case.

Rad5 and Rad18 act with multiple core components of the cisplatin tolerance network (Figure 1.5).

1.3.3 Genetic evidence supporting a role for MRX in stabilizing replication forks

In constructing both the E-MAP and cisplatin dE-MAP we observed some interesting genetic relationships

for the MRX complex. Specifically, in untreated conditions, MRX and NER appear to share a contribution to

fitness, suggesting some overlapping role in maintaining growth of colonies Figure 1.4. Also, MRX in the

cisplatin dE-MAP clusters away from other HDRmembers and with factors more associated with maintaining

the stability of replication forks Figure 1.6. A role for MRX in stabilizing forks, rather than in double-strand

break end tethering and resection, has been proposed (Mirzoeva and Petrini 2003; Tittel-Elmer et al. 2009),

but this role is often under-appreciated.

1.3.4 Clinical relevance and future directions

The current cisplatin dE-MAP is approximately 70% complete and is already providing a clearer picture of

how the cisplatin tolerance network is structured. Importantly, understanding the structure of the cisplatin

tolerance network will help researchers and clinicians develop strategies to treat tumors with defects in spe-

cific damage tolerance pathways (Rocha et al. 2018). Identifying fitness dependencies that occur between

repair pathways has already resulted in the development of synthetic lethal approaches for treating repair

12



deficient tumors, with PARP inhibitors recently being approved for treating certain BRCA mutant cancers

(Ashworth and Lord 2018; Lord et al. 2015). Understanding how these synthetic lethal relationships might

arise in the context of chemotherapy may lead to new avenues for drug development and could certainly

lead to to improved treatment decisions. Indeed, at least one group has leveraged genetic relationships

similar to what we have identified in our dE-MAP, by pairing PARP inhibition with cisplatin in cell lines that

have low expression of a critical NER gene (Cheng et al. 2013). Our network would predict what this study

observed, that inhibiting any other cisplatin tolerance pathway should synergize with low NER activity.

Future directions for this project will seek to compare the cisplatin dE-MAP to previously published dE-

MAPs generated for other DNA damaging treatments to identify genetic relationships specific to cisplatin

treatment. And, with the development of new CRISPR-based pooled screening approaches for generating

combinatorial knockouts in other model systems (Shen et al. 2017), I look forward to taking some of the

lessons learned from mapping epistasis in yeast into human cell lines. Two of these lessons I would like to

share here:

1. Most interacting genes share a common phenotype. Therefore, use chemogenomics (or another

equally simple assay) to define a focused set of single-mutants that share a common phenotype before

pursuing a combinatorial genetic interaction screen.

2. Detection of genetic interactions can critically depend on environmental conditions. Therefore, care-

fully consider treatment conditions for optimizing detection of genetic relationships based on a vali-

dated genetic interaction null model.

1.4 Methods

1.4.1 Strain construction and validation

Strains in the collection were streak-purified from theMATa KanMX gene disruption collection and validated

by PCR using primers upstream and downstream of the integrated KanMX marker. Additional KanMX -

13



internal and GENE-internal primers were also used to confirm both presence of the KanMX marker and

absence of the gene’s open reading frame. Strains that failed to validate were reconstructed using the ap-

proach described by the yeast gene deletion consortium (http://www-sequence.stanford.edu/group/yeast_

deletion_project/protocols.html). Query strains were constructed using the PCR product of the KanMX cas-

sette generated during strain validation, which included approximately 250 bases of homology on either side

of the cassette. This PCR product was co-transformed with NatMX product to simultaneously integrate and

marker-swap KanMX with NatMX. Transformants were then validated using genomic primers outside of the

transformed region of homology. Additional NatMX -internal and GENE-internal primers were also used to

confirm presence of the NatMX marker and absence of the gene. The E-MAP approach also has an internal

strain validation mechanism in that each query allele is present in the array. Therefore, when crossing the

NatMX query to the same allele marked with KanMX, the two markers will fail to independently segregate

and lethality will be observed. Related to Section 1.2.1.

1.4.2 Synthetic genetic array

Differential epistasis mapping was performed using the synthetic genetic array (SGA) method to construct

pairwise double-mutants among the strains in the cisplatin collection (Tong et al. 2001; Tong and Boone

2006; Costanzo et al. 2010; Baryshnikova et al. 2010). This method begins bymating theMATa collection of

KanMX marked single gene disruption mutants to a single MATα query strain containing a NatMX marked

single gene disruption. Diploids are then selected by plating on media containing geneticin (G418) and

nourseothricin (NAT) to select for presence of the KanMX and NatMX markers respectively. Haploids are

then generated by plating on sporulation media (SPO). After sporulation, strains are pinned to a series

of increasingly selective conditions to select for haploids having the same genetic background and both

KanMX and NatMX marked gene disruptions. Mating type specific markers are selected for using S-AEC

and canavanine to select for lyp1∆ and can1∆ respectively (lysine and arginine are removed from the media

to encourage uptake of S-AEC and canavanine into the cell). Mating type a is selected for by removing

histidine which is complemented by MATa specific expression from the STE2 promoter of HIS5, a histidine
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biosynthesis gene from Schizosaccharomyces pombe that complements his3. After selecting for double

mutant haploids, strains are pinned to the final growth media containing concentrations of cisplatin optimized

to detect both positive (epistatic / positive) and negative (synergistic / negative) genetic interactions based

on the sensitivity of the query strain to the drug. At least four biological replicates were generated for each

query strain by repeating the experiment from independent colonies in at least two separate rounds of SGA.

Every batch of SGA included a leu2::NatMX query to account for variation in cisplatin potency from batch to

batch. The strain collection contains 178 his3::KanMX strains placed at the border of the grid (excluded from

analysis) and evenly distributed throughout the center of the place (used for spatial normalization of colony

growth). 0 µM cisplatin, leu2::NatMX, and his3::KanMX are also used as controls for estimating fitness of

WT, and single mutants, in the presence and absence of cisplatin. Relevant strain genotypes are provided

below.

• Genotype of strain collection (BY4741):

– MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 A::KanMX

• Genotype of query strain (Y8205):

– MATα his3∆1 leu2∆0 ura3∆0 met15∆0 can1∆::STE2p-Sp_HIS5 lyp1∆::STE3p-LEU2 Q::NatMX

• Genotype at end of SGA

– MATa his3∆1 leu2∆0 ura3∆0 met15∆0 can1∆::STE2p-Sp_HIS5 lyp1∆::STE3p-LEU2 A::KanMX

Q::NatMX

1.4.3 Detailed SGA protocol

All incubation steps take place in a 30°C incubator. SC and YPD are standard laboratory recipes with 2%

dextrose. Concentrations of additives are 60 mg/L of Can, 50 mg/L of S-AEC, 200 mg/L of G418, and

100 mg/L of clonNAT. The SPO recipe is described by Tong et al. (2001), which consists of 2% agar, 1%

potassium acetate, 0.1% yeast extracts, 0.05% glucose, and is supplemented with uracil, histidine, and

leucine. Robotic pinning is performed using a Singer RoToR robot.
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1. Streaking out: 3-4 days prior to starting SGA, take query strains out of -80°C freezer and streak for

single colonies on YPD +NAT plates.

2. Liquid cultures: Once single colonies have grown, inoculate one colony per query into 5 mL of YPD.

Grow overnight in a shaking incubator. On that same day, robotically pin copies of the strain library on

YPD + G418 plates. Print at least one copy for every 8 queries.

3. Lawns: The next morning, pellet the 5 mL cultures, re-suspend in 400uL of sterile water, and spread

400 uL with sterile glass beads on YPD rectangular plates. Allow lawns to grow overnight. Tip: quickly

invert the plates when removing glass beads to prevent gaps in the lawn.

4. Mating: The next morning, robotically pin the lawns and the strain collection to YPD.

• Run replicatemany program, using the strain collection as the source, and YPD plates as targets.

Turn on recycle and revisit. 384 short pinned pads should be used.

• Run replicate program using each lawn as source, and each YPD plate (previously pinned with

strain collection) as target. DO NOT recycle, or revisit. 384 short pinned pads should be used.

5. Diploid Selection 1: The next morning, replicate each cross onto YPD +G418 +NAT.

6. Diploid Selection 2: The next morning, repeat step 5.

7. Sporulation: The next morning, replicate each plate onto SPO +G418 (G418 is added to prevent

contamination and does not hinder sporulation).

8. Haploid Selection 1: One week later, replicate each plate onto SC -His -Arg -Lys +Can +S-AEC

plates

9. Haploid Selection 2: Two days later, repeat step 8

10. Haploid Selection 3: The next morning, replicate each plate onto SC -His -Arg -Lys +Can +S-AEC

+G418

11. Haploid Selection 4: The next morning, replicate each plate onto SC -His -Arg -Lys +Can +S-AEC

+G418 +NAT
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12. Prepare cisplatin media: The next day, cisplatin media should be prepared.

13. Pin to final plates: The next day.

• 384-well microtiter plate preparation: Fill 384-well plates with 80 µL sterile water. Prepare as

many plates as there are independent crosses.

• Resuspension: Pin from the last haploid selection plate, to the 384-well microtiter plate from,

using 384 long pin pads, and an extensive resuspension program.

• 1 to 4 liquid to agar pinning: Pin from the newly resuspended 384 well plate to the destination

agar plates. The first agar plate pinned from a microtiter plate should be discarded as the four

technical replicates are often inconsistent for the first pinnings. 384 long pin pads should be used.

Pinning should be done from a 384 to a 1536 density format. For a given cross, use the same

pad across all cisplatin plates. This step should be performed as quickly as possible to avoid

settling of the yeast in the 384 well plates.

1.4.4 Cisplatin media preparation

Cisplatin media should be prepared one day prior to use to ensure maximum stability of the drug.

A brief protocol for making the final media is included below.

1. Prepare SC: Prepare a sufficient volume of SC to cover the number of plates required as well as an

additional plate per independent cross.

2. Prepare cisplatin solution: One hour before pouring plates, prepare a 0.9% NaCl 1 mg/mL cisplatin

solution. To ease solubilization, the solution can be warmed a few minutes in a 50°C water bath.

3. Media preparation: In a large flask, mix the appropriate volumes of autoclaved SC media, cisplatin

solution, G418, and NAT after the media cools to below 52°C.

4. Plate pouring: Pour 60 mL of media per plate and let dry overnight on an even surface. Covering the

plates with foil may prevent photodegradation of the drug and helps keep the plate surface level.
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1.4.5 Scoring interactions

Expected fitness of the query mutation q combined with the array mutation a, qa (Eqa) is calculated as the

multiplicative fitness contributions of each single mutant (F q, and F a) scaled to fitness of wildtype (F wt ≡ 1).

Eqa = F q · F a

And the genetic interaction magnitude between q and a (Sqa) is computed as the difference between ex-

pected and observed fitness of the double mutant:

Sqa = Eqa − F qa

In practice, plate normalization must be performed to account for systematic differences in growth between

plates. This has the effect of also dividing out the contribution of the query mutation, and the contribution

of the drug to colony fitness. Thus, after plate normalization, the resulting value is the marginal contribution

of the array mutation to fitness, which, in the absence of a genetic or drug interaction, should be equivalent

to the plate normalized measurement of the array strain in the reference context (i.e. leu2::NatMX query,

or 0 μM cisplatin control conditions). Using P to denote plate normalized colony measurements, genetic

interaction magnitude can be directly calculated with:

Sqa = P qa − P a

For the E-MAP (related to Figure 1.4 left), Sqa is calculated by aggregating values of P qa, and P a from the

0 μM untreated condition using every observation from running a given query allele (providing P qa) and the

leu2::NatMX reference allele (providing P a) through SGA. A t-distribution based 95% confidence interval

error (ε), with α = 0.05 and n − 1 degrees of freedom, can be calculated for both P qa and P a given the

standard deviation (s), and the number of observations for each value (n) with:
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ε = tα
n−1 · s√

n

The confidence interval for Sqa is then derived by error propagation calculated with:

Sqa ±
√

(εqa)2 + (εa)2

For the dE-MAP (related to Figure 1.4 right), the array allele cisplatin sensitivity Dac is calculated by pairing

observations within biological replicates to minimize spurious differences that can occur between replicates.

This is done by:

Dac = median(P ac − P a)

Similarly, the array allele cisplatin sensitivity in the context of a query allele Dqac is calculated with:

Dqac = median(P qac − P qa)

Errors can be directly calculated using the standard deviation and number of complete observations of paired

differences.

Using the two different array strain cisplatin sensitivities, the cisplatin specific genetic interaction between

query and array alleles Dqa
cispt is calculated with:

Dqa
cispt = Dqac − Dac

Errors can then be propagated as described above given the errors for Dqac, and Dac.

Finally (related to Figure 1.4), to generate the E-MAP and dE-MAP networks, interactions can be aggregated

since a cross of gene deletion X with gene deletion Y should be equivalent to a cross between Y and X

19



(i.e. the network is an undirected graph). And, since interactions observed across cisplatin concentrations

should either be near zero or trend in the same direction (positive or negative) from zero, fitness differences

are aggregated using Stouffer’s method for combining Z-scores (Stouffer et al. 1949):

∑
Interactions√

n

This essentially averages the observed interactions, while slightly enhancing the aggregated interaction

value if multiple observations fall on the same side of zero. I should note that, while the above analysis

pipeline works well for recapitulating 30 years of genetics in DNA repair pathways (i.e. it passes the “sanity”

check), scoring interactions for the E-MAP and dE-MAP would likely benefit from more advanced statistical

modeling.
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1.5 Figures and tables

Figure 1.1 – Differential epistasis profiling. A differential epistasis mini-array profile (dE-MAP) can be
used to detect treatment-specific genetic relationships for a focused set of mutant alleles (A). To generate a
dE-MAP, a set of mutant query strains (Q), is crossed to a mini-array of mutant strains (A) (i.e. Q×A). Since
the query alleles are all represented in the set of array alleles (Q ∈ A), the complete set of crosses generates
all pair-wise double-mutant combinations of alleles in A. In the final step, double-mutants are replicated to
three concentrations of cisplatin (C), 0 µM, low, and high (i.e. Q×A×C). The high concentration of cisplatin
is optimized for Q to produce a phenotype in Q as a single mutant. This optimization enhances the likelihood
of detecting positive genetic interactions for Q. The low concentration is optimized to prevent total lethality
of cisplatin sensitive strains in A, which enhances the likelihood of detecting any interactions with mutants
in A that are very sensitive to cisplatin. Related to Sections 1.1 & 1.2.2.
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Figure 1.2 – Optimizing interaction detection. Colony density at maximal growth is used as a proxy for
fitness. Growth of representative colonies for wildtype (WT ), a query mutant (Q), an array mutant (A) and
a query-array double mutant (QA) are shown with quantitation of colony density over time shown below. In
nutrient limiting conditions, colony density plateaus and the relative fitness of colonies remains proportionally
stable such that the exact growth time does not have a major impact on relative fitness measurements.
Using endpoint growth as an example, Q and A synergize in this instance to have an observed double-
mutant fitness (QA, or F qa) considerably lower than expected (red bar). This synergy represents a negative
fitness interaction between alleles Q and A. Expected fitness of the double mutant (Eqa) is modeled using a
multiplicative model (i.e. Eqa = F q ·F a where F wt ≡ 1). Given this model for expected fitness, the windows
of opportunity to detect epistasis (yellow box), or synergy (blue box), will critically depend on whether Q, or
A have a fitness phenotype (i.e. if F q ̸= 1, or F a ̸= 1). On the right is an example showing how the windows
for detecting interaction change depending on the phenotype of Q and A. Related to Sections 1.1 & 1.2.2.
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Figure 1.3 – Single mutant cisplatin sensitivity. Single mutant strains have major differences in cisplatin
sensitivity. The top 56 most cisplatin sensitive mutants at 25 µM are shown in the left panel. The top 56
most cisplatin sensitive mutants at 80 µM are shown in the right panel. Change in fitness at the designated
concentration of cisplatin is shown. A negative change in fitness is indicative of cisplatin sensitivity (i.e. a
negative fitness interaction with cisplatin). Mutants that have died are shaded red (i.e. no colony growth).
Strains are ordered by estimated change in fitness. Horizontal bars are 95% confidence intervals of this
estimate. Major repair pathways with significant amounts of lethality are annotated with arrows. PRR =
postreplication repair. NER = nucleotide excision repair. TLS = translesion synthesis. HDR = homology-
directed repair. Data is from dE-MAP SGA experiments performed by François Dossin, Matthieu Haudiquet,
Alice Serafin, Tyler Perdue, Eden David and Eric Bryant. Related to Table 1.1 & Sections 1.2.3 & 1.2.5.
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Figure 1.4 – Epistasis profiles for core cisplatin tolerance pathways. Boxes represent a double-mutant
combination indicated by gene labels on the x and y axes. Boxes are shaded to indicate the change from
expected fitness with purple indicating epistasis (i.e. a positive fitness interaction), and green indicating
synergy (i.e. a negative fitness interaction). Boxes with circles indicate that a t-distribution based 95%
confidence interval of the estimated fitness difference was either above zero (purple), or below zero (green)
(seeMethods 1.4.5). The interaction matrix was mirrored by aggregating undirected interactions between Q
andA alleles for all cisplatin concentrations considered (E-MAP, cisplatin = 0µ; dE-MAP cisplatin ≠ 0µ). Data
is from SGA experiments performed by François Dossin, Matthieu Haudiquet, Alice Serafin, Tyler Perdue,
Eden David and Eric Bryant. Related to Tables 1.2 & 1.3 and Sections 1.2.4 & 1.2.5. Genes were clustered
manually into pathways with the following order:

1. Transcription-coupled nucleotide excision repair (TC-NER) (rad26∆).
2. Global-genomic nucleotide excision (GG-NER). (rad4∆, rad23∆)
3. Nucleotide excision repair (NER) (rad1∆, rad10∆, rad14∆, rad2∆).
4. Homology directed repair (HDR) (rad57∆, rad54∆, rad51∆).
5. Crossover resolution (top3∆, sgs1∆).
6. MRX (HDR) (rad50∆, mre11∆, xrs2∆).
7. Fork stability / sister chromatid cohesion (dia2∆, ctf4∆).
8. Postreplication repair (PRR) (rad5∆, ubc13∆,mms2∆, rad18∆, pol30RR). pol30RR is an allele of POL30

that cannot be ubiquitinated by PRR (Hoege et al. 2002).
9. Translesion synthesis (TLS) (rev3∆, rev7∆). saw1∆ has a similar profile to TLS.
10. SHU complex (HDR) (psy3∆, csm2∆, shu2∆, shu1∆). mph1∆ has a similar profile to the SHU complex.
11. snf2∆ and siz1∆ were added for reference as mutants with few, if any, interactions.
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Figure 1.5 – Summary network of core cisplatin tolerance pathways. Major pathways from Figure 1.4
and the general trends in genetic relationships are shown here as a network with blue nodes represent-
ing mutant alleles, clustered cisplatin tolerance pathways by tan shaded regions. Purple edges represent
shared contribution to cisplatin tolerance between alleles (i.e. same pathway, epistasis, positive fitness inter-
action). Green edges are drawn between pathways representing parallel contributions to cisplatin tolerance
(i.e. closely related redundant pathways, synergy, negative fitness interaction). All pathways are labeled
except for crossover resolution (top3, sgs1). Some edges have been manually trimmed due to noisy un-
derlying colony measurements. Data is from dE-MAP SGA experiments performed by François Dossin,
Matthieu Haudiquet, Alice Serafin, Tyler Perdue, Eden David and Eric Bryant. Related to Section 1.2.5.
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Figure 1.6 – Clusters of completed query mutants. Using the dE-MAP for the current complete network,
genes were clustered based on their cisplatin specific genetic relationships (only a subset of the complete
dE-MAP is presented for Figures 1.4 & 1.5). Clustering is presented in two-dimensions, where dimension
reduction of the complete network matrix was performed using the t-SNE algorithm (van der Maaten and
Hinton 2008). The size of each circle represents the number of interactions detected for a given allele.
Some major pathways and complexes are shaded with colored ovals and labeled. Abbreviations stand for
homologous recombination (HR), postreplication repair (PRR), translesion synthesis (TLS), and nucleotide
excision repair (NER). E2 for Rad5 is labeling the mms2 and ubc13 alleles, whose protein products act
together as the E2 ubiquitin ligase for Rad5’s E3 ubiquitination activity on Pol30. pol30RR is an allele of
POL30 that cannot be ubiquitinated by PRR. Data is from dE-MAP SGA experiments performed by François
Dossin, Matthieu Haudiquet, Alice Serafin, Tyler Perdue, Eden David and Eric Bryant. Related to Section
1.2.6.
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Table 1.1 – Cisplatin treated array allele fitness interaction

Header Description

A Array strain name (KanMX disrupted gene name).
n_a Number of measured values for the array strain (leu2::NatMX

query control, and 0 µM cisplatin control).
P_a_est Mean of center 60% of plate normalized array strain (i.e. estimated

fitness of array strain relative to WT).
ci95_a 95% confidence interval for the estimated fitness of the array strain.
C Cisplatin concentration (µM).
n_ac Number of measured values for the array strain at the cisplatin

concentration, C (leu2::NatMX query control).
P_ac_est Mean of center 60% of plate normalized array strain at the cisplatin

concentration C.
ci95_ac 95% confidence interval for the estimated fitness of the array strain

at the cisplatin concentration C.
P_c_diff Difference between array strain fitness with and without cisplatin

treatment (P_ac_est - P_a_est).
P_c_diff_ci95 95% confidence interval for P_c_diff calculated by error

propagation as the square root of the sum of squared errors
(sqrt(ci95_aˆ2 + ci95_acˆ2)).

P_c_diff_upr Upper confidence bound (P_c_diff + P_c_diff_ci95).
P_c_diff_lwr Lower confidence bound (P_c_diff - P_c_diff_ci95).

Related to Figure 1.3.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/cispt-01.csv.
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Table 1.2 – Untreated array and query allele fitness interactions

Header Description

A Array strain name (KanMX disrupted gene name).
n_a Number of measured values for the array strain (leu2::NatMX

query control, and 0 µM cisplatin control).
P_a_est Mean of center 60% of plate normalized array strain (i.e. estimated

fitness of array strain relative to WT).
ci95_a 95% confidence interval for the estimated fitness of the array strain.
Q Query strain name (NatMX disrupted gene name).
n_qa Number of measured values for the array-query double mutant (0

µM cisplatin control).
P_qa_est Mean of center 80% of plate normalized array strain sizes in the

context of the query mutation.
ci95_qa 95% confidence interval for the estimated fitness of the array strain

in the context of the query mutation.
P_q_diff Difference between array strain fitness with and without query

mutation (P_qa_est - P_a_est).
P_q_diff_ci95 95% confidence interval for P_q_diff calculated by error

propagation as the square root of the sum of squared errors
(sqrt(ci95_aˆ2 + ci95_qaˆ2)).

P_q_diff_upr Upper confidence bound (P_q_diff + P_q_diff_ci95).
P_q_diff_lwr Lower confidence bound (P_q_diff - P_q_diff_ci95).

Related to E-MAP in Figure 1.4.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/cispt-02.csv.
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Table 1.3 – Cisplatin treated array and query allele fitness interactions

Header Description

A Array strain name (KanMX disrupted gene name).
Q Query strain name (NatMX disrupted gene name)
C Cisplatin concentration (µM).
Pa_n Number of plate normalized observations of array allele in the

leu2::NatMX 0 µM cisplatin control conditions.
Paq_n Number of plate normalized observations of an array-query double

mutant in the 0 µM cisplatin control condition.
Pac_n Number of plate normalized observations of array allele with

cisplatin treatment in the leu2::NatMX control condition.
Paqc_n Number of plate normalized observations of an array-query double

mutant with cisplatin treatment.
Saq_n Number of complete, paired within batch, array-query fitness

differences (i.e. N for Saq = Paq - Pa).
Dac_n Number of complete, paired within batch, array-cisplatin fitness

differences (i.e. N for Dac = Pac - Pa).
Daqc_n Number of complete, paired within batch, array-cisplatin fitness

differences in the context of a query mutation (i.e. N for Daqc =
Paqc - Paq).

n_a Number of measured values for the array strain (leu2::NatMX
query control, and 0 µM cisplatin control).

P_a_est Mean of center 60% of plate normalized array strain (i.e. estimated
fitness of array strain relative to WT).

Pa_sd, Paq_sd, Pac_sd, Paqc_sd,
Saq_sd, Dac_sd, Daqc_sd

Standard deviations of non-missing measurements of Pa, Paq, Pac,
Paqc, Saq, Dac and Daqc respectively.

Pa_ci95, Paq_ci95, Pac_ci95,
Paqc_ci95, Saq_ci95, Dac_ci95,
Daqc_ci95

As above but for the 95% confidence interval derived from a
t-distribution using the following R formula ((sd / sqrt(n)) *
qt(0.975, df = n - 1))

Saq Median array fitness change in query background (i.e. median(Paq
- Pa)), where Paq and Pa are plate normalized array strain fitness
values in the query and untreated control respectively).

Dac Median array fitness change in cisplatin treated condition. (i.e.
median(Pac - Pa)), where Pac and Pa are plate normalized array
strain fitness values in the cisplatin treated and untreated control
respectively).

Daqc Median array fitness change in query background and cisplatin
treated condition. (i.e. median(Paqc - Paq)), where Paqc and Paq
plate normalized array-query double mutant strain fitness values in
the cisplatin treated and untreated control respectively).

Differential The fitness differential corresponding to Daqc - Dac. This value
represents the change in an array strain’s cisplatin sensitivity
caused by having the query mutation in the background (note that
wildtype and query fitness and sensitivity to cisplatin is already
accounted for during plate normalization, thus this is the genetic
interaction between the query and array allele in the context of
cisplatin treatment).

Related to dE-MAP Figure 1.4.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/cispt-03.csv.
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Table 1.4 – Complete mirrored E-MAP

Header Description

from “From” allele in the network
to “To” allele in the network
any_sig Were any of interaction estimates from Table 1.2 considered

“significant” from the confidence interval.
EMAP_diff Aggregated E-MAP differential. When “significant” interactions

were present these were aggregated with the following formula:
mean(diff) / sqrt(n). When no “significant” interactions were
present, all observations were aggregated by the same method.

Related to E-MAP in Figure 1.4. Data are aggregated from Table 1.2.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/cispt-04.csv.
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Table 1.5 – Complete mirrored dE-MAP

Header Description

from “From” allele in the network
to “To” allele in the network
any_sig Were any of interaction estimates from Table 1.2 considered

“significant” from the confidence interval.
dEMAP_diff Aggregated dE-MAP differential. When “significant” interactions

were present these were aggregated with the following formula:
mean(diff) / sqrt(n). When no “significant” interactions were
present, all observations were aggregated by the same method.

Related to dE-MAP in Figure 1.4. Data are aggregated from Table 1.3.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/cispt-05.csv.
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Chapter 2

Genomic repercussions of RAD5 overexpression
Postreplication repair (PRR) enables cells to replicate DNA in the presence of cisplatin and other DNA

crosslinking agents that are widely used in the treatment of cancer. In this study, we highlight overex-

pression of a PRR gene, HLTF, as a common event observed in squamous cell, ovarian, and esophageal

carcinomas. We elucidate the repercussions of HLTF overexpression through the functionally conserved

Saccharomyces cerevisiae homolog, RAD5. Utilizing comprehensive yeast mutant collections, we identify

genes essential for tolerating RAD5 overexpression (RAD5OE). We present a genetic landscape enrichment

analysis that reveals RAD5OE to cause a requirement for recombination, crossover resolution, and efficient

DNA replication. A comparison of the genetic requirements for rad5∆ and RAD5OE identifies a specific re-

quirement for crossover resolving genes in RAD5OE cells. These genetic observations are supported by the

finding that, while both rad5∆ and RAD5OE cause cisplatin sensitivity, only RAD5OE can drive recombination

events in a region of repetitive DNA. Remarkably, RAD5OE induced recombination does not require other

PRR pathway members, nor does it require the PCNA modification sites involved in PRR regulation. Rather,

the RAD5OE phenotype depends largely on a conserved DNA-binding domain implicated in binding 3′ DNA

ends. Analysis of DNA replication from a single origin supports a model in which misexpression of RAD5

causes a bypass of PRR regulatory events resulting in aberrant template switching during DNA replication.

Furthermore, our results reveal a possible role for HLTF in driving genome instability during carcinogenesis,

and suggest platinum-based chemotherapy as an approach for targeting cells with altered PRR.

2.1 Introduction

Postreplication Repair (PRR) is essential for damage tolerance during DNA replication. Cells without this

pathway are acutely sensitive to intrastrand DNA crosslinking agents such as cisplatin – one of several

platinum-based drugs used in an estimated 50% of all chemotherapeutic regimens (Galanski et al. 2005;

Simon et al. 2000; Wu et al. 2004; Kelland 2007). PRR enables damage tolerance during replication either

through recruitment of specialized polymerases that can synthesize across damaged bases in a process
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called translesion synthesis, or through bypassing lesions by continuing synthesis on undamaged sister

chromatid DNA in a process called template switching (reviewed by Boiteux and Jinks-Robertson 2013).

Translesion synthesis and template switching are sometimes referred to as error-prone and error-free PRR

respectively owing to high rates of nucleotide misincorporation by translesion synthesis polymerases across

from damaged bases (Xiao et al. 2000). However, template switching can cause errors through ectopic re-

combination, which can drive loss or gain of information in repetitive DNA (Lin et al. 2011; Huang et al.

2002). Moreover, fork stalling and template switching resulting in microhomology-mediated break-induced

replication is the proposed driving mechanism behind disease-associated human genome rearrangements

(Lee et al. 2007; Zhang et al. 2009). In the absence of PRR, replication forks encountering a DNA lesion

are more prone to fork collapse which may also result in a recombinogenic double-stranded DNA break and

chromosomal rearrangements (Motegi et al. 2008). Entry into PRR is mediated by monoubiquitination of

proliferating cell nuclear antigen (PCNA), performed in S. cerevisiae by the Rad6-Rad18 complex (human

UBE2A/UBE2B-RAD18) (Ulrich and Jentsch 2000). This initial modification of PCNA is thought to recruit

translesion synthesis polymerases to a stalled replication fork. Subsequent regulation of translesion synthe-

sis/template switching pathway choice is then thought to be mediated by the Mms2-Ubc13-Rad5 complex

(human UBE2N-UBE2V2-HLTF), which can polyubiquitinate PCNA and perform replication fork remodeling

to initiate template switching (Hoege et al. 2002; Branzei et al. 2004).

Given the importance of PRR in responding to lesions caused by commonly used chemotherapeutic drugs,

we sought to determine whether this pathway incurs any frequent genetic alterations in cancer genomes. In

this study, we perform an analysis of primary tumor samples from The Cancer Genome Atlas (TCGA), which

reveals HLTF to be commonly amplified and overexpressed in esophageal, uterine and several types of

squamous cell carcinoma (Cancer Genome Atlas Research Network 2008). This observation corroborates

previous work showing overexpression ofHLTF at the RNA level in several cancer cell lines and at the protein

level in hypopharyngeal squamous cell carcinomas, as well as during early stages of carcinogenesis in a

kidney tumor model (Gong et al. 1997; Debauve et al. 2006; Capouillez et al. 2008). Paradoxically, HLTF

is also found to be frequently silenced by promoter methylation in colorectal cancers (Moinova et al. 2002),

leading to conflicting descriptions of HLTF as both a tumor suppressor and driver. Ultimately, the role of

variable HLTF expression in carcinogenesis remains unclear.

Human HLTF and its budding yeast homolog, Rad5, are remarkably conserved in domain structure and

biochemical function. HLTF and Rad5 share the eponymous HIP116, Rad5p N-terminal (HIRAN) domain

– an ancient region of amino acid sequence homology that has been shown to form an OB-fold structure
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which can bind to the 3′ end of single-stranded DNA (ssDNA) (Iyer et al. 2006; Kile et al. 2015; Hishiki et

al. 2015; Shin et al. 2018). Downstream of the HIRAN domain, both HLTF and Rad5 have SWI2/SNF2

helicase sequence homology interrupted by a RING finger domain (Johnson et al. 1992; Iyer et al. 2006).

Biochemically, both proteins have ATP dependent DNA translocase activity, and are capable of reversing

model replication forks in vitro (Blastyák et al. 2007, 2010). Additionally, both proteins physically interact

with a Rad6-Rad18 counterpart and cooperate with an Mms2-Ubc13 E2 ubiquitin ligase heterodimer to

mediate Lys-63-linked PCNA polyubiquitination (Ulrich and Jentsch 2000; Ulrich 2003; Unk et al. 2008).

Genetically, HLTF is capable of partially complementing rad5∆ in ultraviolet radiation (UV) treated yeast,

albeit in a translesion synthesis deficient background (Unk et al. 2008).

The RAD5 gene was initially discovered on the basis of UV sensitivity, and reduced forward mutation rates

in forward genetic screens performed in the late 1960s and early 1970s and much progress has been made

since in elucidating its roles in PRR (Snow 1967; Cox and Parry 1968; Lemontt 1971; Game and Mortimer

1974). While it is clear that Rad5 contributes to regulating PRR through PCNA modification, the mechanism

of PCNA polyubiquitination in promoting template switching is unclear. Furthermore, while many studies

have considered the effect of RAD5 loss of function alleles, little is known about the consequences of RAD5

overexpression – a genetic alteration frequently observed for HLTF in human cancers. In this study, we

reveal the genomic repercussions of RAD5 overexpression (RAD5OE) using synthetic dosage interaction

(SDI) profiling with the yeast gene disruption and temperature-sensitive mutant collections. We present a

genetic landscape enrichment analysis analysis indicating that efficient DNA replication, recombination, and

crossover resolution are essential in the context of RAD5OE. We demonstrate that rad5∆ and RAD5OE are

both sensitive to cisplatin treatment. However, RAD5OE, but not rad5∆, requires crossover resolution and

drives recombination in the rDNA tandem repeat array. Remarkably, we observe no requirement for up-

stream PRR signaling events on PCNA, and a previously characterized Rad5 RING domain mutant, known

to disrupt polyubiquitination activity (Chen et al. 2005), has no effect on the RAD5OE phenotype. We find

that a Rad5 ATPase mutant, defective in translocase activity (Blastyák et al. 2007), only partially relieves

the consequences of RAD5OE, whereas a Rad5 HIRAN point mutation, identified using a homology model

of the HLTF ssDNA binding HIRAN domain, nearly eliminates the RAD5OE phenotype. By quantitative

physical analysis of DNA replication intermediates, we demonstrate that RAD5OE promotes formation of

crossover products near an early firing replication origin. These products persist in the absence of a RecQ

helicase involved in crossover resolution and depend on a functional Rad5 HIRAN domain. Our data sup-

port a model whereby RAD5OE bypasses PRR regulatory events to promote aberrant template switching

via HIRAN domain-mediated fork remodeling. The genomic ramifications of RAD5OE presented here inform
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the mechanistic consequences of HLTF misexpression and its potential effect on carcinogenesis, genome

instability, and response to platinum-based chemotherapy.

2.2 Results

2.2.1 The RAD5 ortholog, HLTF, is overexpressed in specific cancer types

Deletions of PRR regulating genes in S. cerevisiae (i.e. rad5∆, mms2∆, ubc13∆, rad18∆, and rad6∆) cause

acute cisplatin sensitivity. Given the importance of PRR in responding to this common chemotherapeutic,

we sought to determine whether the corresponding PRR regulating human genes (i.e. HLTF, UBE2V2,

UBE2N,RAD18, andUBE2A/B) are genetically altered in cancer genomes. Using somatic copy number and

mRNA expression data from The Cancer Genome Atlas (TCGA), we assessed the frequency of amplification

and deletion events in all available cancer cohorts. We observe UBE2V2 (8q11.21), an ortholog of yeast

MMS2, to have a mild increase in amplification events (>5% of samples) in 8 different cohorts. Additionally,

we observe RAD18 (3p25.3) amplified in some bladder cancers (9%), and deep deletions of RAD18 were

observed in kidney renal clear cell carcinomas (11%) (Figure 2.2A & Table 2.1). Most strikingly, we find

HLTF (3q24), a human ortholog of yeast RAD5, to be commonly amplified in lung (26%), head & neck (14%),

and cervical squamous cell carcinomas (12%), as well as ovarian serous cystadenocarcinoma (14%), and

esophageal carcinomas (15%) (Figure 2.1A). We note that transcript abundance correlates well with gene

copy number for all PRR genes considered in this analysis. Overexpression of HLTF protein was previously

observed by immunohistochemistry in an independent study of hypopharyngeal squamous cell carcinomas

(Capouillez et al. 2008). Since little is known about the consequences of overexpressing either human

HLTF, or the functionally conserved RAD5, we systematically identified genes that become essential when

RAD5 is overexpressed (RAD5OE) in the model organism, budding yeast – an approach we previously used

to identify cancer-specific pathway dependencies (Reid et al. 2016; Sustic et al. 2018).

2.2.2 RAD5OE causes a requirement for DNA replication and recombination genes

To study the consequences of RAD5OE, we constructed a galactose-inducible RAD5OE system on a CEN

plasmid. Characterization of Rad5 protein levels by immunoblot indicated an approximately 100- to 500-fold

increase in Rad5 abundance compared to endogenous expression levels (Figure 2.2C). This observation is

also supported by fluorescence intensity comparing an endogenously-tagged Turquoise2-Rad5 (TQ2-Rad5)
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with galactose-induced overexpression of TQ2-Rad5 (Figure 2.2D). Both endogenous and overexpressed

Rad5 localize almost exclusively to the nucleus. These observations are consistent with estimates of Rad5

having low abundance – around 100 Rad5 molecules per cell – in wildtype yeast (Kulak et al. 2014).

We next performed two reverse genetic screens forRAD5OE synthetic lethality. For this experiment, we used

selective ploidy ablation to pair a RAD5OE plasmid with 4,876 non-essential yeast gene disruption mutants,

and 525 temperature-sensitive mutants (Reid et al. 2011) – see experimental diagram in Figure 2.1B.

Fitness effects were scored by comparing growth of arrayed colonies on solid agar for RAD5OE compared

to an empty-vector control. Reduced colony density in the RAD5OE condition relative to the vector control for

a given mutant strain is indicative of a RAD5OE synthetic dosage interaction (SDI), with extreme examples

indicative of synthetic dosage lethality (SDL) (Kroll et al. 1996).

To summarize the genetic interactions of RAD5OE, we performed a landscape enrichment analysis. This

approach to gene-set visualization takes advantage of the yeast genetic interactome provided by The Cell

Map, to cluster genes in a two-dimensional landscape using the t-SNE dimension reduction algorithm (Usaj

et al. 2017; Costanzo et al. 2016; van der Maaten and Hinton 2008). Clusters in this landscape represent

major genetic features and biological processes included in our genetic screens (Figure 2.1C left). Us-

ing this landscape, we then visualize where RAD5OE SDIs cluster. By permutation test, we observe two

significant clusters of RAD5OE SDI hits (p < 0.001) (Figure 2.1C middle). The primary cluster highlights

DNA replication, DNA damage checkpoint, homology-directed repair (HDR), and crossover resolution as

sub-clusters that are essential when RAD5 is overexpressed (Figure 2.1C right). RAD5OE SDI screen hits

found elsewhere on the landscape are shown in Figure 2.2B. Landscape coordinates and interaction scores

for all strains are provided in Tables 2.2, 2.3, 2.4 & 2.5.

To validate our screen results, we developed a quantitative colony growth assay to determine the magni-

tude of each genetic interaction (see Methods 2.4.5 & Figure 2.3A left). From the quantitative growth

measurements, we observed wildtype strains with RAD5OE to grow at approximately 80% of an empty vec-

tor control strain (compare WT to RAD5OE in Figure 2.3A left). Expected growth values for each mutant

strain were calculated by multiplying each single mutant growth effect (without RAD5OE) to the RAD5OE ef-

fect in wildtype (yellow bars in Figure 2.3A). Observed growth for each mutant with RAD5OE and difference

from expected growth is shown (red bars and blue columns in Figure 2.3A right). Mutants in the 9-1-1

replication checkpoint complexes (rad17∆/mec3∆/rad24∆) and a mutant involved in fork protection (csm3∆)

showed only small but reproducible RAD5OE SDIs that were difficult to discern in a standard serial-dilution

drop assay. Notably, the strongest interactions were observed for HDR and crossover resolution mutants.
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Specifically, HDR machinery (e.g. rad51∆, rad52∆ and the MRX complexmre11∆/rad50∆/xrs2∆), as well as

two crossover resolution complexes (sgs1∆/top3∆ andmms4∆/mus81∆) were critically important in RAD5OE

cells (Figure 2.3A & 2.3B).

2.2.3 RAD5OE and rad5∆ have similar genetic interaction profiles

When analyzing the landscape of RAD5OE SDIs, we noted overlap with previously published genetic inter-

actions for rad5∆ (Stark et al. 2006). Indeed, we observed 17 shared genetic interactions for RAD5OE and

rad5∆, all of which are present in the two significant landscape enrichment clusters. This overlap included

essentially all of the HDR members of the primary cluster, as well as the replication checkpoint and some

DNA replication associated mutants (Figure 2.4A, green). There were, however, some revealing differ-

ences in genetic interaction profiles. The major differences being that rad5∆ uniquely requires nucleotide

excision repair (NER) proteins (i.e. Rad4, Rad23, Rad1 & Rad14), Ctf18-RFC complex proteins (i.e. Ctf18,

Ctf8 and Dcc1), and translesion synthesis proteins (i.e. Rev3 & Rev7) (Figure 2.5A & Table 2.6). Con-

versely, RAD5OE uniquely requires crossover resolution proteins (e.g. Sgs1, Top3, Rmi1, Mms4 & Mus81)

(Figure 2.4A). To confirm the RAD5OE specific requirement for crossover resolution, we measured colony

fitness to quantify an interaction with sgs1∆ in a rad5∆ and RAD5OE background. Indeed, we observed no

enhanced requirement for SGS1 in the rad5∆ background, and a strong enhanced requirement for SGS1 in

the RAD5OE background, which indicates that RAD5OE does not simply disrupt Rad5 function (Figure 2.4B).

Based on these interaction profiles, we hypothesize that RAD5OE likely drives the formation of crossovers,

possibly by promoting replication fork collapse, or aberrant fork regression and template switching.

2.2.4 RAD5OE and rad5∆ cause sensitivity to DNA replication fork blocking drugs

RAD5 deletion causes dramatic cisplatin sensitivity, and given the considerable overlap of RAD5OE and

rad5∆ genetic interactions, we reasoned that RAD5OE might also sensitize cells to cisplatin treatment. Using

the same quantitative spot assay used to measure genetic interactions, RAD5OE and rad5∆ both show cis-

platin sensitivity (50% inhibitory concentrations (IC50) of 75 and 45 µM, respectively) (Figure 2.4C). RAD5OE

can suppress rad5∆ cisplatin sensitivity, conferring the same IC50 observed when overexpressing RAD5 in

a wildtype background (Figure 2.5B). This result again suggests that RAD5OE produces functional Rad5

protein, but still causes a limited capacity to resist DNA crosslinks. RAD5OE also causes sensitivity to two

other replication inhibitors, hydroxyurea (HU), and 4-nitroquinoline 1-oxide (4NQO) (Figure 2.5C). However,
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RAD5OE is not sensitive to DNA double-strand break (DSB)-inducing ionizing radiation, at a dose sufficient to

kill rad51∆ cells (Figure 2.5D,E). We conclude that cells overexpressing RAD5 can recover from radiation-

induced DSBs, but struggle to tolerate chronic replication stress, indicating RAD5OE likely impacts DNA

replication.

2.2.5 RAD5OE promotes recombination

While rad5∆ and RAD5OE are both sensitive to DNA replication inhibitors, and share requirements for HDR,

RAD5OE uniquely requires crossover resolution proteins, suggesting that it actively promotes recombination.

To test this notion, we measured direct-repeat recombination within the ribosomal DNA (rDNA) array (Roy

and Runge 2000) – see locus diagram in Figure 2.5F. RAD5OE causes an approximate 9-fold increase in

marker loss, which is not observed in rad5∆ cells (Figure 2.4D). Interestingly, the RAD5OE-induced increase

in rDNA recombination is not dependent on Fob1, the programmed DNA replication fork blocking protein

known to stimulate rDNA recombination (Kobayashi and Horiuchi 1996). While fob1∆ cells do show a 7-

fold decrease in rDNA recombination as expected, overexpressing RAD5 in these cells causes an 18-fold

increase in rDNA recombination to levels approximately 3-fold higher than wildtype (Figure 2.5G). Thus,

RAD5OE stimulates rDNA recombination independently of the programmed rDNA replication fork block.

2.2.6 Other PRR genes are not essential for RAD5OE induced recombination

Rad5 is an E3 ubiquitin ligase whose RING domain is essential for establishing a physical relationship with

its E2 partner – the Mms2-Ubc13 heterodimer (Ulrich and Jentsch 2000). Together, Mms2-Ubc13 & Rad5

can polyubiquitinate Pol30 (PCNA) at lysine residues 127 and 164 (Hoege et al. 2002). This polyubiquitina-

tion occurs during PRR downstream of initiating monoubiquitination events mediated by the Rad6 & Rad18

E2/E3 ubiquitin ligase complex. Given the well-studied role of Rad5 in regulating PRR pathway choice,

we suspected that the phenotype of RAD5OE would depend on upstream PCNA monoubiquitination and

its Mms2-Ubc13 E2 partner. First, we examined cisplatin sensitivity of RAD5OE in cells that cannot ubiq-

uitinate Pol30 at the critical lysine residues 127 and 164 using the pol30K127R,K164R (pol30RR) and rad18∆

mutant backgrounds. We observed overlapping contributions of RAD5OE and pol30RR/rad18∆ with respect

to cisplatin sensitivity (Figure 2.7A). In fact, RAD5OE mildly suppressed the cisplatin sensitivity of rad18∆.

Additionally, in pol30RR and rad18∆ backgrounds, the effect ofRAD5OE on rDNA recombination was reduced

but not eliminated (Figure 2.7B). Thus, RAD5OE at least partially bypasses upstream PRR signaling events.
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Importantly, neither pol30RR nor rad18∆ alleviated the RAD5OE requirement for the crossover-resolution

gene, SGS1 (Figure 2.6A). Next, we tested the requirement for the Rad5 E2 partner by examining the

RAD5OE phenotype in an mms2∆ ubc13∆ background. Strikingly, absence of its E2 partner did not sup-

press the requirement for SGS1, cisplatin sensitivity, or increased rDNA recombination caused by RAD5OE

(Figure 2.6). Clearly, the Rad5 E2 partner, Mms2-Ubc13, which is essential for PCNA polyubiquitination

during PRR, is not required for the RAD5OE phenotype.

2.2.7 The conserved HIRAN domain is essential for RAD5OE genetic interactions

To gain mechanistic insight into the consequences of RAD5 overexpression, we sought to determine which

domains within Rad5 were necessary to convey the RAD5OE phenotype. The RAD5 gene encodes a protein

containing three primary domains, (1) a SNF2 helicase domain that is essential for Rad5 to reverse model

replication forks in vitro, (2) a RING domain that mediates a physical interaction with Ubc13 and is essential

for PCNA polyubiquitination, and (3) a HIRAN domain, which is a conserved N-terminal region that, in

HLTF, forms an OB-fold which can bind the 3′ end of DNA (Figure 2.8A). The helicase and RING domains

each have well characterized separation of function alleles. Two such alleles are the ATPase defective

rad5DE681,682AA (AA) mutation in the SNF2Walker B motif, and the ubiquitination defective rad5I916A (RING)

mutation (Gangavarapu et al. 2006; Blastyák et al. 2007; Chen et al. 2005; Ulrich 2003).

To dissect the relative contributions of RAD5 domains to the RAD5OE phenotype, we generated overexpres-

sion constructs for the AA and RING mutations, as well as three N-terminal deletions designed to separate

the contribution of a poorly conserved N-terminal region from the more conserved HIRAN domain (N164∆,

173-281∆ and N293∆ – see Figure 2.8A). We crossed each overexpression construct into a mini-array of

genetic backgrounds representing 25 of the strongest RAD5OE SDI mutant strains. The resulting genetic

interaction scores were used to calculate SDI profile distances that are visualized in the clustering dendro-

gram of Figure 2.8C. As expected from our experiments in themms2∆ ubc13∆ background, overexpressing

the RING domain mutant resulted in an interaction profile that was nearly indistinguishable from RAD5OE

(Figure 2.8C - RAD5 cluster). The AA ATPase mutant partially alleviated many of the RAD5OE genetic re-

quirements (e.g. reduced requirement for SGS1, Figure 2.8D), and cluster along with several RAD5 mutant

alleles that have a weak effect on function (Figure 2.8C - Intermediate cluster). Among this group is the

rad5G535R – a mutation adjacent to the SNF2 Walker A motif that is present in the original W303 laboratory

strain (Fan et al. 1996; Elserafy et al. 2018). Strikingly, when we truncated the RAD5 N-terminus up to

the HIRAN domain (N164∆) we observed no effect on the interaction profile, but when we further truncated
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beyond the HIRAN domain (N293∆), or deleted just the HIRAN domain (173-281∆), we saw near complete

elimination of all 25 RAD5OE genetic interactions (Figure 2.8C - Vector cluster). We conclude that the

HIRAN domain is necessary for the RAD5OE interactions.

2.2.8 The conserved HIRAN residue, R187, is integral to the RAD5OE phenotype

While the HIRAN domain has been characterized for human HLTF, less is known about the role of this

domain in yeast. To predict structural features of the Rad5 HIRAN domain, we used SWISS-MODEL to

perform an unsupervised homology search using the Rad5 HIRAN domain amino-acid sequence (Guex et

al. 2009; Bienert et al. 2017; Waterhouse et al. 2018). The top hits included three independent crystal

structures of the HLTF HIRAN domain, which were then used to construct a structural homology model of

the Rad5 HIRAN domain (Figure 2.8B) (PDB IDs: 5BNH, 4XZF & 4S0N from Neculai et al. (2015), Hishiki

et al. (2015) & Kile et al. (2015)). A visual comparison of an HLTF HIRAN domain structure and the Rad5

HIRAN homology model is shown in Figure 2.9A. The predicted yeast structure has a much larger loop

between the predicted β2 and β3 strands, which forms part of the putative 3’OH ssDNA binding pocket. A

sequence alignment among yeast species showed considerable variability in sequence and length for this

region, hence we refer to it as the “divergent loop” (Figure 2.8B & 2.9A,B). As expected, given the low

sequence conservation and variable length of this region, no alanine substitution tested in the divergent

loop had any effect on the RAD5OE interaction profile, and deleting the portion of the loop that does not

face the binding pocket (204-214∆) also had no effect. However, deleting the portion of the loop facing the

binding pocket (215-225∆) had an intermediate effect, and deleting the whole loop (204-225∆) had a strong

effect, eliminating most of the RAD5OE genetic interactions (Figure 2.8C). Therefore, like HLTF, this loop is

important for HIRAN domain function.

Examination of the HIRAN domain sequence alignment reveals four highly conserved positively charged

residues, three of which face the putative ssDNA binding pocket (R187, R229 and R241) – see Figure 2.8B

and 2.9A,B. Remarkably, every alanine and/or acidic substitution tested for these three residues in SDI

profiling had at least an intermediate effect (R187A, R229A, R229E and R241E) and the R187E substitution

alone had a strong effect (Figure 2.8C). R187E resembles HLTFR71E in the homology model, which is the

HIRAN mutation that had the strongest biochemical effect on ssDNA binding and in vitro fork regression

observed by Kile et al. (2015). Importantly, the R187E substitution does not cause major changes in protein

expression (Figure 2.9C).

We next compared R187E, AA, and RING mutants to determine their impact on other important features of
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the RAD5OE phenotype. With respect to the SGS1 requirement, R187EOE showed the largest improvement

in colony fitness, supporting a role for the HIRAN domain in promoting recombination (Figure 2.8D). We

then integrated the R187E, AA, and RING alleles at the endogenous locus to compare cisplatin sensitiv-

ity at normal expression levels. AA and R187E showed equivalent cisplatin sensitivity (Figure 2.8E left),

demonstrating that the HIRAN domain is important for damage tolerance at endogenous expression levels.

However, cisplatin sensitivity of R187E can be dosage suppressed (Figure 2.8E right), which is consistent

with a proposed model of the HIRAN domain physically interacting with 3’-ends at stalled replication forks

(Kile et al. 2015; Shin et al. 2018). Lastly, when we measure rDNA recombination rates, we observe a

pattern similar to that observed from genetic interaction profiling. RAD5OE and RINGOE have identical rDNA

recombination frequencies, whereas AAOE partially, and R187EOE strongly suppresses rDNA recombina-

tion (Figure 2.8F). Taken together, these results clearly indicate that the conserved HIRAN residue R187,

and thus its DNA-binding activity, plays a major role in RAD5OE genetic interactions, cisplatin tolerance and

recombination.

2.2.9 RAD5OE drives X-shaped DNA accumulation during replication

The above genetic observations, and the known requirement for Rad5 in PRR template-switching, support

a mechanism in which excess Rad5 is capable of driving recombination during DNA replication, resulting

in intermediates that are resolved by SGS1. Additionally, the analysis of Rad5 separation of function mu-

tants predicts that this mechanism would depend on the 3′-end ssDNA binding HIRAN domain. Given this

model, we used two-dimensional (2D) gel electrophoresis to physically analyze the accumulation of recom-

bination intermediates that occur in cells misexpressing RAD5 during DNA replication. Wildtype or sgs1∆

mutant yeast strains containing an empty vector control or RAD5OE vectors were cell cycle synchronized

by arrest in G1 phase followed by release into S phase. Expression was induced during the course of

alpha pheromone treatment so that Rad5 would accumulate before synchronous release (Figure 2.11A).

Hydroxyurea (HU) was added to cultures at the time of release to deplete cellular dNTP pools and slow

DNA replication resulting in cells with less than a G2 DNA content even at 120 minutes after release into S

phase (Figure 2.11B,C). Digested DNA was separated on a 2D gel and probed to detect a 5.1 Kbp DNA

fragment containing the early firing replication origin ARS305 in the middle of the fragment (Figure 2.11D).

2D gel electrophoresis separates DNA by mass in the first dimension and by shape in the second, resulting

in characteristic migration patterns depending on the orientation of replication through the probed DNA frag-

ment (Figure 2.10A). The centrally located ARS305 initiates bidirectional replication resulting in a bubble arc
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signal in wildtype cells containing the vector control at 30 and 60 minute timepoints which dissipates at later

times as replication proceeds beyond the limits of the DNA fragment (Figure 2.10B). Slowing replication

by release into HU induces template switch recombination in PRR resulting in X-shaped molecules in the

replicating DNA observed as diagonal spikes extending from the 2N spot (X-spike) – see Figure 2.10A,B.

Wildtype cells with the RAD5OE vector show an increase in the X-spike signal at 60 minutes compared to the

vector control. The X-shaped DNA structures are largely resolved by the 90-minute time point and are not

present at 120 minutes. Mutant sgs1∆ strains have a reduced ability to resolve X-shaped replication interme-

diates (Liberi et al. 2005). Consistent with this model, sgs1∆ cells with RAD5OE accumulate X-shaped DNA

to higher levels than wildtype and fail to resolve these structures even 120 minutes after release from arrest

(Figure 2.10C). Quantification of X-spike signal difference between RAD5OE and vector control shows that

RAD5OE induces formation of X-shaped DNA and that this structure accumulates in the absence of Sgs1

(Figure 2.10E, top).

In addition to an increase in X-shaped DNA, we noted an accumulation of Y-arc DNA in samples with

RAD5OE (Figure 2.10B & C). The Y-arc DNA was increased to a similar extent in both wildtype and sgs1∆

mutant cells at the 30 and 60 minute timepoints indicating that the effect is not dependent on SGS1. We also

note that the excess Y-arc DNA is largely absent in later samples. An increased Y-arc signal suggests that

replication from ARS305 becomes asymmetric in cells with RAD5OE giving a transition from a bubble to a

Y-arc signal and is evidence for random pausing of replication forks in the RAD5OE samples. Quantification

of Y-arc signal difference from multiple experiments is shown in Figure 2.10E, bottom.

We next tested the effect of theR187E HIRAN domain mutation on replicating DNA. This mutant was overex-

pressed in sgs1∆ cells and compared to the vector control andRAD5OE (Figure 2.10C). sgs1∆ samples from

60-minutes post release show the largest accumulation of X-shaped DNA with RAD5OE but do not show this

increase with R187EOE (Figure 2.10D & 2.11E,F). Likewise, Y-arc signal in the sgs1∆ cells is maximal at

60 minutes, but no significant accumulation is observed in the R187EOE samples. Comparison of X-shape

and Y-arc signals to vector control samples is shown in Figure 2.10E, right. Thus, the R187E mutation

suppresses the effect of RAD5OE on replicating DNA. Given the conserved position of this residue in the

HIRAN domain, these results underscore the importance of DNA 3′-end binding for the in vivo mechanism

of template switch or fork reversal during DNA replication.
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2.3 Discussion

Post replication repair (PRR) is an essential pathway for DNA damage tolerance during replication in mitotic

cells. As such, activity and dysregulation of this pathwaymay have important implications for actively dividing

tumor cells challenged with DNA replication-inhibiting chemotherapies. Here we highlight a frequent copy

number amplification event in ovarian, esophageal, and squamous cell carcinoma that results in overexpres-

sion of HLTF – a large multifunctional protein implicated in multiple aspects of PRR (Figure 2.1A). HLTF is a

well-conserved gene that shares many common features with S. cerevisiae RAD5, including PCNA polyubiq-

uitination activity, ATP dependent DNA translocase activity, physical interactions with a Rad18 counterpart,

and an ancient region of conserved sequence known as the HIRAN domain, important for binding ssDNA

3’ ends. Given this striking conservation of function, we have modeled the potential genomic repercussions

of HLTF overexpression through a systematic genetic characterization of RAD5 overexpression (RAD5OE)

in budding yeast.

Genetic interaction profiling and landscape enrichment analysis of RAD5OE revealed a clear requirement for

DNA replication, homology directed repair, and crossover resolution factors (Figure 2.1B,C & 2.3). Many

of these genetic requirements are shared between RAD5OE and rad5∆ (Figure 2.4A). Accordingly, both

RAD5OE and rad5∆ cause cisplatin sensitivity, underscoring the importance of Rad5 regulation inmaintaining

DNA damage tolerance (Figure 2.4C). From the comparison of RAD5OE and rad5∆ genetic interactions, we

identified the requirement for crossover resolution genes as specific to RAD5OE (Figure 2.4A,B). In line

with this observation, RAD5OE, but not rad5∆, results in nearly an order of magnitude increase in rDNA

recombination demonstrating that excess Rad5 promotes genome instability (Figure 2.4D).

The RAD5OE genetic interaction and damaging agent sensitivity profiles support a model of RAD5OE acting

during replication – an observation consistent with the known role of Rad5 in PRR. While we expected the

RAD5OE phenotype to require other members of PRR, this requirement was not observed. For example,

the Rad5 E2 partner (Mms2-Ubc13) is completely dispensable for the SGS1 genetic requirement, cisplatin

sensitivity, and rDNA recombination (Figure 2.6). Similarly, a well-characterized RING domain mutation

in Rad5 fails to suppress the RAD5OE phenotype (Figure 2.8). Additionally, in rad18∆, and pol30RR back-

grounds, which lack canonical PRR associated PCNA modification, RAD5OE still causes a requirement for

SGS1, and increases rDNA recombination (Figure 2.63A & 2.7B). Thus, we reason that cells misexpressing

RAD5 bypass PRR signaling events usually required to mediate template switching.

We next investigated other functional aspects of the Rad5 protein and identified R187E as a single residue
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substitution that nearly eliminates the RAD5OE phenotype (Figure 2.84). Notably, based on primary se-

quence alignment and structural homology modeling, this mutation closely resembles HLTFR71E, which has

a strong effect on 3’OH dependent ssDNA affinity and in vitro fork regression activity (Figure 2.9A,B) (Kile

et al. 2015). Analysis of replication intermediates by 2D gel electrophoresis confirmed that RAD5OE drives

X-shaped DNA formation during replication near an early firing origin, and that these structures accumu-

late in an sgs1∆ background (Figure 2.10). Importantly, X-shaped DNA accumulation during replication is

severely reduced, if not eliminated, when overexpressing the R187E mutation, emphasizing the importance

of the 3’-end binding HIRAN domain for generating crossovers during replication (Figure 2.10D,E).

2.3.1 Model for Rad5 action

Any model for the genomic outcomes of RAD5OE must account for recombination at a replication fork. One

possible model is that Rad5 binding at a replication fork induces collapse leading to dsDNA breaks (DSBs)

followed by repair via break-induced replication (BIR) (Figure 2.12 model 1). BIR involves a single-ended

DNA break invading homologous sequence to establish a replication fork. This process has been implicated

in alternative maintenance of telomeres and may drive complex genome rearrangements (Llorente et al.

2008; Sakofsky and Malkova 2017). However, we do not see evidence for DSBs with RAD5OE. In Figure

2.10, we observe replication proceeding as a replication bubble with some conversion to Y-arc by RAD5OE.

Breakage occurring in a replication bubble should produce smaller asymmetric Y-arcs that would resolve

below the full-length Y-arc signal, and these are not observed (Noguchi et al. 2003). Furthermore, the

genetic requirements for BIR do not match the genetic interaction profile of RAD5OE. BIR that is induced

from single-ended dsDNA breaks outside of the context of DNA replication requires the Pif1 helicase and

the DNA polymerase delta subunit Pol32 (Saini et al. 2013; Wilson et al. 2013). In contrast, BIR induced at

a replication fork does not require Pif1 or Pol32 (Mayle et al. 2015). RAD5OE requires Pol32, but not Pif1

(Figure 2.13), which does not fit either model of BIR. We therefore think that fork breakage is unlikely to

account for effects that we see with RAD5OE.

A second possible model, which involves template switching is shown in Figure 2.12 (model 2). In this

model, Rad5 binding at a stalled replication fork results in reprimed leading strand synthesis leaving a

single-strand gap behind the replication fork (Marians 2018). The ssDNA gap would then be processed by

HDR proteins to generate crossovers. This model accounts for the accumulation of X-spikes in replicating

DNA and the genetic requirement for HDR and crossover proteins in RAD5OE cells. However, this model

does not account for the accumulation of Y-arc DNA as repriming would allow continuation of the replication
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fork. In addition, this model does not involve Rad5 translocase activity, which is responsible for at least

half of the increased recombination we observe in rDNA. Thus, recombination in ssDNA gaps cannot fully

account for our observations.

Therefore, we favor the fork capture and reversal model because it accounts for every aspect of the RAD5OE

phenotype (Figure 2.12 model 3). In this model, the Rad5 HIRAN domain captures a replication fork. The

DNA is reorganized such that the two nascent strands can anneal (fork capture) and, when coupled with a

translocase activity, leads to extrusion to form a 4-way junction (fork reversal). Both Rad5 and HLTF exhibit

this activity in vitro on fork-like oligonucleotide substrates, and both ATPase activity and the ssDNA-binding

HIRAN domain are important for this function (Blastyák et al. 2007; Kile et al. 2015; Shin et al. 2018).

HIRAN domain-mediated capture of a 3’ DNA end has been shown to form an initial 3-way junction (Chavez

et al. 2018; Shin et al. 2018), and stabilization of this junction would explain the accumulation of Y-arc DNA

in 2D gels (Figure 2.10). This Y-arc DNA accumulation is absent when overexpressing the R187E HIRAN

mutant. The 3-way junction would be converted to a 4-way junction aided either by Rad5 translocase activity,

or other branch migration mechanisms, which explains the partial requirement for Rad5 translocase activity.

This reversed fork structure is likely transient and is quickly resolved by HDR and crossover resolution to

re-establish the replication fork, explaining the requirement for HDR and crossover resolution genes.

While we favor the third model, it is possible that multiple pathways are invoked upon Rad5 interaction with

a replication fork. For instance, the Mus81-Mms4 structure-specific nuclease complex contributes to cell

viability in the context of RAD5OE and a simple model is that it functions redundantly with Sgs1. On the

other hand, different resolvase activities may be required in different genomic contexts such as repetitive

DNA or near telomeres.

In conclusion, RAD5 overexpression causes hyperrecombination during DNA replication, which can result

in genome instability. This observation suggests that human cells with amplified and overexpressed HLTF

may be prone to similar genome instability – a hallmark of carcinogenesis. Importantly, we also show that

RAD5 dysregulation results in impaired cisplatin tolerance. Our studies suggest that key recombination and

repair pathways may become important in cancers harboring HLTF copy number alterations. In view of the

widespread use of platinum-based chemotherapy in the treatment of cancer, our observations encourage

further study into the effect of dysregulated HLTF on DNA damage tolerance.
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2.4 Methods

2.4.1 Strains and plasmids

All strains are RAD5 derivatives of W303 (Thomas and Rothstein 1989), unless otherwise stated. Library

strains used in our genetic screens are derivatives of S288C. Strains and plasmids constructed for this

study, or used in validation experiments, were verified by Sanger sequencing. All genotypes for strains and

plasmids used in this study and primers used for construction and validation are listed in Tables 2.7 & 2.8.

2.4.2 Cancer genomics

Copy number and mRNA expression data for primary tumor samples originate from The Cancer Genome

Atlas (https://cancergenome.nih.gov). These data were accessed via theMemorial Sloan Kettering computa-

tional biology portal R package (http://www.cbioportal.org) which provides access to TCGA data processed

using the Broad institute GDAC firehose pipeline (https://gdac.broadinstitute.org) (Cancer Genome Atlas

Research Network 2008; Jacobsen and Questions 2018; Cerami et al. 2012; Gao et al. 2013). Gene level

threshold GISTIC scores were used to classify the predicted ploidy of genes in a given tumor sample with a

score of 2 representing gene copy number amplification. Median expression Z-scores were used to assess

increases in mRNA transcript abundance for tumors with a given gene amplified (GISTIC = 2) as compared

to diploid tumors (GISTIC = 0). An expression Z-score of 0 indicates no change in transcript abundance rel-

ative to diploid tumors, whereas an expression Z-score of 2 indicates two standard deviation higher mRNA

transcript abundance. Summaries for each PRR gene considered in this study are provided in Table 2.1.

2.4.3 Genome-wide identification of SDL interactions

Selective ploidy ablation was used as described by Reid et al. (2011) to transfer galactose-inducible overex-

pression plasmids into a collection of (1) 4,999MATa KanMX gene disruption strains representing individual

deletions of 4,899 genes, and (2) a collection of 1,920MATa temperature-sensitive strains representing 476

essential genes. Plates were scanned on a Mikrotek ScanMaker 9800XL plus flatbed scanner with trans-

parency cover. Background subtracted colony densities were measured using the screenmill software pack-

age available on GitHub (https://github.com/ericedwardbryant/screenmill). Plates were manually reviewed

to exclude regions of pinning failure resulting in 4,876 and 363 genes from the non-essential gene deletion
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and essential temperature-sensitive collections respectively. For the MATa screen, colony measurements

were normalized to the plate median. For the temperature-sensitive screen, colony measurements were

normalized to the mean of healthy strains on each plate at a given temperature. Normalized colony mea-

surements were then compared via growth ratio to an empty vector control screen performed in parallel to

each RAD5OE screen. Scores for all strains considered in these screens are provided in Tables 2.2,2.3 &

2.4.

2.4.4 Landscape enrichment analysis

Landscape enrichment analysis was performed using genetic interaction profile correlations from The Cell

Map (Usaj et al. 2017; Costanzo et al. 2016). These correlations were filtered to include only genes that

were considered in our SDL screens. An additional filter was applied to remove genes with more than 30%

missing values. Remaining missing values were imputed as 0 (i.e. no correlation assumed). Dimension

reduction was then performed using t-SNE at the default perplexity of 30 (Krijthe 2015; van der Maaten

and Hinton 2008). The resulting two-dimensional matrix was then used to visualize the genetic landscape

of S. cerevisiae where local clustering represents groups of genes with similar patterns of genetic profile

correlations. MATa gene disruption SDL hits (Z-score < -2) or the top 50 temperature-sensitive SDL hits were

then visualized on the landscape to identify clusters. Clusters were assessed for significance by permutation

testing. This test involved repeatedly sampling the same number of SDL and TS strains from the landscape

to determine the empirical probability of observing a given local density. To encourage further exploration

of the landscape, all coordinates are included in Table 2.5.

2.4.5 Colony growth and fitness measurements

Overnight liquid cultures were grown to saturation in appropriate selective media. Saturated cultures were

equilibrated to an OD600 of 1.0, arrayed in a 96 well microtiter plate, and pinned 3 times at 384 colony density

(i.e. 4 technical replicates for each position of the microtiter plate) using a Singer RoToR robot. Strains were

grown on synthetic complete (SC) solid agar media with 2% galactose and appropriate nutrient drop-out to

maintain plasmid selection. Solubilized drugs (e.g. cisplatin in 0.9% NaCl), were added immediately before

pouring plates. Plates with pinned colonies were incubated at 30°C for 65 hours. For growth curves, colonies

were scanned hourly. Colony density was measured using screenmill. Expected fitness of a double mutant,

ab (Eab) was calculated as the multiplicative fitness contributions of each single mutant (F a, and F b) scaled
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to fitness of wildtype (F wt ≡ 1).

Eab = F a · F b ± εab

Error in expected fitness (εab) was computed by propagating error from estimates of F a, and F b using the

equation below. Care was taken to minimize systematic bias in experiments (e.g. by distributing strains

evenly throughout the 96 well plate to minimize position and neighboring strain effects).

εab = Eab ·

√(
εa

F a

)2

+
(

εb

F b

)2

Dose response models for cisplatin experiments were fit to a logistic curve using nonlinear least squares

regression.

2.4.6 Statistics

All error bars are 95% confidence intervals based on a t-distribution with α = 0.05 and n − 1 degrees of

freedom where n is the number of independent biological replicates with a sample standard deviation s.

ε = tα
n−1 · s√

n

A significant difference between samples at α = 0.05 is determined when neither interval embraces the

other sample’s point estimate (i.e. p < 0.05 for a two-sided t-test for independent samples – see Pfister and

Janczyk (2013)). For 2D gel quantification, measurements were paired within a batch of experiments by

comparing X-spike and Y-arc signal to that of a wildtype strain harboring an empty vector. In this case, a

significant change in signal at α = 0.05 is determined when the confidence interval does not embrace zero

(i.e. p < 0.05 for a two-sided paired-sample t-test – see Pfister and Janczyk (2013)).

2.4.7 Ribosomal DNA recombination assay

Ribosomal DNA (rDNA) recombination assays, initially described by Roy and Runge (2000), were performed

by inoculating 3 mL SC -Leu -Ade with a single colony of an rDNA recombination assay strain (rDNA::ADE2-

CAN1) transformed with a LEU2-containing plasmid. The following morning, 30 uL were inoculated into 3
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mL SC raffinose -Leu -Ade and grown overnight to saturation. The following morning, approximately 30 uL

were inoculated into 3 mL SC Galactose -Leu to a final OD600 of 0.015. Recombination was allowed to take

place for 24 hours before concentrating cells to an OD600 of 5 and then plating 100 uL of a 10-5 dilution onto

fresh SC plates, and 250 uL of a 10-4 dilution onto fresh SC -Arg +Canavanine plates. Cells were spread on

plates using glass beads. Colonies were counted after 3 to 4 days growth. Individual cultures, representing

biological replicates, were plated as three technical replicates with the average colony count from SC plates

being used to estimate the number of viable cells present in the culture, and the average colony count on

SC -Arg +Canavanine plates being used to estimate the rDNA recombination frequency. Nearly all colonies

turned pink indicating simultaneous loss of ADE2 and CAN1 in the rDNA array. All incubation steps took

place at 30°C.

2.4.8 Galactose induction

Galactose inductions for protein blots and two-dimensional gel analysis was performed by growing cells in

SC 3% glycerol 2% lactate media with appropriate nutrient drop-out to maintain selection of a plasmid when

present. Cells in log-phase growth were induced by adding galactose to a final concentration of 2%.

2.4.9 Protein blots

Pelleted yeast cultures were resuspended in 5% trichloroacetic acid to precipitate proteins. Protein pel-

lets were then washed in acetone and allowed to dry. Dry pellets were solubilized by bead-beating in TE

buffer (50 mM Tris-HCl, 1 mM EDTA, pH 7.5) followed by addition of 3x SDS sample buffer. Samples were

boiled for 5 minutes and microcentrifuged at max speed for 5 minutes before SDS-PAGE separation using

4-15% gradient mini-PROTEAN® TGXTM gels (Biorad) and transferred to nitrocellulose membranes with a

Trans-Blot® Turbo transfer system (Biorad). Membranes were blotted overnight at 4°C with either goat α-

Rad5 polyclonal antibody (SC15548 Santa Cruz Biotechnology), mouse α-FLAG® M2 monoclonal antibody

(F3165 Sigma), mouse α-V5 monoclonal antibody (R96025 Invitrogen), or mouse α-Pgk1 monoclonal anti-

body (22C5D8 Thermo-Fisher). Protein was then visualized using secondary antibodies for α-mouse-IgG

or α-goat-IgG conjugated to horseradish peroxidase with light emission catalyzed by SuperSignal® West

Pico Chemiluminescent Substrate (Thermo). Light emission was captured using an AmershamTM Imager

600 (GE Healthcare).
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2.4.10 Structural homology and sequence alignment

Structural homology modeling was performed using SWISS-MODEL (https://swissmodel.expasy.org) (Guex

et al. 2009; Bienert et al. 2017; Waterhouse et al. 2018). HIRAN domain sequences were accessed from

Pfam (https://pfam.xfam.org) and sequence alignment was performed using Clustal Omega (Bodenhofer et

al. 2015; Sievers and Higgins 2014; Finn et al. 2014).

2.4.11 Analysis of replication intermediates

All strains used for analysis of replication intermediates are bar1∆ RAD5 derivatives of W303 containing an

empty vector control plasmid or RAD5 alleles under the control of the galactose-inducible GAL1 promoter

(Table 2.8). Cells were pre-grown overnight in SC medium lacking leucine using 3% glycerol and 2% lactate

as carbon sources to relieve glucose repression of the GAL1 promoter. Cultures in log phase were induced

by addition of 2% galactose. At the same time alpha-mating pheromone (Zymo Research, Irvine, CA) was

added to 1 µM final concentration. Cultures were incubated with shaking at 30˚C for 3.5 hours andmonitored

for G1 cell cycle arrest by microscope. Alpha pheromone was removed and cells were released into S phase

by pelleting the culture, resuspending in sterile water, re-pelleting and suspending in the original volume of

SC -leucine medium containing 2% galactose. Streptomyces griseus protease (P8811; Millipore-Sigma)

was added to a final concentration of 70 µg/ml to inactivate residual alpha pheromone and hydroxyurea

(H8627; Millipore-Sigma) was added to 30mM final concentration. Cultures were incubated with shaking at

30˚C and samples were collected and arrested by addition of sodium azide to 5mM final concentration then

stored on ice or at 4˚C until further processing.

Cell cycle progression of samples collected for replication analysis was monitored by staining DNA with

SYBR Green I (Thermo Fisher) as previously described (Fortuna et al. 2001) and analyzed using an LSRII

analyzer (Becton Dickinson) at the Columbia University Medical Center Department of Microbiology & Im-

munology Flow Cytometry Core facility. FACS data was analyzed using the flowCore package for R (Ellis et

al. 2017). Stabilization and isolation of replicating DNA molecules in the presence of CTAB was performed

as described (Neelsen et al. 2014). Approximately 2 µg of each DNA sample was digested with NcoI before

electrophoresis.

Neutral-neutral two-dimensional agarose gel electrophoresis was adapted from the procedure of Brewer and

Fangman (1987). The first dimension was 0.4% agarose and was run for 16 hr at 1 V/cm in TBE buffer. The

second dimension was 0.8% agarose run for 6 hr at 5 V/cm in TBE at 4˚C with 0.4 µg/ml ethidium bromide.
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DNA was transferred to Hybond(TM)-XL nylon membranes (GE Healthcare) using an alkaline buffer transfer

procedure (Brown 2001). Eight PCR products of 300-500 bp were used as hybridization probes to cover the

5.1 Kb NcoI fragment containing ARS305. The amplified probes were pooled in equimolar concentrations

and labeled with 32P-CTP via random priming. Primers for probe PCRs are listed in Table 2.7. Hybridized

blots were exposed to storage phosphor screens (GE Healthcare) and imaged on a Typhoon 7100 phospho-

rimager (Amersham). Measurements of RI signal intensity was performed by selecting specific RI features

using ImageJ 2.0 software (Rueden et al. 2017). A mean background signal was subtracted and each

measurement was normalized to the 1N spot. All measurements were performed using images in which the

1N spot signal was below saturation of the phosphor screen. RI feature signal intensity differences between

empty vector and RAD5OE were calculated for samples collected within the same experimental set.

2.4.12 Software and data analysis

Data analysis was performed using the R project for statistical computing version 3.4.4 (https://www.r-project.

org) and RStudio version 1.1.456 (https://www.rstudio.com), making extensive use of packages from Biocon-

ductor version 3.5 (http://bioconductor.org) and a snapshot of CRAN from 2018-03-01 (https://cran.microsoft.

com/snapshot/2018-03-01). We would like to specifically acknowledge maintainers of R, RStudio and the

tidyverse, knitr, rmarkdown, cgdsr, EBImage, Rtsne, flowCore, and msa packages (R Core Team 2018;

RStudio Team 2016; Wickham 2017; Xie 2015; Allaire et al. 2018; Jacobsen and Questions 2018; Krijthe

2015; Pau et al. 2010; Ellis et al. 2017; Bodenhofer et al. 2015).
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2.5 Figures and tables

Figure 2.1 – RAD5OE causes a requirement for DNA replication and homology directed repair genes.
(A) TheRAD5 human ortholog, HLTF, is overexpressed in squamous cell carcinomas. The percent of TCGA
tumor samples with amplified HLTF copy number are shown (see Methods). Bar color corresponds to the
median of mRNA expression Z-scores within each cohort. Annotated on each bar are the number of samples
with HLTF amplified and the total number of samples for each cohort. (B) Schematic for Synthetic Dosage
Interaction (SDI) profiling via Selective Ploidy Ablation (SPA) (Reid et al. 2011) – see Methods 2.4.3. (C)
Genetic interaction landscape enrichment for RAD5OE highlights a requirement for DNA replication and ho-
mology directed recombination (HDR) genes. On the left, genes represented in the MATa non-essential
gene disruption and temperature-sensitive strain collections were clustered with t-SNE in two dimensions
using genetic interaction profile correlation data from The Cell Map (see Methods 2.4.4) (Usaj et al. 2017;
Costanzo et al. 2016). Dark red spots represent high-density clusters of multiple genes with similar genetic
interaction profiles. The locations of RAD5OE SDIs in the landscape are shown in the middle. Two signif-
icantly enriched clusters were identified using a permutation test (p < 0.001). On the right, the region of
the landscape representing the primary enriched cluster is shown. RAD5OE SDIs are labeled and colored
by function. Genes in this region of the landscape that were not identified as having a RAD5OE genetic
interaction are labeled background and shown as gray dots. Genetic interaction screen was performed by
Robert Reid. Related to Sections 2.2.1 & 2.2.2.
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Figure 2.2 – Supplement to Figure 2.1 – Extended TCGA CNA analysis, all SGI hits on the genetic
landscape and RAD5OE expression characteristics. (A) TCGA copy number amplification of PRR genes
as a percent of patients in a given cohort (see methods). Numbers by each bar are the number of patients
with the gene amplified in the cohort. Color of bars represent the median transcript abundance of amplified
samples (blue = increased abundance, red = decreased abundance, white = no change from diploid sam-
ples). S. cerevisiae ortholog of corresponding H. sapiens gene is annotated at the top of the panel. (B) The
genetic landscape of S. cerevisiae from Figure 2.1Cwith all genes shown as gray points, hits from theMATa
KanMX disruption screen shown as blue points and hits from the temperature-sensitive allele screen shown
as red points. Gene names of hits are annotated near their location in the landscape. Clusters of hits are
outlined with boxes. Genes in the primary cluster are annotated in Figure 2.1C - right. (C) Endogenously ex-
pressed RAD5 versus galactose-induced RAD5 expression. For assessing wildtype levels of Rad5 protein
expression, a FLAG epitope-tagged version of RAD5 was incorporated into the RAD5 locus by marker-free
pop-in/pop-out chromosome integration. Only a faint signal of endogenous FLAG-Rad5 was observed after
a long exposure (30 minutes – lane 2). For comparison, protein was prepared after four hours of induction of
GAL1p-FLAG-RAD5 and serially diluted to determine the approximate dilution factor necessary to achieve
similar signal to endogenous FLAG-RAD5. (D) Fluorescently-tagged Rad5 (TQ2-RAD5) at the endogenous
locus was visualized to assess approximate abundance and localization. The same construct under control
of the galactose promoter (GAL1p-TQ2-RAD5) was induced for four hours and visualized for comparison.
Long exposures of the CFP channel (200 milliseconds) were necessary to see endogenous levels of Rad5,
whereas short exposures (20 milliseconds) were sufficient to observe galactose-induced Rad5. Related to
Section 2.2.2.
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Figure 2.3 –HDRmutants are themost sensitive toRAD5OE. (A) On the left, growth curves used to quan-
tify the rad51∆ RAD5OE SDI are shown with representative images of colony growth over time shown as an
inset. Shaded regions represent the 95% confidence interval (CI) of at least four independent experiments.
Expected growth of rad51∆ RAD5OE was modeled by multiplying the independent contributions of rad51∆
and RAD5OE to colony fitness (see Methods 2.4.5). On the right, differences in observed from expected
colony fitness at 65 hours of growth are summarized using strains from the MATα gene disruption collec-
tion for genes selected from the clusters identified by landscape enrichment analysis. (B) Representative
time series of colony growth demonstrating the phenotype measured for the RAD5OE genetic interactions
with rad51∆ and top3∆ strains from the MATa KanMX disruption collection. Colony images were program-
matically stitched together and normalized such that no-signal is black and highest colony density is white.
Related to Section 2.2.2.

54



Figure 2.4 – RAD5OE causes sensitivity to replication inhibitors and increased recombination. (A)
Panel shows the primary cluster from Figure 2.1C highlighting genetic interactions specific to RAD5OE (red
circles), rad5∆ (blue squares), or shared between RAD5OE and rad5∆ (green Xs). Interaction data for rad5∆
was acquired from BioGRID (Stark et al. 2006). (B) Quantified colony fitness confirms the absence of an
sgs1∆ rad5∆ genetic interaction, and presence of an sgs1∆ RAD5OE interaction. Horizontal and vertical bars
represent the mean and 95% CI of at least four independent experiments for observed (red) and expected
(yellow) fitness. Turquoise and yellow rectangles represent negative and positive interaction magnitudes
respectively. (C) Both RAD5OE and rad5∆ cause cisplatin sensitivity. Cisplatin dosage response curves for
wildtype (WT), RAD5OE, and rad5∆ are shown. Colony fitness was scored relative to untreated WT. Points
and vertical bars represent the mean and 95% CI of four independent experiments. Shaded regions repre-
sent the 95% confidence band of the modeled dose response curves. (D) RAD5OE, but not rad5∆, promotes
tandem repeat recombination in ribosomal DNA (rDNA). rDNA recombination frequency was measured by
loss of_ADE2_ and CAN1 markers incorporated within the rDNA tandem repeat array. Frequencies are
normalized to the median recombination frequency observed for a WT assay strain with an empty vector.
Horizontal and vertical bars indicate the median and 95% CI for at least 6 independent experiments shown
as points. rDNA recombination experiments were performed by Ivana Šunjevarić. Related to Sections
2.2.3, 2.2.4 & 2.2.5.
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Figure 2.5 – Supplement to Figure 2.4 – Overlapping interaction profiles of RAD5OE & rad5∆, sup-
pression of rad5∆ cisplatin sensitivity by RAD5OE, other damaging agent sensitivities, and fob1∆
independent rDNA recombination. (A) Comparison of RAD5OE and rad5∆ genetic interactions. rad5∆
genetic interactions were derived from BioGRID data. A complete list of such genes is included in Table 2.6.
(B) Cisplatin sensitivity of RAD5OE in a rad5∆ background. Colony fitness was scored relative to untreated
wildtype. Blue dashed line indicates cisplatin sensitivity of RAD5OE in a wildtype background for reference.
Points and vertical bars represent the mean and 95% CI of four independent experiments. Shaded regions
represent the 95% confidence band of the modeled dose response curves. (C,D) RAD5OE response to
100 mM HU, 600 nM 4NQO, and 200 Gy gamma radiation. Spots represent 10-fold serial dilutions of the
designated plasmid and drug combination. Galactose media is used to induce RAD5OE. Gamma treated
cells were irradiated with a Cobalt-60 source. (E) 10-fold serial dilution drop assay showing sensitivity of
rad51∆ to 200 Gy gamma radiation. (F) rDNA assay schematic. Loss of both CAN1 and ADE2 via recombi-
nation between rDNA repeats results in canavanine resistance and red colonies. (G) RAD5OE driven rDNA
recombination in wildtype, rad5∆ and fob1∆ backgrounds. Frequencies are normalized to the median re-
combination frequency observed for a wildtype assay strain with an empty vector. Horizontal and vertical
bars indicate the median and 95% CI for at least 5 independent experiments shown as points. rDNA recom-
bination experiments were performed by Ivana Šunjevarić. Serial dilution drop assays were performed by
Ivana Šunjevarić (C & D), and Michael Smith (E). Related to Sections 2.2.3, 2.2.4 & 2.2.5.
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Figure 2.6 – Other PRR members are not essential for RAD5OE driven recombination. (A) Quanti-
fied colony fitness reveals RAD5OE requires SGS1 even in the absence of PRR members RAD18, MMS2,
UBC13, and in the absence of canonical PRR PCNA ubiquitination sites (i.e. pol30RR). Horizontal and
vertical bars represent the mean and 95% CI of at least four independent experiments for observed (red)
and expected (yellow) fitness. Turquoise and yellow rectangles represent negative and positive interaction
magnitudes respectively. (B) Quantified colony growth reveals cisplatin sensitivity of RAD5OE does not de-
pend on the Rad5 E2 partner – Mms2-UBC13. Colony fitness was scored relative to untreated wildtype.
Points and vertical bars represent the mean and 95% CI of four independent experiments. Shaded regions
represent the 95% confidence band of the modeled dose response curves. (C) RAD5OE drives rDNA recom-
bination even in the absence of Mms2-Ubc13. Frequencies are normalized to the median recombination
frequency observed for a WT assay strain with an empty vector. Horizontal and vertical bars indicate the me-
dian and 95% CI for at least 6 independent experiments shown as points. rDNA recombination experiments
were performed by Ivana Šunjevarić and myself. Related to Section 2.2.6.
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Figure 2.7 – Supplement to Figure 2.6 – pol30RR and rad18∆ contributions to RAD5OE cisplatin sen-
sitivity and rDNA recombination. (A) Cisplatin sensitivity of RAD5OE in pol30RR and rad18∆ backgrounds.
Colony fitness was scored relative to untreated wildtype. Blue dashed lines indicate cisplatin sensitivity of
RAD5OE in a wildtype background for reference. Yellow dashed line indicates expected fitness if theRAD5OE
contribution to fitness were independent from either pol30RR, or rad18∆. Points and vertical bars represent
the mean and 95% CI of four independent experiments. Shaded regions represent the 95% confidence
band of the modeled dose response curves. (B) RAD5OE driven rDNA recombination in wildtype, pol30RR
and rad18∆ backgrounds. Frequencies are normalized to the median recombination frequency observed for
a wildtype assay strain with an empty vector. Horizontal and vertical bars indicate the median and 95% CI
for at least 9 independent experiments shown as points. Value of horizontal bars is annotated to the left of
each condition. rDNA recombination experiments were performed by Ivana Šunjevarić and myself. Related
to Section 2.2.6.
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Figure 2.8 – The HIRAN domain is essential for the RAD5OE phenotype. (A) RAD5 domain map with
N-terminal truncations (N164∆ & N293∆) and HIRAN domain deletion (173-281∆) variants indicated below.
(B) Predicted secondary and tertiary structures from the RAD5 HIRAN domain HLTF homology model. The
corresponding putative 3’OH ssDNA binding pocket, described in HLTF by Kile et al. (2015), is indicated
with a dotted line. Three highly conserved positively charged residues are annotated. Colors indicate vector
cluster (red), intermediate cluster (green), and RAD5 cluster (blue) for variants described in panel C. Red
shaded regions highlight loops critical for RAD5OE genetic interactions. (C) Unrooted dendrogram visual-
izing the SDI profile distance between 39 overexpressed RAD5 variants scored for interaction against 25
RAD5OE SDIs using selective ploidy ablation (Reid et al. 2011). Variants having no effect on the interaction
profile fall in the RAD5 cluster (blue). Variants having a partial effect fall in the intermediate cluster (green).
Variants that nearly eliminateRAD5OE genetic interactions fall in the vector cluster (red). BoldRAD5 variants
are discussed in the text. (D,E,F) Experiments, as described for previous figures, comparing sgs1∆ interac-
tion, cisplatin sensitivity, and rDNA recombination for RAD5, rad5R187E (R187E), rad5DE681,682AA (AA) and
rad5I916A (RING) variants (see also Methods). (E) Endogenous refers to variants expressed from the native
RAD5 promoter in the chromosome. Overexpressed refers to variants expressed from the plasmid-born
GAL1 promoter in the corresponding RAD5 variant background. rDNA recombination experiments were
performed by Ivana Šunjevarić. Related to Sections 2.2.7 & 2.2.8.
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Figure 2.9 – Supplement to Figure 2.8 – Rad5 HIRAN domain conservation, and variant protein sta-
bility. (A) On the left is a crystal structure of the HLTF HIRAN domain in complex with the 3’ end of one
strand from a short DNA duplex from Hishiki et al. (2015). On the right is the Rad5 HIRAN domain homol-
ogy model. Conserved basic and acidic residues are colored blue and red respectively. Conserved basic
residues facing the ssDNA binding pocket are annotated. (B) Alignments of HIRAN domains across diverse
yeast species. Protein sequences were downloaded from Pfam and aligned with Clustal Omega. Numbers
at the top indicate residue number for S. cerevisiae Rad5. Conserved basic and acidic residues are col-
ored blue and red respectively. Approximate locations of secondary structure from the homology model
are annotated below the alignment. (C) Protein blots of overexpressed Rad5 and FLAG epitope tagged
Rad5. Variants in the overexpressed Rad5 protein are indicated above their corresponding lane. Related
to Section 2.2.8.
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Figure 2.10 – RAD5OE promotes aberrant template switching during DNA replication. (A) Represen-
tation of replication intermediate shapes detectable by 2D gel analysis. Replicating DNA samples are sepa-
rated by electrophoresis in one dimension based on mass (top arrow on leftmost diagram) and in a second
dimension by shape (left arrow). Each panel depicts a mode of replication through a restriction fragment.
A representative DNA molecule shape (blue) in the inset and their migration are represented by the black
arc in the diagram. Non-replicating linear molecules migrate to a single spot (1N) and the dashed diago-
nal line represents the line of linear DNA molecules. Thin dashed arcs representing Y-arcs are included
in other panels for reference. (B) The 2D gel electrophoresis analysis of wildtype cells. Replicating DNA
was isolated after arresting cells in G1 and releasing them into medium containing 30mM HU with either a
control plasmid (vector) or a RAD5 expression plasmid (RAD5OE). Expression was induced during arrest by
addition of galactose. Samples were collected at the indicated times after release and replicating DNA was
visualized by probing a 5.1 Kbp restriction fragment from chromosome III containing an origin of replication
at its midpoint. (C) Replicating DNA from an sgs1∆ mutant strain was collected and analyzed as in B. (D)
2D gel analysis of an sgs1∆ strain with vector control, RAD5OE or the mutant allele R187EOE. Samples
shown are from the same experiment 60 minutes after release. Vector and RAD5OE samples are the same
as those shown in panel C. (E) Hybridization signal intensities for the X-spike and the Y-arc were measured
in multiple experiments and normalized to the 1N spot signal. Normalized measurements from vector con-
trol samples were subtracted from the measurements in RAD5OE or R187EOE cells to obtain the change in
signal from vector (points) for each experiment. Vertical bars indicate the 95% CI. 2D-gel experiments were
performed by Robert Reid with assistance from Ivana Šunjevarić. Related to Section 2.2.9.
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Figure 2.11 – Supplement to Figure 2.10 – Replication fork analysis of ARS305 by two-dimensional
gel electrophoresis. (A) Induction of RAD5 expression from the GAL1 promoter. A plasmid with N-
terminally tagged Rad5 (3xV5 epitope) (+) was transformed into a wildtype strain, grown to log phase in
SC-Leu medium containing 2% lactate and 3% glycerol as a carbon source. Then RAD5 expression was
induced by addition of 2% galactose. A wildtype strain with an empty vector control (-) was also included.
Protein samples were collected at the indicated time points after addition of galactose and processed as
described in (Methods). Rad5 was detected with the anti-V5 (α-V5) antibody and anti-PGK1 (α-Pgk1) was
used as a loading control. Expression of Rad5 peaks by 3 hours of galactose induction. (B) FACS analysis
of WT strains containing expression vectors for RAD5 (RAD5OE) or the rad5-R187E HIRAN domain mutant
R187EOE. Asynchronous samples (Async.) were collected before arrest and samples taken after release
into medium containing hydroxyurea are indicated by time (minutes). (C) FACS analysis of sgs1 samples as
in B. (D) Map of Saccharomyces chromosome III proximal to the replication origin ARS305 (circle). Arrows
indicate open reading frames. Vertical lines labeled “N1” indicate NcoI restriction sites, and the 5.1 Kbp
NcoI fragment indicated by the thick horizontal line was detected on blots using radiolabeled probes. (E)
2D electrophoresis showing ARS305 replication intermediates at specific timepoints (minutes) after release
into hydroxyurea. ND indicates not done. (F.) 2D gel analysis of the sgs1∆ strain as in D. 2D-gel and FACS
experiments were performed by Robert Reid and Ivana Šunjevarić. Related to Section 2.2.9.
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Figure 2.12 – Models for excess Rad5 at a replication fork. A replication fork is shown with blue and
red solid lines representing the parental strands. Nascent DNA is represented as dashed lines and arrow-
heads indicate the direction of DNA polymerization. Rad5 (green oval) is shown binding to the 3′ end of the
leading strand via the HIRAN domain (cleft in the oval). Figure graphic created by Robert Reid. See text of
Discussion section for description of models (Section 2.3.1).
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Figure 2.13 – Supplement to Figure 2.12 – RAD5OE cells require Pol32 but do not require Pif1. Spots
represent 5-fold serial dilutions of the designated plasmid and genetic background combinations. All strains
are derived fromW303. pol32 strain contains a null allele. pif1 strain contains a mutation in the second ATG
codon in the open reading frame so the polypeptide is imported into mitochondria, but does not function in
the nucleus (Zhou et al. 2000). Galactose media is used to induce RAD5OE. Serial dilution drop assays
were performed by Ivana Šunjevarić. Related to Section 2.3.1.
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Table 2.1 – PRR gene copy number alterations in cancer

Header Description

study_id cBioportal study identifier.
study_name cBioportal study name.
gene HGNC gene name for PRR genes HLTF, RAD18, UBE2A, UBE2B,

UBE2N and UBE2V2.
med_amp_exp Median expression Z-score for amplified samples.
n Number of samples in cohort *.
n_amp * with two or more copy gain of gene (amplified).
n_gain * with single copy gain of gene.
n_dipl * with diploid copy number of gene.
n_loss * with single copy deletion of gene.
n_del * with two copy deletion of gene.
freq_amp n_amp divided by n.
freq_gain n_gain divided by n.
freq_dipl n_dipl divided by n.
freq_loss n_loss divided by n.
freq_del n_del divided by n.

Related to Figure 2.1.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/RAD5-01.csv.
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Table 2.2 – RAD5OE SDL interaction scores – gene disruptions

Header Description

strain_id Yeast gene deletion consortium record numbers.
strain_name Name of array strain (i.e. name of deleted gene).
size Size of strain with RAD5OE normalized to plate median. Colony

density measurements are from the synthetic dosage interaction
screen of RAD5OE (pWJ220) paired with the MATa KanMX gene
deletion strain collection.

control_size Size with vector normalized to plate median.
log2_ratio Log base 2 of size divided by control_size.
z log2_ratio centered at 0 and scaled by standard deviation.

Related to Figure 2.1.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/RAD5-02.csv.
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Table 2.3 – RAD5OE SDL interaction scores – TS alleles

Header Description

strain_id Yeast gene deletion consortium record numbers.
strain_name Name of array strain (i.e. name of TS allele).
temperature Temperature of incubation (˚C).
size Size of strain with RAD5OE normalized to plate median. Colony

density measurements for the synthetic dosage interaction screen
of RAD5OE (pWJ220) paired with the MATa temperature-sensitive
allele strain collection.

control_size Size with vector normalized to plate median.
log2_ratio Log base 2 of size divided by control_size.
z log2_ratio centered at 0 and scaled by standard deviation.

Related to Figure 2.1.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/RAD5-03.csv.
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Table 2.4 – RAD5OE SDL interaction scores – aggregated TS alleles

Header Description

gene Gene name.
temperature Temperature of incubation (˚C).
n Number of alleles scored for gene.
score_combined Scores combined using Stouffer’s method (

∑
Z/

√
n) (Stouffer et al.

1949).
max_combined Maximum combined score across temperatures
min_combined Minimum combined score across temperatures

Related to Figure 2.1.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/RAD5-04.csv.
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Table 2.5 – Landscape coordinates

Header Description

orf ORF ID for gene
gene gene name
alleles alleles of gene
MATa_hit did gene have z ≤ -2 from Table 2.3?
TS_hit top 50 TS hit with respect to min_combined from Table 2.5?
tSNE1 t-SNE dimension 1
tSNE2 t-SNE dimension 2

Related to Figure 2.1C.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/RAD5-05.csv.
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Table 2.6 – Aggregated interaction scores for rad5∆ from BioGRID

Header Description

gene Gene name.
sum_neg Sum of BioGRID interactions involving RAD5 and gene assigned to

“Negative Genetic”, “Synthetic Growth Defect”, or “Synthetic
Lethality”.

sum_pos Sum of BioGRID interactions involving RAD5 and gene assigned to
“Synthetic Rescue”, or “Positive Genetic”.

score Positive minus negative interactions (i.e. sum_pos - sum_neg).
Aggregate scores used to identify synthetic genetic interactions
with rad5∆. Genes with aggregate scores of ≤ -2 were considered
suitable evidence for rad5∆ synthetic genetic interaction.

Related to Figure 2.2A.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/RAD5-06.csv.
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Table 2.7 – Oligonucleotides

Header Description

id Rothstein lab primer ID.
name The name of the primer.
sequence The sequence of the primer.
description A brief description of the primer.

Related to Chapter 2.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/RAD5-07.csv.
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Table 2.8 – Strains and plasmids

Name Genotype Notes

W9100-17D MATa ADE2 can1-100 his3-11,15 leu2-3,112 lys2∆
MET15 RAD5 TRP1 ura3-1

Herrero and Thorpe (2016)

W9100-2D MATα See W9100-17D.
W11353-1A MATα rad5::KanMX4 This study.
W11345-10D MATα rad5R187E This study.
W11331-7A MATα rad5DE681,682AA This study.
W11332-7D MATα rad5I916A This study.
W11362-5B MATα rad51::KanMX4 This study.
W11366-3A MATα sgs1::KanMX4 This study.
W11391-8C MATα pol30KK127,164RR-NatMX4 This study.
W11409-1D MATα rad18::HphMX4 This study.
W11410-4B MATα mms2::NatMX4 ubc13::KanMX4 This study.
W11365-5A MATα sgs1::KanMX4 rad5::KanMX4 This study.
W11391-2C MATα sgs1::KanMX4 pol30KK127,164RR-NatMX4 This study.
W11409-4D MATα sgs1::KanMX4 rad18::HphMX4 This study.
W11410-13D MATα sgs1::KanMX4 mms2::NatMX4 ubc13::KanMX4 This study.
W11248-5B MATa LYS2 bar1::NatMX4 This study.
W11260-7A MATa bar1::NatMX4 sgs1::KanMX4 This study.
W4314-2C MATα ade2-1 LYS2 trp1-1 rDNA::ADE2-CAN1 This study.
W5270-1A MATα ade2-1 LYS2 trp1-1 rDNA::ADE1-CAN1

fob1::KanMX4
This study.

W11349-7D MATa ade2-1 LYS2 trp1-1 rDNA::ADE2-CAN1
rad5::KanMX4

This study.

W11262-22C MATα ade2-1 LYS2 trp1-1 rDNA::ADE1-CAN1
pol30KK127,164RR-NatMX4

This study.

W11421-44B MATα ade2-1 LYS2 trp1-1 rDNA::ADE1-CAN1
rad18::HphMX4

This study.

W11422-30C MATa ade2-1 LYS2 trp1-1 rDNA::ADE1-CAN1
mms2::NatMX4 ubc13::KanMX4

This study.

pWJ1781 CEN LEU2 Ampr GAL1p-HpaI-ADH2t Reid et al. (2016)
pWJ2496 GAL1p-HpaI-3V5-ZraI-ADH2t This study. †
pWJ2509 GAL1p-PmeI- mTurquoise2-ZraI-ADH2t This study. †
pWJ2200 GAL1p-RAD5 This study. †
pWJ2244 GAL1p-rad5T186A This study. †
pWJ2555 GAL1p-rad5R187E This study. †
pWJ2239 GAL1p-rad5V228A This study. †
pWJ2240 GAL1p-rad5R229A This study. †
pWJ2557 GAL1p-rad5R229E This study. †
pWJ2241 GAL1p-rad5I230A This study. †
pWJ2243 GAL1p-rad5G240A This study. †
pWJ2559 GAL1p-rad5R241E This study. †
pWJ2532 GAL1p-rad5DEELES328-333AAAAAA “Zipper” This study. †
pWJ2124 GAL1p-rad5G535R This study. †
pWJ2230 GAL1p-rad5DE681,682AA This study. †
pWJ2231 GAL1p-rad5I916A This study. †
pWJ2238 GAL1p-rad5Q1106D This study. †
pWJ2233 GAL1p-rad5p.1-164∆ This study. †
pWJ2234 GAL1p-rad5p.1-293∆ This study. †
pWJ2447 GAL1p-rad5p.173-281∆ This study. †
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Name Genotype Notes

pWJ2448 GAL1p-rad5p.183-189∆ This study. †
pWJ2449 GAL1p-rad5p.183-197∆ This study. †
pWJ2450 GAL1p-rad5p.190-197∆ This study. †
pWJ2451 GAL1p-rad5p.204-214∆ This study. †
pWJ2452 GAL1p-rad5p.204-225∆ This study. †
pWJ2453 GAL1p-rad5p.215-225∆ This study. †
pWJ2221 GAL1p-FLAG-RAD5 This study. †
pWJ2586 GAL1p-FLAG-rad5R187E This study. †
pWJ2584 GAL1p-FLAG-rad5DE681,682AA This study. †
pWJ2473 GAL1p-FLAG-rad5I916A This study. †
pWJ2583 GAL1p-FLAG-rad5RDEI187,681,682,916EAAA This study. †
pWJ2512 GAL1p-RAD5-3V5 This study. ‡
pWJ2511 GAL1p-TQ2-RAD5 This study. ǁ
pWJ2513 GAL1p-RAD5-TQ2 This study. ǁ

Related to Chapter 2 – Full genotype is shown for W9100-17D – a derivative of W303 with rad5G535R cor-
rected to RAD5 (Thomas and Rothstein 1989; Herrero and Thorpe 2016). For all other strains, only mating
type and differences from W9100-17D are shown. Deletion consortium and temperature-sensitive strain
collections are described by Winzeler et al. (1999) and Li et al. (2011). All gene disruptions were con-
structed by PCR amplification of the corresponding gene disruption from the S288C gene disruption library,
using primers that include 300-400 bp of homology flanking each side of the dominant selectable marker.
Gene disruption alleles containing the NatMX4 or HphMX4 marker were first constructed by transferring the
KanMX4-marked disruption into the new strain, then marker swapping the dominant selectable marker by
transformation with a PCR fragment containing the new marker amplified from plasmid pAG36 or pAG32,
respectively (Addgene plasmids #35126 and #35122 from Goldstein and McCusker (1999)). All plasmids
in this study were constructed using recombination in budding yeast by digesting an empty vector and in-
tegrating PCR product with at least 20 bp of homology on either side of the cut site. Parent plasmids are
indicated with “†”, “‡” and “ǁ” which correspond to pWJ1781, pWJ2496 and pWJ2509 respectively.
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Chapter 3

CRISPR-mediated nonsense
Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks

(DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely con-

verting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate

gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 mil-

lion single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%–99% of genes in eight eukaryotic

species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid

detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs,

our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of

nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes

sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations.

Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP.

3.1 Introduction

CRISPR-Cas9 technology allows the precise modification of genomic sequences and interrogation of gene

function at unprecedented speed (Barrangou and Doudna 2016; Komor et al. 2017). This technology

relies on the ability of CRISPR single guide RNAs (sgRNAs) to target the Cas9 endonuclease to precise

genomic locations, where Cas9 introduces DNA double-strand breaks (DSBs) (Hsu et al. 2014). Current

gene disruption strategies depend on the repair of Cas9-induced DSBs by non-homologous end joining

(NHEJ) or homology-directed repair (HDR) (Jasin and Haber 2016). During DSB repair, NHEJ occasionally

introduces nucleotide insertions and deletions (indels) that result in frameshift mutations, thus disrupting

gene open reading frames (ORFs), while HDR can lead to the integration of gene disruption cassettes

at targeted loci (Ran et al. 2013). Gene disruption by NHEJ is efficient, although it does result in the

generation of mosaic knockout (KO) alleles due to the variable number of nucleotides inserted or deleted

prior to DSB end joining (van Overbeek et al. 2016). On the other hand, gene disruption by HDR is an

accurate but inefficient process that requires exogenous DNA donor sequences as a template for DSB repair.
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One common limitation of both NHEJ- and HDR-dependent gene editing approaches is their reliance on the

formation of DSBs, which are toxic DNA lesions that can cause genomic rearrangements and translocations,

activate DNA damage checkpoints, and induce cell death (Aguirre et al. 2016; Choi and Meyerson 2014;

Frock et al. 2015; Ghezraoui et al. 2014; Roukos and Misteli 2014; Torres et al. 2014). Furthermore,

while NHEJ and HDR have both been exploited to modify precise genomic sequences with CRISPR-Cas9

technology (Cong et al. 2013; Mali et al. 2013), these gene editing approaches can occasionally alter

non-targeted genomic loci due to Cas9-induced DSB formation at off-target sites (Hsu et al. 2013).

As an alternative to NHEJ- and HDR-dependent genome editing, CRISPR-dependent editing strategies that

entail direct modification of DNA bases have recently been developed (Hess et al. 2016; Komor et al. 2016;

Ma et al. 2016; Nishida et al. 2016; Plosky 2016; Yang et al. 2016). Distinct from standard CRISPR-Cas9-

dependent genome editing, CRISPR-mediated base editing avoids DSB formation and displays reduced

genome-wide off-targeting (Kim et al. 2017a). CRISPR-dependent base editors consist of a catalytically

inactive form of Cas9 or a Cas9 nickase mutant fused to cytidine deaminases, such as APOBEC1 or AID.

For example, the CRISPR-dependent base editor BE3 is a fusion of rat APOBEC1 (rAPOBEC1), a uracil

glycosylase inhibitor (UGI) and the Cas9-D10A nickase mutant (Komor et al. 2016). Following BE3 binding

to target sites mediated by sgRNAs, rAPOBEC1 converts a targeted cytosine (C) into uracil (U) and UGI

inhibits U removal by DNA glycosylases (Komor et al. 2016). The resulting G:U mismatch is then converted

into an A:T base pair upon Cas9-mediated nicking of the G-containing DNA strand followed by DNA syn-

thesis. This process generates permanent modifications of DNA bases within a window of high BE3 activity

(13–17 nucleotides from the Cas9 protospacer adjacent motif or PAM) (Komor et al. 2016). Although recent

studies have narrowed the activity window of BE3 variants from 5 to 1–2 nucleotides (Kim et al. 2017c), the

presence of more than one cytosine within the BE3 activity window can result in the modification of multiple

bases, causing potentially undesirable base substitutions (Kim et al. 2017c; Komor et al. 2016).

Base substitutions in the codons of ORFs can potentially cause amino acid substitutions (missense mu-

tations) or generate premature STOP codons (nonsense mutations). Nonsense mutations can lead to the

synthesis of truncated proteins or the degradation of mRNA transcripts by nonsense-mediated decay (NMD)

and are often associated with human disease (Lykke-Andersen and Jensen 2015). In particular, inherited

nonsense mutations in tumor suppressor genes are observed in 10%–30% of patients that suffer from hered-

itary cancer syndromes (e.g., familial breast and ovarian cancer, hereditary non-polyposis colorectal cancer,

familial adenomatous polyposis) (Bordeira-Carriço et al. 2012). In addition, nonsense mutations account

for 12% of sporadic non-silent mutations in tumor suppressors, as reported by the catalog of somatic mu-

tations in cancer (COSMIC) (Forbes et al. 2017). Despite their importance in the pathogenesis of human
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cancer, strategies to accurately and efficiently model tumor-associated nonsense mutations remain to be

developed.

In this manuscript, we develop an application of CRISPR-mediated base editing for gene disruption studies.

We show that CRISPR base editors efficiently inactivate human genes through the induction of STOP codons

(iSTOP) in gene ORFs. This system relies on the ability of CRISPR-Cas9-dependent base editors to pre-

cisely convert four codons (CAA, CAG, CGA, and TGG) into STOP codons (TAG, TAA, or TGA) (Figure 3.1).

The occurrence of iSTOP-mediated editing in sgRNA-transfected cellular populations or single clones can

be rapidly monitored by restriction fragment length polymorphism (RFLP) assay using restriction enzymes

that recognize bases targeted by iSTOP (Figure 3.3B,D). To facilitate the use of iSTOP, we have generated

an online database to design nonsense generating sgRNAs (sgSTOPs) in eight eukaryotic species (avail-

able at http://www.ciccialab-database.com/istop). Notably, 94%–99% of genes in the analyzed eukaryotic

genomes can be targeted with multiple sgSTOPs, highlighting the genome-wide potential of iSTOP. Fur-

thermore, iSTOP can be employed to model over 32,000 nonsense mutations observed in human cancer.

Altogether, our studies establish iSTOP as a gene disruption technology to study gene function and model

human disease.

3.2 Results

3.2.1 C to T editors can create nonsense at four codons

To study the mutagenic properties of cytidine deaminase-dependent CRISPR base editors, we investigated

the repertoire of mutations that can be generated by these enzymes from the conversion of cytosine to

thymine (C > T) on the coding or non-coding strand (Figures 3.2A,B & Table 3.1). This analysis revealed

that 87.5% (56/64) of the codons can be mutated by CRISPR-dependent base editors in either the coding

or non-coding strand and 27% (20/74) of the changes introduced by these gene editing enzymes gener-

ate silent mutations (Figure 3.2C & Table 3.1). Despite the fact that CRISPR-dependent base editors

can only generate 7.6% (32/420) of all the possible 420 non-silent substitutions (Figures 3.1A,B & 3.2D),

these enzymes can convert four different codons (CAA, CAG, CGA, and TGG) encoding for 3 amino acids

(glutamine [Gln], arginine [Arg], tryptophan [Trp]) exclusively into the TAA, TAG, and TGA STOP codons

(Figures 3.1B,C & 3.2D). CAA, CAG, and CGA triplets can be converted into STOP codons when modified

by CRISPR-dependent base editors on the coding strand, while TGG can be converted into STOP codons
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if targeted on the non-coding strand (Figures 3.1C & 3.2A,B).

3.2.2 CRISPR-mediated base editing efficiently disrupts genes through iSTOP

To determine whether CRISPR-mediated base editing could be effectively used in human cells to convert

CAA, CAG, CGA, and TGG into STOP codons, we designed sgSTOPs to target these four codons in the

SPRTN, FANCM, TIMELESS, and CHEK2 genes within the window of high activity (13–17 nucleotides from

the PAM) of the CRISPR-dependent base editor BE3 (Komor et al. 2016) see Figure 3.1C. To simplify

the detection of base editing, we targeted codons containing cytosines within the recognition sequences of

restriction enzymes, thus allowing us to monitor base mutations that rendered restriction sites refractory to

restriction digestion (Figure 3.3A). In these experiments, the sgSTOPs were transfected into HEK293T cells

together with a DNA plasmid encoding the BE3 enzyme (Figure 3.3A). Three days after transfection, the

genomic DNA of the transfected cell populations was extracted and the targeted genomic loci of SPRTN,

FANCM, TIMELESS, and CHEK2 were PCR-amplified. The amplicons were subsequently digested with

restriction enzymes recognizing the targeted sites (Figures 3.3A,B & 3.4A,B). Remarkably, restriction frag-

ment length polymorphism (RFLP) analysis revealed that 21%–35% of the PCR products specifically am-

plified from sgSTOP-transfected cell populations were insensitive to restriction enzyme digestion (Figure

3.3B). Complete digestion of PCR amplicons was observed upon incubation with restriction enzymes that did

not recognize the targeted sites, confirming the specificity of this RFLP assay for the detection of sgSTOP-

mediated editing (Figures 3.4A–C). Furthermore, a time course experiment showed that the incomplete

digestion of PCR amplicons was not due to a limited incubation time of the reaction (Figure 3.6A). Cloning

and sequencing of individual SPRTN, FANCM, TIMELESS, and CHEK2 PCR products refractory to restric-

tion enzyme digestion confirmed the presence of STOP-inducing C > T transitions in each of the four targeted

codons (Figure 3.3B). Sequencing of a TIMELESS amplicon resistant to restriction enzyme digestion also

revealed editing of another cytosine located within the window of BE3 activity, as previously observed in

other BE3-edited loci (Kim et al. 2017c; Komor et al. 2016) see Figure 3.3B.

Besides causing restriction site loss, iSTOP-mediated editing can create new restriction sites, resulting in

the generation of new DNA fragments upon digestion (Figure 3.3A). To test whether restriction site gain

could be observed in iSTOP-edited cells, HEK293T were transfected with the SPRTN sgSTOP indicated

above, which causes the simultaneous loss of a PvuII site and gain of an NheI site. Notably, a fraction of

SPRTN PCR amplicons from SPRTN sgSTOP-transfected cells was digested by NheI, while being refrac-

tory to PvuII digestion, revealing that restriction site gain could be employed to monitor iSTOP-mediated
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editing (Figure 3.3C). As shown in Figure 3.3C, a lower percentage of editing was observed by NheI di-

gestion compared to PvuII digestion (30.7% versus 36.2%). This observation could depend on the fact that

BE3-induced deamination of a second cytosine within the NheI restriction site (Figure 3.3C) could result

in the disruption of NheI-mediated digestion. Collectively, these experiments demonstrate the feasibility of

introducing nonsense mutations into the human genome by CRISPR-mediated base editing of CAA, CAG,

CGA, and TGG codons and define a rapid RFLP assay to monitor the occurrence of base editing within

populations of modified cells.

3.2.3 iSTOP allows the efficient generation of knockout human cell lines

Next, we determined whether our iSTOP approach is an efficient strategy to create human knockout cell

lines. To this end, we targeted SMARCAL1, a gene mutated in Schimke immuno-osseous dysplasia that

has been implicated in the DNA damage response (Bansbach et al. 2009; Ciccia et al. 2009; Postow et al.

2009; Yuan et al. 2009; Yusufzai et al. 2009). To disrupt the SMARCAL1 gene, we utilized an sgSTOP that

efficiently converts a CAG triplet located within the first exon of the SMARCAL1 locus into a STOP codon

(Figure 3.5A). To further increase iSTOP efficiency, we determined whether cells edited by iSTOP in the

SMARCAL1 locus could be enriched by using a marker-free co-selection strategy previously employed to

select cells that have undergone genome editing at Cas9- or Cpf1-induced DSBs (Agudelo et al. 2017).

This strategy relies on the simultaneous targeting of a gene of interest and the sodium-potassium chan-

nel ATP1A1, which when mutated in its first extracellular loop renders cells resistant to ouabain treatment

(Agudelo et al. 2017). Using this approach, HEK293T cells were transfected with BE3 in combination with

sgSTOPs targeting the first exon of SMARCAL1 and the extracellular loop sequence of ATP1A1 and then

cultured in the presence or absence of ouabain (Figure 3.5B). Interestingly, the number of cells edited by

iSTOP in the SMARCAL1 locus increased from 24% to 38.8% upon ouabain selection, as determined by

RFLP analysis (Figure 3.5C). To isolate SMARCAL1 KO clones, ouabain-resistant cell populations trans-

fected with SMARCAL1 and ATP1A1 sgSTOPs were seeded at single-cell density and isolated cell clones

were screened by RFLP analysis (Figures 3.5D & 3.6E). From this analysis, we retrieved 10/19 (52.6%)

clones with at least one edited SMARCAL1 allele, with 2/19 (10.5%) clones (#16 and #17) being homozy-

gously edited (Figure 3.6E). DNA sequencing and protein blot analysis of the two SMARCAL1 homozy-

gously edited clones confirmed the presence of the desired STOP codon within the SMARCAL1 gene and

the absence of SMARCAL1 protein (Figures 3.5E & 3.6F). Sanger sequencing also confirmed the genotype

of the heterozygous clones that we observed using the RFLP assay (Figure 3.6G). Although ouabain treat-
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ment causes the accumulation of indels in the ATP1A1 locus (Figure 3.6D) that can result in the generation

of gain-of-function ATP1A1 alleles (Agudelo et al. 2017), we only observed 1/11 modified clones with indels

in the SMARCAL1 locus (Figure 3.6G, see clone #18). This observation could be explained by the fact that

indel formation depends on the DNA nickase activity of BE3, which is significantly less efficient than the cyti-

dine deaminase activity of BE3 (Komor et al. 2016), thus rendering the probability of ouabain to select for an

infrequent event at two independent sites remarkably rare. As further validation of the above co-selection

strategy, we also observed enrichment in iSTOP-edited cells upon co-targeting of the SPRTN and ATP1A1

genes, as determined by both restriction site loss and gain analysis and DNA sequencing of SPRTN am-

plicons from ouabain-resistant cell populations (Figures 3.6B,C). Taken together, these findings establish

iSTOP as an efficient CRISPR-mediated base editing approach to disrupt human genes and demonstrate

that iSTOP is compatible with co-selection enrichment methods.

3.2.4 iSTOP enables the disruption of human genes on a genome scale

As mentioned above, the use of iSTOP is restricted to four codons located at a specific distance from

PAM sequences (Figure 3.1C). To determine whether, despite this limitation, iSTOP could be utilized to

disrupt genes on a genome-wide scale, we identified sgSTOPs for all 69,180 ORFs reported in the human

reference genome GRCh38 (Methods section 3.4.11). Using CDS coordinates from the UCSC genome

browser, we first identified all CAA, CAG, CGA, and TGG codons and PAMs for all validated BE3 variants

located at the correct distance from the targeted base (Kim et al. 2017c; Komor et al. 2016) (Figure 3.7A).

This genome-wide analysis revealed that 62.5% of the CAA, CAG, CGA, and TGG codons in the human

reference genome can be targeted by iSTOP, thus allowing the possibility to precisely convert 523,340

codons into STOP codons (Figures 3.7C & 3.8C). Remarkably, 98.6% of human ORFs, corresponding to

99.7% of human genes, can be targeted by one or more sgSTOPs, with over 80% of ORFs targetable within

the first 20% of their sequence, 99.2% of ORFs targetable within the first 100 codons, and 94.7% of ORFs

targetable at a position predicted to cause nonsense-mediated decay (Popp and Maquat 2016) (Figures

3.7C,D & 3.8E). An sgSTOP can be designed for approximately one out of every 26 codons such that the

typical gene of 600 amino-acid residues can potentially be targeted at 23 different codons (Figures 3.7B

& 3.8D). From this analysis, we observed that only 68 (0.35%) human genes cannot be targeted by iSTOP

due to unavailable CAA, CAG, CGA, or TGG codons or PAM sequences (Figures 3.8A & 3.8B). However,

24/68 of the non-targetable human genes have eukaryotic orthologs that can be targeted by iSTOP, thus

allowing the study of these genes in model organisms (Figure 3.8A & Table 3.2). To determine the off-target
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propensity of iSTOP guides, we performed a genome-wide search for sequences similar to each sgSTOP.

When allowing up to 2 mismatches outside of the guide’s seed sequence, we observe that 74% of NGG

PAM-based sgSTOPs map uniquely to the genome (Figure 3.8F). To aid in selecting sgSTOPs with low

off-target propensity, we identified putative off-target sites in the human genome for each sgSTOP. This

analysis demonstrates that almost all human ORFs can be targeted by iSTOP, thus highlighting iSTOP as a

promising application of CRISPR-mediated base editing for genome-wide gene disruption studies in human

cells.

To determine whether the RFLP assay described above could be generalized to monitor the efficacy of

multiple sgSTOPs, we identified restriction sites of enzymes that recognize DNA bases targetable by iSTOP

in the human genome (Table 3.4). This analysis revealed that over 70% of targetable sites, corresponding to

98% of human genes, can be monitored by either restriction site loss or gain using enzymes that do not cut

within 50 nucleotides from the targeted base (Figure 3.7E). Furthermore, this analysis predicted BsrI and

BfaI as two of the most common restriction enzymes for detecting iSTOP-edited targets (>15,000 sgSTOPs)

in the human genome by restriction site loss or gain, respectively (Figure 3.7F). We validated the use of BsrI

in the RFLP assay by targeting the PARP4 gene with an sgSTOP that edits a BsrI restriction site (Figure

3.4C). These studies indicate that the RFLP assay described here allows rapid assessment of base editing

activity for the majority of sgSTOPs, thus greatly simplifying the use of iSTOP to interrogate gene functions

in human cells.

3.2.5 iSTOP is compatible with genome-wide gene disruption studies

To determine whether iSTOP could be utilized for genome-wide studies in other eukaryotic species, we

identified sgSTOPs for all ORFs of 7 other eukaryotic model organisms, ranging from S. cerevisiae to M.

musculus. An additional 2,490,479 codons can be targeted in these species, with the possibility to design

sgSTOPs approximately every 26 codons in each organism, with the exception of A. thaliana and S. cere-

visiae, which can be targeted approximately once every 32 codons (Figure 3.8C). Moreover, we found that

the percentage of ORFs that can be targeted by iSTOP is between 97% (S. cerevisiae) and 99.7% (M. mus-

culus), demonstrating the robustness of this method to target almost any ORF of various models (Figure

3.7G). To facilitate the use of iSTOP, we provide a full list of sgSTOP sequences, genomic coordinates of

each targeted base and targeted codons for any gene in the examined eukaryotic species (Methods sec-

tion 3.4.11). In addition, this database contains information on the number and percentage of alternatively

spliced isoforms targeted by each sgSTOP, a prediction of nonsense-mediated decay, counts of putative off-
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target sites for each sgSTOP and a list of restriction enzymes that can be used to monitor iSTOP-mediated

editing. This database contains a total of 3,483,549 targetable gene coordinates and is available online at

http://www.ciccialab-database.com/istop.

3.2.6 iSTOP enables the modeling of cancer-associated nonsense mutations

Nonsense mutations are frequently associated with human diseases. In cancer, nonsense mutations ac-

count for 4%–5% of the total number of observed mutations in coding sequences. Cytidine deaminases

of the APOBEC protein family are frequently overexpressed in cancer and are responsible for up to 68%

of all nonsense and missense mutations observed in certain cancer types (Roberts and Gordenin 2014).

To determine whether iSTOP could be utilized to model cancer-associated nonsense mutations due to cy-

tidine deamination, we determined the prevalence of C > T and G > A base transitions occurring at CAA,

CAG, CGA, and TGG codons observed in COSMIC (Figures 3.9A–C). When considering each mutation

site once, this analysis revealed that over 50% of nonsense mutation sites across all cancers occur at CAA,

CAG, CGA, and TGG codons, with 32,723 (61%) of these nonsense mutation sites being directly repro-

ducible using iSTOP (Figure 3.9A). We then determined which genes within each cancer type incurred

nonsense mutations in CAA, CAG, CGA, and TGG codons more often than expected – we refer to these

genes as frequent iSTOPers (Figures 3.9B,C & 3.10A). The top 100 iSTOPers include 37 tumor suppressor

genes (TSGs) listed in the Cancer Gene Census (e.g., TP53, PTEN, VHL, APC, ATM, and SETD2) and an

additional 13 putative TSGs identified by previously published methods, such as TUSON, MutSigCV, and

20/20+ (Davoli et al. 2013; Lawrence et al. 2013; Tokheim et al. 2016) (Figure 3.10B). Of the 120 frequent

iSTOPers (q < 0.001), 118 have at least one cancer-associated nonsense mutation that can be directly mod-

eled with iSTOP (Table 3.4). Using iSTOP, we successfully modeled the most recurrent nonsense mutation

(R348*; 26 cases in COSMIC) in the iSTOPer PIK3R1, which is known to promote tumorigenesis (Jaiswal et

al. 2009) (Figure 3.10C). This work establishes iSTOP as a promising approach to model cancer-associated

nonsense mutations for functional studies.

3.3 Discussion

In this study, we describe iSTOP as a CRISPR-mediated base editing methodology that converts CAA, CAG,

CGA and TGG codons into STOP codons, thus enabling gene disruption and facile generation of KO cells.

Moreover, we describe an RFLP assay for easy monitoring of the efficiency of base editing in cell popu-
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lations and clones. Additionally, we provide access to an online resource containing 3,483,549 targetable

gene coordinates in eight different eukaryotic species. This resource includes useful annotations to aid in

searching and selecting sgSTOPs. These annotations include off-target propensity, nonsense-mediated de-

cay prediction, relative position in the gene, percentage of isoforms targeted and a list of restriction enzymes

that can be used to monitor iSTOP-mediated editing. Finally, we provide software to design base-editing

guides for any annotated genome and any PAM. Collectively, these studies greatly expand the targeting

range recently described for iSTOP-based approaches (Kuscu et al. 2017).

3.3.1 Advantages of iSTOP over standard gene disruption strategies

iSTOP exhibits several properties that distinguish it from standard CRISPR-mediated base editing applica-

tions for correcting/inserting targeted missense mutations. Given that iSTOP causes the disruption of genes

and not the creation/correction of precise missense gene variants, (1) iSTOP is not affected by potentially

undesired cytosine deamination events catalyzed by BE3 within its activity window. Furthermore, whereas

standard CRISPR-mediated approaches of genome base editing can generate distinct missense mutations

from the same targeted codon (Table 3.1), (2) iSTOP induces the precise conversion of four codons exclu-

sively into STOP codons. These properties, combined with the fact that over 3 million targetable codons

in eight eukaryotic species can be precisely converted into STOP codons by iSTOP to allow targeting of

97%–99.7% of eukaryotic genes, render iSTOP the first CRISPR-mediated base editing application compat-

ible with genome-scale analyses. In addition, iSTOP presents several advantages compared to traditional

CRISPR-Cas9-mediated gene disruption technology. Indeed, (1) iSTOP does not induce DSBs, whose for-

mation is particularly deleterious in human cells (Kuscu et al. 2017) and during organismal development

(Harrison et al. 2014). By avoiding DSB formation, iSTOP leads to reduced cell death compared to con-

ventional CRISPR-Cas9-based methods (Kuscu et al. 2017), thus potentially facilitating the generation of

KO animals, as recently shown for CRISPR-mediated strategies of genome base editing in mouse embryos

(Kim et al. 2017b). Furthermore, (2) iSTOP disrupts genes by precisely editing DNA bases, without relying

on NHEJ-induced frameshift mutations, which create a mosaic population of distinct KO alleles. Absence

of mosaicism has in fact been observed in mice subjected to CRISPR-mediated base editing (Kim et al.

2017b). Moreover, (3) iSTOP does not require the use of synthetic DNA donor molecules employed for

HDR-dependent genome editing, thus rendering iSTOP-gene disruption strategies simpler and more effi-

cient than HDR-dependent approaches, particularly for the genetic engineering of plants, for which the use

of DNA donor templates is limited by technical and legislative obstacles (Jones 2015). Recent studies have
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indeed shown that CRISPR-dependent approaches of genome base editing are highly efficient in rice, wheat,

tomatoes, and maize (Shimatani et al. 2017; Zong et al. 2017).

3.3.2 Limitations of iSTOP

At present, one of the main limitations of iSTOP arises from the restrictive rules for designing sgSTOPs. Un-

like canonical Cas9/ sgRNAs, which can be programmed to generate DSBs adjacent to any PAM sequence,

BE3/sgSTOPs require the presence of CAA, CAG, CGA, and TGG codons and a PAM located 13–17 bps

away from the targeted base(s). Although 60% of all available CAA, CAG, CGA, and TGG codons are

targetable by iSTOP, the remainder cannot currently be targeted due to the absence of a nearby PAM se-

quence (Figures 3.8B,C). We anticipate that the generation of additional BE3 variants and the conversion

of other RNA-guided DNA nickases into base editors that recognize different PAM sequences will increase

the number of codons targetable by iSTOP. An additional limitation of iSTOP is due to the inability of BE3

to efficiently edit cytosines with a G on the immediate 5′ side, as recently shown by Komor et al. (2016). As

a result, iSTOP is predicted to have reduced editing efficiency at 24% of targetable sites, although future

improvements in the catalytic activity of BE3 may mitigate this effect. Similar to other CRISPR-related tech-

nologies, the efficacy of iSTOP could be affected by the occurrence of off-target mutations. Notably, initial

work that examined the specificity of the cytidine deaminase activity of BE3 using a BE3 variant lacking the

UGI domain (BE3∆UGI) concluded that BE3 causes fewer off-targets than Cas9 (Kim et al. 2017a). Addi-

tional studies on BE3-dependent off-targets led to the development of a high-fidelity BE3 enzyme (HF-BE3)

with reduced off-target base editing activity (Rees et al. 2017). Despite these important studies, it remains to

be determined whether the nickase activity of BE3 might also contribute to the generation of off-targets. To

limit the use of sgSTOPs with potentially higher off-target activity, we have estimated the off-target propen-

sity of all our predicted sgSTOPs and have designed filters in our online database that allow users to exclude

the most promiscuous sgSTOPs targeting their genes of interest.

3.3.3 Potential iSTOP applications

iSTOP provides possible strategies to address currently challenging biological questions. Indeed, by dis-

rupting gene ORFs without altering gene structures, (1) iSTOP could allow the separation of coding from

non-coding functions of genes, such as ASCC3 (Williamson et al. 2017), that encode for both proteins

and long non-coding RNAs (lncRNAs), and lncRNAs that contain putative alternative short ORFs (Andrews
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and Rothnagel 2014). In addition, (2) iSTOP could be employed to incorporate modified or non-natural

amino acids into proteins using tRNAs that suppress the newly introduced STOP codons (Elsässer et al.

2016). Moreover, by enabling the modeling of nonsense mutations at a genome-wide level, (3) iSTOP

could allow genome-wide studies to investigate eukaryotic gene functions and (4) facilitate the identification

of pathogenic variants in cancer through large-scale functional studies of cancer-associated mutations. Re-

cent work has indeed confirmed the promising potential of iSTOP-related approaches for pooled screening

applications (Kuscu et al. 2017). Altogether, our work establishes iSTOP as a robust and efficient gene

disruption technology compatible with genome-wide studies to investigate eukaryotic gene functions and

model human diseases.

3.4 Methods

3.4.1 Cell lines

HEK293T cells (ATCC) were cultured in DMEM supplemented with 10% Fetalgro bovine growth serum

(BGS, RMBIO) and 1X penicillin-streptomycin (Life Technologies). Cells were grown at 37°C with 5% CO2.

HEK293T cells were tested for mycoplasma.

3.4.2 Transfection

HEK293T cells were seeded at 50%–70% confluency into 24-well plates and reverse transfected by mixing

0.5 µg of sgRNA and 1 µg of BE3 plasmid into 100 µL of DMEM without Fetalgro BGS and antibiotics. 4.5

µL of TransIT-293 (Mirus) was added to the DNA, mixed and incubated for 15 min at room temperature. The

DNA-transfection reagent mix was added drop-wise to the cells and incubated at 37°C with 5% CO2 for 3

days.

3.4.3 Vector construction

The B52 plasmid used to express sgRNAs in human cells is a derivative of the MLM3636 construct (Ad-

dgene #43860). B52 contains a second sgRNA-expressing cassette, which was PCR amplified from the

plasmid eSpCas9 (1.1) (Addgene #71814) using the primers PB96 and PB97 (Table 3.5) and cloned into

the MLM3636 plasmid using the restriction enzymes HindIII-HF (NEB #R3104S) and XhoI (NEB #R0146S).
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The final B52 plasmid contains a ColE1 origin, an ampicillin resistance gene and two sgRNA expression

cassettes with either BsmBI or BbsI sites for sgRNA cloning (see below). The B52 plasmid has been further

modified to contain EcoRI and XbaI sites for cloning additional sgRNA-expressing cassettes. This plasmid

is available in Addgene.

3.4.4 sgSTOP design and cloning

sgSTOPs were synthesized as oligonucleotide pairs (IDT) compatible with BbsI and BsmBI restriction sites.

The oligonucleotide sequences were designed as follows: 5′-ACACCG(N)20G-3′ and 5′-AAAAC(N)20CG-

3′ for BsmBI restriction sites; 5′-CACCG(N)20-3′ and 5′-AAAC(N)20C-3′ for BbsI restriction sites, where

“(N)20” corresponds to each sgRNA sequence. The following oligonucleotides were used for sgSTOP

cloning: SPRTN (PB551 and PB552), SMARCAL1 (PB580 and PB581), CHEK2 (PB732 and PB733),

PARP4 (PB734 and PB735), FANCM (PB736 and PB737), TIMELESS (PB738 and PB739), and PIK3R1

(PB776 and PB777). Oligonucleotide sequences are available in Table 3.5. Oligonucleotide pairs were

resuspended in TE (100 µM final concentration) and annealed in the following reaction buffer: 6.5 µL water,

2 µL 5X T4 ligase buffer (Life Technologies), 0.5 µL T4 PNK (NEB #M0201L) and 0.5 µL of each oligonu-

cleotide (100 mM; IDT). The reaction was conducted for 1 hr at 37°C followed by incubation for 5 min at

95°C and gradual temperature decrease from 95°C to 15°C. sgSTOP oligonucleotides were cloned into

the B52 plasmid, which was digested with either BbsI-HF (NEB #R3539L) or BsmBI (NEB #R0580L) in a

20 µL reaction according to the manufacturer’s recommendations. 0.5 µL of recombinant shrimp alkaline

phosphatase (NEB #M0371L) were then added to the digestion reaction and incubated for 1 hr at 37°C

to dephosphorylate the plasmid. The linearized plasmid was gel purified and incubated with the sgSTOP

oligonucleotides for 1 hr at room temperature in the following ligation reaction: 50 ng of digested plasmid,

0.5 µL phosphorylated and annealed sgRNAs (diluted 1/100 in water), 1 µL 5X ligase buffer (Life Technolo-

gies) and 0.25 µL of T4 ligase. Ligation products were sequenced to confirm the integration of the sgRNA

using the oligonucleotides PB518 or PB573 (Table S5) for BsmBI or BbsI cloning, respectively.

3.4.5 RFLP assay and DNA sequencing

The occurrence of iSTOP-mediated editing was monitored three days after transfection of HEK293T cells

with BE3 and sgSTOPs, as indicated above. Cells were recovered by trypsin (Life Technologies) and

washed with PBS. The cell pellet was resuspended in the Quick Extract DNA Extraction Solution (Epi-
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center) and heated sequentially at 65°C for 5 min and 95°C for 5 min to isolate genomic DNA (gDNA).

The isolated gDNA was quantified using Nanodrop, diluted in water and stored at -20°C or directly used

in PCR reactions. The following genomic loci were targeted by sgSTOPs for SPRTN (chr1+231338561),

SMARCAL1 (chr2+216414804), CHEK2 (chr22 - 28734431), TIMELESS (chr12-56431493) and FANCM

(chr14+45164491). PCR primers were designed by Primer 3 (http://bioinfo.ut.ee/primer3-0.4.0) using the

default parameters with the following changes: Mispriming library = “HUMAN,” Primer size “min = 25, Opt

= 27, Max = 30,” Primer Tm “Min= 57.0, Opt = 60.0, Max = 63.0”. PCR reactions were prepared in a 25

µL reaction volume containing: 1 µM forward and reverse primers, 0.1 nM dNTPs (NEB #N0447L), 1X Q5

buffer (NEB), 200-300 ng gDNA, 1 unit Q5 polymerase (NEB) and water. PCR reactions were conducted as

follows: 95°C for 1 min, 30 cycles of 95°C for 10 s, melting temperature (Tm) for 10 s and 72°C for 45 s and

a final step at 72°C for 1 min. The following oligonucleotides were utilized for this reaction: SPRTN (PB571

and PB572, Tm = 64°C), SMARCAL1 (PB590 and PB591, Tm = 60°C), ATP1A1 (PB711 and PB712, Tm =

63°C), CHEK2 (PB740 and PB741, Tm = 62°C), PARP4 (PB742 and PB743, Tm = 64°C), FANCM (PB744

and PB745, Tm = 63°C), TIMELESS (PB746 and PB747, Tm = 61°C), and PIK3R1 (PB782 and PB783, Tm =

60°C). The sequence of each oligonucleotide is available in Table 3.5. 4 mL of PCR products were digested

until completion with the indicated restriction enzymes (NEB) in a 20 µL reaction. For BsrI digestions, PCR

products were purified on columns before digestion. In the case of SfaNI, reactions were heated at 65°C for

30 min to denature the enzyme after digestion. After digestion, 5 µL of 6X loading buffer (NEB) was added

to each reaction and 2 µL of the mixture was loaded on a 6% TBE polyacrylamide gel. Gels were run at 160

V in 1X TBE buffer, then washed in 1X TBE and stained for 5 min using SybrGold diluted in 1X TBE buffer.

Gels were developed using LI-COR Odyssey. To confirm base editing by Sanger sequencing, 6 to 8 PCR

reactions were performed as indicated above, pooled together, purified on columns and digested in 20 µL

reaction using the respective restriction enzymes. DNA fragments refractory to digestion were gel purified

and cloned using the pCR-BLUNT II-TOPO kit (Life Technologies). The cloned products were sequenced

by Eton Bioscience using the universal T7 promoter primer (5′-TAATACGACTCACTATAGGG-3′). Sanger

sequencing data were analyzed using Serial Cloner and SnapGene Viewer. The sequencing profiles shown

in this manuscript were generated by SnapGene Viewer.

3.4.6 ATP1A1 co-selection strategy

To conduct the marker-free co-selection strategy based on ATP1A1 targeting (Agudelo et al. 2017), we gen-

erated the plasmid B270 expressing an sgRNA against ATP1A1 and an empty sgRNA-expressing cassette.
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B270 was derived from B52 upon cloning of ATP1A1 sgRNA oligonucleotides (PB609 and PB610) into the

BsmBI restriction site, as detailed above. sgRNA oligonucleotides for SMARCAL1 (PB580 and PB581) or

SPRTN (PB551 and PB552) were introduced into the B270 plasmid using BbsI cloning sites. Transfection of

HEK293T cells was conducted as follows: 6-well plates were seeded at approximately 70% cell confluency

and HEK293T cells were reverse transfected by mixing 1 µg of sgRNA and 2 µg of BE3 plasmid into 600 µL

of DMEM without Fetalgro BGS and antibiotics. Four days after transfection, the cells were split in 3x6-well

plates and treated with 1 µM ouabain. Untreated cells were plated in 12-well plates and grown in parallel. 48

hr after treatment, ouabain was removed from the medium and the surviving cells were cultured in regular

DMEM medium for 2 days, prior to a new 1 µM ouabain treatment for 2 additional days. The surviving cells

were amplified over the course of 2 weeks and untreated cells were grown in parallel as controls.

3.4.7 Western blot

HEK293T cell pellets were resuspended in 30 µL of PBS and 30 µL of 2X lysis buffer (100 mM Tris pH 6.8,

4% SDS and 1.716 M 2-mercaptoethanol) and incubated for 10 min at 95°C. Cell extracts were then diluted

in 1X loading buffer (NuPage, Life Technologies) and heated for 5 min at 95°C. Samples were run on an 8%

polyacrylamide gel at 160 V in Tris-glycine buffer. Gels were subsequently transferred onto nitrocellulose

membranes, which were stained with ponceau solution (Sigma) and then incubated for 30 min with 5% milk

(Bio Basic) in TBS 0.1% Tween 20 (TBS-T). Membranes were then incubated with primary antibodies in

TBS-T supplemented with 1% milk for 2 hr at room temperature. The following antibodies were used for

western blotting: α-SMARCAL1 (1/500) and α-GAPDH (1/1000) diluted in TBS-T with 1% milk (Bio-Rad).

Membranes were then washed three times in TBS-T and incubated for 1 hr with α-mouse IgG secondary

antibodies coupled with HRP at 1/5000 dilution in TBS-T/1% milk. Membranes were subsequently washed

three more times in TBS-T and the HRP signal was detected using SuperSignal West Pico Chemilumines-

cent Substrate (Thermo Scientific) and autoradiography films (Southern Labware).

3.4.8 Genome-wide iSTOP analysis

To identify iSTOP targetable sites, coding sequence was constructed from genomes using available CDS

coordinates. Each coding sequence was verified to have a start and STOP codon, no internal STOP codons

and a sequence length evenly divisible by three. Coding sequence coordinates for CAA, CAG, CGA and

TGG codons were then mapped to genome sequence coordinates to then extract the genomic sequence

87



context of each targeted base. sgSTOPs were designed by searching for each PAM 13 to 17 bps down-

stream of each targeted C. To count putative off-target sites, all sgSTOPs (including PAMs) were aligned to

the genome, allowing up to two mismatches in the first eight bases of the guide sequence. Alignment crite-

ria were chosen as a compromise between computational efficiency and the reported mismatch tolerance

of Cas9 (Cho et al. 2014). Nonsense-mediated decay prediction was determined based on whether the

targeted base was 55 nucleotides upstream of the final exon-exon junction (Popp and Maquat 2016). All

genomes and CDS coordinates are from the UCSC genome browser (https://genome.ucsc.edu), with the ex-

ception of the A. thaliana genome, which originates from TAIR (https://www.arabidopsis.org), and A. thaliana

CDS coordinates, which originate from Ensembl BioMart (http://www.biomart.org). All computational analy-

sis was performed in R (https://www.r-project.org) via RStudio (https://www.rstudio.com), making extensive

use of Tidyverse (http://www.tidyverse.org), and Bioconductor (https://bioconductor.org) R packages. A

step-by-step guide to reproduce the figures and computational analyses found in this paper is available on

GitHub (https://github.com/CicciaLab/iSTOP-paper).

3.4.9 Quantification of iSTOP-mediated editing

The percentage of iSTOP-mediated editing (% editing) was estimated by quantifying digested and undi-

gested bands in RFLP assays using ImageJ. iSTOP-mediated editing resulting in the loss of a restriction

site was estimated by the following formula: intensity of the undigested band divided by the combined in-

tensity of digested and undigested bands. iSTOP-mediated editing resulting in the gain of a restriction site

was quantified as follows: intensity of the digested bands divided by the combined intensity of digested and

undigested bands.

3.4.10 Analysis of frequent iSTOPers

Genes observed to incur frequent cancer-associated nonsense mutations at CAA, CAG, CGA and TGG

codons (iSTOPers) were scored using a one-tailed binomial test. For this test, the probability of “success”

for each gene is estimated based on the number of nonsense mutations observed at CAA, CAG, CGA and

TGG codons in a given cancer type and the number of CAA, CAG, CGA and TGG codons present in the

gene. The number of “successes” is the number of CAA, CAG, CGA and TGG codons in the gene observed

to incur nonsense mutations in a given cancer type. Mutated coordinates in the COSMIC database were

only counted once to avoid bias from duplicated entries. We report unadjusted p-values and FDR corrected
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q-values to account for multiple tests (Benjamini and Hochberg 1995). An “All cancers” category is included

as a summary of the lowest q-value observed for a gene across all cancer types. High scoring iSTOPers

are shown in Figures 3.9B,C. Genes/cancer type combinations with a q-value less than 0.001 are included

in Table 3.4.

3.4.11 Data and software availability

All source code necessary to reproduce figures and computational analyses is available on GitHub (https:

//github.com/CicciaLab/iSTOP-paper). An R package that enables iSTOP detection for any DNA sequence

with annotated CDS coordinates and customizable PAM/codon/spacing parameters is available on GitHub

(https://github.com/CicciaLab/iSTOP). Detailed installation and usage instructions for both of these projects

are available on GitHub. An interface for convenient search of sgSTOPs is available online (http://www.

ciccialab-database.com/istop). Comprehensive datasets of pre-designed and annotated sgSTOPs for 8

organisms and 6 PAMs are available on Mendeley Data (http://dx.doi.org/10.17632/xbdtvf6bvj.1). Plasmids

created in this study will be made available from Addgene. Raw gel images are available on Mendeley Data

(http://dx.doi.org/10.17632/jw5rjmypy2.1).
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3.5 Figures and tables

Figure 3.1 – Generation of STOP codons via CRISPR-mediated base editing. (A) Representation of
amino acid substitutions generated by cytidine deaminase-dependent CRISPR base editors. Dark blue
circles indicate amino acids, blue lines show the direction of amino acid substitutions induced by CRISPR-
dependent base editing and the number of possible combinations to obtain the indicated substitutions. See
also Figure 3.2C,D & Table 3.1. (B) Representation of the cytidine deamination reactions induced by
CRISPR-dependent base editors to generate STOP codons. The CRISPR base editor BE3 converts CAA,
CAG, CGA, and TGG codons into STOP codons when the targeted base(s) (red) is at the correct distance
(13–17 bps) from a protospacer adjacent motif (PAM, blue). Schematics in panels A, B and D were created
by Pierre Billon. Related to Section 3.2.1.
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Figure 3.2 – Supplement to Figure 3.1 – Repertoire of amino acid substitutions generated by CRISPR-
mediated base editing on coding or non-coding strands. (A) Percentage and number of targetable and
untargetable codons and type of mutations generated on the 64 codons by targeting cytidine deaminase-
dependent CRISPR base editors on either coding or non-coding strands. Codons untargetable by CRISPR
base editors are indicated in white. Codons that when targeted cause silent or possible missense mutations
are indicated in green and orange, respectively. (B) Number of amino acids that can be converted into other
amino acids/STOP codons (orange) or generated from different amino acids (green) by cytidine deaminase-
dependent CRISPR base editors, as shown in Figure 3.1C. Ala = Alanine, Arg = Arginine, Asn = Asparagine,
Asp = Aspartic acid, Cys = Cysteine, Gln = Glutamine, Glu = Glutamic acid, Gly = Glycine, His = Histidine,
Ile = Isoleucine, Met = Methionine, Leu = Leucine, Lys = Lysine, Phe = Phenylalanine, Pro = Proline, Ser
= Serine, Thr = Threonine, Trp = Tryptophan, Tyr = Tyrosine, Val = Valine and STOP = STOP codon. See
also Table 3.1. Related to Section 3.2.1.
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Figure 3.3 – Restriction fragment length polymorphism assay to detect iSTOP-edited cells. (A)
Schematic representation of the protocol utilized to disrupt genes by iSTOP. HEK293T cells are transfected
with BE3 with or without sgSTOP, thus resulting in the generation of cells edited by iSTOP (green). The
targeted locus is then amplified by PCR and digested with a restriction enzyme that recognizes a restriction
site containing the base targeted by iSTOP or a restriction site generated by iSTOP-mediated base editing.
Base editing by iSTOP results in PCR products refractory to restriction digestion (Site loss) or induces the
formation of new restriction sites (Site gain). (B) Conversion of CAG, CAA, TGG, and CGA codons into
STOP codons by iSTOP in human cells. PCR products amplified from four different genomic loci (SPRTN,
FANCM, CHEK2, and TIMELESS) edited by iSTOP were subjected to restriction digest with enzymes (PvuII,
BsrGI, ApaI, and XhoI) that recognize sites containing the targeted bases. Products of the restriction digest
reactions were run on polyacrylamide gels (left) and editing efficiency was determined by the percentage of
undigested PCR amplicons (purple). Sequencing profiles of undigested PCR products (right) are compared
to the wild-type genomic sequence, including the targeted base (blue arrow) and PAM (green). Editing of
a cytosine that generates a missense mutation in the TIMELESS locus is indicated by red arrows. The
sequencing profiles are representative of four to eight sequences for each targeted locus. Each base is col-
ored according to the sequencing peaks (A in green, G in black, T in red, and C in blue). PAM, protospacer
adjacent motif. See also Figure 3.4A,B. (C) Detection of iSTOP-induced events by both loss and gain of
restriction sites. The SPRTN locus was PCR-amplified and left undigested or digested with either PvuII or
NheI (left). Sequencing profiles of PCR amplicons from sgSTOP-treated cells, including the targeted base
(blue arrow) and PAM (green), are shown on the right. Editing efficiency was determined by the percentage
of PCR amplicons refractory to PvuII digestion, as in (B), or by the percentage of NheI-digested PCR ampli-
cons. Experiments performed by Pierre Billon, Tarun Nambiar, and Samuel Hayward. Analysis performed
by Pierre Billon. Related to Section 3.2.2.
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Figure 3.4 – Supplement to Figure 3.1 – Specificity of the RFLP assay utilized to detect iSTOP-
mediated editing. (A) BsrGI-, MfeI- and SacI-mediated digestion of PCR products of the FANCM locus
targeted with an sgSTOP that edits a BsrGI restriction site. A schematic map of the FANCM locus is indi-
cated above. (B) ApaI-, NcoI- and SacI-mediated digestion of PCR products of the CHEK2 locus targeted
with an sgSTOP that edits an ApaI restriction site. A schematic map of the CHEK2 locus is indicated above.
(C) BamHI-, BsrI-, PvuII- and NcoI-mediated digestion of PCR products of the PARP4 locus targeted with an
sgSTOP that edits BamHI and BsrI restriction sites. A schematic map of the PARP4 locus is indicated above.
One sequencing profile representative of 4 sequences of PARP4 amplicons refractory to BsrI digestion is
shown on the right inside. Experiments performed by Pierre Billon, Tarun Nambiar, and Samuel Hayward.
Analysis performed by Pierre Billon. Related to Section 3.2.2.
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Figure 3.5 – Generation of knockout human cell lines using iSTOP. (A) Editing of the SMARCAL1
locus by iSTOP. The SMARCAL1 locus was PCR-amplified after transfection of BE3 with or without SMAR-
CAL1 sgSTOP. The SMARCAL1 amplicon was then digested with SfaNI, which recognizes a restriction site
containing the base targeted by iSTOP and the products of the restriction digest reaction were run on a
polyacrylamide gel (left). Editing efficiency at the SMARCAL1 locus was estimated by the percentage of
SMARCAL1 PCR amplicons refractory to SfaNI digestion (purple), as indicated in Figure 3.3B. One se-
quencing profile representative of four sequences of undigested SMARCAL1 PCR products, including the
targeted base, is indicated on the right inside. (B) Schematic representation of the ATP1A1 co-selection
strategy. HEK293T cells were transfected with BE3 with or without sgSTOPs targeting SMARCAL1 and/ or
ATP1A1. Cell populations were subsequently left untreated or treated with 1 mM ouabain, resulting in the
enrichment of cells that had undergone genome editing at the ATP1A1 and SMARCAL1 loci. (C) Polyacry-
lamide gel showing the SfaNI digestion products of SMARCAL1 PCR amplicons from HEK293T transfected
with BE3 with or without sgSTOPs targeting SMARCAL1 and/orATP1A1 and subjected to ouabain treatment,
as represented in (B). Percentage of editing at the SMARCAL1 locus with or without ouabain treatment was
assessed as indicated in (A). (D) RFLP analysis of HEK293T clones edited by iSTOP in the SMARCAL1
locus. Clones (#16 and #17) were isolated from cells transfected with BE3 and sgSTOPs targeting SMAR-
CAL1 and ATP1A1 and subjected to ouabain selection, as described in (B). Amplicons of the SMARCAL1
locus were digested by SfaNI and analyzed on polyacrylamide gel, as in (A). Restriction digest products of
SMARCAL1 amplicons from wild-type (WT) cells, iSTOP-edited cellular pool and clones #16 and #17 are
indicated. See also Figure 3.6E–G. (E) Western blot analysis of SMARCAL1 protein levels in whole cellu-
lar extracts obtained from WT cells and clones #16 and #17, as shown in (D). GAPDH levels are used as
loading controls. Experiments performed by Pierre Billon, Tarun Nambiar, and Samuel Hayward. Analysis
performed by Pierre Billon. Related to Section 3.2.3.
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Figure 3.6 – Supplement to Figure 3.5 – Co-selection strategy to enrich for iSTOP- mediated editing
and detection by RFLP assay. (A) PvuII restriction digest of PCR products of the SPRTN locus targeted
with an sgSTOP that edits a PvuII restriction site. The reaction was terminated after 1, 30 or 60 min and
the products of the reaction were run on a polyacrylamide gel. (B) Digestion of SPRTN amplicons from
cells transfected with sgSTOPs targeting SPRTN and/or ATP1A1 with or without 1 μM ouabain selection
using the restriction enzymes PvuII and NheI. Editing efficiency was monitored by loss of PvuII cutting and
gain of NheI cutting, as indicated in Figure 3.3C. (C) Sequencing profile of the targeted SPRTN locus
amplified from cell populations transfected with sgSTOPs targeting SPRTN and/or ATP1A1. The targeted
base that creates a STOP codon (blue arrow) and other targeted bases that generate missense mutations
(red arrows) in the SPRTN locus are indicated by asterisks (*). (D) Alignment of sequences of ATP1A1
alleles from cells targeted with an ATP1A1 sgSTOP and selected with ouabain. The ATP1A1 sgSTOP target
sequence is represented in red. The symbol “#” indicates a mismatch between the WT genomic sequence
(above) and the genomic sequence isolated from ouabain resistant cells (below). (E) RFLP analysis of the
SMARCAL1 locus from 19 single cell clones derived from HEK293T transfected with sgSTOPs targeting
SMARCAL1 and/or ATP1A1 and selected with ouabain. SMARCAL1 amplicons derived from the above
clones were digested with SfaNI, as indicated in Figure 3.5D. (F) Sequencing profiles of SMARCAL1 loci
from the SMARCAL1 KO clones #16 and #17 shown in (E). The targeted base is indicated by a blue arrow.
(G) Sequencing profiles of the SMARCAL1 locus in SMARCAL1WT and heterozygous mutant clones shown
in (E). The targeted base is indicated by a blue arrow and indels are indicated by a red arrow. Experiments
performed by Pierre Billon, Tarun Nambiar, and Samuel Hayward. Related to Section 3.2.3.
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Figure 3.7 –Comprehensive detection of iSTOP targets in eukaryotic genomes. (A)Workflow utilized to
identify iSTOP targetable sites in all ORFs with CDS coordinates available from the UCSC genome browser
(https://genome.ucsc.edu/). Targetable sites were identified by first locating all CAA, CAG, CGA, and TGG
codons in each coding sequences, then mapping the coordinates of the targeted base(s) in each codon
to a genomic coordinate (steps 1–2). In total, 150 bases of genomic sequence flanking the targeted site
were used to search for an appropriately spaced PAM (13–17 nucleotides from a targeted base) for all
validated BE3 variants and for unique cutting of restriction enzymes (steps 3–4). Targeted isoforms and
NMD predictions were determined as described inMethods section 3.4.8. (B) Cumulative distribution of the
number of sgSTOPs designed per gene. The number of sgSTOPs for an average ORF (50%) in the human
genome is indicated by a dotted line. Distributions for distinct PAM specificities (NGA, NGG, NNNRRT,
NGAG, NNGRRT, and NGCG) are also shown. (C) Number of CAG, TGG, CAA, and CGA codons in the
GRCh38 human reference genome targetable by iSTOP using BE3 variants with distinct PAM specificities
(NGA, NGG, NNNRRT, NGAG, NNGRRT, and NGCG). (D) Relative position of the earliest iSTOP codon
targetable in human ORFs (cumulative percentage) by BE3 variants with distinct PAM specificities (NGA,
NGG, NNNRRT, NGAG, NNGRRT, and NGCG). The purple line takes into account all iSTOP targetable
codons. (E) Percentage of human iSTOP sites verifiable by RFLP analysis using restriction enzymes that
cut only once within a genomic region of ±50 bps flanking the targeted site. Bars indicate percentage of sites
that can be verified by restriction enzyme cutting loss and/or gain. (F) Top ten restriction enzymes that can
be utilized to validate iSTOP targets in the human genome by loss or gain of cutting within a genomic region
of ±150 bps flanking the targeted site. The complete enzyme list is available in Table 3.3. (G) Number
and percentage of iSTOP targetable ORFs in eight different eukaryotic species. See also Figure 3.8C–E.
Related to Section 3.2.4.
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Figure 3.8 – Supplement to Figure 3.7 – Extended genomic analysis of iSTOP targetable sites in the
genomes of 8 eukaryotic species. (A) Human genes untargetable by iSTOP that have targetable orthologs
in other eukaryotic species. All homologs reported by Ensembl (www.ensemble.org) were considered. The
complete list of untargetable human genes is available in Table 3.2. (B) Number of untargetable ORFs in
all species considered in this study. Percentage of all ORFs that are untargetable due to an unavailable
PAM are indicated in black text. (C) Number of all CAA, CAG, CGA and TGG codons in each species, and
whether they are targetable with iSTOP. Percentage of each category is annotated on each bar. (D) Number
of iSTOP targetable codons per ORF length in the human genome. (E) Number of genes that are targetable
in all or at least one (1+) isoform. Percentage of total number of genes considered is annotated in text on
each bar. (F) Distribution of the number of mapped sites in the human genome for NGG sgSTOPs. Each
NGG sgSTOP was mapped to all matching locations in the genome allowing up to two mismatches outside
of the guide’s seed sequence (positions 1 through 8). Each guide is expected to map once in the genome.
More than 1 mapped site indicates potential for off-target binding. Related to Section 3.2.4.
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Figure 3.9 – Modeling of cancer-associated nonsense mutations by iSTOP. (A) Percentage of unique
nonsense coordinates in cancer types, as observed in COSMIC. The percentage of base substitutions in
CAA, CAG, CGA, or TGG codons that result in nonsense mutations in each cancer type is indicated. The to-
tal number of iSTOP targetable sites in each cancer type is annotated in white text. (B) Genes with frequently
observed nonsense mutations at CAA, CAG, CGA, and TGG codons (iSTOPers) and their prevalence in
different cancer types. The size and opacity of each circle represents the percentage of possible CAA, CAG,
CGA, and TGG codons in the gene that were observed mutated to nonsense in each cancer type. See also
Figures 3.10A,B. (C) Percentage of CAA, CAG, CGA, and TGG codons observed mutated to nonsense
in the genes shown in (B) across all cancers. The total number of iSTOP targetable sites in each gene is
annotated in white text. See also Figure 3.10A,B. (D) Maps of three iSTOPers (ATM, SETD2, and EZH2)
indicating locations of (1) nonsense base substitutions in cancer (red tick marks), (2) CAA, CAG, CGA, and
TGG codons (black tick marks), (3) iSTOP targetable codons (blue tick marks), and (4) iSTOP targetable
codons that are verifiable via RFLP (green tick marks). The largest isoform for each gene is shown with
exon numbers indicated below the gene. The size of the maps is not proportional to the length of the ORFs.
Related to Section 3.2.6.
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Figure 3.10 – Supplement to Figure 3.9 – Analysis of genes with frequent nonsense mutations at
CAA, CAG, CGA and TGGcodons in cancer andmodeling of a recurrent cancer-associated nonsense
mutation by iSTOP. (A) Genes with frequent nonsense mutations in COSMIC observed at CAA, CAG, CGA
and TGG codons (iSTOPers). The frequent iSTOPer –log10(q) score is derived from an FDR adjusted one-
tailed binomial test (Methods section 3.4.10). “All cancers” is the highest score observed across all cancer
types. (B) Comparison to tumor suppressor annotation and prediction methods. The top 100 iSTOPers from
“All cancers” were compared to Tumor Suppressor Genes (TSGs) annotated by the Cancer Gene Census,
the top 100 TSGs from the 20/20+ prediction method, the top 100 TSGs from the TUSON prediction method
and the top 100 significantly mutated genes from the MutSigCV method. Genes included in this figure were
either annotated as a TSG by the Cancer Gene Census, or were considered a TSG by at least 3 of the 4 TSG
prediction methods. The complete list of iSTOPers (q < 0.001) is available in Table 3.5. (C) TaqαI-mediated
digestion of PCR products of the PIK3R1 locus targeted with an sgSTOP that edits a TaqαI restriction site
to generate the cancer associated nonsense mutation R348*. One sequencing profile representative of 4
sequences of PIK3R1 amplicons refractory to TaqαI digestion is shown on the right inside. Experiment and
analysis presented in panel C was performed by Pierre Billon. Related to Section 3.2.6.
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Table 3.1 – All possible coding sequence transitions using a C to T base editor

Header Description

Coding Strand
• Codon Three letter DNA codon. Targetable base (C) is highlighted in red.
• Amino acid Three letter amino acid encoded by codon. Three letter amino acid

abbreviations – Ala = Alanine, Arg = Arginine, Asn = Asparagine,
Asp = Aspartic acid, Cys = Cysteine, Gln = Glutamine, Glu =
Glutamic acid, Gly = Glycine, His = Histidine, Ile = Isoleucine, Met
= Methionine, Leu = Leucine, Lys = Lysine, Phe = Phenylalanine,
Pro = Proline, Ser = Serine, Thr = Threonine, Trp = Tryptophan, Tyr
= Tyrosine, Val = Valine and STOP = STOP codon.

• Codon generated Comma separated codons generated by converting C to T with a C
to T base editor targeting the coding strand.

• Amino acid generated Three letter amino acid encoded by generated codons. Generated
amino acids that differ from the reference are highlighted in red.

Non-Coding Strand
• Codon Three letter DNA codon. Targetable base (G) is highlighted in red.
• Amino acid Three letter amino acid encoded by codon.
• Codon generated Comma separated codons generated by converting G to A with a C

to T base editor targeting the non-coding strand.
• Amino acid generated Three letter amino acid encoded by generated codons. Generated

amino acids that differ from the reference are highlighted in red.

Related to Figure 3.1.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/iSTOP-01.xlsx.
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Table 3.2 – Untargetable human genes and targetable homologs

Header Description

Human_gene Name of untargetable human gene (UCSC gene name).
Mouse_gene Name of targetable M. musculus gene from Ensembl (UCSC ID) –

http://www.ensembl.org. Multiple homologs within a species are
separated by “|” marks. NA — Not Available.

Rat_gene Name of targetable R. norvegicus gene from Ensembl (UCSC
gene name)

Fish_gene Name of targetable D. rerio gene from Ensembl (UCSC gene
name).

Worm_gene Name of targetable C. elegans gene from Ensembl (UCSC gene
name).

Fly_gene Name of targetable D. melanogaster gene from Ensembl (UCSC
gene name).

Yeast_gene Name of targetable S. cerevisiae gene from Ensembl (UCSC gene
name).

Related to Figure 3.8.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/iSTOP-02.xlsx.
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Table 3.3 – Restriction enzymes considered for RFLP validation

Header Description

Enzyme Name of the restriction enzyme.
Loss of cutting (N) Number of targetable sites in the human reference genome

(GRCh38) that can be validated by loss of cutting with the
corresponding enzyme (unique cutting +/- 150 bps).

Loss of cutting (%) Percentage of all targetable sites that can be validated by loss of
cutting with the corresponding enzyme.

Gain of cutting (N) Number of sites that can be validated by gain of cutting after base
editing (unique cutting +/- 150 bps).

Gain of cutting (%) Percentage of all targetable sites that can be validated by gain of
cutting with the corresponding enzyme.

Related to Figure 3.7E,F.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/iSTOP-03.xlsx.
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Table 3.4 – Frequent iSTOPers

Header Description

Gene Human gene name (UCSC gene). Genes
observed to incur frequent cancer-associated
nonsense mutations at CAA,CAG, CGA and
TGG codons (i.e., iSTOPers).

Cancer_type Type of cancer. An “All cancers” category is
included as a summary of the lowest p-value
observed for a gene across all cancer types.

N_nonsense_in_gene_in_cancer Number of nonsense base substitutions in the
given gene and cancer type.

N_iSTOP_sites_in_gene_in_cancer Number of nonsense base substitutions
observed in CAA, CAG, CGA and TGG
codons in the given gene and cancer type
(irrespective of PAM).

N_iSTOP_sites_in_gene_in_cancer_with_PAM Number that are targetable with known PAM.
N_iSTOP_sites_in_gene Number of iSTOP nonsense coordinates in

gene (irrespective of PAM).
N_nonsense_in_cancer Number of nonsense base substitutions

observed in cancer type.
N_iSTOP_sites_in_cancer Number of nonsense base substitutions

observed in CAA, CAG, CGA and TGG
codons in the given cancer type (irrespective
of PAM).

N_iSTOP_sites_in_cancer_with_PAM Number that are targetable with known PAM.
p-value One-tailed binomial test p-value. See

Methods section 3.4.10
Min_p-value Smallest p-value across all cancer types for

the given gene.
q-value FDR adjusted p-value. Genes included in this

table have a q-value < 0.001.
-LOG10(q) Negative log transformed q-value.
Rank q-value rank within the given cancer type.

Related to Figure 3.10.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/iSTOP-04.xlsx.
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Table 3.5 – Oligonucleotides

Header Description

Oligo name Name of oligonucleotide.
Sequence (5�->3�) Sequence of oligonucleotide in 5′ to 3′ orientation.

Related to Chapter 3.
Download – https://github.com/EricEdwardBryant/dissertation-data/raw/master/iSTOP-05.xlsx.

104

https://github.com/EricEdwardBryant/dissertation-data/raw/master/iSTOP-05.xlsx


Table 3.6 – Key resources

Reagent or Resource Source Identifier

Antibodies
• Mouse monoclonal α-SMARCAL1 Santa Cruz sc-

376377;AB_10987841
• Mouse monoclonal α-GAPDH Novus NB300-

221;AB_10077627
• α-Mouse IgG, HRP-linked GE Healthcare NA931-1ML;AB_772210
Bacterial and Virus Strains
• Subcloning efficiency DH5α Life Technologies 18265-017
Reagents
• Transfection reagent: TransIT-293 Mirus MIR 2700
• Carbenicillin Goldbio C-103-25
• Ouabain octahydrate Sigma 03125-1G
• Q5 High-Fidelity DNA polymerase NEB M0491L
Critical Commercial Assays
• Quick Extract DNA Extraction solution Epicenter QE09050
• Zero BLUNT II TOPO PCR Cloning Life Technologies 450245
• SuperSignal West Pico
Chemiluminescent Substrate

Thermo Fisher 34087

Deposited Data
• Unprocessed images of gels and blots This paper; Mendeley Data http://dx.doi.org/10.

17632/jw5rjmypy2.1
• Annotated sgSTOPs for 8 organisms
and 6 PAMs

This paper; Mendeley Data http://www.
ciccialab-database.com/
istop; http://dx.doi.org/10.
17632/xbdtvf6bvj.1

Cell Lines
• Human: HEK293T HTCC CRL-11268
Oligonucleotides
• Primers for PCR This paper Table 3.5
• sgRNA cloning This paper Table 3.5
Recombinant DNA
• Plasmid: eSpCas9(1.1) Addgene 71814
• Plasmid: MLM3636 Addgene 438860
• Plasmid: B52 (containing 2 empty
sgRNAs-expressing cassettes)

This paper Available in Addgene

• Plasmid: B270 (containing sgRNA
targeting ATP1A1 + empty
sgRNA-expressing cassette)

This paper Available in Addgene

• Plasmid: pCMV-BE3 Addgene 73021
Software and Algorithms
• iSTOP R package 0.1.0 This paper https:

//github.com/CicciaLab/
iSTOP/tree/0.1.0

• iSTOP reproducible analysis 0.1.1 This paper https:
//github.com/CicciaLab/
iSTOP-paper/tree/0.1.1

• R 3.4.1 The R project for statistical
computing

https://www.r-project.org

• RStudio Desktop IDE 1.0.143 RStudio https://www.rstudio.com
• Bioconductor 3.5 Bioconductor http://bioconductor.org
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Reagent or Resource Source Identifier

• Tidyverse 1.1.1 CRAN https://cran.r-project.org/
web/packages/tidyverse/
index.html

• ImageJ NIH https://imagej.nih.gov/ij
• SnapGene Viewer SnapGene https://www.snapgene.

com/products/snapgene_
viewer

• Li-COR Odyssey N/A https://www.licor.com/
bio/products/imaging_
systems/odyssey

Other
• Catalogue of Somatic Mutations in
Cancer v80; Cancer gene census tumor
suppressor annotations April 2017

Forbes et al. (2015) http://cancer.sanger.ac.
uk/cosmic

• Tumor suppressor predictions Tokheim et al. (2016) http://www.pnas.org/
content/suppl/2016/11/
22/1616440113.
DCSupplemental/pnas.
1616440113.sd04.xlsx

Related to Chapter 3.
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Chapter 4

Discussion
Genome integrity is essential for organisms to faithfully pass genetic information to future generations. While

genomic DNA is constantly subject to damage, organisms have evolved numerous mechanisms to maintain

sequence information and allow replication of their genomes despite this damage. Defects in DNA damage

tolerance pathways, either inherited from birth, or acquired during the life of an organism, can result in

numerous diseases such as Fanconi anemia, xeroderma pigmentosum, ataxia telangiectasia, Nijmegen

breakage, Cockayne, Werner & Bloom syndromes (Knoch et al. 2012). In addition to these diseases,

defects in DNA damage tolerance often arise during the development of cancer. Perhaps the best known

examples of this are mutations in the breast cancer susceptibility genes, BRCA1 and BRCA2, which are

both thought to be involved in homology directed repair (Roy et al. 2011; Zhang 2013). By leveraging

knowledge of genetic interactions, new drugs have been developed to selectively kill cancers harboring

mutations in BRCA genes by exploiting synthetic lethality between PARP and BRCA (Lord et al. 2015;

Ashworth and Lord 2018). Long before it became clear that many cancers harbor mutations in DNA repair

pathways, oncologists have treated patients with DNA damage through radiation and chemotherapy. As

DNA sequencing costs have dropped, ever more tumors are being sequenced to identify common mutations

and changes in gene expression, which has led to an increased appreciation that the status of DNA damage

tolerance pathways in tumors can have a profound effect on a tumor’s response to our most common cancer

therapies (Alexandrov et al. 2013; Dietlein et al. 2014). As insight into the DNA damage tolerance network

develops, strategies for selectively killing repair deficient tumors with drug combinations designed to target

redundancies in the repair network are beginning to emerge (Cheng et al. 2013; Nickoloff et al. 2017).

While some tumors respond well to radiation and DNA damaging chemotherapies, many tumors either do

not respond, or acquire resistance to such treatments. This phenomenon underscores the importance of

determining how the genetic landscape of a tumor impacts the overall damage tolerance network. The

emerging field of systems genetics (Baliga et al. 2017), and specifically the study of genetic interaction

networks, offers an important perspective for researchers and clinicians trying to understand how the DNA

damage tolerance network enables tumor evolution while maintaining cancer cell viability. The structure of

this network can enable precision medicine by providing critical insights into pathway organization that can
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reveal tumor specific genetic weaknesses (Hartwell et al. 1997). Below, I will discuss some lessons and

insights from my work on the systems genetics of DNA damage tolerance – a stepping stone on the long

path to precision medicine in oncology.

4.1 Epistasis: undetected ≠ nonexistent

In Chapter 1, I presented progress toward constructing a genetic landscape for the cisplatin tolerance net-

work in Saccharomyces. The design of this experiment advances the dE-MAP approach for detecting treat-

ment specific pathway membership, and overall pathway relationships (Bandyopadhyay et al. 2010; Ideker

and Krogan 2012). Specifically, we took advantage of the null model for genetic interactions of colony fitness

to account for the fact that detection of genetic relationships between two alleles critically depends on the

phenotype of each allele (Figure 1.2). While this fact has been understood by geneticists for decades, it

has some unappreciated and important consequences for interpreting existing genetic interaction networks.

Perhaps the most important consequence of requiring a phenotype to detect epistasis is that an undetected

interaction is not equivalent to no interaction. In fact, conspicuous absence of an expected synergistic inter-

action may be weak evidence for epistasis in an as yet unknown treatment condition. Two epistatic alleles

will not show any genetic interaction if neither allele has a phenotype in the tested condition. To detect the

genetic relationship between these alleles necessitates identification of a condition that generates a pheno-

type for at least one allele. This limitation does not exist for synergistic alleles, which can account for the

fact that the number of negative genetic interactions far exceed the number of positive genetic interactions

in the genetic landscape of S. cerevisiae (Costanzo et al. 2016). For our dE-MAP, we treated mutants

with optimized concentrations of cisplatin to enhance detection of both positive and negative genetic interac-

tions. The current network supports the notion that nucleotide excision repair (NER) is the primary pathway

responsible for repairing cisplatin lesions. However, the lesion bypassing postreplication repair (PRR) path-

way appears to coordinate at least three critical nodes in the cisplatin tolerance network, and is thus the

most essential pathway for maintaining fitness in the presence of cisplatin. While our network was able to

reveal these insights, it is clear that, even with optimized treatment conditions, detecting epistasis remains

challenging using the dE-MAP approach alone. An approach to overcome this limitation may be to use the

conspicuous absence of genetic interactions between otherwise highly correlated interaction profiles to pick

pairs of alleles for further fitness analysis using a quantitative spot assay and a full cisplatin titration.
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4.2 TCGA, BioGRID & The Cell Map: insights from public data

Rad5, a member of PRR, was the focus of Chapter 2. During a visit with Dr. Karlene Cimprich, she men-

tioned that there was some evidence that the RAD5 homolog, HLTF, was overexpressed in cancer (also

noted in the discussion by Kile et al. (2015)). We therefore turned to publicly available sequencing data

from The Cancer Genome Atlas (TCGA) using software that enabled programmatic access to gene-level

summaries of this data (Cancer Genome Atlas Research Network 2008; Jacobsen and Questions 2018; Ce-

rami et al. 2012; Gao et al. 2013). Indeed, the RAD5 homolog, was frequently amplified and overexpressed

in several classes of squamous cell carcinomas. This data-driven insight motivated the study of the genomic

repercussions of RAD5 overexpression. By screening the yeast gene disruption and temperature-sensitive

mutant collections we identified a clear signature of genetic requirements for RAD5 overexpression. This

signature led us to the discovery that, when overexpressed, Rad5 can bypass canonical PRR regulatory

signals to cause hyperactive recombination at replication forks. This hyperactive recombination is also ac-

companied by genome instability and cisplatin sensitivity.

What was especially fascinating about the RAD5 story was that both deletion and overexpression caused

cisplatin sensitivity, but only overexpression could drive recombination. This distinction was revealed by

a careful comparison of the RAD5 overexpression and deletion genetic interaction profiles. To compare

interaction profiles, I used publicly available data from the BioGRID interaction database (Stark et al. 2006),

and I developed a landscape enrichment analysis that uses easily accessible genetic interaction data from

The Cell Map (Usaj et al. 2017; Costanzo et al. 2016; van der Maaten and Hinton 2008) (Methods section

2.4.4). This landscape enrichment analysis proved to be an intuitive way to visualize pathway enrichment

for a genetic interaction profile, and allowed facile exploration of the genetic landscape to address questions

such as, “what interactions are conspicuously absent?” In the case of rad5∆, interactions with crossover

resolution were clearly absent even though many of the mutant alleles in that region of the landscape had

been identified as having negative fitness interactions with rad5∆ (Figure 2.4). Here, I would like to highlight

that, in constructing our cisplatin dE-MAP, we also observed no interaction between rad5∆ and crossover

resolution in the untreated network, but, when we treated with cisplatin, we observed epistasis – an example

of conspicuous absence of synergy as weak evidence for epistasis (Figures 1.4 & 2.4A)!
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4.3 Landscape enrichment: embracing perplexity

As mentioned above, the landscape enrichment analysis from Figure 2.1C enabled facile exploration of

publicly available genetic interaction networks. This analysis is similar to Systematic Functional Annota-

tion and Visualization of Biological Networks (SAFE), described by Baryshnikova (2016), but differs in its

approach to dimension reduction (i.e. the two-dimensional clustering approach used to generate the “land-

scape”). The implementation presented in the SAFE publication uses a spring-embedded network layout,

whereas the landscape presented for the RAD5 chapter was generated using t-SNE (van der Maaten and

Hinton 2008). The t-SNE method for dimension reduction is best summarized by Laurens van der Maaten

himself (https://lvdmaaten.github.io/tsne), which can take an A × N matrix and reduce it to an A × 2 matrix

where the two dimensions attempt to preserve local similarities between the profiles of A. For generating

the genetic landscape of Saccharomyces cerevisiae, rows in the matrix (A) are genes, and columns in the

matrix (N ) are genetic profile correlation values. Importantly, N can be any number of features that might

provide information for generating clusters of genes or alleles. Thus, the landscape enrichment approach

can be easily adapted to integrate other sources of data, and could be used to integrate existing biological in-

formation to generate a genetic landscape for human genes. t-SNE is lauded for its ability to reveal structure

at many different scales. An example of this can be seen in Figure 2.1C middle and right, where zooming

in on the dominant cluster, reveals additional local clustering of HDR, DNA replication, and crossover reso-

lution. When viewing a t-SNE map it is important to be aware of the limitations of the approach, and avoid

some common misinterpretations, nicely described by Wattenberg et al. (2016). Notably, relative distances

between clusters on the landscape are largely meaningless. Clusters may appear on opposite sides of the

landscape, but this does not mean they are more dissimilar than a distinct cluster present half-way across

the landscape. t-SNE also has a parameter, called “perplexity”, which loosely corresponds to the expected

number of members in a major cluster. This parameter can have a major impact on clustering and must be

lower than the number of rows in the matrix (i.e. the size of A, or the number of genes). Recommended

values are between 5 and 50. The default value of perplexity for the implementation of t-SNE in the R pro-

gramming language is 30 (Krijthe 2015), and, unaware of its meaning, my first attempt to run t-SNE on a

matrix with only 29 rows resulted in the following message, “Error: Perplexity is too large.” After a

brief existential crisis, I lowered the perplexity, which resulted in beautiful clustering similar to that observed

in Figure 1.6. Paraphrasing a comment from Dr. Eugene Koonin on the quality of clusters, “you know them

when you see them.”
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4.4 Quantifying spots: replacing the drop assay

When working with high-throughput genetics, validating results is essential. This often involves strain ver-

ification, back-crossing, and low-throughput recapitulation of high-throughput observations using a gold-

standard assay. For yeast colony growth, owing mostly to simplicity and familiarity, the serial dilution drop

assay reigns supreme. The serial dilution drop assay certainly works well for detecting obvious fitness

defects. However, when combining multiple alleles to confirm potentially modest genetic interactions, the

qualitative nature of the drop assay quickly becomes a burden, leading to more eye-squinting and head-

scratching than insight. For the RAD5 manuscript we developed a quantitative colony growth assay for gen-

erating high-resolution colony fitness estimates (Methods section 2.4.5 & Figure 2.3). In my experience,

this assay is able to resolve fitness differences as small as 5%. A good example of this resolution can be

seen in Figure 2.4B. While the effect is small, a significant positive interaction was detected between rad5∆

and sgs1∆ in standard laboratory growth conditions – additional evidence for epistasis between rad5∆ and

crossover resolution without requiring cisplatin treatment! The quantitative colony growth assay, while low

in throughput, is essential for validating our genetic observations from high-throughput approaches like SGA

and SPA. With the CRISPR revolution beginning to produce combinatorial reverse genetic screens, it will

be greatly beneficial for the systems genetics community to develop high-resolution validation approaches

that are not subject to some of the biases that can occur in these pooled screening approaches (Shen et al.

2017; Sack et al. 2016).

4.5 TheCRISPR revolution: systems genetics in newmodel systems

Reverse genetic screens in mammalian cell lines have been possible through high-throughput RNA interfer-

ence experiments for nearly twenty years (Carpenter and Sabatini 2004). Work in this field has progressed

methods for performing pooled screening experiments to score fitness changes from a single transfected cul-

ture, wherein loss or gain of library representation is detected through next-generation sequencing (Sims et

al. 2011). Initially, such experiments incurred high sequencing costs, and were plagued by off-target effects

and many irreproducible results (Bhinder and Djaballah 2013). While these limitations have largely been

overcome through reduced sequencing costs, formalized analysis pipelines, and improved experimental de-

sign (Schaefer et al. 2018), the arrival of CRISPR appears to have taken functional genomics in mammalian

cells a major step forward (Evers et al. 2016). The favored approach for CRISPR based screens currently
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appears to be using Cas9 to induce double-strand breaks that, when improperly repaired, can result in small

insertions and deletions, potentially resulting in frameshift mutations that may cause nonsense and gene

disruption. In Chapter 3, I present a new CRISPR method, called iSTOP, that allows direct generation of

programmable nonsense without requiring a double-strand break and mutagenic repair. This feature may

enable iSTOP to overcome the high levels of cell lethality caused by Cas9-induced double-strand breaks

(Haapaniemi et al. 2018; Ihry et al. 2018). Importantly, for studying the DNA damage tolerance network

in model systems beyond yeast, iSTOP may avoid confounding effects caused by requiring repair machin-

ery to disrupt genes while simultaneously knocking out repair pathways. For this reason, I look forward to

analyzing results from experiments comparing pooled screens using standard Cas9 and iSTOP.
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