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ABSTRACT

The Tvaerdal Complex is an eclogite-bearing metamorphic terrane in Liverpool Land at the southern
tip of the Greenland Caledonides. It is a Baltic terrane that was transferred to Laurentia during the

Scandian orogeny. It exposes a few small garnet dunite and harzburgite lenses, some containing par-

allel layers of garnet pyroxenite and peridotite (including lherzolite). Sm–Nd mineral ages from the

pyroxenites indicate recrystallization occurred at the same time (�405Ma) as eclogite recrystallization

in the enclosing gneiss. Geothermobarometry indicates these eclogites and pyroxenites shared a simi-

lar pressure-temperature history. This congruent evolution suggests pyroxenite-bearing peridotite
lenses were introduced from a mantle wedge into subducted Baltic continental crust and subsequent-

ly shared a common history with this crust and its eclogites during the Scandian orogeny. Some gar-

net peridotite samples contain two garnet populations: one Cr-rich (3�5–6�2wt % Cr2O3) and the other

Cr-poor (0�2–1�4wt %). Sm–Nd analyses of two such garnet peridotites define two sets of apparent

ages: one older (>800Ma) for Cr-rich garnets and the other younger (<650Ma) for Cr-poor garnets.

We propose that the younger Cr-poor garnets were derived from fractured and disaggregated garnet

pyroxenite layers (i.e. are M2) and were mixed mechanically with older (i.e. M1) garnets of the host
peridotite during intense Scandian shearing. Mechanical mixing may be an important mantle process.
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INTRODUCTION

Liverpool Land (LL) at the southern end of the
Greenland Caledonides is a crystalline terrane com-

prised of plutonic rocks in the north and metamorphic

rocks in the south (Fig. 1). The metamorphic rocks in-

clude numerous eclogites (Augland et al., 2010;
Johnston et al., 2010; Corfu & Hartz, 2011) and a few,

small (�decametre) peridotite lenses that locally are
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garnetiferous (Augland et al., 2011). Augland et al.

(2010) proposed that the entire metamorphic terrane be

called the Liverpool Land Eclogite Terrane (LLET). They
proposed further that the LLET was a Baltic, rather than

Laurentian, terrane (see also Smith & Cheeney, 1981)

that became stranded on the Greenland side of the

Caledonides during the opening of the Atlantic.

Subsequent work has confirmed the Scandian (411–398

Ma) evolution of the eclogites and the Baltic origin of
the gneisses that host them (Johnston, et al., 2010;

Augland et al., 2011; Corfu & Hartz, 2011; Brueckner

et al., 2016). However, mapping by Johnston et al.

(2010) showed that the metamorphic rocks are not a sin-

gle high pressure/ultrahigh pressure (HP/UHP) complex,

but rather two complexes, with the eclogites, perido-

tites and their host rocks comprising a Baltican HP/UHP
terrane, the Tvaerdal Complex and the rest of the meta-

morphic rocks forming a Laurentian granulite facies ter-

rane, the Jaettedal Complex.

This division into a Baltic Complex (Tvaerdal) and a

Laurentian Complex (Jaettedal) resolves the problem of

how the peridotite lenses came to be embedded in the
southernmost Greenland Caledonides. The Scandian

Orogeny is generally modeled by the westward (pre-

sent coordinates) subduction of Baltica (Scandinavia)

beneath Laurentia (Greenland) (Krogh, 1977; Andersen
et al., 1991; see also Brueckner & Van Roermund, 2004;

Hacker et al., 2010; Gee et al., 2012 for recent reviews).

If the Tvaerdal Complex were a Laurentian terrane, the

peridotite bodies within it would have had to move up-

ward into the overlying plate. But if the Tvaerdal

Complex was part of Baltica when it subducted beneath
Laurentia, it could have picked up the peridotite frag-

ments from the overlying Laurentian mantle wedge

(Brueckner & Medaris, 2000). A contrary view to the

mantle subduction model is, however, held by one of

us (see Hartz et al., 2005, 2007). Models in which the

peridotites were derived from the Baltic rather than

Laurentian mantle have been presented by Terry et al.
(1999) and Majka et al. (2014).

To test the possibility that the Tvaerdal Complex is a

Baltic terrane, and the peridotites within it have a

Laurentian affinity, seven of the known peridotite

bodies in Liverpool Land, as well as peridotite and pyr-

oxenite blocks in glacial till, were investigated. The
major, minor and trace element compositions of
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Fig. 1. Map of the Liverpool Land (LL) metamorphic terrane showing the Tvaerdal and Jaettedal metamorphic complexes, major
tectonic features (from Johnston et al., 2010) and locations of peridotite lenses (circles) and eclogites (diamonds). Sample numbers
refer to peridotite localities in Table 1. Geographic coordinates of most peridotite lenses are given in Table 1. T and J are the valleys
called Tvaerdal and Jaettedal.
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peridotite and pyroxenite whole-rock samples, as well

as the compositions of their constituent minerals were

determined. Electron microprobe scans were recorded

across key minerals. Pressure-temperature (P–T) equili-

bration conditions and Sm–Nd mineral ages were deter-
mined from selected samples and compared with

published pressure-temperature-time (P–T–t) informa-

tion from the associated Tvaerdal eclogites and host

gneisses. Re–Os isotopic data from sulfides are also

presented for selected samples.

The study became complicated when we observed

that some garnet peridotites contain garnets with vari-
able Cr concentrations, which, in at least one case could

be divided into two distinct populations: Cr-rich and Cr-

poor. Sm–Nd results from two other peridotites indicate

that their garnets formed or re-equilibrated during two

separate metamorphic events. Thus some peridotites

contain two garnet populations and we present evi-
dence that they might have been mixed together mech-

anically. Mechanical mixing may be an under-

appreciated process that could play an important role in

mantle evolution.

REGIONAL SETTING

The Greenland Caledonides
The southern half of the Greenland Caledonides is com-

posed of west vergent nappe complexes in the west
and crystalline complexes, including LL, to the east

(Gee et al., 2008, 2012; Higgins et al., 2008; Gasser,

2014). The allochthons are separated from LL by 100 km

of post-orogenic rift deposits, but LL is generally consid-

ered to be tectonically positioned below these alloch-

thons and to represent the deepest tectonic level of the

Greenland Caledonides, similar in tectonic position to
the Western Gneiss Complex (WGC) of the Norwegian

Caledonides.

The Liverpool Land Metamorphic Terrane
Liverpool Land is the southernmost exposed crystalline

terrane of the Greenland Caledonides (Fig. 1), covered

to the south by the fjord Scorsbysund and by Mesozoic

sedimentary sequences. Cheeney (1985) divided the

crystalline rocks into a northern, largely igneous com-
plex, the Hurry Inlet Plutonic Terrane and a southern

metamorphic complex (Fig. 1). The shallowly north-

dipping Gubbedalen Shear Zone (aka Hurry Inlet

Detachment) with top to the north kinematic indicators

separates the two complexes (Augland et al., 2010;

Johnston, et al., 2010). The Hurry Inlet plutonic

Complex is composed of calc-alkaline intrusives with
screens and enclaves of Proterozoic supracrustal rocks

(Coe, 1975; Johnston et al., 2010; Corfu & Hartz, 2011;

Augland et al., 2012). The plutons have been dated be-

tween 475 to 415 Ma (Corfu & Hartz, 2011; Augland

et al., 2012; Brueckner et al., 2016) and probably repre-

sent deep intrusive levels of a continental arc complex
that developed on the eastern margin of Laurentia dur-

ing the closure of Iapetus.

As noted above, Johnston et al. (2010) concluded

that the eclogites and peridotites within the meta-

morphic complex are restricted to a tectonically lower

orthogneiss sequence (the Tvaerdal Complex) sepa-

rated by another shear zone (the Ittoqqortoormiit shear
zone) from a tectonically higher eclogite-free unit con-

taining predominant orthogneiss and subordinate

granulite, pelitic schist, calc-silicate rocks and marble

(the Jaettedal Complex). Zircon cores from the

Jaettedal Complex give Archean and Mesoproterozoic

U–Pb ages, while zircon cores from the Tvaerdal

Complex give Mesoproterozoic ages only. The
Jaettedal Complex underwent granulite facies meta-

morphism and melting between 460 and 410 Ma

(Johnston et al., 2010, 2015), whereas the peak meta-

morphic history of the Tvaerdal Complex occurred be-

tween 412–395 Ma (see below). Thus the two

complexes had different Precambrian histories and
were metamorphosed at different grades and at differ-

ent times, providing compelling evidence that the two

complexes originated from Laurentia and Baltica, re-

spectively. This subdivision requires further evaluation,

but in the meantime we suggest that the two meta-

morphic complexes should be called collectively the LL
Metamorphic Terrane, with eclogite-facies HP/UHP

metamorphism restricted to the Tvaerdal Complex.

Together the Hurry Inlet Plutonic Terrane and

Jaettedal Complex represent deep levels of a

Laurentian continental arc complex that was active dur-

ing the closure of Iapetus, while the Tvaerdal Complex

was a fragment of the approaching Baltic passive mar-
gin. Igneous activity within this arc complex ended, and

metamorphism of the Tvaerdal Complex began, when

Baltica and Laurentia collided and the Tvaerdal

Complex was subducted into the mantle beneath

Laurentia. There, the Tvaerdal Complex underwent HP/

UHP metamorphism and collected fragments of perido-
tite from the overlying mantle wedge. The Tvaerdal and

Jaettedal Complexes were subsequently juxtaposed

along the Ittoqqortoormiit shear zone as the Tvaerdal

Complex was exhumed from the upper mantle. This

juxtaposition occurred in the lower to middle crust

(Johnston et al., 2015) at approximately 395 Ma. Finally,

as a composite metamorphic terrane (i.e. the LL
Metamorphic Terrane), they shared a common retro-

grade and melting history while they were exhumed to-

wards the surface along the Grubbedalen shear zone

between 395–360 Ma (Augland et al., 2010).

Eclogites of the Tvaerdal complex
Eclogites in Liverpool Land were first reported by

Sahlstein (1935). They occur as metre-scale boudins

and boudin trains and as portions of decametre to

kilometre-scale mafic lenses and layers. Most eclogites

are massive and medium grained and contain ompha-

cite þ garnet 6 quartz while some are layered, coarse
grained and commonly contain orthopyroxene 6 biotite

in addition to garnet and omphacite. Further details can
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be found in Augland et al. (2010, 2011), Johnston et al.

(2010) and Corfu & Hartz (2011). Brueckner et al. (2016)

calculated peak metamorphic conditions of 800–900�C

and 35–40 kbar. Peak metamorphism was followed by

nearly isothermal decompression to �16 kbar and
�800�C. Dating by a variety of techniques indicate that

UHP metamorphism occurred between 412–395 Ma fol-

lowed by retrograde metamorphism and anatectic melt-

ing between 395–375 Ma (Augland et al. 2010; Corfu &

Hartz, 2011; Brueckner et al., 2016). Taken together, the

very consistent ages confirm that HP/UHP metamorph-

ism of the Tvaerdal Complex was essentially simultan-
eous with peak HP/UHP metamorphism in the WGC of

the Norwegian Caledonides during the Scandian

orogeny.

TVAERDAL PERIDOTITES AND PYROXENITES

Field relationships
Peridotite and pyroxenite were first reported in

Liverpool Land as blocks in glacial deposits by Smith &

Cheeney (1981) and Cheeney (1985). Smith & Cheeney

(1981) noted the unusually high Cr contents of garnet

and clinopyroxene in one of them. There were no

reports of peridotite in outcrop until field parties led by
Ebbe Hartz in 2005 and 2006 and Hannes Brueckner and

Scott Johnston in 2009 located seven small (m–dm)

peridotite bodies (open circles in Fig. 1). Most occur-

rences are moderately to pervasively serpentinized and

only three (Fig. 1 and Table 1: locations 1, 2 and 5) pro-

vided samples with sufficient unaltered clinopyroxene
and garnet to warrant Sm–Nd analyses. Augland et al.

(2011) described another peridotite lens (map location

6) with unaltered clinopyroxene and garnet and sam-

ples from that lens (LEA 08–04 and AA 08–47) were

donated for this study. We also collected additional

relatively unaltered samples from talus (HKB-6P, LM-

42A LM-42B and LM-43) and from till (HKB Camp 1–1,
HKB Camp 2–1; Table 1). Some important data are from

these samples.

All peridotite bodies exposed in outcrop are relative-

ly small concordant lenses a metre to a few metres

wide and metres to tens of metres long (Fig. 2a). They

are (or were prior to serpentinization) dominantly fine-
to medium-grained dunite or harzburgite (olivine 6

orthopyroxene) commonly containing dispersed, easily

visible (2–30 mm), partially to completely kelyphitized

garnets (Fig. 2b). A few bodies are strikingly layered,

defined by parallel garnet-rich and garnet-poor dunite

(Fig. 2c), pyroxenite and lherzolite layers (Fig. 2d and e).

Some garnet-rich layers are thin, locally one or two
grains wide, with the garnets separated from each other

by recrystallized olivine (Fig. 2d, left side; see also

Augland et al., 2011, Fig. 3). Three lenses contain 0�5–10

cm thick garnet and clinopyroxene-rich layers of garnet

pyroxenite, garnet wehrlite and garnet lherzolite (Fig. 2c

and d). These layers are parallel to the overall foliation,
which, in turn is concordant or nearly concordant to the

enclosing gneissic foliation. The striking parallelism of

this fabric is believed to be the result of intense shear

and/or shortening (Fig. 2 c, d and f). Amphibole-bearing

kelyphite reaction rims around garnets are locally

stretched out into this planar fabric (Fig. 2f) indicating

that some deformation occurred within the crust during
retrogression under amphibolite facies conditions.

Folds were not found in any of the peridotite bodies.

Penetrative, parallel, thin serpentinite veins crosscut

the earlier compositional banding in most lenses. The

serpentinite veins consist of serpentine (largely chryso-

tile) and trains of opaque minerals, presumably Fe-

oxides, which initially segment olivine grains into
aligned micro-ellipses and rectangular blocks before

they are completely replaced by serpentine. Some

lenses contain additional cross-cutting planar fabrics

defined by serpentine þ oxides.

Petrography
Initial mineral proportions were calculated for most sam-

ples (Table 1) based on their bulk composition and the

assumption that the assemblages consisted of variable

proportions of olivine, orthopyroxene, clinopyroxene

and garnet. These abundances were used to divide the

samples into different peridotite and pyroxenite classes.
The observed abundances of retrograde minerals, such

as amphibole and opaque minerals are noted in paren-

theses in Table 1. The calculated modes reveal a spec-

trum of rock types including dunite, harzburgite,

lherzolite, wehrlite, olivine websterite, websterite and cli-

nopyroxenite (Table 1). We suspect that some olivine-
rich assemblages, such as the lherzolites, resulted from

mechanical mixing rather than through some chemical

or magmatic process. We present evidence for this sus-

picion throughout the manuscript.

Dunites and harzburgites display a 0�5–2�0mm grano-

blastic assemblage of olivine6 orthopyroxene6 clino-

pyroxene6amphibole6 spinel and scattered, larger
(2–30mm) grains of garnet (Fig. 2 b, g and h). Lattice pre-

ferred orientation (LPO) fabrics for LM-42B (Luc Mehl,

personal communication) give [001](100) (C-type) pat-

terns for olivine and a [001](100) pattern for orthopyrox-

ene. These patterns indicate olivine and orthopyroxene

underwent dynamic recrystallization while undergoing
large strains (Wang et al., 2013), while mechanically

stronger garnet resisted recrystallization.

Garnet lherzolite, olivine websterite and wehrlite

form 0�5 to 10 cm thick layers within dunite and harz-

burgite (Fig. 2d, e and h) and are texturally similar, with

a relatively fine grained olivine matrix (0�5–1�0 mm)

enclosing larger grains of orthopyroxene, clinopyrox-
ene (1�0–3�0 mm) and garnet (2.0–30 mm). The size

range for the garnet is particularly striking (Fig. 2 g and

h). Especially notable are garnets in some samples (e.g.

LM-42B; Fig. 2g) that show considerable colour varia-

tions in plane light, ranging from a deep red or violet to

orange to light pink. The differently coloured garnets
are randomly distributed in some samples (LM-42B)

while in others the lighter garnets are concentrated in
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thin (mm scale) zones (Fig. 2h). These colour differen-

ces are also obvious in mineral separates viewed be-
neath a binocular microscope. The colour variations are

primarily the result of different Cr contents, which range

from 0�2 to 6�3 wt % in sample LM-42B. Some garnet

grains are blocky, angular or irregular in outline rather

than equant granoblastic (Fig. 2g and h), as if the gar-

nets had been mechanically fragmented prior to kely-
phitization. Many grains contain internal planar cracks

that are locally offset by other fractures. Garnets in

other thin sections of both pyroxenite (Fig. 2i, j and k)

and peridotite (Fig. 2m) are fractured and locally

detached and separated, again suggesting mechanical

breakdown.

All garnet grains in the peridotites are partly to com-
pletely replaced by kelyphite consisting of radially

arranged fibres of orthopyroxene, spinel and amphibole

(Fig. 2n and o). Some kelyphites display a thin, discon-

tinuous outer rim of orthopyroxene against the kely-

phite, which in turn is enclosed by a zone of coarse

grained amphibole (similar to textures described by
Obata, 2011). The amphibole locally has a vermicular

structure where it borders the kelyphite and in some

cases is optically continuous with amphibole threads

within the kelyphite. Amphibole also occurs as isolated

grains within the rock matrix. One garnet in LM-42B

(Fig. 2o) displays two reactions rims around a Cr-rich

grain: an inner one composed of Cr-poor garnet and
spinel (bottom of grain) and an outer one of orthopyrox-

ene, spinel and amphibole. It is likely the strong devel-

opment of the outer rim destroyed evidence for the

inner rim in most garnets.

Pyroxenites include garnet websterite and clinopyr-

oxenite and are composed of medium grained (2�0–5�0
mm) granoblastic garnet þ clinopyroxene 6 orthopyr-

oxene. Most pyroxenites contain little or no olivine (0–

10%; Fig. 2j and l) except for olivine websterite sample

HKB-2C which has 25%. Amphibole occurs in most

samples, ranging from 2 to 40% and two samples con-

tain biotite, one with �5%. Textures of the hydrous
phases indicate that they are retrograde.

Whole-rock chemistry
Major elements
Whole-rock major element compositions of Tvaerdal

peridotite and pyroxenite samples were determined by

XRF. Analytical techniques are described in

Supplementary Data Table S1 (Supplementary Data are
available for downloading at http://www.petrology.

oxfordjournals.org). Averaged compositions are listed

in Tables 2 (major elements) and 3 (trace elements;

complete data in Supplementary Data Table S2).

Serpentinization and the resultant production of iron

oxides has perturbed the chemistry of most samples;

thus the analyses are recalculated to 100% on an anhyd-
rous basis, with all Fe reported as FeO. Based on the

proportions of olivine, orthopyroxene, and clinopyrox-

ene, the analysed Tvaerdal ultramafic suite includes

three samples of dunite, four harzburgites, three lherzo-

lites, one wehrlite, one olivine websterite, two webster-

ites and one clinopyroxenite (Fig. 3).
A plot for selected major element abundances vs

MgO concentration is presented in Fig. 4 in which

Table 1: Peridotite and pyroxenite localities and calculated modes, Tvaerdal Complex, Liverpool Land

Map Sample Grt bearing Coordinates ol opx cpx grt amp op other comment
# # rock type

1. LM-38 Clinopyroxenite N70.56, W22.18 <1 0 40 60 (40) (5) tr green sp, bi fragmented grt
2. HKB 2A Dunite Tvaerdal 92 5 0 3 (10) 5% bi grt completely kely

HKB 2B Websterite N70.56, W22.18 0 37 22 41 (2) (5) dark & pale grts 7 cm thick dike
HKB 2C Ol-Websterite Tvaerdal 25 16 29 30 cpxite-dunite contact

3. HKB 3 Lherzolite Núkaitsoq 46 14 19 20 (7) 37% serp kely largely amph
N70.54, W22.25

4. HKB 4 Dunite Gubbedal 87 8 1 4 (8) (2) 3% kely
N70.60, W22.22

5. EH-21A Lherzolite Tvaerdal 50 11 13 26 (15) 5% kely 30% serp
EH-21B Harzburgite N70.55, W22.21 69 27 0 4 1.5 cm grt pclast
EH-22 Wehrlite Tvaerdal 48 2 31 19 (10) dark & pale grts 30% serp

6. LEA 08–04 Peridotite N70.503, W22.34 nd nd nd nd nd see Augland et al. 2011
AA 08–47 Pyroxenite N70.503, W22.34 nd nd nd nd nd see Augland et al. 2011

— Camp 1–1 Harzburgite block in till 68 31 0 1 (8) sp 90% serp
— Camp 2-1A Lherzolite block in till 50 15 29 7 tr tr sp 4 cm thick in dunite
— Camp 2-1B Lhrz-Dun contact – – – – partially disaggretated
— Camp 2–2 Dunite block in till 83 9 0 8
— LM-42A Harzburgite talus below 1 78 15 2 6 (tr) (2) 2% kely 40% serp

LM-42B* Lherzolite (�N70.56, W22.17) 57 10 12 10 7 2 2% sp, 8% kely Cr rich & Cr poor grt
— LM-43 Websterite Talus below 1. 0 27 19 55 (10) 5cm thick vein in dunite
— HKB-6P Harzburgite talus below 5 84 12 0 3 grt in single grain layers

The first column lists the sample locations shown in Fig. 1. Most modes were calculated from the anhydrous rock compositions
recalculated to 100% (Table 2). Numbers in parenthesis are hydrous minerals and oxides present in thin section.
*Whole-rock not analysed; abundance estimated from thin section.
ol, olivine; opx, orthopyroxene; cpx, clinopyroxene; grt, garnet; amp, amphibole; op, opaques; sp, spinel; kely, kelyphyte; serp,
serpentinite.
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Fig. 2. (a) Typical peridodite lens within gneisses of the Tvaerdal Complex. (b) Loose block of garnet dunite showing scattered M1

garnets. (c) Peridotite lens EH-22 with strikingly parallel garnet dunite, garnet pyroxenite and garnet-train layers of varying thick-
ness. (d) Close up of the peridotite shown in (c). Garnet wehrlite (EH-22) was sampled from the thick layer on the right. The thin par-
allel dark layers are garnet-rich trains. The dark colour is the result of kelyphite formation and preferential serpentinization. Note
the colour variation in garnets. (e) Loose boulder showing pyroxenite layer in garnet dunite with scattered M1 garnets. (f)
Pyroxenite layer within dunite. Sheared out kelyphite reaction rims around M1 garnets define a parallel planar fabric. (g) Thick sec-
tion of lherzolite LM-42B showing two garnet generations; one Cr-rich (dark), the other Cr-poor (light). The yellow lines show scans
GM 1 and GM 2 in Fig. 9. (h) Polished slab of wehrlite EH-22 with partially disaggregated garnet-clinopyroxene rich layer. Again,
note colour variations in the garnets. (i) Thin section of garnet pyroxenite LM-38 showing evidence of fracturing and disaggrega-
tion. (j) Thin section of garnet websterite HKB-2B showing evidence of fracturing and disaggregation. (k) Backscattered electron
image of a garnet in HKB-2B showing asymmetrical Cr zoning. Two small grains appear to be in the process of breaking away from
the larger grain. (l) Thin section of a portion of garnet websterite HKB-2B showing a relatively coherent granoblastic fabric. (m)
Garnet harzburgite EH-21B showing fragmented and partially detached garnets in an olivine-rich matrix. (n) Kelyphite reaction rim
composed of amphibole and spinel around garnet. The kelyphite in turn is partially enclosed by coarser amphibole grains. (o)
Electron microprobe image of garnet 1 in LM-42B (Fig. 2g) showing an inner kelyphite composed of spinel and low-Cr garnet (bot-
tom) and an outer kelyphite composed of spinel, orthopyroxene and amphibole.
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compositions of the Tvaerdal peridotites and pyroxen-

ites are compared to those from the WGC of the
Norwegian Caledonides (Supplementary Data Table

S2a). The LL peridotite and pyroxenite suite shows a

pattern of chemical variation with respect to wt % MgO

that is common in such suites worldwide (Bodinier &

Godard, 2004); namely, an increase in MgO is accompa-

nied by a pronounced decrease in TiO2, Al2O3, and CaO,
with a lesser decrease in SiO2 and FeO, and an increase

in NiO and Cr2O3. In detail, the LL suite consists of three

chemical groups of rocks: seven samples of strongly

depleted dunite and harzburgite that contain >45%

MgO, three samples of lherzolite and one of wehrlite

that cluster around the composition of Primitive Mantle
(McDonough & Sun, 1995) and four samples of pyrox-

enite that contain <30% MgO.

Although the lherzolite and wehrlite samples gener-

ally plot in the vicinity of Primitive Mantle, their compo-

sitions are highly variable, particularly for TiO2, Al2O3,

Cr2O3 and CaO, which have relative standard deviations
of 72, 29, 75, and 59%, respectively. Interestingly, the

data from the WGC shows, with two exceptions, a gap

from 31 to 39% MgO between the pyroxenites and peri-

dotites. The three LL lherzolites (EH-21A, HKB-3 and

Fig. 2. Continued
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Camp 2–1) and one wehrlite (EH-22), fall into this gap

(Fig. 4).

Trace elements
The compatible element Ni decreases, and the incom-

patible elements V, Y and Sr increase systematically

with decreasing MgO (Fig. 5); such patterns are consist-

ent with enrichment of highly depleted mantle through

the introduction of a pyroxenitic component. Zr and Ba

also show a tendency to increase with a decrease in
MgO, although with much greater scatter than in the

other incompatible elements.

Whole-rock Rare Earth Element (REE) patterns for

peridotites and pyroxenites are given in Table 3 and
plotted in Fig. 6a (normalized to primitive mantle;

McDonough & Sun, 1995). Dunites and harzburgites are

strongly depleted in HREE (0�1–0�2 x PM) and one sam-

ple of dunite displays LREE enrichment, as do two sam-

ples of harzburgite. In contrast, lherzolites and wehrlite

have HREE contents ranging from 0�4 to 1�4 x PM, and
garnet pyroxenites have more enriched HREE contents,

generally between 2�7 and 5�0 x PM. The three pyroxen-

ite samples exhibit a relative depletion in LREE, where-

as clinopyroxenite LM-38 is LREE enriched. The

Fig. 2. Continued
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pyroxenites lack Eu anomalies, suggesting they crystal-

lized initially as garnet- rather than plagioclase-
pyroxenites. Extended trace element diagrams, normal-

ized to primitive mantle, are plotted in Fig. 6b. They

show positive anomalies for Ta and Pb and negative

anomalies for Nb, Zr, Hf and Ti. Sr exhibits negative

anomalies in some samples, but positive anomalies in

others. Overall the pyroxenite patterns suggest a sub-
duction signature.

Mineral chemistry
Major elements
The major element concentrations of major phases

within the Tvaerdal peridotites and pyroxenites were

measured by EMP at Macquarie University, The

American Museum of Natural History and The

University of Wisconsin-Madison. Table 4 presents

average mineral concentrations based on point counts
of adjacent minerals in polished thin sections for some

samples and epoxy mounted grain separates for others,

and averages of the flat portions of scans for selected

samples. Complete mineral data are presented

Supplementary Data Table S3a, including scans and

averages for cores and rims. Additional mineral analy-

ses for peridotite #6 are given in Augland et al. (2011).
Primary minerals in the Tvaerdal ultramafic suite, like

minerals in orogenic peridotite occurrences elsewhere,

are magnesian, consisting of forsterite, enstatite, diop-

side and pyrope-rich garnet (Fig. 7a). Mg-numbers for

forsterite (91�5–92�6), enstatite (89�3–93�0), diopside

(90�7– 94�1), and garnet (76�9–82�0) largely overlap
among the different rock types, except in clinopyroxen-

ite, LM-38, where the Mg-numbers for diopside and

garnet are 87�8 and 72�0, respectively. In contrast to the

limited variation in Mg-numbers among the minerals,

Cr-numbers in enstatite, diopside and garnet vary wide-

ly among rock types, being higher in peridotite than in

pyroxenite. Cr-numbers for enstatite in peridotite and
pyroxenite are 7�8–16�9 and 4�7, respectively; for diop-

side are 19�1–33�0 and 2�6–2�9; and for garnet are 6�5–

14�0 and 0�5–1�5. FeO and Na2O contents in clinopyrox-

ene also vary widely, as illustrated in Fig. 7b. The con-

centrations of Cr2O3 in clinopyroxene are especially

noteworthy, in view of the mixed assemblage model

discussed subsequently. Clinopyroxenes in pyroxenites
(HKB-2B and LM-38) have very low Cr concentrations,

whereas clinopyroxenes in dunites and harzburgites

(HKB-04, EH-21B and EH-22) have high Cr concentra-

tions (Fig. 7b). Lherzolite and wehrlite clinopyroxenes

have intermediate values and appear to define a single

population, which contrasts with the two populations
shown by garnet (see below).

Representative EMP scans across garnet, orthopyr-

oxene, and clinopyroxene in pyroxenite HKB-2B and

garnet in harzburgite EH-21B are illustrated in Fig. 8a

and b. Most minerals are unzoned to weakly zoned for

MgO and FeO, except for some garnets, which display a
decrease in MgO and increase in FeO very close to the

boundaries with kelyphite rims. Cr2O3 and CaO, how-

ever, are strongly zoned in garnets especially near the

rims, as discussed further below. Orthopyroxenes in all

scans, including lherzolite LM-42B (Fig. 8 a, c and d)

show a characteristic increase in Al2O3 from core to rim

(�0�5% to �2�0%), reflecting re-equilibration during
exhumation.

When garnet grains were separated from crushed

rocks, it was discovered that different colours of garnet

exist in four samples: dunite HKB-04 (violet and or-

ange), lherzolite LM-42B (violet and pink), wehrlite EH-

22 (violet, red and pink) and websterite HKB-02B (red
and orange). These colour differences in some samples

reflect core to rim variations in Cr2O3 content (e.g. HKB-

2B); however, in other samples (e.g. LM-42B) they rep-

resent two populations of garnet containing different

concentrations of Cr2O3, with higher amounts of Cr2O3

occurring in dark red or violet garnets and lower

amounts of Cr2O3 in the lighter coloured garnets.
Lherzolite, sample LM–42B is particularly informative

with respect to compositional variation in garnet and so

its mineral chemistry was studied in more detail than in

the other samples. It contains one set of violet, high–Cr

garnet and a second set of pink, low–Cr garnet (Fig. 2g).

Figure 9a illustrates the striking difference in Cr2O3 con-
centrations between the two sets. Also, in contrast to

the garnets measured in most samples, the garnets in

LM-42B are compositionally zoned (Fig. 9), although

EMP traverses across grains do not reveal the entire,

original compositional profiles because the grain mar-

gins were destroyed by subsequent growth of kelyphite

rims. The Cr2O3 content in a high-Cr garnet (GM 1)
decreases from �6% in the core to �5% in the inner

rim, and abruptly to �1�5% at the contact with kelyphite

Opx Cpx

Ol
HKB-2A

HKB-04
HKB-6P

Camp 2-2
LM-42A

Camp 1-1
EH-21B

EH-21A

HKB-03 EH-22

Camp 2-1

HKB-2C

HKB-2B LM-43 LM-38

Whole Rock Compositions

Olivine Websterite

Lherzolite

Wehrlite

Dunite

Harzburgite

Websterite

Clinopyroxenite

Fig. 3. Ternary diagram showing the relative proportions of ini-
tial olivine (ol), orthopyroxene (opx) and clinopyroxene (cpx)
(garnet is understood to be present). The position on the dia-
gram dictates the rock type identification listed in Table 1 and
used throughout this study.
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(Fig. 9a). In contrast, the Cr2O3 content in a low-Cr gar-

net (GM 2, Fig. 9a) increases from �0�6% in the core to
�1�0% at the rim. Most other garnet grains in this sam-

ple show either a flat pattern or a core to rim increase in

Cr2O3 and in several cases (e.g. HKB 1, GM 3 and HKB

3) this increase is asymmetric with an increase in Cr2O3

in one direction but no or only a very weak increase in

the opposite direction. LM-42B may be different from

most other studied samples in that some garnets are
systematically zoned with respect to major elements

(Fig. 9b). Most zoning is subtle, for example Cr-rich GM

1 shows a slight decrease from core to rim in pyrope

and grossularite components and an increase in alman-

dine component. The zoning of major elements in some
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low-Cr garnets differs from that in high-Cr garnet, with

pyrope and grossularite slightly increasing from core to
rim, and almandine decreasing. Other garnets show flat

patterns. These patterns are enhanced by plotting the

variation in Mg-number across the garnet (Fig. 9b),

where it can be seen that only the high-Cr garnet GM 1

shows a marked decrease in Mg-number from core to

rim. The rest of the garnets show flat patterns or only
minor variation. Nevertheless, the figure does illustrate

that there is significant variation in Mg-number be-

tween grains.

Amphibole is localized in and around the kelyphite

rims and consists of pargasite in harzburgite, lherzolite,

and wehrlite, and tschermakite in websterite. The spinel

associated with garnet shows a large range in compos-
ition between (Fig. 10a) and within samples (Fig. 10b).

Spinels in LM-42B within garnet and orthopyroxene,

and the olivine-rich matrix are relatively Cr-rich, where-

as those within the kelyphite reaction rims are more

enriched in Al (Fig. 10b), although there is a large over-

lap in compositions between the domains.

Trace elements (REE)
Selected peridotite minerals were analysed for trace

elements by LA-ICP-MS and their REE abundances rela-

tive to chondritic mantle are plotted in Fig. 11a (clino-
pyroxene) and 11 b (garnet). REE patterns for each

separate sample are plotted in Supplementary Data

Table S3B. Clinopyroxenes from most samples show

the classic ‘hooked’ pattern, with positive slopes for the

Light Rare Earth Elements (LREE) followed by negative

slopes for the Middle Rare Earth Elements (MREE) and
Heavy Rare Earth Elements (HREE). In contrast, the

clinopyroxene REE pattern for wehrlite EH-22 displays a

negative slope throughout.

REE patterns for garnet display LREE depletion,

which is a common feature in garnet from orogenic

peridotites. Garnets from four rock samples have com-
parable MREE to HREE patterns (i.e. Sm to Lu), which

are either flat or gently sloping. However, slopes for the

LREE vary among the four samples, depending on rock

type and the colour of garnet. The LREE slope is steep

for a single garnet separate from lherzolite LM–42B and
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comparably steep for violet, red and orange garnets

from dunite HKB–04 (notwithstanding the ‘spike’ in Ce
for one of the violet garnet separates). In contrast, in

wehrlite EH–22, the LREE slope for violet garnet is

steep, whereas the LREE slope for red and orange gar-

nets is flat. Interestingly, this wehrlite sample is the only

one among the four that shows whole-rock LREE en-

richment. The LREE slope for garnet from olivine web-
sterite HKB–2C is intermediate between those of the

other samples. Nevertheless, the flat or even slightly

negative slopes for the LREE shown by some garnets

suggest LREE enrichment.

P–T calculations
A combination of geothermobarometers (Supplemen-
tary Data Table S3C) was utilized to estimate P–T condi-

tions for the LL ultramafic suite, including Fe–Mg

exchange geothermometers for olivine and garnet (Wu

& Zhao, 2007) and orthopyroxene and garnet (Harley,
1984), and the Al-in-opx geobarometer (Nickel & Green,

1985). Application of these methods to the core compo-

sitions of adjacent minerals (Fig. 12) yields P–T esti-

mates of 36�9 kbar/804�C for dunite (HKB–04), 31�8 kbar/

848�C for harzburgite (EH21B) and 24�4 kbar/818�C for

lherzolite (HKB–03). Websterite (HKB-2B) yields 32�9
kbar/864�C, which is comparable in temperature to the

peridotites, but lower in pressure. Wehrlite EH-22 and

clinopyroxenite LM-38 did not give reliable pressure

estimates, but an assumed pressure of 30 kbar yielded

temperatures (�900�C and �830�C, respectively) con-

sistent with the other measurements. These values

yield an overall estimate of 30�5 kbar/801�C, which lies
just below the very high maximum average P–T (35�1
kbar/877�C) calculated for an external orthopyroxene-
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bearing eclogite (EH-15B) in the nearby gneisses

(Brueckner et al., 2016).
Two measurements, from two different laboratories,

of high-Cr garnets from LM-42B yielded similar values

(29�7 kbar/784�C and 32�1 kbar/789�C). These pressures

are similar to the pressures defined by the ultramafic

samples discussed above, but the temperatures are

lower. A low-Cr garnet, when combined with the same
forsterite and enstatite compositions as the high-Cr gar-

net, yields the same P–T (38�6 kbar/897�C) as the ortho-

pyroxene eclogite. However, if this sample contains

mixed peridotite/pyroxenite assemblages, as we dis-

cuss further below, all calculations from LM-42B should

be treated with caution.

Application of the same geothermobarometers to

rim compositions of minerals yields pressures of 15–25
kbar and temperatures of 750–800�C (Fig. 12). The ori-

ginal rims of the garnet were replaced by kelyphite, so

these P–T values do not represent the values of the ori-

ginal rims, which were probably lower than the core

values. Regardless, the present P–T rim values indicate

that the initial stage of decompression was largely iso-
thermal, similar to the pattern shown by the external

eclogite.

The core P–T values of most samples fall more or

less along the retrograde path defined by the external

eclogite (Fig. 12). We suggest that these samples re-

equilibrated to varying degrees during post-Scandian

Table 4: Mineral major element chemistry, Tvaerdal Complex, Liverpool Land

SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO Total Mg# Cr# Ca#

LM-42B Lherz
ol scan (20) 40�5 0�010 0�001 0�011 8�26 0�119 50�1 0�008 0�008 0�454 99�4 91�5 86�9
opx scan (90) 56�6 0�044 0�962 0�140 5�64 0�117 35�3 0�220 0�024 0�089 99�1 91�8 8�89
cpx scan (25) 53�2 0�108 2�23 0�845 2�94 0�065 16�1 21�41 1�46 0�051 98�3 90�7 20�3 46�5
hi-Cr grt scan (109) 40�9 0�070 20�0 4�12 9�95 0�501 19�1 4�75 0�029 0�011 99�4 77�3 12�2 12�2
lo-Cr grt scan (200) 41�7 0�033 23�2 0�355 9�01 0�432 20�9 3�73 0�019 0�014 99�4 80�5 1�02 9�37

LM-38 Cpxite
cpx disc (2) 54�6 0�056 1�49 0�067 4�03 0�057 16�3 22�40 1�28 0�011 0�068 100�4 87�8 2�93 46�5
amph disc(1) 43�5 0�055 17�1 0�212 13�2 0�421 26�8 0�579 0�017 0�009 0�036 101�9 78�3 0�83 1�20
grt disc (2) 42�2 0�076 23�3 0�183 12�9 0�463 18�6 4�58 0�021 0�009 0�017 81�8 72�0 0�53 11�3

HKB-2B Websterite
ol no ol
opx scan (6) 56�5 0�071 1�55 0�115 6�09 0�122 34�3 0�267 0�010 0�009 0�093 99�09 90�9 4�74
cpx scan (7) 53�5 0�115 1�41 0�055 2�30 0�063 17�3 24�41 0�282 0�003 0�042 99�41 93�0 2�54 48�6
amph spot (1) 46�5 0�395 14�8 0�324 3�27 0�060 17�7 12�95 1�27 0�029 0�033 97�45 90�6 1�44 32�2
grt scan (32) 41�4 0�069 23�3 0�43 10�3 0�513 19�2 4�99 0�005 0�006 0�009 100�2 76�9 1�23 0�13
red grt spot (1) 42�5 0�070 23�7 0�577 9�71 0�420 19�8 5�11 0�002 0�006 0�037 102�0 78�4 1�61 12�7
orng grt spot (1) 42�6 0�077 24�2 0�086 9�92 0�427 20�3 4�32 0�010 0�009 0�000 101�9 78�5 0�24 10�7

HKB-3 Lherz
ol spot (3) 41�8 0�008 0�005 0�009 7�94 0�169 50�5 0�017 0�004 0�010 0�409 100�8 91�9 56�4
opx disc (2) 57�5 0�061 1�57 0�263 5�40 0�178 35�6 0�269 0�01 0�014 0�061 100�9 92�2 10�1
cpx spot (2) 54�6 0�134 2�76 1�48 1�84 0�068 16�3 22�51 1�34 0�009 0�022 101�1 94�1 26�4 48�2
grt disc (1) 42�3 0�133 22�7 2�38 8�85 0�447 20�4 4�35 0�003 0�006 0�003 101�6 80�5 6�55 11�0
amph disc (2) 45�3 0�436 12�7 1�80 3�20 0�020 18�6 12�53 2�55 0�177 0�099 97�4 91�2 8�72 30�7

HKB-4 Dunite
ol spot (3) 41�6 0�006 0�006 0�010 7�27 0�116 51�0 0�014 0�019 0�011 0�396 100�5 92�6 51�5
opx disc (2) 58�6 0�027 0�552 0�167 4�87 0�110 36�2 0�204 0�026 0�015 0�104 100�9 93�0 16�8
cpx spot (3) 54�7 0�049 1�74 1�28 2�02 0�054 16�4 22�46 1�49 0�000 0�060 100�3 93�6 33�0 47�9
violet grt disc (2) 41�6 0�086 20�6 4�95 9�08 0�463 19�4 5�33 0�015 0�000 0�000 101�5 79�2 13�9 13�5
orng grt disc (2) 42�6 0�142 23�1 1�59 9�34 0�434 20�7 4�20 0�029 0�000 0�012 102�1 79�8 4�41 10�4

EH-21B Harzburg
ol no analyses
opx scan (14) 57�8 0�053 0�956 0�121 5�02 0�108 35�6 0�187 0�009 0�003 0�087 99�94 92�7 7�82
cpx spot (3) 54�3 0�193 3�51 1�54 1�89 0�037 15�3 20�97 2�36 0�004 0�026 100�2 93�5 22�7 48�0
amph spot (2) 44�0 0�746 14�8 1�18 3�54 0�027 17�9 11�83 3�23 0�468 0�133 97�82 90�0 5�07 29�9
grt scan (32) 42�6 0�060 23�7 1�05 8�44 0�405 21�6 3�50 0�010 0�006 0�009 101�3 82�0 2�89 8�71
grt spot (1) 42�4 0�179 22�1 3�05 8�97 0�48 20�6 4�03 0�025 0�005 0�004 101�8 80�3 8�47 10�1
grt spot (1) 42�4 0�097 21�2 4�38 8�74 0�47 21�2 3�39 0�001 0�000 0�000 102�0 81�2 12�2 8�52

EH-22 Wehrlite
ol spot (3) 41�0 0�002 0�004 0�010 9�89 0�18 48�9 0�011 0�002 0�001 0�41 100�4 89�8 60�2
opx spot 1 56�9 0�006 2�63 0�092 7�24 0�206 33�8 0�297 0�009 0�002 0�12 101�3 89�3 2�28
cpx scan (10) 54�2 0�067 1�69 0�669 2�32 0�05 17�2 22�9 0�88 0�006 0�04 100�1 93�0 21�0 47�2
amph spot (7) 45�4 0�302 13�3 1�43 4�27 0�06 18�3 12�2 2�81 0�079 0�10 98�2 88�4 6�72 29�7
grt scans (21) 42�2 0�062 22�9 1�57 9�98 0�48 19�6 4�87 0�010 0�003 0�01 101�6 77�8 4�41 12�2
violet grt disc (1) 42�5 0�072 21�9 3�54 8�53 0�480 20�2 4�96 0�008 0�006 0�000 102�2 80�8 9�77 12�5
red Grt disc (1) 42�7 0�102 23�3 1�59 9�38 0�503 20�2 4�41 0�015 0�003 0�000 102�2 79�3 4�39 11�1
pink grt disc (1) 42�3 0�082 23�4 1�39 9�32 0�457 20�2 4�48 0�000 0�000 0�018 101�7 79�5 3�82 11�2

Spinel compositions vary too much for averaging. See Appendix 3. Mineral abbreviations as in Table 1.
Parenthesis, number of analyses; scan, grain traverse; spot, single analysis of grain thin section.
disc, single grains mounted and polished in epoxy and analysed.
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retrogression. The garnets from HKB-04 and high-Cr

LM-42B fall off this trend and plot at lower tempera-
tures. Both garnets are high-Cr garnets, which are

believed to have formed during a pre-Scandian event

(see discussion below). Their P–T values may reflect

conditions during this older metamorphism.

Alternatively the standard geothermobarometers may

not apply accurately to garnets with high Cr-contents or
none of the garnets were in equilibrium with the adja-

cent minerals as a result of mechanical mixing.

Geochronology
Mineral separates from websterites HKB-2B and LM-43,
wehrlite EH-22 (Table 1) and pyroxenite LEA 08–04 were

analysed for their Sm, Nd and Sr concentrations and Sr

and Nd isotope compositions (Table 5, Fig. 13).

Obtaining reliable ages was complicated by the fact that

all four samples contain garnet separates with mixtures

of different colours, including violet, dark red, pink, or-
ange and pale red. These colour variations were initially

interpreted as reflecting core to rim chemical variations,

which is seemingly confirmed by Cr-profiles across

grains (Figs 8 and 9). Because the REE are, like Cr, triva-

lent, it is likely that REE concentrations vary from core

to rim as well, precluding the possibility that a given

sample would yield a single recrystallization age.
Nevertheless, garnet grains were separated by colour

under a binocular microscope with the hope of obtain-

ing at least some time constraints on core vs rim forma-

tion. Due to the nature and amount of separated garnet,

it was only possible to divide garnet separates into two

fractions and it proved difficult to obtain absolutely

pure end-member separates.
Parts of websterite sample HKB-2B display clean

granoblastic fabrics with little evidence of fracturing

(Fig. 2l). Nevertheless, repeated analyses of garnets

from this websterite plot as scattered points and fail to

show a consistent relationship between age and garnet

colour (Fig. 13a). Despite this scatter, the data give inter-
pretable results in that the garnet that generates the

steepest slope gives a clinopyroxene–whole-rock–gar-

net isochron age of 432 6 5 Ma (2 r, MSWD¼ 0�003)

whereas the garnet that generates the shallowest slope

gives a near-isochron age of 409 6 6 Ma (MSWD¼ 1�3).

Thus, despite the scatter, the ‘ages’ from this webster-
ite, indicate that garnet formation in the pyroxenites

probably began during the earliest stages of the

Scandian Orogeny (�430 Ma Sm–Nd isochron ages

were obtained from garnet pyroxenites of the WGC by

Spengler et al., 2009). The 409 Ma age of the ‘youngest’

garnet is within error or very close to the Scandian ages

obtained from Tvaerdal eclogites (Brueckner et al.,
2016), suggesting a shared history. This conclusion is

supported by the results from pyroxenite LM-43

(Fig. 13b) from which several garnet fractions were ana-

lysed along with clinopyroxene, amphibole and whole-

rock. The different fractions are slightly scattered, but

cluster around an age of 399 6 18 Ma (MSWD¼ 18).
Some of this scatter is attributable to the different col-

ours of the garnet fractions (the exact colour of grt2 was

not noted). The most precise age of 403�6 6 7�5 (MSWD

¼0�56) is defined by grt2 and the lighter coloured

(‘pale’) garnet fraction, whereas the darker red garnet

defines a younger age (387�8 6 7�5 Ma; MSWD¼ 0�84).

Despite the lack of a true isochron age, the results from
both pyroxenite samples are consistent with pyroxenite

HP/UHP equilibration during the Scandian Orogeny.

The data from the garnets in wehrlite EH-22 (Fig. 13c)

and peridotite LEA 08–04 (Fig. 13d) complicate this rela-

tively straightforward picture. As in websterite HKB-2B,

the darker garnet fractions in both samples collectively
define steeper best-fit lines than those defined by pale

garnets. The clinopyroxene–whole-rock–garnet best-fit

lines with the steepest slopes generate apparent ages

of 808 6 48 Ma in EH-22 and 729 6 18 Ma in LEA 08–04.

These ages do not match pre-Scandian orogenic events

recorded in the associated gneisses (i.e. the 1�6 Ga

Labradoran orogeny and the 1�0 Ga Grenville orogeny)
and should be considered minimum estimates that

were partially re-set during Scandian crystallization.
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Fig. 7. (a) Representative compositions of orthopyroxene
(opx), clinopyroxene (cpx) and garnet (grt) in the system Ca–
Mg–Fe (C–M–F), identified by rock type. (b) Representative
compositions of clinopyroxenes in the Cr2O3–FeO–NaO sys-
tem. Note the positions of LM-42B and EH-22 clinopyroxenes
with Cr2O3 contents intermediate between clinopyroxenes
from dunites and harzburgites and clinopyroxenes from pyrox-
enites. These intermediate compositions may be the result of
re-equilibration between the two end-members (see discussion
for further details).
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The pale garnets with the shallowest slopes give appar-

ent ages of 647 6 13 Ma in EH-22 and 384 6 32 Ma in
LEA 08–04. The pre-Caledonian 647 Ma age in EH-22 is

considered a maximum age of the younger of two gar-

net generations, which proved impossible to complete-

ly separate from the older darker garnets. The two pale

garnets in LEA 08–04, however, appear to have been

successfully separated from older garnets. They give
Scandian ages of 384 6 32 Ma and 425 6 15 Ma (not

plotted) when regressed separately with two clinopyr-

oxenes and the whole-rock. The apparent age calcu-

lated using both pale garnets (414 6 44 Ma) is not an

isochron (MSWD¼ 14), but together the apparent ages

indicate that the pale garnets in this sample formed dur-

ing the Scandian orogeny, consistent with the results
from the garnet pyroxenites.

Sr–Nd isotope variations
87Sr/86Sr and 143Nd/144Nd values of clinopyroxenes and

amphiboles from nine Tvaerdal garnet peridotites and

pyroxenites (Table 5) and two Tvaerdal eclogites

(Brueckner et al., 2016) are plotted in Fig. 14, where they

are compared with the isotopic compositions of clino-
pyroxenes from WGC peridotites, pyroxenites

(Brueckner et al., 2010) and eclogites (Brueckner,
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Fig. 8. Rim-to-rim EMP scans for major oxide concentrations for selected minerals from Tvaerdal peridotites and pyroxenites. (a)
Typical scan across orthopyroxene, clinopyroxene and garnet in pyroxenite HKB-2B, showing flat patterns for most elements ex-
cept for Al in orthopyroxene and Cr and Ca in garnet (Cr concentrations deleted for clinopyroxene and orthopyroxene for clarity).
Also note different Cr contents for different garnets. (b) Scans across garnets in EH-21B. Again, note the flat patterns for most ele-
ments except Cr and Ca. (c, d). Scans across olivine, orthopyroxene and clinopyroxene in lherzolite LM-42B. Major elements show
flat patterns except for Al2O3 in orthopyroxene in contact with olivine (c) and clinopyroxene (d). Some measurements have been
deleted for clarity where the data are too crowded. Data for these scans are given in Supplementary Data Table S3a.
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unpublished data). Most WGC ultramafic clinopyrox-

enes define a steep array with variable 143Nd/144Nd and
restricted, low 87Sr/86Sr. Such an array implies that

most WGC clinopyroxenes formed or equilibrated with-

in the mantle (Brueckner et al., 2010). In contrast, clino-

pyroxenes from the Tvaerdal peridotites and

pyroxenites plot along the trend defined by WGC eclo-

gites, though not to the very high 87Sr/86Sr ratios in
some enriched WGC eclogites. This trend suggests that

ultramafic Tvaerdal clinopyroxenes with initial mantle

values (high 143Nd/144Nd, low 87Sr/86Sr) equilibrated to

varying degrees with high 87Sr/86Sr, low 143Nd/144Nd

fluids derived either from a subducting slab or from the

surrounding crustal rocks.

Re–Os
The results of a LA-ICP-MS Re–Os study of sulfides

from the Tvaerdal peridotite are listed in Table 6 (the

complete data set is included in Supplementary Data

File 4). Only four samples, EH-21 and 22, HKB-3 and

Camp 2–1 contained sulfides with measurable Os and
relatively low Re concentrations. Figure 15a is a Re–Os

isochron diagram that plots all measured sulfides with
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187Re/188Os ratios less than 5 (the less 187Re, the more

likely the measured 187Os/188Os ratio is reliable). The
data are widely scattered (i.e. 1�3 Ga 6 0.4, MSWD¼
325) both for individual samples and when all data are

considered. A significant number of analyses (�35 of

53) fall on or near a best-fit line that defines an age of

�1�6 Ga, which is essentially the same time a mantle en-

richment event re-fertilized WGC peridotites (Beyer
et al., 2006). A few sulfide analyses (�10) plot along a

shallower trend, probably related to crustal fluid intro-

duction during Scandian recrystallization. The remain-

ing (�8) analyses have high 187Os/188Os ratios and lines

fitted through each point yield meaningless ages older

than the Earth. Several of these analyses, particularly

from garnet lherzolite Camp 2–1, are robust with strong
Os signals and resultant small errors (shown by small

error ellipses) and very low 187Re corrections. They de-

fine reasonable ages if it is assumed that the samples

underwent a Re enrichment event (see below).

Model ages (Supplementary Data Table S4) are

widely scattered, from ages older than the Earth to fu-
ture ages. All future ages are eliminated when analyses

with 187Re/188Os >0�5 and Os concentrations <10 ppb

are excluded, but ages older than 4�55 Ga remain.

These ages are modified if it is assumed that Re was

introduced into Re-free Archean sulfides during an en-

richment event (Table 6). Figure 15b plots ages that re-

sult if enrichment occurred at �1�6 Ga. The ages range
between 2�1–4�1 Ga, with possible clusters between 2�4–

2�8 and 3�5–4�1 Ga. Assigning enrichment at 1�6 Ga is

based on evidence that peridotites in the WGC were

enriched at that time (Beyer et al., 2004, 2006, 2012) and

the 1�6 Ga scatterchron defined by some sulfides
(Fig. 15a). But the evidence for a 1�6 Ga event in the

Tvaerdal peridotites is not strong and a younger enrich-

ment would have resulted in the same reduction in the

scatter of the model ages. A few pyroxenite sulfides do

generate reasonable model ages without assuming Re-

addition, but only those from EH-21 define straightfor-
ward model ages (CHUR) around 1.6 Ga. The data from

Camp 2–1 sulfides are particularly interesting (Table 7)

in that the Re/Os ratios are very low and the Os signals

very strong. One analysis of sulfide in Camp 2–1-A has

a particularly low 187Os/188Os ratio (0�09973, fraction-

ation corrected) and generates very old Archean ages

regardless of assumptions about Re-addition or deple-
tion. The remaining analyses from this sample also gen-

erate Archean ages.

DISCUSSION

Origin of the Liverpool Land peridotites and
pyroxenites
The Tvaerdal peridotite lenses have all the characteris-
tics of mantle wedge peridotites (Brueckner & Medaris,

2000) and belong to the Mg–Cr type garnet peridotite

class initially proposed by Carswell et al. (1983) for the

WGC of Norway and orogenic peridotites worldwide

(Bodinier & Godard, 2004). Most lenses are highly

depleted garnet harzburgite and garnet dunite, the resi-
dues of extensive melt extraction. We suggest that

melting removed most of the clinopyroxene, but not the
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Cr-rich garnet that is scattered throughout the peridotite

host (Fig. 2b and f) or occurs as thin trains separated by
fine grained, recrystallized olivine (Fig. 2c and d). Re–Os

results indicate that melt extraction episodes occurred

throughout the Archean and Early Proterozoic (Fig. 15a

and b) and it is possible that the garnets date back to

these ancient events. Subsequent refertilization involv-

ing Re addition is required to avoid Re–Os model ages
older than 4�55 Ga. One such event could have been

through the introduction of pyroxenite melts, as has

been proposed for the peridotites in the WGC (Beyer

et al., 2006). WGC garnet pyroxenites give Proterozoic

recrystallization ages (Brueckner et al., 2010 and refer-

ences therein), but evidence for Proterozoic refertiliza-

tion of the Tvaerdal peridotites is restricted to the �1�6

Ga errorchron generated by some sulphides on a Re–

Os isochron diagram (Fig. 15a). More recent Re intro-
duction could also generate reasonable Re–Os model

ages and the LREE enrichment patterns of whole-rock

and garnet and ‘crustal’ Sr–Nd isotope ratios of some

clinopyroxenes (Figs 11 and 14) are consistent with a

Scandian refertilization event that could have occurred

in the mantle wedge from subduction zone fluids or
from crustal fluids after the peridotite lenses were

inserted into Tvaerdal Complex.

Pyroxenite evolution
The evolution of most Tvaerdal pyroxenites is relatively

straightforward, albeit with some caveats. Some
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garnets in websterites HKB-2B and LM-43 give the

same Scandian Sm–Nd ages (Fig. 13) as the eclogites in
the enclosing gneisses (Brueckner et al., 2016), indicat-

ing that the garnet pyroxenites recrystallized at the

same time as the eclogites. This age correspondence

suggests that the pyroxenites were inserted into the

Tvaerdal crust as passengers within their peridotite

hosts and continued recrystallizing at progressively
higher pressures and temperatures during the subduc-

tion of the Tvaerdal Complex into the mantle (the ‘pro-

grade type’ of Brueckner & Medaris, 2000). However,

the only pyroxenite (websterite HKB-2B) analysed for

P-T (Fig. 12) plots at a slightly lower pressure and tem-

perature than that defined by the eclogites (Fig. 12),

suggesting that it may have re-equilibrated as it was
exhumed from mantle depths. Several peridotite sam-

ples plot close to the exhumation path defined by the

Tvaerdal eclogites, suggesting that they also equili-

brated during exhumation.

Re-equilibration at peak P–T and/or during subse-

quent retrogression appears to have erased most evi-
dence for the prograde evolution of the pyroxenites,

consistent with the flat concentration patterns across

garnet grains for most major elements (Figs 8 and 9). Cr

and Ca however are exceptions. Their concentrations

increase from garnet core to rim in websterite HKB-2B

(Figs 2k and 8a) as well as in most garnets from LM-42B

(Fig. 9a). This increase is consistent with the progres-
sive destruction of Cr-rich spinel to form Cr-garnet as P–

T conditions increased during subduction through the

reaction (O’Neill, 1981)

1. orthopyroxene þ clinopyroxene þ Cr-spinel ! oliv-

ine þ Cr-rich garnet

Trivalent Cr diffuses at a significantly slower rate in

garnet than bivalent elements (diffusion coefficients are

0�5–1�5 log10 units smaller, Carlson, 2012). Therefore

the re-equilibration that erased the prograde patterns of
bivalent Mg, Fe, and Mn in most garnets was not in-

tense enough to homogenize the profile defined by Cr.

Caþþ would normally be expected to re-equilibrate to

the same flat profiles defined by the other bivalent cati-

ons, but instead it replicates the Cr pattern (Fig. 8a and

b). Reaction (1) forms garnet that is progressively richer
in Ca at the expense of clinopyroxene. The rimward in-

crease in Ca in garnet is probably the result of this

transfer. Also, Ca diffuses more slowly in garnet than

the other bivalent cations (diffusion coefficients for Ca

are �0�5 log10 units smaller than for Mg, Feþþ, and Mn;

Carlson, 2012; Fig. 10). If this reasoning is correct, the Cr

and Ca profiles are the only elements that reflect the
prograde evolution of the Tvaerdal garnet pyroxenites.
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Peridotite evolution
In contrast to the apparent solely Scandian history of

the LL garnet pyroxenites, the mixed garnet assemb-

lages within some garnet peridotites appear to require
two widely separated metamorphic events and a mech-

anism for mixing these assemblages. There are two

garnet generations in all three peridotite samples which

we studied in detail, LM-42B, EH-22 and LEA 08–04.

They all contain mixtures of Cr-rich and Cr-poor garnet

and the two dated samples define two age clusters with

Cr-rich dark garnets much older than Cr-poor garnets
(LM-42B lacked sufficient clinopyroxene to obtain a

Sm–Nd mineral age). A Cr-poor garnet aliquot of one

peridotite (LEA 08–04) gave an age (384 6 32 Ma; Fig.

13d) that is within error of the Scandian ages obtained

from garnet pyroxenites (Fig. 13a and b) and eclogites

(Brueckner et al., 2016). Therefore we provisionally
label these assemblages M2. The high-Cr garnets are

suggested to be the refractory garnets that occur within

dunite and harzburgite (discussed above) as suggested

by their older (minimum) ages in the mixed assemb-

lages (Fig. 13c and d). These refractory garnets could

not be dated directly by Sm–Nd because of the general

paucity of clinopyroxene in dunite and harzburgite.
However, the Re–Os evidence presented above sug-

gests they originated during the Archean or

Proterozoic. Refractory garnets in dunites and harzbur-

gites give mixed, but generally high Cr contents (1�1 to

5�0 wt % Cr2O3, Table 4). Thus we propose the high-Cr

garnets in the mixed assemblages are also refractory
garnets and we label them M1. We further propose that

the M1 garnets in all dunites, harzburgites and lherzo-

lites were originally larger porphyroclasts that had

steep core to rim gradients in Cr content. Fracturing

these porphyroclasts into smaller dispersed fragments

would explain the large variation in Cr content between

individual grains (note for example variations between
different coloured garnets in Table 4). It might also ex-

plain the variations in Mg-number between garnet

grains in sample LM-42B (Fig. 9b). This model is dis-

cussed further below.

We suggest that fragmentation and dispersal can

also provide a mechanism for the mixing of Cr-poor
and Cr-rich garnets observed in some samples. We

Table 5: Isotope data from garnet peridotite and pyroxenite Tvaerdal Complex, Liverpool Land

Sr ppm 87Sr/86Sr 2 sigma Sm ppm Nm ppm 147Sm/144Nd 143Nd/144Nd 2 sigma

Camp 2-1 cpx LDEO 72�7 0�704206 0�000010 1�13 0�513308 0�000018
HKB-2C cpx LDEO 734 0�709850 0�000010 2�42 8�27 0�177 0�512253 0�000009
HKB-3 cpx LDEO 289 0�705026 0�000007 3�13 20�4 0�093 0�511414 0�000007
HKB-4 cpx LDEO 130 0�705963 0�000010 2�11 6�98 0�183 0�513038 0�000011
LM-42B cpx SB nm 0�704272 0�000002 1�031 3�65 0�171 0�513094 0�000008
LM-42B amph SB nm 0�704444 0�000013 nm nm nm 0�513201 0�000016
AA 08-47 cpx SB nm 0�7072713 0�000008 2�12 11�13 0�115 0�512105 0�000008
HKB 2B

cpx 1 LDEO 197 0�706722 0�000010 2�56 9�46� 0�164 0�512234 0�000011
cpx2 LDEO 184 0�706708 0�000008 2�38 7�89 0�182 0�512267 0�000007
wr1 LDEO nm nm nm 1�28 3�54 0�218 0�512388 0�000009
orange grt1 LDEO nm nm nm 1�13 0�607 1�13 0�514904 0�000008
orange grt 2 LDEO nm nm nm 1�127 0�589 1�16 0�514956 0�000007
red grt 2 LDEO nm nm nm 1�17 0�690 1�02 0�514536 0�000021
red grt1 LDEO nm nm nm 1�20 0�685 1�06 0�514764 0�000009

LM-43
amph SB nm 0�705033 0�000002 0�592 1�486 0�241 0�513478 0�000006
cpx SB nm 0�703971 0�000010 2�033 6�822 0�180 0�513257 0�000006
wr SB nm nm nm 0�756 2�066 0�221 0�513397 0�000006
grt 2 SB nm nm nm 0�380 0�204 1�13 0�515804 0�000060
grt 3 light SB nm nm nm 0�425 0�226 1�14 0�51817 0�000009
grt 3 dark SB nm nm nm 0�356 0�192 1�12 0�515685 0�000010

EH-22
cpx1 LDEO 181 0�703961 0�000008 0�430 1�99 0�130 0�512976 0�000017
cpx2 LDEO 170 0�703902 0�000008 0�427 1�95 0�132 0�513012 0�000010
dark grt LDEO nm nm nm 0�169 0�120 0�855 0�516804 0�000019
dark grt2 LDEO nm nm nm nm 0�102 0�516717 0�000017
pale grt LDEO nm nm nm 0�146 0�100 0�888 0�516192 0�000015
pale grt 2 LDEO nm nm nm 0�211 0�149 0�856 0�516301 0�000027
wr LDEO nm nm nm 0�149 0�579 0�155 0�513031 0�000106
wr2 LDEO nm nm nm 0�218 0�846 0�156 0�513064 0�000015

LEA 08-04
cpx LDEO nm nm nm 1�762 7�193 0�148 0�512632 0�000008
cpx2 LDEO 171 0�70751 0�000010 1�649 6�754 0�148 0�512601 0�000007
wr LDEO nm nm nm 0�623 2�20 0�171 0�512693 0�000008
pink grt2 LDEO nm nm nm 0�499 0�364 0�830 0�51434 0�000050
pink grt LDEO nm nm nm 0�545 0�292 1�130 0�51535 0�000022
orange grt LDEO nm nm nm 0�448 0�269 1�010 0�516759 0�000017
orange grt2 SB nm nm nm 0�559 0�333 1�018 0�516726 0�000017

Analyses at Lamont Doherty Earth Observatory (LDEO) and Stony Brook (SB). nm, not measured.
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propose the Cr-poor garnets were mixed in from dis-

membered pyroxenites that also fragmented as a result
of extreme shearing during the Scandian orogeny.

Support for the mixing model is as follows: (1) the two

garnet generations have different Cr concentrations

(Fig. 9a); (2) they show a bimodal distribution in appar-

ent ages (Fig. 13c and d), indicating two garnet-forming

events; the lighter garnets should give younger ages
than the darker garnets if they were derived from young

(Scandian) pyroxenites; (3) many garnet grains are

blocky, angular and irregular and show a range of sizes,

suggesting they are fragments of earlier larger gains

(see further discussion below); (4) large garnets with

symmetric Cr profiles would break into smaller grains

with different Cr contents and the observed asymmetric
profiles (Figs 8 and 9); (5) rotation and flattening during

shearing and/or shortening could explain the striking

parallelism of garnet pyroxenite and peridotite layers

and M1 garnet trains (Fig. 2c–f) in all peridotite lenses;

(6) the C-type fabric determined from LM-42B (Luc

Mehl, personal communication) is consistent with such
large strains; (7) some garnet-rich trains are remarkably

thin, one or two minerals wide (Fig. 2c, d and h), which

could also be the result of extreme shearing; (8) thicker

garnet pyroxenite layers that have remained coherent
(i.e. Fig. 2l) nevertheless show locally fractured garnets

with pieces that have moved apart (Fig. 2i, j and k).

A possible problem with this mixing model is that M2

clinopyroxene and orthopyroxene from dismembered

pyroxenites should also have been mixed in along with

garnets. We measured the compositions of five clino-
pyroxenes from sample LM-42B (Fig. 7b) and none of

them have the Cr-poor compositions expected of clino-

pyroxenes from pyroxenites. However, neither do they

have the Cr-rich compositions of clinopyroxenes from

dunite, harzburgite and another lherzolite (Fig. 7b).

Instead they occupy an intermediate composition,

which suggests that they might have re-equilibrated
during Scandian recrystallization.

Mixed assemblages with M2 clinopyroxene and Cr-

poor garnet and M1 Cr-rich garnet and olivine (no or

few M1 clinopyroxenes) would lead to spurious mineral

isochron ages. If the clinopyroxene is solely from pyrox-

enite (i.e. M2) the mixing of it with garnets of two differ-
ent ages (M1 and M2) would most likely result in a

minimum age for the older event. However, depending
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Table 6: Re–Os data for peridotite and pyroxenites, Tvaerdal Complex, Liverpool Land

Sample
description 187Os/188Os 6 187Re/188Os 6 CHUR RD at

1�6 Ga
RE at
1�6 Ga

Os
ppb

185Re
ppb

CHUR 0�1270 0�423 0 0�00 1�69
LL06 EH-21 s1A 0�1179 0�0006 0�014 0�003 1�40 1�35 1�40 28�0 0�08
“ s1B 0�1218 0�0004 0�149 0�012 1�21 0�77 1�35 11�6 0�13
“ s1C 0�1216 0�0008 0�212 0�002 1�68 0�80 1�64 7�38 0�12
“ S4A 0�1162 0�0021 0�245 0�008 4�00 1�59 2�57 5�37 0�10
LL06 EH-22 3A 0�1143 0�0003 0�148 0�007 2�93 1�87 2�47 3�90 0�04
“ 1B 0�1092 0�0024 0�275 0�013 7�88 2�60 3�71 2�40 0�04
“ 1C 0�1192 0�0033 0�225 0�013 2�59 1�15 2�05 1�95 0�03
Camp 2-1-A fractionated 0�1086 0�0004 0�294 0�009 9�44 2�69 3�87 19�9 0�21
Camp 2-1-A corrected 0�0997 0�0012 0�036 0�012 4�31 3�94 4�14 74�6 0�15
Camp 2-1-A “ 0�1083 0�0003 0�298 0�008 9�94 2�74 3�93 19�5 0�22
Camp 2-1-H “ 0�1083 0�0002 0�172 0�003 4�69 2�73 3�43 18�6 0�12
Camp 2-1-H “ 0�1080 0�0003 0�161 0�003 4�57 2�78 3�44 21�9 0�13
Camp 2-1-H “ 0�1081 0�0005 0�185 0�003 5�02 2�76 3�52 14�8 0�10
Camp 2-1-I “ 0�1079 0�0001 0�028 0�001 2�99 2�79 2�93 137 0�15
Camp 2-1-I “ 0�1082 0�0001 0�038 0�002 3�02 2�74 2�92 99�8 0�13
Camp 2-1-I “ 0�1082 0�0003 0�020 0�004 2�89 2�74 2�85 511 0�10
Camp 2-1-I “ 0�1096 0�0003 0�067 0�002 3�04 2�54 2�83 30�1 0�08
Camp 2-1-I “ 0�1083 0�0004 0�030 0�003 2�95 2�73 2�88 132 0�08
Camp 2-1-5 “ 0�1182 0�0005 0�245 0�016 3�27 1�30 2�28 15�8 ?
Camp 2-1-15 “ 0�1076 0�0005 0�314 0�012 12�03 2�83 4�09 21�0 ?
Camp2-bl1-1 “ 0�1084 0�0020 0�851 0�036 �2�54 2�72 6�03 5�80 ?
Camp2-bl1-8 “ 0�1076 0�0009 0�223 0�009 6�18 2�83 3�74 11�6 ?
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on the relative proportions of M1 and M2 garnet, the ap-

parent ages could be older, younger and even, by ser-
endipity, the same age as the earlier garnet-forming

event. Therefore the two sets of Sm–Nd ages defined

by minerals from EH-22 and LEA 08–04 (Fig. 13c and d)

yield no precise information on their time of formation,

except for the Scandian age of the pale garnet in LEA

08–04, which appears to be an aliquot of M2 garnets al-
most completely separated from M1 garnets. Similar

arguments suggest that the P–T estimates from LM-42B

could be invalid. For example, the Al-in-orthopyroxene

geobarometer could potentially pair a M2

orthopyroxene with a M1 garnet or vice versa (this prob-

lem was largely avoided by analysing cores and rims of
adjacent grains in several domains in the rock sample).

The mechanical mixing of two garnet-bearing

assemblages of different age resolves many of the

problems that arise if the garnets had formed during a

single metamorphic cycle. However, certain conditions

would have had to be in place for which there is little
direct evidence. For example, postulating the existence

of large parental M1 grains would explain the large

inter-grain variation in the Cr content (and Mg-number)

of garnets in sample LM-42B (Fig. 9). It would also
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explain why the Cr-rich (darker) garnets in EH-22 and

LEA 08–04 give older ages than the Cr-poor (i.e. lighter)

garnets. Cr content increases from core to rim in most

other measured samples (Fig. 8) and so paler cores

should give older ages than darker rims, but the oppos-
ite is true. The solution is two metamorphic events, with

both events producing core to rim gradients in Cr con-

centrations. The first event (M1) generated negative

core to rim Cr gradients in garnet as a result of decreas-

ing P–T conditions, perhaps as a result of decompres-

sion within a mantle plume. The core to rim decrease in

pyrope and increase in almandine content of the Cr-rich
garnet in LM-42B (GM 1 in Fig. 9b) is consistent with

this hypothesis. The result would be a large difference

in Cr concentration between the core and rim, but with-

in large garnets, resulting in Cr gradients with relatively

shallow slopes (the larger the grain, the shallower the

slope). The scan of the Cr-rich garnet in LM-42B (GM 1
in Fig. 9a) might be from the core of such a garnet as it

is the only measured garnet that displays a convincing

symmetrical core to rim decrease in Cr content.

Fragmenting these garnets would produce smaller

grains, each displaying a fraction of the original profile

(Fig. 9b). Thus different grains would have different Cr
concentrations (and colours) depending on where they

originally occurred in the parent grain (i.e. dark frag-

ments from the core, light fragments from the rim).

These fragments would also inherit the shallow Cr-

profiles of the parental grain and, therefore, not show

much internal colour change, while still showing visible

colour differences between grains.
The second required recrystallization event (M2), pre-

sumably Scandian metamorphism, imposed new zon-

ing patterns for Cr at the same time the parent garnets

broke into smaller fragments as a result of shearing.

Each fragment would have preserved the overall Cr

content of its position in the original porphyroclast, but
with a new imposed M2 gradient. Most grains show a

core to rim increase in Cr concentration, so the new gra-

dient probably formed during prograde metamorphism

(i.e. Equation 1). Further fragmentation would break

these grains into still smaller grains, many with incom-

plete (asymmetric) profiles. Stated succinctly, grain-

to-grain variations in Cr content reflect gradients
generated in the precursor porphyroclast during M1

metamorphism, but intra-grain variations reflect gra-

dients in fragments of these porphyroclasts during M2

(Scandian) metamorphism. The large parental porphyr-

oclasts hypothesized in this model (>10 cm) have not

been observed in the peridotites of the Tvaerdal
Complex. The largest M1 garnet measured is 2 cm wide.

However, such porphyroclasts >10 cm wide have been

described in the peridotites of the northwestern WGC

(Spengler, et al., 2009; Van Roermund, 2009a,b).

The trivalent REE elements presumably developed

core to rim patterns similar to those of Crþþþ. These

gradients could explain the variations in the obtained
Sm–Nd mineral ages (Fig. 13). REE in the cores of the

parental porphyroclasts would be least affected by

subsequent re-equilibration and, therefore, tend to pre-

serve older ages. The more completely equilibrated

areas near the rim would give younger ages. But the

garnets from the parental cores would be at least par-

tially re-equilibrated, resulting in minimum M1 ages,
and the garnets from the rims would not equilibrate

completely, resulting in maximum M2 ages. Dating gar-

net fragments produced by this mechanism would give

older ages for the cores (dark garnets) and younger

ages for the rims (pale garnets), which is what is

observed.

The mixing of M1 and M2 assemblages appears to
have generated some peridotites with whole-rock com-

positions within or near the lherzolite field (Table 3,

Fig. 3). Lherzolites are classically interpreted as samples

of primitive mantle (Bodinier & Godard, 2004). More re-

cently some lherzolites have been shown to be the re-

sult of metasomatism (Su et al., 2016), even in the
classic type locality (i.e. Lherz; La Roux et al., 2007). The

mechanical mixing model offers yet another hypothesis

to explain the compositions of LL lherzolites, olivine

websterites, and wehrlites.

A COMPARISON OF TVAERDAL PERIDOTITES
WITH WGC PERIDOTITES

If the Tvaerdal Complex is a stranded Baltic terrain,

identical in age, tectonic position and history to the

WGC of Norway, it follows that the peridotites within

them might have had a common origin and history.

There are similarities, but also significant differences.
Re–Os data suggest both ultramafic assemblages origi-

nated from a mixed Archean/Proterozoic mantle (Beyer

et al., 2004), consistent with a Laurentian mantle wedge

above subducted Baltica (Brueckner et al., 2010, Fig. 7;

Beyer et al., 2012). The WGC garnet assemblages that

are most similar to those in LL may be the spectacular

‘relict-type’ garnet peridotites and garnet pyroxenites
(Brueckner & Medaris, 2000) of the northwestern WGC

(Spengler et al., 2006; 2009; Van Roermund, 2009a,b;

Brueckner et al., 2010; Scambelluri et al., 2010). These

peridotites and their host gneisses were subducted to

the deepest level of the mantle during the terminal colli-

sion of Baltica and Laurentia where they generated
Scandian-age garnets (correlated here with the M2 gar-

nets in the Tvaerdal pyroxenites). Additionally, the

WGC ultramafics also contain older garnet assemb-

lages; M1 and M2 garnets generated in the mantle dur-

ing the Archean and Proterozoic, respectively. The WGC

M1 garnets formed initially as very large porphyro-

blasts, as has been proposed above for the M1 Cr-rich
Tvaerdal garnets. However the maximum errorchron

age generated by M1 garnets in LL peridotites is only

808 Ma (Fig. 13), much younger than the oldest ages

(�1�6 Ga) defined by M2 garnets in WGC peridotites and

pyroxenites (Brueckner et al., 2010). Sm–Nd clinopyrox-

ene isotope variations and Re–Os sulfide model ages
from the Tvaerdal peridotites (Figs 14 and 15; Tables 5

and 6) suggest they experienced a mantle fertilization
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event, similar to that which affected the peridotites of

the WGC (Beyer et al., 2004, 2006). However the

Tvaerdal peridotites lack convincing evidence that this

event occurred in the mantle at �1–6 Ga as was the

case in the WGC. A final conclusion on the relationships
between these ultramafic occurrences requires consid-

erably more research, but the overall impression so far

is each association has its own unique petrogenetic his-

tory, suggesting either the (Laurentian?) mantle wedge

from where they were derived was strikingly heteroge-

neous or there was more than one mantle wedge be-

neath potentially different overriding terranes.

CONCLUSIONS

Six garnet peridotite lenses occur within the gneisses of

the HP/UHP Tvaerdal Complex in Liverpool Land,

Greenland Caledonides. The peridotites are predomin-
antly dunite and harzburgite, but include layers of strik-

ingly parallel lherzolite, websterite and wehrlite.

Several samples include two garnet populations, one

older and Cr-rich (M1) and the other younger (�400 Ma)

and Cr-poor (M2). We propose the two garnet popula-

tions in these samples were mechanically mixed

through intense shearing during the Scandian orogeny.
Evidence for this intense shearing includes: garnet

grains that are fractured, separated and locally disag-

gregated; garnets that have asymmetric edge-to-edge

gradients in Cr and Ca content; garnet grains that are

strung out in thin layers; striking variations in Cr content

in neighboring garnet grains; and the parallelism of all
pyroxenite, peridotite and garnet-rich layers. The M2

garnets were probably derived from disaggregated pyr-

oxenite layers. The source of the M1 garnets is less cer-

tain, but we suggest they are disaggregated fragments

of refractory garnet porphyroclasts that were left behind

after Archean and/or Proterozoic melting events in the

mantle. The intense shearing that fragmented garnet
porphyroclasts and thin pyroxenite veins, and locally

mixed their assemblages, simultaneously thinned the

layers and rotated them into parallelism.

Clinopyroxenes within these mixed rocks, unlike the

garnets, do not plot as two populations. Either most M1

clinopyroxene was removed during Precambrian melt-
ing or mixed M1 and M2 clinopyroxenes re-equilibrated

with each other to form clinopyroxenes with intermedi-

ate compositions.

Garnets and other minerals within thick (>5 cm) pyr-

oxenite layers appear to have remained coherent and

contain only M2 assemblages. P–T–t results from these

pyroxenites, combined with earlier studies of LL eclo-
gites within the adjacent gneisses, are consistent with

the subduction of the Tvaerdal Complex around 400 Ma

ago to mantle depths of �110–120 km and temperatures

of 850–900�C. The similar Scandian history of eclogite

and garnet pyroxenite, which had very different origins,

indicates that the peridotite lenses were inserted from
the mantle wedge into the Tvaerdal Complex relatively

early, during subduction, resulting in the subsequent

shared history. Recrystallization under peak HP/UHP

conditions resulted in the nearly complete equilibration

of M2 garnet-bearing assemblages in the pyroxenites:

only Cr and Ca profiles may record a prograde history.

The exhumation of the Tvaerdal Complex brought it
against the lower crustal Jaettedal Complex, resulting

in a transfer from Baltica to Laurentia. Subsequently

both complexes moved towards the surface along the

Grubbedalen Shear Zone.

Mechanical peridotite/pyroxenite mixing may be a

more important process than generally realized. A crit-

ical question is where such mixing occurred: within the
mantle or later, after introduction into the subducted

crust? If in the mantle, the mechanical mixing model

has consequences for understanding the geochemical

evolution of the mantle where most variations in mantle

composition are assumed to be the result of melting

and, or, chemical processes.
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