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Abstract: We present a model for determining analytically the critical threshold for  
investment in carbon capture and storage technology in a region where carbon costs 
are volatile and assuming the cost of investment decreases. We first study a 
deterministic model with quite general dependence on carbon price and then 
analyse the effect of carbon price volatility on the optimal investment decision by 
solving a Bellman equation with an infinite planning horizon. We find that increasing 
the expected carbon price volatility increases the critical investment threshold and 
that adoption of this technology is not optimal at current prices, in agreement with 
other works. However, reducing carbon price volatility by switching from carbon 
permits to taxes or by introducing a carbon floor as in Great Britain would accelerate 
the optimal adoption of this technology. Our deterministic model provides a good 
description of this decision problem. 
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1 Introduction

In 2005 the European Union introduced its Emission Trading Scheme (ETS), a system
in which CO2 emission permits are traded, as a key ingredient in its plan to adhere
to the Kyoto Protocol on emission reduction. The idea was that by creating a market
for emission permits cleaner technologies would be rewarded at the expense of heavy
emitters. This measure was intended to accelerate investment in electricity generation
from renewable sources and therefore move Europe towards becoming a low carbon
emissions region. For more information on the ETS see Abadie and Chamorro (2008)
for example.

However, renewable sources of generation tend to be intermittent so there is still a role
for traditional fossil based generation to maintain system stability. The relative abun-
dance of coal compared to other fossil fuels makes it an attractive option for electricity
generation. However, it is amongst the largest producers of CO2 per unit of electricity
generated so that if emitters are to be be penalised through the need for ETS permits,
coal loses some of its appeal if the cost of carbon dioxide emissions increases. One
attractive approach, in theory, is to capture the carbon generated during combustion
and store it permanently. There has been a huge research effort into this technique but
at present there is still no commercially operating carbon capture and storage (CCS)
storage unit anywhere in the world.

A number of authors have addressed the question of when it is optimal to invest in CCS
given carbon price and electricity price uncertainty. In Fuss et al. (2008) both types
of uncertainty are included in a numerical model with a finite planning horizon of 50
years. In their model the CCS unit may be switched on and off depending on which
state is optimal. Their profit function is a linear function of electricity, heat and carbon
price and other costs. They then solve numerically a Bellman equation to determine the
optimal time to invest in CCS so that the sum of discounted expected future profits is
maximised.

Another thorough numerical analysis of the problem is given in Abadie and Chamorro
(2008). Again the electricity price and carbon price follow correlated stochastic pro-
cesses (in both papers the carbon prices follow geometric Brownian motion) and there
is a finite planning horizon. The problem is solved using a two-dimensional binomial
lattice to obtain the optimal investment rule.

In Heydari et al. (2012) an analytical model was presented in which the authors solved
a partial differential equation to determine the optimal investment boundary under fuel
price and carbon price uncertainty (electricity price was found not to affect the option
value of the retrofit of a coal fired power plant since the outputs of the plant pre- and
post-retrofit were taken to be the same). The authors assumed that investment costs
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remain fixed.

In this work we present a model with an infinite planning horizon, as in Heydari et al.
(2012), that allows us to obtain an analytical solution for the investment threshold that
maximises the net present value of the asset. This complements numerical approaches,
as analytic formulae allow greater clarity about the contribution of various factors to
the investment decision. We consider ETS permit price uncertainty to be the dominant
source of uncertainty (modelled by geometric Brownian motion as above). We first find
a solution to the deterministic problem for quite general forms of the profit function
and then add volatility with a profit function linear in the stochastic ETS permit price.
Unlike the analytical solution in Heydari et al. (2012), we assume the investment costs
decrease over time as the technology matures. Finally we present a numerical example
of our solution for a baseload coal plant and find qualitative agreement to previous
results using different parameters and methodologies.

2 When to invest in CCS - a free boundary problem

We are interested in determining analytically the optimal time for a new coal plant to
retrofit a carbon capture and storage unit with and without ETS carbon price uncertainty.
To do this we maximize the net present value (NPV) of the investment option.

Let Po denote the profit function for the coal plant without the CCS unit upgrade and Pn
denote the profit function for the upgraded plant, both depending on the carbon price C.
If the time of investment in CCS is taken to be T (an unknown) then we can write the
NPV of the asset as

W (C) =

∫ T

0

Po(C(t))e−rtdt+

∫ ∞
T

Pn(C(t))e−rtdt− I(T )e−rT (2.1)

where I(T ) is the investment time dependent investment cost, and r is the discount rate.
We are assuming that the option to retrofit the plant doesn’t expire so that the upper limit
in the integral above is∞ though of course an investor will want to have time to recoup
the investment cost before the plant is decommissioned - typically after 40 years.

2.1 Deterministic ETS permit price:

Assuming that C evolves deterministically, (2.1) may be differentiated with respect to
T which yields
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dW

dT
(T ) = (Po(C(T ))− Pn(C(T )) + rI(T )− I ′(T )) e−rT (2.2)

so that W is extremised when

Pn(C(T ))− Po(C(T )) = rI(T )− I ′(T ). (2.3)

To determine whether this extremal value is a maximum or a minimum we differentiate
once again with respect to T

d2W

dT 2
(T ) = −r (Po(C(T ))− Pn(C(T )) + rI(T )− I ′(T )) e−rT (2.4)

+

((
dPo
dC
− dPn
dC

)
dC

dT
(T ) + (−I ′′(T ) + rI ′(T ))

)
e−rT . (2.5)

The first term in brackets on the right hand side above vanishes at an extremal value
(it is equal to −r dW

dT
). Since we are assuming the profits of the plant that has not been

upgraded, Po, fall off faster with increasing carbon price C than the upgraded plant’s
profits, Pn, we have that (

dPo
dC
− dPn
dC

)
< 0.

In the deterministic limit of an ETS price following geometric Brownian motion we
have

dC = µCdt,

where µ is the constant drift rate taken to be positive to model an increasing ETS price,
i.e.

dC

dT
= µC > 0.

Furthermore, we assume that as the technology matures the investment costs will de-
crease so that for a convex decreasing investment cost function I(T )

(−I ′′(T ) + rI ′(T )) < 0.

Therefore, for quite general choices of Po,n and I(T ) we find

d2W

dT 2
< 0
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at an extremal value and therefore the NPV is maximised at the value of T obtained
from (2.3). We will find in the stochastic case below that our solution for the optimal
investment boundary C∗ reduces to (2.3) in the limit of zero volatility.

2.2 Stochastic ETS permit price:

Suppose now instead that C follows a geometric Brownian motion (GBM) process:

dC = µCdt+ σCdz

where µ is the constant drift rate, σ is the constant volatility and z describes a Wiener
process.

We may no longer differentiate (2.1) to obtain the optimal T but rather we expand the in-
tegral using Ito’s lemma. Our approach will be to solve a Bellman equation, sometimes
called the Hamilton-Jacobi-Bellman equation, derived from (2.1) to obtain the critical
threshold for investment, the “free-boundary” C∗, above which investment is optimal.
This procedure has been carried out, for example, in Pindyck (2002).

As before we assume an infinite planning horizon so that the upper limit in the second
integral in (2.1) becomes infinite. It is well known that in this case the resulting Bellman
equation contains no time derivative, provided the integrand contains no explicit calen-
dar time dependence (see Dixit and Pindyck (1994)). This is a standard approximation
in analytical papers since the presence of a time derivative term turns the Bellman equa-
tion into a partial differential equation which usually must be solved numerically, losing
the benefit of an analytic solution, see for example McDonald and Siegel (1986). Pro-
vided it is appropriate to take r > µ, and P a linear decreasing function of C, we are
guaranteed that the integral converges.

So, in the case where C follows GBM we have

W (C) = E0
(∫ T

0

Po(C(t))e−rtdt+

∫ ∞
T

Pn(C(t))e−rtdt− I(T )e−rT
)

(2.6)

where E0 denotes the expected value based on information available at time t = 0.

The presence of a T dependent investment cost I(T ) prevents us from simply applying
a Bellman equation derived from the integral. However, this term may be taken inside
the integral. Then we have

W (C) = E0
(∫ T

0

Po(C(t))e−rtdt+

∫ ∞
T

[Pn(C(t)) + I ′(t)− rI(t)] e−rtdt
)

(2.7)
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since
−I(T )e−rT =

∫ ∞
T

d

dt
(I(t)e−rt)dt =

∫ ∞
T

(I ′ − rI)e−rtdt.

To avoid the explicit introduction of calendar time into the integral we define

d

dt
I = −ξI (2.8)

where ξ measures the rate at which investment costs decrease, so now the problem
depends on I and C only and not explicitly on t (i.e. T = T (I, C)). Now we can apply
a standard Bellman equation to the regions before and after investment to determine the
‘free-boundary’ C∗, the trigger price above which it is optimal to invest. The general
Bellman equation reads

rW (C) = P̂ (C) +
1

dt
E0[dW (C)], (2.9)

where P̂ denotes the profit flow in the interval dt in the pre and post investment regions
in (2.6) above, E0[dW (C] denotes the expected capital gain and r is the discount rate.

We assume that the profit function of the coal plant without CCS, Po, may be written as

Po = αo − qoC(t)

and that the profit function of the coal plant with CCS retrofitted is given by

Pn = αn − qnC(t),

where αo,n and qo,n are constants throughout the lifetime of the plant.

Substituting this choice of profit function into the general Bellman equation (2.9) in the
pre-investment region and expanding E0[dW (C)] according to Ito’s Lemma gives

rW o = Po +
σ2C2

2
Wcc + µCWc (2.10)

which, choosing Po = αo − qoC, has the solution

W o = A1C
m + A2C

m′
+
αo
r
− qoC

r − µ
,

wherem andm′ are the roots of m̂(m̂−1)σ
2

2
+µm̂−r = 0. If r > µ > 0 then we know

that one root is positive, m say, whilst the other, m′, is negative. The first two terms in
this solution represent the value of the option to wait before investing whilst the last two
terms are particular solutions of the integral defining W (of course the integral must be

5



a solution of the Bellman equation derived from it). Since we require W o(C = 0) to be
finite we can set A2=0.

In the region where it is optimal to invest (C ≥ C∗) we have

rW n = Pn − (ξ + r)I(t) +
σ2C2

2
Wcc + µCWc. (2.11)

The solution of this equation is

W n = B1C
m +B2C

m′
+
αn − ξI(t)

r
− I(t)− qnC

r − µ
.

This time it is clear that there is no value to the option to delay, since we are in the
investment optimal region. Thus we take B1 = B2 = 0.

The final two boundary conditions are the value matching condition on the free bound-
ary

W o(C∗) = W n(C∗)

and the smooth pasting condition

W o
c (C

∗) = W n
c (C∗).

Applying the value matching and smooth pasting boundary conditions we find that the
free boundary is given by:

C∗ =
m

m− 1

(
αo − αn − I ′(t)

r
+ I(t)

)
r − µ
qo − qn

(2.12)

after substituting I ′(t) for−ξI(t). This expression forC∗ is the main result of this work.
Note that we can already see a value to waiting to invest since (−I ′(t)) > 0 behaves
like extra revenue for the plant that has not yet been upgraded.

We now apply standard techniques of comparative statics to determine how C∗ changes
as its parameters vary.

We first study how this investment threshold changes as the carbon permit price volatil-
ity is varied, this standard argument may be found in more detail in (2), for example.
First note that the only term in (2.12) that depends on the volatility σ is m, where recall
that m is the positive root of the fundamental quadratic

Q(m̂) = m̂(m̂− 1)
σ2

2
+ µm̂− r = 0 (2.13)

The coefficient of m̂ inQ(m̂) is positive soQ(m̂) describes an upward pointing parabola
tending to∞ as m̂→ ±∞. NowQ(1) < 0 since we are assuming µ < r, andQ(0) < 0.
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Therefore the graph of Q crosses the horizontal axis at one point to the right of 1 and at
one point to the left of zero. Thus at the positive root m̂ = m > 1. We are interested
in how m changes as the volatility is varied since m is the only parameter in (2.12)that
depends on σ. For this we follow (2) and take the total derivative of (2.13) with respect
to σ to find

∂Q

∂m̂

∂m̂

∂σ
+
∂Q

∂m̂
= 0 (2.14)

with all derivatives evaluated at the positive root m. Since Q(m̂) is an upward-pointing
parabola, at m we have ∂Q

∂m̂
> 0. Furthermore

∂Q

∂m̂
= σm̂(m̂− 1) > 0

at m > 1.

So we conclude that ∂m
∂σ

< 0 so that as σ increases, m decreases and in particular m
m−1

increases. So an increase in the volatility of the ETS permit price will push up the
critical threshold for optimal investment C∗. Note that expanding the explicit formula
for the positive root m in a power series in σ and taking the limit σ → 0 we find that
m = r

µ
. We thus obtain the correct form for the deterministic solution (2.3).

Now we define the difference in gross revenues of the plants 4α = αo − αn and the
difference in the carbon coupling constants of the plants4q = qo − qn. Using (2.12) it
follows that

∂C∗

∂4α
> 0 (2.15)

and
∂C∗

∂4q
< 0. (2.16)

Now (2.15) tells us that as we increase the difference between the gross revenues of the
plants the optimal investment boundary increases, since in this case the plant without the
upgrade has an increased relative advantage over the upgraded plant in terms of gross
revenue. Likewise, (2.16) tells us that if the plant without the upgrade emits more CO2

then the plant with the upgrade has a relative advantage and so the investment threshold
decreases.

3 A numerical example

To illustrate the utility of our expression for C∗ we will give a numerical example. We
will assume we are dealing with a baseload coal plant throughout the lifetime of the
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plant.1

Suppose we have a Super Critical Pulverised Coal (SCPC) power plant with 500MW
capacity, an 80% capacity factor and an average CO2 emission rate of 800g/kWh (these
characteristics are taken from Abadie and Chamorro (2008)). Assuming that 5% of the
electricity output is consumed by ancillary units this gives a total annual output of 3,
328, 800MWh. Combining this with the CO2 emission rate gives 2,663,040 ton/year of
CO2 emitted per year.

It is clear that the emissions cost to the plant is then 2, 663, 040 ton/year× Average ETS
price e/ton=qoC. Since 90% of the CO2 is captured once the plant has been upgraded
we have qn = qo/10. Following Abadie and Chamorro (2008) once more we take the
cost of storage and transportation of the CO2 to be e7.35/ton giving an annual cost of
2.663×106ton/year×0.90× 7.35e/ton=e17.62M/year.

Operation and maintenance cost of the CCS unit are taken to be 1.348 Euro/MWh giving
a total annual cost of 4.49M e/year. So the total extra cost of running the CCS unit is
approximately 22M e/year. This will provide a lower bound on 4α below since it
ignores the revenue depletion from the reduction in output of the CCS unit (in Abadie
and Chamorro (2008) it is assumed that there’s a 20% loss of the plant’s output due to the
presence of the CCS unit). Finally we take our investment time dependent investment
cost function I(T ) =e214.5 × 106 exp(−0.0202T ) so that I(T ) decreases by 2% per
year, as in Abadie and Chamorro (2008).

We will choose the discount rate r = 0.06 and the carbon permit drift µ = 0.05. In
fact, as noted in Abadie and Chamorro (2008), some authors recommend using a much
higher discount rate-as high as 14.8% in Rubin et al. (2007) to reflect the higher risk
involved in CCS investments. For fixed 0 < µ < r, the higher the discount rate, the
faster the convergence of the NPV integral and so our approach of using an infinite
planning horizon becomes more similar to a finite horizon problem.

To consider the effects of carbon price volatility on the investment timing decision we
plot the free boundary C∗ with 4q as above and with 4α =e(22 + 50) × 106 i.e.
assuming a revenue depletion of e50 M due to the reduced output of the upgraded
plant (the comparative statics result (2.15) tells us that increasing 4α pushes up the
investment boundary C∗). We plot C∗ for σ = 0, the deterministic case, and for σ =
0.3, the stochastic case. In the deterministic case the intersection of the deterministic
ETS permit price curve and the free boundary C∗ gives the maximum of the NPV (not
shown).

A summary of all the parameters used in this example is given in Table 1.

1For a high carbon price scenario this is unrealistic since coal plants without CCS are heavily penalised
since they emit more carbon than gas plants and may not be dispatched as baseload.
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Table 1: Parameters used in Figure 1 to plot the optimal investment boundary C∗ (2.12)
Parameter Value
Discount rate r 0.06
Drift rate µ 0.05
Volatility (Deterministic scenario) σ 0
Volatility (Stochastic scenario) σ 0.3
Initial Carbon Price C(t = 0) e5/tCO2

Investment Cost Function I(T ) e214.5× 106 exp(−0.0202T )
Difference in Plant gross revenues4α e(22 + 50)× 106/y
Difference in emission coupling Constants4q 2.397× 106tCO2/y

In the stochastic case the time of optimal investment depends on the sample path of our
GBM. However we can still define the optimal ‘switching time’ as

Ts := inf{t > 0 : C(t) ≥ C∗(t)}

where inf stands for infimum or greatest lower bound, see Mosino (2012) for exam-
ple. For presentation purposes we take the the deterministic path followed by C as our
reference path, even in the stochastic case. Figure 1 clearly demonstrates the effect
of volatility on the optimal decision choice. When σ = 0 we recover the determinis-
tic solution and the intersection of C and C∗ gives the maximum of the NPV. Adding
volatility to the ETS price drives the free-boundary C∗ upwards hence delaying the opti-
mal decision to invest further, in agreement with the comparative statics of the previous
section.

For the range of parameters chosen, investment in carbon capture technology is not
optimal in the normal lifetime of an SCPC power plant which we take to be 40 years and
assuming that the investor will not invest after the 35 year period as they will want want
to recoup their investment (for the reference path chosen Ts is approximately 38 years
for the deterministic scenario and approximately 50 years for the stochastic scenario.
(Note that it is not uncommon for a coal fired power plant to have a lifetime of 60
years).

The significant difference between predicted investment timing in these two scenarios
illustrates the sensitivity of investment to the expected volatility of carbon prices. This
volatility assumption, in turn, depends upon the form of climate policy that is in place
and the way the policy is operated. In particular, if climate policy relies on tradable
carbon permits, as in the ETS, expected price volatility will likely be higher than if
carbon taxes are used. Both mechanisms can give rise to some carbon price volatility,
but taxes tend to change more slowly and predictably than the prices of permits. Permit
systems are intended to guarantee a quantity of carbon abatement but must allow price
variation to achieve this.
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Figure 1: The intersection of the expected ETS price with the critical boundary curve
C∗ with and without ETS price volatility.

The current policy landscape in Europe offers a practical example of this difference. In
Great Britain the newly introduced carbon price floor should substantially reduce the
volatility in the carbon cost to producers. The current level of the floor, at £16/tCO2,
approx e19/tCO2, is much higher than the current ETS price of approx e5/tCO2, so
that this lower bound on the carbon price has effectively removed all volatility in the
cost of carbon to generators for the foreseeable future (the floor price rises linearly
to £30/tCO2 in 2020 and is set to reach £70/tCO2 by 2030). British generators will
effectively face a carbon tax rather than a tradable permit system. With this higher
starting point, planned linear growth and little volatility in the carbon floor price, it will
be optimal to invest much sooner in Britain than in the rest of Europe in a technology
such as CCS, all other things equal.

Figure 1 illustrates the point that putting structures in place that reduce the volatility
from the ETS price (such as a carbon tax or binding carbon price floor) will lead to
earlier investment in abatement technologies than maintaining volatile carbon prices.
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4 Conclusion

We have shown that different investment timing decisions are optimal depending on the
level of volatility in the ETS price. Carbon taxes and tax-type climate policy mech-
anisms such as the newly introduced carbon floor in Great Britain can substantially
reduce the uncertainty in the carbon price and push the critical value of C for invest-
ment, C∗, lower. They are likely to be more effective than permit-based policies for
encouraging investment in abatement technologies. Of course, their wider efficiency
properties depend upon the tax/carbon price floor being set at an appropriate level and
on the policy being harmonised across as many jurisdictions as possible.

As noted in Abadie and Chamorro (2008) different methodologies and parameters used
in the existing literature will lead to different estimates of the optimal investment thresh-
old. The main contribution of this paper is an analytic model of the CCS investment
decision with decreasing investment costs. We reproduce the qualitative features of
previous research, namely that volatility increases the investment threshold and that at
current ETS permit prices it is not optimal to invest in CCS.
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