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ABSTRACT 

DYNAMIC RESPONSE OF SIMPLE SYSTEMS 

TO PERIODIC FORCES 

by 

Kirk W. Dotson 

A study of the response of viscously damped single-degree-of- 

freedom systems to non-harmonic periodic excitations is presented. 

The objectives have been (1) to assess the effects of the various 

factors that affect the response of such systems; and (2) to present 

information and concepts with which the salient features of the 

response may be identified readily. 

The following aspects of the response are examined: (a) the 

steady-state response, which is the response obtained after the free 

vibrational component is damped and the resulting motion repeats 

itself; (b) the absolute maximum response, which is generally obtained 

prior to the attainment of the steady-state response; (c) the rate 

of "build-up" of the response; and (d) the effects of possible cessation 

of the excitation. 

The factors investigated include the characteristics of the 

structure and the excitation. Special attention is paid to the behavior 

of low-frequency systems. For a number of excitations, closed-form 

expressions are also presented for the steady-state response of 

undamped systems. 
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I. INTRODUCTION 

The response of structures to periodic forces is of interest in a 

variety of applications. Periodic excitations may be -induced by im¬ 

balances in rotating or reciprocating machinery, or may be associated 

with the vortices induced in structures subjected to steady winds. 

Additionally, the forces induced by waves on offshore structures are 

often assumed to be periodic. The periodic response of structures 

also is of interest as a step in evaluating their transient response 

by Fourier transform techniques. 

The following aspects of the response of structures to periodic 

excitations are of interest: (1) the steady-state response, which is 

the response obtained after a sufficiently long time such that the 

free vibrational component is damped and the resulting motion repeats 

itself; (2) the absolute maximum response, which is generally obtained 

prior to the attainment of the steady-state response; (3) the rate of 

nbuild-upn of the response; and (4) the effects of possible cessation 

of the excitation before attainment of the steady-state condition. 

The methods for evaluating the response of linear structures to 

periodic excitation are well established. There is, however, a paucity 

of information regarding the response characteristics of such systems. 

Even for the simplest possible single-degree-of-freedom system, the 

available information refers almost exclusively to harmonic excitations 

or only to limited aspects of the response. The response character¬ 

istics of systems subjected to nonharmonic periodic excitations cannot, 

in general, be predicted without detailed analyses. 

1 
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The objectives of this study are: (1) to assess the effects of the 

various factors that affect the response of viscously damped single- 

degree-of-freedom systems to periodic forces; and (2) to present in¬ 

formation and concepts with which the salient features of the response 

of such systems may be identified readily. Due consideration is given 

to each of the four aspects of the response enumerated above. Both 

harmonic and nonharmonic periodic excitations are considered. The 

factors investigated include the form and duration of the excitation, 

and the natural frequency and damping of the system. The results 

are displayed in the form of response histories and response spectra* 

using tripartite logarithmic plots to emphasize limiting trends. The 

sensitivity of the response to variations in the characteristics of 

the structure and excitation are examined through analytical and 

numerical means, and simple expressions are presented for the limiting 

behavior of very flexible and very stiff systems. For a number of 

excitations, closed-form expressions are also presented for the steady- 

state response and the associated maximum response of undamped systems. 

Special attention is given to the behavior of low-frequency, com¬ 

pliant systems which are becoming of increasing importance in offshore 

construction. It is shown that the maximum steady-state response of 

such systems can be significantly different from the corresponding 

maximum transient response. The reason for this difference is iden¬ 

tified, and simple practical procedures are presented for estimating 

the two responses. 



II• SYSTEMS, EXCITATIONS AND METHOD OF SOLUTION 

The systems investigated are viscously damped, single-degree-of- 

freedom linear systems subjected to periodic excitations of relatively 

simple forms. The motion for the system is defined by 

* +• 2dpi. i- p*x * ^ PCt) (2.1) 

in which P(t) is the exciting force at any time t; x, Ç and p are the 

displacement, fraction of critical damping and circular natural fre¬ 

quency of the system, respectively; and a dot superscript denotes 

differentiation with respect to time. 

Some of the force histories considered are shown in Fig. 1. They 

include the alternating step and alternating versine functions shown 

in parts (a) and (b), the two sequences of half-sine waves shown in 

parts (c) and (d), and the two sequences of triangular pulses shown in 

parts (e) and (f). The alternating versine excitation may represent 

the drag component of the force induced by a harmonic wave. 

Special attention is given to the effects of the alternating step 

function mainly because of its simplicity and because the response to 

this excitation reflects the salient features of the response to more 

complex excitations as well. 

The transient response of the system was evaluated by a step-by- 

step integration procedure assuming that the exciting force varies 

linearly within each integration step, At. The integration step was in 

all cases small compared to both the period of the excitation and the 

natural period of the system. Specifically, At was taken equal to or 

less than l/20th the undamped natural period of the system, and less 

3 



than l/40th the period of the excitation, whichever was smaller. The 

first criterion controls the analysis of high-frequency systems, whereas 

the second controls the analysis of low-frequency systems. In addition 

to ensuring that the response of the system is evaluated for a reason¬ 

able number of points for each cycle of the excitation, the latter 

criterion ensures that the excitation itself is adequately represented 

by the piecewise linear approximation employed in the solution. 

The steady-state responses were in all cases computed from the cor¬ 

responding transient responses by application of the technique described 

in Ref. 3. This technique has as its basis the fact that the difference 

between the transient and steady-state responses for a typical force 

cycle arises from differences in the initial states of the two motions. 

The steady-state response may, therefore, be obtained from the cor- • 

responding transient response simply by superimposing a corrective 

solution which appropriately modifies the initial state of the transient 

response. The analyses were implemented with the aid of a special 

purpose computer program. 



III. STEADY-STATE RESPONSE 

Of the four aspects of the response of periodically excited systems 

referred to in the Introduction, the steady-state response is probably 

best understood. Even for this case, however, the steady-state response 

of systems to nonharmonic periodic excitations cannot be identified 

readily from available information. The information in this chapter is 

intended to provide improved insight into the characteristics of the 

steady-state response and into the parameters that control it. 

3.1 Representative Response Histories 

The solid lines in Fig. 2 represent the steady-state displacements 

of systems with 10 percent of critical damping, Ç = 0.10, subjected to 

the alternating step force shown in part (a) of Fig. 1. The results 

are normalized with respect to xgt, the static displacement induced by 

the peak value of the applied force. Six different values of the fre¬ 

quency parameter, ftQ, are considered, in which f » p/2ïï is the undamped 

natural frequency of the system in cycles per unit of time, and tQ is 

the period of the exciting force. 

Also shown in dashed lines are the corresponding transient respon¬ 

ses from which the steady-state solutions were obtained. In the devel¬ 

opment of the transient solutions, the system was presumed to be ini¬ 

tially at rest. The initial conditions of the steady-state solution 

are naturally generally different from zero, and these conditions are 

the same as those at the end of the force cycle. 

These plots reveal that the response histories depend importantly 

on the value of the frequency parameter, ftQ. The larger this parameter, 

the greater is the number of oscillations per cycle of the forcing 

5 
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function. This is true of both the transient and steady-state response 

histories. There is, in fact, a close resemblance between the two sets 

of curves, a fact which the method of analysis employed makes readily 

apparent. The similiarity in the two sets of response curves is par¬ 

ticularly great for the higher values of ftQ. 

The highly irregular nature of the response curves for systems with 

high values of ftQ makes it clear that had the response been computed 

by the Fourier series approach, an unusually large number of terms in 

the series would have been required to achieve good accuracy. The 

method of analysis employed avoids this complexity. 

Although the general shapes of the response histories for the 

steady state and the associated transient response are similar, the peak 

values of the two responses may be significantly different at critical 

values of ftQ. A comparison of these peak values for systems with Ç=0.05 

is provided in Fig. 3, in which the amplification factors, AF, are plotted 

as a function of ftQ. The amplification factor is defined as the ab¬ 

solute value of the maximum response, normalized with respect to xgt* 

In the low-frequency region of Fig. 3, two sets of results are 

presented for the maximum transient response. One identifies the maxi¬ 

mum response during the period that the exciting force acts on the 

system, whereas the other identifies the value of the peak response 

following termination of the excitation. 

The peaks of the steady-state response spectrum occur at natural 

frequency values equal, to the frequencies of the harmonic components in 

a Fourier series expansion of the excitation. As would be expected, 

the amplifications factors for the maximum steady-state response in the 
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neighborhood of these frequency values are significantly greater than 

those for the transient response induced by one cycle of the forcing 

function. By contrast, the transient response values are larger than 

the corresponding steady-state values over the remainder of the response 

spectrum. The percentage differences between the two sets of results 

are particularly large for small values of the frequency parameter. 

This may be appreciated better from Fig. 4, which displays on logarith¬ 

mic scales the same information as that presented in Fig. 3. 

3.2 Steady-State Response Spectra 

The response spectra for steady-state displacement presented in 

Figs. 3 and 4 were for systems with Ç = 0.05. In Fig. 5 are presented 

similar spectra for systems having four different damping values in the 

range of zero and 20 percent of the critical value. 

As would be expected, damping decreases the resonant peaks. The 

reductions corresponding to a given damping value are generally sig¬ 

nificantly greater for the higher order resonant peaks than the first 

order peak. For example, the amplification factor for systems with 

Ç = 0.05 is 12.7 at the first resonant peak, 5.5 at the second resonant 

peak, and 4.1 at the third resonant peak. It is of interest to note 

further that, within certain ranges of the frequency parameter, an in¬ 

crease in damping is associated with an increase, rather than with a 

decrease, in the amplification factor for steady-state response. 

In Fig. 6 are presented response spectra for the steady-state dis¬ 

placement of systems subjected to the alternating versine force shown 

in part (b) of Fig. 1. The general trends of these spectra are the same 

as those of the spectra presented in Fig. 5, except that the higher 
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order resonant peaks are sharper than those for the step pulse, and the 

effect of damping on the magnitudes of these peaks is also greater. 

These differences are consequences of the fact that the higher order 

terms in a Fourier series expansion of the versine excitation are not 

as large in comparison to the fundamental term as are those for the 

step pulse. Accordingly, their contributions to the steady-state re¬ 

sponse are correspondingly smaller. 

Further insight into the characteristics of the steady-state 

response spectra may be gained from a comparison of the information 

presented in Figs. 7a through 7c. In part (a) are given the well 

known response spectra for the steady-state response of systems excited 

by a sinusoidal force, and in parts (b) and (c) are given the corres¬ 

ponding spectra for systems excited by each of the two sequences of 

half-sine pulses shown in parts (c) and (d) of Fig. 1. These data are 

intended to demonstrate the influence that the direction of the excita¬ 

tion pulses has on the ensuing response. 

Note that the number, magnitude, and generally the location of the 

resonant peaks are different in the three cases. The location of the 

peaks for the discontinuous half-sine pulses can readily be determined 

from Fourier expansions of the forcing functions. For the 'half-sine' 

excitation shown in part (c) of Fig. 1, this expansion is 

(3.1) 

and for the 'absolute sine' shown in part (d), it is 

(3.2) 
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in which P represents the peak value of the exciting force. It should 

be clear that the ’absolute sine’ excitation will exhibit resonant 

response peaks at values of ftQ equal to an even integer, whereas the 

’half-sine* pulse will exhibit, in addition, a peak at a value of 

ft «1. 
o 

A few comments are also in order concerning the limiting behavior 

of the spectra as ftQ tends to zero. The peak value of the steady-state 

displacement at this limit can be shown to equal the static displace¬ 

ment induced by a force equal to the mean value of the excitation. For 

the sinusoidal excitation this force is zero, whereas for the excita¬ 

tions considered in Figs. 7b and 7c, they are determined from Eqs. 3.1 

1 2 
and 3.2 to be equal to — P and — P, respectively. 

The response spectra for the triangular sequences of pulses con¬ 

sidered in parts (e) and (f) of Fig. 1 are shown in Figs. 8 and 9, 

respectively. The general trends of these spectra are similar to 

those of the spectra presented previously. It should be noted, however, 

that the high-frequency limits of these spectra, and of the spectra for 

some of the other excitations considered, are different. This matter 

is examined in detail in a subsequent section. 
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3.3 One-Term Fourier Series Approximations 

As already noted, the steady-state response may also be analyzed 

by a Fourier series decomposition of the forcing function. It is of 

interest to examine here how the individual terms in such an approach 

contribute to the maximum value of the steady-state response of the 

system. 

In Fig. 10 the response spectra for the steady-state response of 

systems subjected to the alternating step excitation are compared with 

the corresponding spectra obtained by considering only the effect of 

the jth (j « 1,2,3) term in the Fourier expansion. It can be seen that 

the results obtained by the exact and the one-term solution are in 

excellent agreement in the region of the spectrum up to and slightly 

past the first resonant peak. The agreement deteriorates, however, 

beyond this region, and the one-term solution leads to significant 

errors even when the term considered is the dominant contributor to 

the response. 

It can also be shown that use of any of the standard rules for 

approximating the maximum value of the steady-state response from the 

corresponding values of the component terms in a Fourier series repre¬ 

sentation also leads to substantial errors. For example, use of the 

root mean square procedure can be shown to lead to errors well in 

excess of 25% for the excitations considered. 

3.4 Closed-Form Solutions 

The method of analysis employed in this study can also be used to 

obtain closed-form expressions for the steady-state response of the 

system in special cases. For example, starting with the following 



well-known expression for the transient displacement, x(t), of an 

initially at rest, undamped system subjected to a rectangular step, 

11 

- X.s%. ( | - e-osp'fc*} t 4 t0/x (3.3) 

it can be readily shown that the steady-state displacement, y(t), for 

the alternating step excitation is given by 

The term on the extreme right of Eq. 3.4 represents the corrective 

solution, £(t) in the notation of Ref. 3, which transforms the tran¬ 

sient solution to the steady-state solution. 

Equation 3.4 can also be obtained by an analysis of the general 

solution of the governing differential equation of motion. By choosing 

the constant coefficients of the homogeneous solution such that the 

motion repeats itself after a time interval equal to the excitation 

period, tQ, the steady-state response can be found. For the undamped 

system and the step excitation considered, the solution of Eq. 2.1 for 

0 - t - tQ/2 is given by 

» c, cospt -r + xs-t (3.6) 

For a forcing function that is antisymmetric about the midpoint of the 

excitation period, the steady-state response also is antisymmetrie, and 

the values of c^ and C2 can most effectively be determined from the 

solution valid for 0 - t - tQ/2 by requiring that 

and 

(3.5) 

XCo) - K(^/Z > (3.7) 
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and 

XCeO = - *Ct./zO (3.8) 

On satisfying these conditions, one obtains a system of two algebraic 

equations in c^ and C2» the solution of which is 

C, = -xst (3.9) 

(3.10) 

Finally, on substituting these values of c^ and C2 into Eq. 3.6 and 

replacing x(t) by y(t), one obtains the expression presented in Eq. 3.4. 

With the instantaneous value of the steady-state displacement 

established, the maximum value of this displacement may be determined 

by differentiation. This leads to the following expressions for the 

amplification factor, AF = y /x 
fficLX S L 

AF = sec (ffO ~ > -for- «ft, SI (3.11a) 

and 

AF = I sec + ' -for- -ft, ï V (3.11b) 

Similar closed-form expressions have also been obtained for 

damped systems subjected to the alternating step force, as well as for 

undamped systems subjected to a number of other periodic excitations. 

These results are summarized in Appendices C and D. The closed-form 

expressions for damped systems subjected to the alternating step force 

give, results which are naturally the same as those obtained by numeri¬ 

cal integration and presented in Figs, 2 and 5. 

3,5 Limiting Behavior for Low-Frequency Systems 

This section deals with the response of systems for which the 

value of the frequency parameter ftQ tends to zero. Both the transient 
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and steady-state responses are examined* 

The equation of motion of such systems reduces to 

XU) = ~ (3 

from which it is clear that the structural acceleration in this case 

is a function only of the exciting force and the system mass. Note 

further that the equation of motion, and hence the response, are in¬ 

dependent of the system damping in this case. 

3.5.1 Transient Response. For systems that are initially at 

rest, integration of Eq. 3.12 leads to the following simple expres¬ 

sions for the velocity and displacement of the system, 

xC-f> - — (3.13) 

x c-t> = ^ rxtv> (3.14) 

in which I^(t) and ^(t) represent the first and second integrals of 

P(t), respectively, with the initial values of these integrals taken 

as zero. The units of I^(t) are naturally force multiplied by time, 

and those of 1^(t) are force multiplied by time squared. The maximum 

values of the responses are then 

_P 
m 

(3.15) 

x 
I, 
m 

(3.16) 

x (3.17) 

in which P, 1^, and represent the peak numerical values without 

regard to sign of the exciting force, of the first integral of P(t), 

and of the second integral of P(t), respectively. 
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3.5.2 Steady-State Response. Making use of the approach described 

in Ref. 3, the steady-state response, y(t), may be expressed in the 

form 

a Co*>h (3.18) 

in which y(0) and y(0) are the yet to be determined initial values of 

the steady-state displacement and velocity of the system; and g(t) and 

h(t) represent the displacements at time t induced by a unit initial 

displacement and a unit initial velocity, respectively. 

Consider now a periodic exciting force, P(t), with a zero mean. 

When the systems with negligible stiffness considered herein are sub¬ 

jected to such an excitation, gCt)5®! and h(t) « t. On substituting 

these unit response functions into Eq. 3.18, differentiating the latter 

expression, and making use of Eqs. 3.13 and 3.14, the following expres¬ 

sions are obtained 

^ X, t-t) + <f (°) (3.19) 

and 

s= “ Hh 4- >y (©} (3.20) 

These results could, of course, also have been obtained by integration 

of Eq. 3.12, giving due interpretation to the constants of integration. 

Since the exciting force considered is periodic with a zero mean, 

•• • 

the steady-state response functions, y(t), y(t) and y(t), will also be 

periodic and have a zero mean. Specifically, by ensuring that y(tQ) = 

y(0), the following expression is obtained from Eq. 3.20 for y(0): 

t o') yC«0 - 
-t. 

(3.21) 
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Equation 3.19 can then be written as 

^ [ X.C^ ~ ^2^=?] (3.22) 

in which the bracketed term represents the first integral of the 

exciting force, with the initial value of the integral adjusted such 

that the integral has a zero mean. This balanced or shifted version 

of I^(t) will be denoted by I^(t). With this notation, Eq. 3.22 may 

be expressed as 

ÿ C-t) * h (3.23) 

By ensuring that the integral of y(t) also be periodic, it can 

similarly be shown that 

y(-t)« ± (3.24) 

in which I^(t) represents the integral of I^(t), i.e. the second 

integral of the exciting force, with the initial value of I*(t) ad¬ 

justed such that ^(t) has a zero mean. It should be clear that I^(t) 

is effectively the balanced or adjusted version of ^(t). The maximum 

values of I^(t) and I*(t) will be denoted by 1^ and i^» respectively. 

In addition to the periodic force component with a zero mean, 

P(t), if the excitation includes a constant component, P , the total 

force, P^,(t), will be of the form 

+ PCV> (3.25) 

The total steady-state displacement of the system, y^,(t) is then given 

by 
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«yl-o = CXJO. + ^ IV) (3.26) 

in which (xgt)o = Po/k 
a constant representing the static displace¬ 

ment induced by P . J o 

3*5,3 Comparison of Results* From the information presented in 

the preceding sections it is clear that the transient and steady-state 

responses of systems having negligibly small resistances are related 

simply to the integrals of the exciting force* 

The interrelationship of the two responses is illustrated in 

Fig. 11 for systems subjected to the alternating step force pulse* In 

part (a) of the figure are shown the transient response histories, and 

in part (b) are shown the corresponding steady-state responses* It 

should be clear that the maximum value of the steady-state displace¬ 

ment is significantly less than that of the transient displacement. 

Similar results are presented in Figs. 12 and 13 for a simulated 

wave loading which has an effective period of slightly in excess of 

100 sec. 

An indication of the extent to which these limiting responses may 

approximate the behavior of systems having small but finite stiffnesses 

is provided in Fig. 14. The limiting responses are compared for the 

alternating step force with the actual responses computed for a system 

for which ft^-0.1. In the development of the transient solution, the 

system is presumed to be initially at rest, and system damping is 

presumed to equal 5 percent of the critical value in all cases. It 

can be seen that the agreement between the limiting and actual re¬ 

sponses are excellent, particularly for the steady-state responses. 

Further insight into the range of values of the frequency parameter 
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for which the actual maximum responses may adequately be approximated 

by the corresponding limiting response may be obtained from the response 

spectra presented in subsequent sections* 

3.6 Tripartite Response Spectra 

It is instructive to display the response spectra presented earlier 

in Figs. 3 and 4 also in a tripartite logarithmic format analogous to 

that used to display response spectra for earthquake ground motions. 

Figure 15 shows results plotted in such a format. 

The maximum response of the system in this plot is expressed in 

terms of the maximum spring force, F. This force may also be inter¬ 

preted as the equivalent static force which produces the same struc¬ 

tural response as the maximum response produced by the actual time- 

dependent force. The vertical and the two diagonal scales are alterna¬ 

tive dimensionless measures of F. The diagonal scale on the right is 

normalized with respect to the maximum value of the exciting force, P; 

the vertical scale is normalized with respect to pl^; and the diagonal 

2 
scale on the left is normalized with respect to p ^ 

An alternate but equivalent means of expressing the scales of the 

tripartite log plot can be found which uses terms analogous to the 

pseudo-acceleration and pseudo-velocity concepts used in studies of 

ground-excited systems. In particular, the diagonal scale on the right 

2 2 
can be written as p x /[P/m] , where p^x-,a„ is analogous to the max uuus. ^ 

pseudo-acceleration of the ground-excited system. The vertical scale can 

be expressed as px /£l1/m], where px is analogous to the pseudo- 
max x max 

velocity of the ground-excited system. Finally, the left diagonal 

scale may be expressed as x^ay/£l?/m]. It may further be noted that 

the normalizing terms P/m, I^/m, and 12/m represent the maximum 
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transient values of the acceleration, velocity, and displacement of the 

system when its natural frequency tends to zero. These values corres¬ 

pond to the maximum values of the ground acceleration, ground velocity, 

and ground displacement in the corresponding plot for ground-excited 

systems. 

The tripartite logarithmic format used in Fig. 15 best displays 

the maximum transient displacement. One notes, for instance, that the 

maximum steady-state displacement for low-frequency systems subjected 

to the alternating step excitation is one eighth that of the maximum 

transient displacement. The steady-state response spectrum can, how¬ 

ever, be emphasized in a format which uses the corresponding adjusted 

or balanced force integrals, l| and I^. In this case the steady-state 

response spectrum approaches unity on the left diagonal scale for low- 

frequency systems. 

The well-known response spectra for undamped systems subjected to 

n pulses of the sinusoidal excitation are shown in Fig. 16 on the tri¬ 

partite log format. One notices that the response spectra for low and 

high-frequency systems are again emphasized, and that the low-frequency 

response spectra approach a limit on the vertical scale for odd values 

of n and a limit on the left diagonal scale for even values of n. The 

existence of a limit on the vertical scale and left diagonal scale 

implies, of course, that these response spectra approach zero linearly 

and parabolically, respectively, on an arithmetic plot. 

3.7 Limiting Behavior for High-Frequency Systems 

This section deals with the response of systems for which the 

value of the frequency parameter ftQ tends to infinity. The three most 



19 

important factors in the determination of this response are 1) the non¬ 

harmonic nature of the excitation, 2) the amount of damping in the 

system, and 3) the locations and magnitudes of discontinuities in the 

exciting force, 

A high-frequency limiting response does not in general exist for 

undamped systems since the steady-state response becomes unbounded when 

the natural frequency values equal the frequencies of the harmonic 

components of the Fourier series expansion of the excitation. 

A steady-state limiting response can always be identified for 

damped systems, however, although the rate of convergence to this limit 

is highly dependent on the amount of damping in the system and the 

shape of the forcing function. The response histories shown in Fig. 17, 

for instance, illustrate that the effects of discontinuities in the 

forcing function decay for damped systems and that these effects are, 

furthermore, localized for high-frequency systems. 

3.7.1 Continuous Excitations. The steady-state response of high- 

frequency systems subjected to an excitation whose periodic extension 

is continuous approaches a "static" condition since the effective period 

of the excitation becomes very long and the system behaves as if loaded 

very gradually; i.e., the maximum steady-state response due to continu¬ 

ous excitations is given by 

7vnoot * *** (3-27) 

This limiting response is valid for undamped systems as well as 

damped, provided that the continuous forcing function may be represented 

by a finite number of harmonic components. Figure 7a shows that this 

is, of course, true for sinusoidal force. 



Figures 6, 7b, 7c and 8, furthermore illustrate that the steady- 

state response converges fastest to the limit defined in Eq. 3,27 for 

highly damped systems. One also notes from these figures that the 

higher order resonant peaks for undamped systems subjected to these 

excitations are sharper than the resonant peaks of a lesser order. 

This phenomenon is due to the fact that the higher order terms in the 

Fourier series expansions of these excitations become very small. The 

undamped high-frequency response spectra for these excitations do not 

differ significantly from the damped response spectra except near the 

resonant peaks. 

3.7.2 Discontinuous Excitations. The limiting response of damped 

high-frequency systems subjected to discontinuous periodic excitations 

may or may not be given by Eq. 3.27; the locations and magnitudes of 

the discontinuities may be such that the steady-state limit is given 

by the response after one of them occurs. 

As the frequency parameter ftQ tends to infinity, every discon¬ 

tinuity in the forcing function may be considered a step loading of an 

infinite duration and the displacement just before the discontinuity 

occurs may be considered equal to the corresponding ''static" displace¬ 

ment. The maximum steady-state response which results after a discon¬ 

tinuity is therefore given by the larger of the relations 

- a 

(3.28) 

and 

K CRv - Pbe ** 
Z-Tt 

(3.29) 
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in which P represents the value of the forcing function directly after 
cl 

the discontinuity occurs and P^ is the magnitude of the change of force 

due to the discontinuity. Both P and P, are signed quantities and are 
cl D 

therefore dependent on the orientation of the force axis. As an illus¬ 

tration, P^ and are both positive for the excitation shown in Fig. 

17a, whereas P is zero and P, negative for the force shown in Fig. 
a D 

Obviously the steady-state maximum response which occurs after a 

discontinuity converges fastest to the limit given by Eqs. 3.28 and 

3.29 for 1) systems that are highly damped, 2) forcing functions 

which have only minimal slopes before and after the discontinuities and 

3) forcing functions which have discontinuities which are not close 

together in time. 

Equation 3.29 will, of course, never control the maximum steady- 

state response since this displacement is always less than the "static" 

displacement induced by the force just before the discontinuity. One 

can note, for instance, from Fig. 17d that the displacement given by 

Eq. 3.29 represents the maximum response after the first discontinuity 

in the forcing function but is still less than the displacement just 

before this discontinuity occurs. 

Using Eqs. 3.27 and 3.28 one can conclude that the steady-state 

limiting response for damped systems subjected to the periodic excita¬ 

tion shown in Fig. 17f is given by the greater of the relations 

17b 

> 

> — P K rF 



22 

For the alternating step and saw-tooth excitations shown in parts 

(a) and (f) of Fig. 1, respectively, the limiting response for high- 

frequency systems is given by Eq. 3.28 such that 

Yvnoo* * ***. O + 

- 3 

(3.30) 

The results given in App. C for the alternating step excitation can be 

used to show that Eq. 3.30 is valid. 

From Fig. 5 one notes that over the frequency range shown the 

response spectra for the more highly damped systems approach the 

steady-state limit given by Eq. 3.30, while the spectra for the slight¬ 

ly damped systems still experience increases at resonance. The same 

trends are exhibited in Fig. 9 by the steady-state response spectra 

for the saw-tooth excitation. The high-frequency limiting response is 

attained more slowly in this case, however, since the slope just before 

and after the discontinuity in the saw-tooth forcing function becomes 

negligible only for relatively high-frequency systems. 



IV. ABSOLUTE MAXIMUM RESPONSE 

The absolute maximum response of a periodically excited system 

generally occurs prior to the maximum steady-state response. The 

purpose of this section is to define the interrelationship of the two 

maxima, paying special attention to the response of low-frequency 

systems which are finding increased application in offshore construc¬ 

tion. Both undamped and damped systems are examined. 

4.1 Comparison of Maximum Steady-State and Absolute Maximum Responses 

In Figs. 18 and 19 are presented spectra for the maximum steady- 

state and absolute maximum responses of systems with 5*0.05 subjected 

to the alternating step force. The results are plotted in arithmetic 

format in Fig. 18. The vertical scale and left-hand diagonal scale in 

Fig. 19 are normalized with respect to the peak values of the balanced 

versions of the force integrals, I| and rather than those of the 

unbalanced versions, 1^ and 1^. As a consequence, the low-frequency 
limit of the spectrum for steady-state response is unity on the left- 

hand diagonal scale. 

The results for absolute maximum response were evaluated by 

numerical integration of the equation of motion by carrying out the 

solution over a sufficiently large number of excitation cycles. The 

systems were presumed to be initially at rest. Also shown in Fig. 19 

in dashed lines is the response spectrum for absolute maximum response 

for a modified version of the excitation, which is identified in 

greater detail later. 

The resonant peaks for the two sets of spectra in Figs. 18 and 19 

coincide because, as it is well known, the response of the system in 

23 
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this case simply builds up with time to the steady-state response. In 

regions away from the resonant peaks, the absolute maximum response 

may be substantially greater than the steady-state maximum, the per¬ 

centage difference between the two maxima becoming greatest in the low 

frequency region on the system. 

The source of the latter difference is identified in Fig. 20, in 

which the initial transient and the final steady-state responses of 

systems subjected to the alternating step force are compared for three 

different damping values. In all cases, the value of the frequency 

parameter fto = 0.1, i.e., the excitation period, tQ, is considered to 

be one-tenth of the natural period of the system, T=l/f. It can be 

seen that the initial, transient response in this case is composed of 

a very small steady-state component superimposed on a much larger free 

vibrational component. The period of the latter component is equal to 

the natural period of the systems, and hence the absolute maximum 

response occurs at a time equal or close to one-quarter the natural 

period of the system. Furthermore, unlike the limiting value of the 

steady-state maximum which is independent of the system damping, the 

absolute maximum is a function of the amount of damping present. 

4.2 Limiting Behavior for Low-Frequency Systems 

It is desirable to consider the effects of forces with zero and 

non-zero means separately. 

4.2.1 Excitation with Zero Mean. From the information presented 

in Figs. 18 and 19, it should be clear that the transient response of 

a low-frequency system is dominated by the free vibrational component, 

which depends on the natural frequency of the system itself. Accordingly, 
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for the purpose of determining the absolute maximum response of low- 

frequency systems, the second and third terms on the right-hand side 

of Eq. 2.1 cannot be neglected, as was done in determining the cor¬ 

responding steady-state maximum. 

The low-frequency limit for the absolute maximum response can be 

determined from the corresponding steady-state response by application 

of the approach used in Ref. 3. Specifically, the transient displace¬ 

ment, x(t), may be expressed in terms of the corresponding steady-state 

displacement, y(t), by the following rearranged version of Eq. 3.18, 

Xtt) a - '/(O'igc-f) - yto*)V>(V) (4.1) 

and the transient velocity, x(t), may be expressed as 

*CV> » ÿ(-0 - 'yCo') (4.2) 

As the natural frequency of the system tends to zero, the first 

two terms on the right-hand side of Eq* 4*1 become negligible in com¬ 

parison to the third provided y(0) is not zero, and the second term 

in Eq. 4.2 becomes negligible in comparison to the other two. Accord¬ 

ingly, Eqs. 4.1 and 4.2 may be simplified to 

xa-o k c-f> (4.3) 

and 

xUl 81 Ÿc*> - ÿ t®-> hc-f) (4.4) 

Equation 4.3 reveals that the transient displacement of a low-frequency 

periodically excited system may be approximated by the free vibration 

induced by an initial velocity change equal in magnitude to the negative 
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of the initial value of the steady-state velocity. The latter value 

is determined from Eq. 3.23 to be 

~ m X,,co'' (4.5) 

On substituting Eq. 4.5 into Eqs. 4.3 and 4.4 and Eq. 3.23 into 

Eq. 4.4, and making use of the exact expression for h(t) and its 

derivative — not the limiting expression for h(t) used in the deriva¬ 

tion of the corresponding steady-state response —, one obtains 

I -3p*. 
KCt') ~ e P Vunpt (4.6) 

and 

“m -4=% + £ xjtt) (4.7) 

\ T 

in which p = p V1 - Ç is the damped circular natural frequency of the 

system# It should be noted that, because of differences in the order 

of the approximations involved in the two expressions, Eq# 4#7 is not 

strictly equal to the derivative of Eq# 4#6 with respect to t. 

The time of absolute maximum response, t » is close to one- r 9 max9 

quarter of the natural period of the system, and is given by 

~ cos" 3 ~ T ~ 3 (4.8) 

On substituting this equation into Eq. 4.6, the following expression is 

obtained for the absolute maximum displacement x : 
max 

X 

_ 3 
x.tco e 

mooc (4.9) 
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The maximum value of the spring force, F, is then given by 

F » - pr'to-) e 

- 3 

^1—■3'- 

(4.10) 

When displayed in the tripartite logarithmic format, the spectra for 

absolute maximum response must therefore approach horizontal limits on 

the left. For small values of damping, the factor Ç within the paren¬ 

theses of Eqs. 4.9 and 4.10 may, of course, be neglected. 

Equations 4.9 and 4.10 reveal that the absolute maximum response 

of low-frequency systems is proportional to the initial value of the 

balanced version of the first integral of the exciting force, I^(t). 

Slight changes in the shape of the exciting force may, therefore, 

strongly affect the value of l|(0) and hence the absolute maximum 

response of low-frequency systems. Consider, for example, that the 

origin of the alternating step force has been shifted to tQ/4 such that 

it is symmetric about the midpoint of excitation half-cycle. The 

dashed line in Fig. 19 represents the spectrum of absolute maximum 

response for such an excitation while the steady-state response spec¬ 

trum is still given by the dotted line. Note that the low-frequency 

limits of the absolute maximum response are significantly different 

for the original and shifted excitations. 

As a further example, in Fig. 21 are presented spectra for the 

steady-state and absolute ^maximum responses of systems with Ç = 0.05 

subjected to a sinusoidal force. Also shown is the corresponding 

response spectrum for a cosine force. Note that changing the forcing 

function from sine to cosine drastically alters the low-frequency 

limit for absolute maximum response. 
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System damping affects, of course, not only the low-frequency 

limits of the spectrum but also the entire spectrum. In Fig. 22 are 

given spectra for the absolute maximum response of systems subjected 

to the sinusoidal force for a range of damping values. As would be 

expected, the effect of damping is greatest for frequencies near the 

resonant peak. Incidentally, the low-frequency limits of these spectra 

are in excellent agreement with those predicted by Eq. 4.10. 

4.2.2 Excitation with Non-Zero Mean. Let P_ be the constant com-     o 

ponent of the exciting force and (x ) be the corresponding static 
SL O 

displacement. For a system that is initially at rest, the instantane¬ 

ous value of the dynamic displacement produced by PQ is given by 

1 ~ e 3^( wSpt + T==5 si-n )] (4.11) 11 » 3 

The maximum value of this displacement is given by 

* WNO.X C*sOo [ 1+- & V-3iTr ] (4.12) 

and the corresponding value of the spring force is given by 

F = Po [ I 1- e ] (4.13) 

Note that these peak response values defined by Eqs. 4,12 and 4,13 

are independent of the natural frequency of the system, and that on the 

tripartite logarithmic plot they are represented by a 45° diagonal line 

extending upward from right to left. By contrast, the peak values of 

the responses induced by the oscillating force with a zero mean are 

linear functions of the natural frequency of the system. Provided PQ 
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is different from zero, it follows that as ft tends to zero, the 

maximum response will be defined by Eqs. 4.11 and 4.12. For systems 

with moderately low-frequency values, the response contributed by the 

constant or oscillating force component may be the dominant one depend¬ 

ing on the relative values of PQ and 1^(0). 

4.3 Limiting Behavior for High Frequency Systems 

The differences between the transient and steady-state responses 

of systems in the high-frequency region of the spectrum are not as 

great as those in the low-frequency region. In fact, the absolute 

maximum response for high-frequency systems may be greater than the 

steady-state response for only one class of excitation; for all others, 

the two limiting responses are the same. 

4.3.1 Similarities of Transient and Steady-State Responses. The 

absolute maximum response of high-frequency undamped systems, like 

that of the corresponding steady-state response, can be defined only 

for continuous excitations which can be expressed by a finite number 

of Fourier components. Discontinuous periodic excitations lead to 

unbounded absolute maximum responses. Furthermore, high values of 

damping accelerate the rate of convergence of the absolute maximum 

response to its limiting value in essentially the same manner that 

damping affects the corresponding steady-state response values. 

4.3.2 Effect of Initial Discontinuity in Forcing Function. The 

one class of excitation for which the absolute maximum limiting re¬ 

sponse may not equal that of the steady-state response is identified in 

Fig. 17e. The force shown in Fig. 17e has an initial discontinuity 

which is not present in its periodic extension. The steady-state 
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response of systems subjected to this excitation does not undergo this 

discontinuity and therefore has a limiting value given by the larger of 

the "static” conditions 

— P k rA -K P- K *B 

The absolute maximum response of systems subjected to this excita¬ 

tion on the other hand is strongly influenced by this initial discon¬ 

tinuity and its limit is given by the larger of the relations 

- 3 

K PA C» + e^ ) — P K rB 

in which the first equation represents the maximum response due to a 

step loading , P^, of an infinite duration. Obviously, if the first 

of these relations governs, the absolute maximum and steady-state 

limiting behavior will not be equal. 

The response of high-frequency systems subjected to the cosine 

excitation results in a difference of this type. Obviously, the steady- 

state and absolute maximum limiting responses for the sinusoidal 

excitation are given by the "static" condition of Eq. 3.27. The abso¬ 

lute maximum limiting response for the cosine excitation on the other 

hand is given by 

_ 3 

*«««.* — C \ + e. U-3V 

Ï X 5* (4.14) 

One notes from Fig. 21 that this limit is approached gradually; since 

the cosine forcing function has a nonzero slope just after the discon¬ 

tinuity, the limiting response for this excitation only approaches 

that due to a step loading for relatively high-frequency systems. 

The shifted alternating step excitation also has an initial dis¬ 

continuity which is not present in the periodic extension but since 
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subsequent discontinuities induce responses which are greater than that 

due to the initial one, the absolute maximum response for this case 

approaches the limit given in Eq. 3.30 as does the steady-state and 

absolute maximum response for the alternating step excitation shown 

in part (a) of Fig. 1. 



V. BUILDUP OF RESPONSE AND EFFECTS 

OF CESSATION OF EXCITING FORCE 

The previous sections of this paper investigated the response of 

systems subjected to periodic excitation; i.e., the results presented 

assumed that the exciting force continues to act indefinitely on the 

system. For the purpose of derivation of the low-frequency behavior 

of the steady-state response, however, the transient response of low- 

frequency systems subjected to one cycle of excitation was also con¬ 

sidered. Reference was also made to Fig. 3 in which the steady-state 

response spectrum and the response spectrum for one cycle only were 

compared for the alternating step excitation. 

This section of the paper will investigate the behavior of 

systems which are initially at rest and subjected to excitations which 

are applied for any finite number of cycles and are then removed. The 

systems considered under this section, therefore, are allowed to 

undergo a free vibration motion as well as a forced motion. 

It is of interest to investigate the maximum possible responses 

that the system will experience during these two stages and their 

relationships with the characteristics of the system and excitation. 

It is also of interest to compare these responses with those given for 

systems subjected to periodic excitation. 

In the following section the maximum forced response will be dis¬ 

cussed and in the subsequent section the free vibration motion will be 

accounted for and an absolute maximum response will be defined for 

systems subjected to excitations of a finite duration. 

32 
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5.1 Response Spectra for Maximum Forced Response 

One would expect that the maximum forced response is dependent on 

the natural frequency and damping ratio of the system as well as the 

shape and duration of the excitation. This is borne out in Figs. 23-26, 

which depict spectra for the forced response of systems with Ç » 0.05 

and subjected to one, two, three, and an infinite number of cycles of 

two harmonic and two alternating step excitations. The maximum response 

during an infinite number of cycles, of course, corresponds to the ab¬ 

solute maximum response for the case of periodic excitation. 

One can observe three basic characteristics from these response 

spectra: 

(1) The absolute maximum response for periodic excitation is in 

some regions given during the first cycle of excitation 

(typically in the high-frequency region, except at higher 

order resonance); 

(2) At resonance, the absolute maximum response for periodic 

excitation is attained only after an infinite number of 

cycles of the excitation; and 

(3) The low-frequency region of the response spectra may be 

most sensitive to the number of cycles which the system 

undergoes, but may also be very sensitive to the shape of the 

excitation. 

One concludes, therefore, that the periodicity of the excitation has 

its greatest effect in the low-frequency region of the response spectra 

and at resonance 
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5.2 Response Spectra for Absolute Maximum Response 

The absolute maximum response of systems which undergo a finite 

number of cycles must include an account of the free vibration which 

occurs after cessation of the excitation. By including the free 

vibration motion one can reasonably expect to obtain in some cases 

larger results than those obtained by considering the forced motion 

alone# As an illustration of this behavior, spectra for the 

absolute maximum response of undamped systems subjected to one, three 

and five cycles of sinusoidal excitation are shown in Fig. 27. The 

analytical solution of this problem is well documented (2) but use of 

the tripartite logarithmic plot again accentuates the limiting 

characteristics of the low and high-frequency regions of the response 

spectra. 

The same can be noted from Fig. 28 which depicts the response 

spectra for the absolute maximum response of damped systems subjected 

to one, three, and five cycles of the alternating step excitation. 

A direct comparison of the maximum forced response and absolute 

maximum response for three cycles of the alternating step excitation 

are shown in Fig. 29. One notes that inclusion of the free vibration 

motion increases the response substantially for low-frequency systems 

but has no effect on the maximum response of high-frequency systems; 

i.e., for low-frequency systems the maximum response occurs after 

cessation of the force and for high-frequency systems during the 

excitation for this case. 

5.3 Behavior of Low-Frequency Systems 

One would expect from closer examination of Figs. 23-29 that the 
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behavior of low-frequency systems when subjected to a finite number of 

cycles of excitation may be described in a manner similar to that which 

was employed for the steady-state and absolute maximum responses for 

periodic excitation. The limiting response of low-frequency systems 

subjected to n cycles of excitation is, for instance, assymptotic on 

the left-hand diagonal scale of the tripartite log plot. It is also 

apparent that the response spectra may also be bounded on the vertical 

scale of the tripartite log plot for moderately low-frequency systems. 

The limiting responses of low-frequency systems must, therefore, be 

proportional to the first and second integrals of the forcing function. 

5.3.1 Limiting Behavior. The limiting response of low-frequency 

systems which are initially at rest is given by Eq. 3.14 such that the 

maximum forced displacement for n cycles of excitation may be expressed 

as 

>w = (5.1) 

in which (I_) represents the peak numerical value of the second 
L n 

integral of P(t), evaluated over the duration of the excitation. 

The maximum free vibration response of low-frequency systems which 

undergo n cycles of excitation is furthermore given by 

^ mue m ^ î. ( 'r'^" » ) (5.2) 

in which ^(nt^ represents the value of the second integral of P(t), 

evaluated at the end of the excitation. Equations 5.1 and 5.2 corre¬ 

spond, of course, to limits on the left-hand diagonal scale of the 

tripartite log plot. 
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Additionally, Eq. 5.1 corresponds to translation of the system 

mass during the excitation, while Eq. 5.2 indicates that the system 

mass remains stationary in its final position after cessation of the 

excitation. For excitations for which the maximum value of the second 

force integral occurs at the end of each cycle (e.g., the sinusoidal 

and alternating step), Eqs. 5.1 and 5.2 reduce to 

The convergence of these two responses to the limit given in Eq. 5.3 

is verified in Fig. 29 for low-frequency systems subjected to three 

cycles of the alternating step force. 

5.3.2 Maximum Forced Response of Moderately Low-Frequency Systems. 

The behavior of the forced response of moderately low-frequency systems 

which undergo n cycles of an excitation can also be found, as was the 

case for the absolute maximum limiting behavior due to periodic excita¬ 

tion, through the use of a corrective displacement, £(t), and the low- 

frequency representation of the steady-state response. 

The maximum response of moderately low-frequency systems which 

occurs during n cycles of a zero-mean excitation, therefore, is simply 

given by Eq. 4.9 which, of course, corresponds to a limit of the 

response spectrum on the vertical scale of the tripartite logarithmic 

plot for such excitations. Since, however, the time which the system 

has to obtain this maximum is not unlimited, but rather bounded by the 

cessation of the excitation one must recognize that the duration of the 

excitation, nt , is limited to 

(5.3) 

o 

n-fco > cos a (5.4) 

P 
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by Eq. 4.8 ; or in terms of a variable frequency and fixed excitation 

duration, that 

- iTm^l-31- Cos 3 (5.5) 

One notices, for instance, that the dashed line in Fig. 29 , which 

represents the response spectrum for the forced response of systems 

with Ç = 0.05 subjected to three cycles of the alternating step excita¬ 

tion, is approximately equal to that value on the vertical scale given 

by Eq. 4.10 for values of ft > 0.08. 
o 

The maximum forced response for moderately low-frequency systems 

subjected to n cycles of an excitation which does not have a zero mean, 

on the other hand, is given by Eq. 4.12 provided that 1) the value of 

the mean of the excitation, PQ, is large and 1^(0) is small, or that 

2) the duration of the excitation is long. The accuracy of Eq. 4.12 for 

nonzero-mean excitations is, therefore, highly dependent on the mag¬ 

nitudes of I*(0), P , and nt . 
1 o o 

5*3*3 Maximum Free Response of Moderately Low-Frequency Systems, 

The behavior of the free vibration response of moderately low-frequency 

systems is dependent on the end conditions of the forced response when 

the excitation ceases. After these end conditions have been identified, 

the free vibration solution can be found and solved for its maximum 

value. 

Equations 4,1 and 4*2 which relate the forced response to the 

steady-state response can be used to find the appropriate end conditions. 

Evaluation of these equations at the time of cessation of the excitation 

, ntQ, yields the following values of the forced displacement and 

velocity: 
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xXn-t*') - t°") [ I - e P (cospnt, +^==î St^pvit,)]- (5.6) 

y(o) -3p»«fe0 
/~jT “ SJ-n pn-t» 

and 

r — 3p*it* a , , 
x<n-t.-) = ÿCo> L »-e Ceospnt.-^^ç scwpvrfe.^j + (5.7) 

y(.0)p 
sijnpn'to 

From closer Inspection of Eqs. 5.6 and 5.7 one notices that the 

resulting end displacement and velocity are equivalent to those 

responses produced by the superposition of a step displacement of 

magnitude y(0) over the duration of the excitation and two impulsive 

velocities; the first, which is of magnitude -y(0), is applied at the 

time that the excitation originates and the second, which is of mag¬ 

nitude y(0), is applied at the time the excitation ceases. The two 

representative impulsive velocities are, therefore, equal but opposite 

in direction. 

For any particular system and excitation, Eqs. 5.6 and 5.7 may be 

evaluated and the free vibration response obtained from the following 

equation: 

Xt^> = e L + ( -=- + ITTv? *<^^) sù^p-t J (5.8) 

in which the time t is now oriented at the beginning of the free 

vibration motion. Equation 5.8 can be differentiated and the time at 

which the first maximum occurs can be found. This maximum will obvious¬ 

ly be very dependent on the end conditions given in Eqs. 5.6 and 5.7 

and therefore on the frequency parameter pntQ and the steady-state 

initial values, y(0) and y(0). One would further expect that there 
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exists a combination of these two end conditions, or in other words a 

particular value of pnt^, which makes the system experience the largest 

possible displacement during its free vibration motion. It is obvious, 

however, that without further knowledge of the exact nature of the 

steady-state initial values, which also vary with respect to ptQ, that 

this largest possible displacement cannot be exactly identified. 

Evaluation of Eqs. 5.6, 5.7, and 5.8, for instance, reveals that 

the maximum free vibration response for undamped systems subjected to 

n cycles of excitation is given by 

‘ tno>K = Z A + Sumrvvft* 

Since Eq. 5.9 involves the unknown quantities y(0) and 
HO) 

(5.9) 

the 

largest possible free vibration displacement cannot generally be found. 

One can, however, normalize the maximum displacement, xmax> by the 

radical of Eq. 5.9 and effectively remove the steady-state terms. In 

other words, Eq. 5.9 can be expressed as 

=- Z Sort Trnf-to (5.10) 
1- 

which obviously is a maximum when the duration of the excitation is 

equal to one-half of the structural period; i.e., when ntQ = T/2. 

Since it has already been established that the free vibration 

response is most important for moderately low-frequency systems, it is 

useful to simplify Eq. 5.10 by substitution of the appropriate force 

integral relations for the steady-state response, Equation 5.10 can, 

therefore, be restated as 

 ma>K 

TCKSo.r t vn p J 

St 2. Sin (5.11) 
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The displacement for which Eq. 5.11 is a maximum will henceforth 

be called x and although it does not define the largest possible 
max , max 

free vibration response it is apparent from Eq. 5.11 that it may define 

a significant reference point on the tripartite log plot. 

It is also interesting to note that it is possible to obtain closed 

form expressions for the maximum free vibration response provided that 

the initial conditions of the steady-state response are available in 

equation form. One can easily show, for instance, from Eq. 5.9 that the 

free vibration maxima of undamped systems subjected to n cycles of 

sinusoidal excitation are given by 

f ] 
^Witxx . y j ScV"i TTITVftft (5.12) 

Closed form expressions for the free vibration maxima of undamped sys¬ 

tems subjected to n cycles of nonharmonic excitations can also be found 

from Eq. 5.9 in certain cases when the techniques described in Sec. 3.4 

are applied. The free vibration maxima for undamped systems subjected to 

n cycles of the alternating step excitation, for instance, are given by 

vnoot — [ 2, TTrv-Çt0 (5.13) 

The envelope of these free vibration maxima are indicated in 

Figs. 27 and 28 in the low-frequency region of the response spectra for 

the sinusoidal and alternating step excitations, respectively. One 

notes from Fig. 28 that the maximum free vibration response of low- 

frequency systems may be significantly affected by the amount of 

damping in the system. 

For damped systems, it can be argued that the displacement x  
max, max 

will be given when the duration of the excitation equals one-half of the 
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damped structural period; i.e., when ntQ = T/2. Equations 5.6 and 5.7 

indicate that the end conditions of the forced response for this 

excitation duration are given by 

xC-wt.-) » y«»> [ i + e (5.14) 

and 

xCn-t.) y tco [ l (5.15) 

Substitution of these values into Eq. 5.8 reveals that the free vibra¬ 

tion response for systems subjected to an excitation of this duration 

is given by 

_ g 

e"arpt5.yte'>cospt.i-( (5.16) 

Differentiation of Eq, 5*16 enables one to find the time, 

this response is first a maximum: 

max" 
at which 

- TT* » S *£=■’■>] (5.17) 

Finally, substitution of Eq. 5.17 into Eq. 5.16 indicates that the 

displacement x is given by 
max,max 

■ ZZy P 
(5.18) 

In order to locate this reference point on the tripartite logarith¬ 

mic plot one must use the force integral formulation for the initial 

values of the steady-state response. One must also make an additional 

approximation regarding the relative magnitudes of the quantities 

y(0) and . This second approximation will differ for zero-mean and 
P 

nonzero-mean excitations. 
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5.3.3.1 Excitation with Zero Mean. For excitations which have 

a zero mean the force integral expression for the initial steady-state 

displacement is given by 

(5.19) 

The steady-state initial velocity divided by the circular natural fre¬ 

quency is similarly given by 

* fx> (5.20) 

For moderately low-frequency systems, the value of p is small such 

that the initial steady-state displacement as expressed in Eq* 5.19 

becomes negligibly small with respect to the value given in Eq. 5.20. 

The accuracy of this approximation, of course, also depends on the 

magnitudes of 1^(0) and 1^(0). This approximation is namely valid if 

1) 1^(0) is large, or 2) I^CO) is small, or 3) the excitation duration 

is long. 

Using this approximation, the value of x as given in 
max, max 

Eq. 5.18 may be expressed as 

-3 -3 

(5.21) 

For reasonable amounts of damping, x is approximated well by 
max, max 

« ^ C \ + e 1,3 ^ e 
-■n Z 

(5.22) 

The corresponding equivalent static force, F, is similarly given by 

- 3 

F » px, X.tcO (i* e-*'-3' ) e 
-a / _ 
■5^3* 

(5.23) 
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One also notes that the ratio on the vertical scale of the tripartite 

log plot is given by 

As was evident for the absolute maximum response for periodic excitation 

the initial value of the force integral I^(t) and hence the shape of the 

excitation has an important effect on the response in the moderately 

low-frequency region. 

The accuracy of Eq. 5.24 can be noted from Fig. 28 for the absolute 

maximum response spectra for systems with Ç - 0.05 and subjected to one, 

three, and five cycles of the alternating step excitation. The initial 

value of the force integral I|(t) is, of course, equal to the maximum 

value of that integral so that the bracketed term in Eq. 5.24 gives the 

value of the pertinent point on the vertical scale of the tripartite 

logarithmic plot in this case. For five cycles of excitation, for 

instance, the reference point occurs at ft^ - 0.1 as predicted. Equa¬ 

tion 5.24, furthermore, gives the value 1.72 for this value of damping 

whereas the value of this ratio for the actual response is 1.73. The 

agreement is excellent due in part to the fact that the assumption that 

the initial steady-state displacement approximately equals zero is very 

good for this excitation. 

One can further note that when it is questionable whether an 

excitation which has a zero mean is to be considered periodic or if the 

excitation may indeed cease after any cycle, Eq. 4.10 and 5.23 may be 

used as a direct evaluation of the difference involved in the assump¬ 

tion of a periodic or nonperiodic excitation for moderately low- 

frequency systems. In such cases, cessation of the excitation after any 

F 
(5.24) 
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cycle implies that the envelope of the absolute maximum response spectra 

governs and that the maximum equivalent static force may be up to two 

times greater for nonperiodic excitation than it is for periodic excitation. 

5.3.3.2 Excitation with Nonzero Mean. For excitations which have 

a nonzero mean, the initial value of the steady-state displacement is 

given by 

'1Lo'> * ^ t » £ [ p^Co) + Pj (5.25) 

The value of the Initial steady-state velocity divided by p is, of 

course, still given by Eq. 5.20* 

For moderately low-frequency systems, the value of p is small such 

that the force integral dependent part of the initial steady-state 

displacement becomes negligibly small with respect to the value of the 

static displacement induced by the mean of the excitation. The ratio 

expressed in Eq. 5.20 also becomes negligibly small, so that the value 

of x is dependent on the mean of the excitation only. These 
max, max 

assumptions are valid if 1) PQ is large or 2) the duration of the 

excitation is long. 

From Eq. 5.18, the resulting x considering these approxima- 
max, max 

tions is given by 

- a 
*mo~,m** ** <.***••>„ [ e 

Tt 
(5.26) 

and is equal to the largest possible free vibration response since the 

value (xst)0 *-s not frequency dependent. 

It may also be seen that under such conditions the maximum value 

of the absolute maximum response spectrum for moderately low-frequency 

systems subjected to n cycles of excitation equals that of the absolute 
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maximum response for periodic excitation for one value of the frequency 

parameter ft^ but is less than the absolute maximum response for 

periodic excitation for all other values. For this limiting case, 

therefore, one notes that cessation of excitations which have a nonzero 

mean does not increase the low-frequency limiting response over that 

which is indicated for a periodic version of the excitation, 

5,4 Resonant Response 

It was previously stated that for forcing functions which have a 

predominant Fourier series component the steady-state maxima at and 

near the resonant peak corresponding to this term are approximated well 

by consideration of this Fourier component alone. One would expect that 

this notion would also hold for the buildup of the response at resonance 

of systems which are initially at rest and subjected to n periods of 

excitations which have a predominant Fourier series term, 

5.4.1 One-Term Sinusoidal Fourier Series Approximations. The 

response at the resonance corresponding to a predominant sinusoidal 

Fourier series component is approximately given then by 

xc-fco Si *** — [ e - » J W5 rwt (5.27) 

and 

x(-0 - xst [ su-i ruo-t - rujt: c.os> rcot ^ (5.28) 

for damped and undamped systems, respectively, in which 0) is the 

circular frequency of the excitation, a^ is the predominant Fourier 

coefficient, and r is the value of the Fourier index for this predomi¬ 

nant term. The general form of these equations is well known (1); 

Eq. 5*28 is exactly correct for simple sinusoidal excitation whereas 
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Eq. 5.27 assumes that the systems at resonance are only moderately 

damped. 

Both of these equations are a maximum at the end of the n^ period, 

such that the amplification factor at this resonant buildup is approxi¬ 

mately given by 

AF “ t.-e-2”3'""] (5.29) 

and 

AF » ar [irrn] (5.30) 

for damped and undamped systems, respectively, 

5.4,2 One-Term Cosine Fourier Series Approximations. The response 

at the resonance corresponding to a predominant cosine Fourier series 

component is approximately given by 

*<•*1 - 2^- L \ - e J Sbn ruj-t (5.31) 

and 

xtv> « Xst ^ [rwt] sivi nut (5.32) 

for damped and undamped systems, respectively, which are initially at 

rest. Equation 5.32 is exact for simple cosine excitation whereas 

Eq. 5.31 assumes that the systems at resonance are only moderately 

damped. 

Equations 5.31 and 5.32 are both approximately a maximum at the 

time given by 

■fe. ” £ n- ] t (5.33) 



The amplification factor at this resonant buildup is, therefore, 

approximately given by 
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AF — [ v _ (5.34) 

and 

AF — cxr TT t m - ] (5.35) 

for damped and undamped systems, respectively. 

The alternating step and shifted alternating step excitations 

represent forcing functions which have a predominant sinusoidal and 

cosine Fourier series component, respectively. Use of Eqs. 5.29 and 5.34 

for these excitations, in fact, predicts the buildup of the first 

resonant peak (r = 1) indicated in Figs. 25 and 26 within 3% for all 

values of n. 

The amplification factor for the undamped resonant response of 

systems subjected to the alternating step excitation, furthermore, is 

exactly given by Eq. 5.30 for the first resonant peak (2); i.e., 

AF = * 4n (5.36) 

Consideration of the first Fourier term only yields the exact 

solution since the maximum response for the system subjected to the 

th 
actual excitation does indeed occur at the end of the n period and 

the remaining sinusoidal Fourier series terms do not contribute in this 

case. One can, in fact, state that Eq. 5.30 will yield the exact ampli¬ 

fication factor for the resonant buildup of undamped systems subjected 

to excitations which are defined by a sinusoidal Fourier series provided 

that the actual maximum undergone by the system occurs at the end of 
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the period. 

5.5 Limiting Behavior of High-Frequency Systems 

The limiting behavior of the response of high-frequency systems 

subjected to a finite number of cycles of an excitation may be deter¬ 

mined using the same concepts developed earlier for the limiting behavior 

of systems subjected to periodic excitations. A limiting response can, 

however, also be found for the response of undamped systems due to a 

finite number of cycles of a nonharmonic excitation whereas this was, 

in general, not the case for the response due to periodic excitation. 

5.5.1 Damped Systems. The limiting response equations developed 

for periodic excitation of damped high-frequency systems assume that 

the effects of discontinuities are such that the displacements induced 

by them quickly reduce to the value given by a "static" condition and 

that in the limit the effects of discontinuities on other portions of 

the response are negligible. Using this idea, formulae were presented 

which compared the effects of each discontinuity and force maximum 

separately. It was also stated that convergence to this limiting condi¬ 

tion could be expected to be slower for less highly damped systems. 

These concepts naturally also apply to the case of damped systems sub¬ 

jected to a finite number of cycles of an excitation. 

One can further note that the absolute maximum response occurs 

in the first cycle of excitation for high-frequency systems, except when 

the excitation has an initial discontinuity which is present in its 

periodic extension. For instance, the maximum response during the first 

cycle of the excitation shown in Fig. 17f is given by the larger of the 

following relations: 
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for systems which are initially at rest. The first equation is not equal 

to that given for the steady-state and absolute maximum responses. If 

this relation governs, the limiting behavior of the absolute maximum 

response will first be given in the second cycle of the excitation. 

The free vibration response is also seen to never govern the maxi¬ 

mum response of highrfrequency damped systems since cessation of the 

excitation results in a maximum response equal only to a fraction of the 

"static" value just before termination. For the excitation shown in 

Fig. 17f, for instance, the maximum free vibration response is given by 

5.5.2 Undamped Systems. The maximum response of undamped high- 

frequency systems subjected to a finite number of cycles on the other 

hand may be many times greater than that for damped systems since the 

response due to a discontinuity may not for this case be considered 

localized at that one point in the excitation. The free vibration 

response is also a factor for undamped systems since the response just 

before termination of the excitation may not equal the "static" value 

that was assumed for the response of damped systems. 

Figure 30 depicts the responses of high-frequency undamped systems 

subjected to one cycle of various excitations. The maximum response is 

seen to be strongly dependent on the interaction of the effects due to 

the discontinuities. Additionally, the response histories drawn in 

Fig. 30 assume that the natural period of the system is small compared 

to the smallest time interval between consecutive discontinuities. 
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This behavior may be proved from closer inspection of Eqs. 3.27, 

3.28, and 3.29. From these equations one can conclude that the maximum 

response of undamped systems after a discontinuity is given by the 

relation: 

■R [ P<x ± Pb] (5.37) 

in which P. is the magnitude of the change of force due to the discon- 
b 

tinuity and P represents the maximum value of the forcing function 
a 

after the discontinuity; P^ and P^ are signed quantities and are there¬ 

fore dependent on the orientation of the force axis. The value of P^ is 

no longer restricted to that value of the forcing function directly 

after the discontinuity since the effect of the discontinuity on the 

response does not dampen and the maximum response necessarily occurs 

where the maximum value of the forcing function occurs. 

These conclusions may be verified by consideration of the analogous 

ground excited system. Reference 4, for instance, considers the high- 

frequency limiting behavior of undamped systems subjected to ground 

shaking and concludes that 1) the effect of a continuous input accelera¬ 

tion is a “static” condition such that the pseudoacceleration equals 

that of the maximum input acceleration, and that 2) the effect of a 

discontinuity in the input acceleration is to make the amplitude of the 

periodic component of the system acceleration equal to the magnitude of 

the discontinuity. 

Using these concepts, one can conclude that the maximum displace¬ 

ment for one cycle of the excitation shown in Fig, 30f is given by the 

larger of the relations: 
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7 £ P* + pcl •> £ [ - PA + ♦ PF ] > K L PA - Pe + PG1 

Damping is, therefore, seen to have an immense influence on the 

limiting response of high-frequency systems subjected to discontinuous 

excitations. The limiting response of undamped high-frequency systems 

subjected to n cycles of the alternating step excitation, for example, 

is given by 4n(x ) whereas the limit for damped systems is given by 
st 

Eq. 3.30 which is always less than 3(x ). 
s t 



VI. CONCLUSIONS 

The following aspects of the response of structures to periodic 

excitation have been analyzed: 1) the steady-state response; 2) the 

absolute maximum response; 3) the rate of "build-up" of the response; 

and 4) the effects of possible cessation of the excitation. Emphasis 

has been placed on the response at resonance and the limiting behavior 

of the response of low and high-frequency systems for these four areas 

of interest; general equations have been presented which identify the 

limiting behavior. 

It has further been shown that the response of low-frequency sys¬ 

tems is strongly influenced by the percentage of critical damping, the 

shapes and maxima of the appropriate integrals of the forcing function, 

and by the mean or constant force component of the excitation. The 

absolute maximum response and the response during the buildup to peri¬ 

odic excitation were shown to be significantly different from the 

steady-state response for low-frequency systems. 

The response of high-frequency systems has been shown to be most 

sensitive to the percentage of critical damping, nonharmonic nature of 

the forcing function, and the presence, magnitudes, and locations of 

discontinuities in the excitation and its periodic extension. The 

limiting response of high-frequency systems was found to be the same 

for the four areas mentioned above except for certain cases which were 

specifically identified. 

These concepts were illustrated through response histories and 

response spectra for several simple excitations. It was also shown that 

a tripartite log plot which is analogous to that used for the response 

52 



53 

spectra of ground excited systems is very useful in identifying the 

limiting behavior. 

Additionally, the method of analysis used (3), which interrelates 

the steady-state and the transient responses, was found to be particu¬ 

larly efficient in obtaining the steady-state response and useful in 

deriving the equations for the limiting behavior of low-frequency sys¬ 

tems. It was further shown that this procedure even enables one to 

obtain closed form solutions for the steady-state response in certain 

special cases. 
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APPENDIX B - NOTATION 

The following symbols are used in this paper; 

AF = dynamic amplification factor; 

f = natural frequency of the system; 

F = maximum equivalent static force; 

g(t) = displacement produced by a unit initial displacement; 

h(t) = displacement produced by a unit initial velocity; 

I^(t) = instantaneous value of the first integral of P(t) where 

the initial value of the integral is taken equal to zero; 

1^ = peak numerical value of I^(t); 

I^(t) = instantaneous value of the integral of P(t) where the 

initial value is taken such that the integral has a zero 

4 
i2(t> 

i„ = 

i’(t) 

4" 

k = 

m = 

P>P 

P(t) 

P 

mean; 

peak numerical value of I^(t); 

instantaneous value of the second integral of P(t) where 

the initial value of the integral is taken equal to zero; 

peak numerical value of ^(t); 

instantaneous value of the integral of I^(t) where the 

initial value is taken such that the integral has a zero 

mean; 

peak numerical value of I^Ct); 

stiffness coefficient of the system; 

mass of the system; 

circular natural frequency of the system without and with 

damping, respectively; 

instantaneous value of the exciting force; 

peak numerical value of P(t); 
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U O
 

P* constant component of P^Ct); 

H
 r
t
 

S-
/ II instantaneous value of nonzero-mean exciting force; 

P = 
a 

numerical value of the forcing function after a 

discontinuity; 

II 

a.* 0
 

signed magnitude of a discontinuity in the forcing 

function; 

t = time; 

t = 
O 

period of the excitation; 

T,T = period of the system without and with damping, respectively 

x(t) = transient displacement of the system; 

X = 
St 

static displacement of the system produced by P; 

(x ) « 
St O 

static displacement of the system produced by P^; 

X = 
max 

maximum transient displacement; 

x = 
max,max 

reference displacement for the free vibration response 

spectrum on the tripartite log plot; 

y(t) = steady state displacement of the system; 

y max 
maximum steady state response; 

Ç - fraction of critical damping; 

S(t) = corrective displacement; 

<j> = ratio of the circular frequency of excitation to the 

circular natural frequency of the system; 

0) = circular frequency of the excitation. 



APPENDIX C - CLOSED-FORM EXPRESSIONS FOR STEADY-STATE RESPONSE OF 

DAMPED SYSTEMS SUBJECTED TO ALTERNATING STEP FORCE 

Using either of the two procedures discussed in Sec. 3.4, the 

steady-state response of damped systems subjected to the alternating 

step force can be shown to be given by 

^Lt> = [ i->-|==te‘Srte»LKpt->-«.^] for 0 < t < (Cl) 

and 

+ « -vy t-O forO<T<-^- (C2) 

in which p= p^ 1 - Ç2' is the damped circular natural frequency of the 

system; x is the static displacement of the system produced by the 
S u 

peak value of the applied force; a is defined by 

"taJA «X. ~ “5  and 0< a < IT ; 

and X , T| , and S are given by the sides of the triangle shown below. 

Differentiation of Eq. Cl reveals that the maxima and minima of the 

steady-state response during the first half of the excitation period 

occur at times given by 

•b 4r C & •+• ÏÏH ) 
F 
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in which n is a nonnegative integer but also complies with the 

restriction 

%*“©*) ; (C4) 

-1 H 
and 0 « tan -g- • The restriction on the value of n given in Eq. C4 

arises from the fact that Eq* Cl is only valid over the first half of 

the excitation period* 

The maxima and minima of the steady-state response during the 

first half of the excitation period are given then by 

- X St [ 2Ç-P *•*•1 -3 
^ N|>-3' 3 (C5) 

It can further be shown that, for reasonable amounts of damping, 

the maximum value of the steady-state response for systems subjected 

to the alternating step force corresponds to the case of 

n « 0 when f t < 1 
o 

and 

n = 1 when ft >1 
o 

The steady-state amplification factor, AF=y /x , can therefore 
max st 

be expressed in closed form as 

AF X 

— 3 

e 
1-3' 

for ft < 1 
o 

(C6) 

and 

t 
X 

--3—(e + m 
e for ft > 1 

o 
AP * (C7) 



APPENDIX D - MISCELLANEOUS CLOSED-FORM EXPRESSIONS 

FOR STEADY-STATE RESPONSE 

The equations given below were obtained by application of the 

methods described in Sec. 3.4. The excitations considered are shown 

in Fig. 1; the orientation of the time axis for each excitation should 

be carefully noted. 

The steady-state displacement, y(t), of undamped systems subjected 

to the "alternating versine" excitation is given by 

The value <{> is the ratio of the circular frequency of the excitation, w , 

and the undamped circular frequency of the system, p; t represents the 

period of the excitation. 

It can be noted that Eq. D1 is indeterminate for systems whose 

structural period, T, is exactly one half the duration of the period 

of the excitation. Applying L’Hospital's rule to Eq. Dl, the steady- 

state response for this special system can be shown to be given by 

(Dl) 

for 0 < t < —— and by 

y ( + r ) * - y Ct.) for 0 < x < (D2) 

•yLf) - xst. [ + TT (.i “ Si^C^TT (D3) 

for 0 < t < an(j by Eq. D2 for the second half of the excitation 

period 
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The steady-state response of undamped systems subjected to the 

"absolute sine" excitation is given by 

"yit) ** j— <f* C ü-** pt. •+• co?t (D4) 

for 0 < t < and by 

y ( I* + t ) *= 'ytx.') for 0 < T < -y- (D5) 

Equation D4 results in an indeterminate condition when the struc¬ 

tural period is exactly equal to the period of the excitation. Use of 

L'Hospital's rule in this case indicates that the steady-state response 

is given by 

Y C-t> = x*t [ y -sU-v + T ( cos ] (D6) 

to 
for 0 < t < —and by Eq. D5 for the second half of the excitation 

period. 

The steady-state response of undamped systems subjected to the 

"half-sine" excitation is given by 

Yt-b.-) * [ - F C pb. + cot. CJ=>*, pb. ■) -V st** lot.] (D7) 

to 
for 0 < t < y— and by 

Ytt> * L ” t C pCt-'t?') -v Cot. ^“cos ] (U8) 

for < t < tQ . 

The steady-state response of undamped systems subjected to the 

"alternating triangle" excitation is given by 

'yt-tl » l l - C Swip-t. - ^ «-ospt )] (D9) 

to 
for 0 < t < —2~ and by 
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lV + x') -7 for 0 < T < ~Y~ (D10) 

The steady-state amplification factor, AF= y /x , can also be found 
IQcLX S t 

for this case and may be expressed as 

AF (Dll) 

in which the value of n is given by zero or the largest integer which 

is less than or equal to ; the largest amplification factor cal¬ 

culated for these two cases governs. 

The steady-state response of undamped systems subjected to the 

"saw-tooth*1 excitation is given by 

Y<-t) = Xst [ i-coSpt-z.^ + oat (D12) 

for 0 < t < tQ • 

The steady-state amplification factor can also be found for this case 

and may be expressed as 

AF = I 1 - -fë- - 
TT-Ç-t» 

[ - SlvT’ ( ^Wo I ^ ‘tr'Ftkl ") ] (D13) 

in which the value of n is given by the largest integer which is less 

than or equal to ftQ. 



Ca) Alternating Step 

<c) Half-Sine 

(e) Alternating Triangle 

FIG. 1 Definition of Periodic 

(b) Alternating Versine 

Cd) Absolute Sine 

(f) Saw-tooth 

Considered 
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0 0.5 I 
t/t0 

FIG. 2a Comparison of Transient and Steady-State Responses for Systems 
with Ç = 0.10 Subjected to the Alternating Step Force 
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0 0.5 I 
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FIG. 2b Comparison of Transient and Steady-State Responses for Systems 
with Ç = 0.10 Subjected to the Alternating Step Force 
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f t0 

FIG. 4 Logarithmic 'lots of Response Spectra for Steady—State and 

Transient isplacements of Systems with Ç = 0.05 Subjected to 

AlternatJ ig Step Forr . 
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FIG. 12 Representative Wave Force History and its First Two Integrals 
with Zero Initial Values 
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FIG. 13 Representative Wave Force History and its First Two Integrals 
Adjusted to Have Zero Means 
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FIG. 15 Tripartite Logarithmic Plots of Response Spectra for Steady- 
State and Transient Spring Forces of Systems with £ = 0.05 
Subjected to Alternating Step Force 
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CO 

FIG. 17 Steady-State Response Histories of High-Frequency Damped 
Systems Subjected to Various Periodic Excitations 
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FIG. 19 Comparison of Spectra for Steady-State and Absolute Maximum 
Response of Systems with Ç = 0.05 Subjected to Alternating 

Step Forces 
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FIG. 20 Comparison of Transient and Steady-State Response Histories for 
Systems with fto = 0.10 Subjected to Alternating Step Force 



86 
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FIG. 21 Comparison of Spectra for Steady-State and Absolute Maximum 

Response of Systems with Ç = 0.05 Subjected to Harmonic Forces 
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FIG. 22 Spectra for Absolute Maximum Response of Systems Subjected to 
Sinusoidal Force 
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FIG. 23 Spectra for Maximum Forced Response of Systems with Ç = 0.05 
Subjected to n Cycles of a Sinusoidal Force 
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FIG. 24 Spectra for Maximum Forced Response of Systems with Ç = 0.05 

Subjected to n Cycles of a Cosine Force 
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FIG. 25 Spectra for Maximum Forced Response of Systems with Ç = 0.05 
Subjected to n Cycles of Alternating Step Force 
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FIG. 26 Spectra for Maximum Forced Response of Systems with Ç=0.05 
Subjected to n Cycles of Shifted Alternating Step Force 
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FIG. 27 Spectra for Absolute Maximum Response of Undamped Systems 
Subjected to n Cycles of Sinusoidal Force 
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FIG. 28 Spectra for Absolute Maximum Response of Systems with Ç = 0.05 

Subjected to n Cycles of Alternating Step Force 
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FIG. 29 Spectrum for Absolute Maximum Response of Systems with Ç=0.05 
Subjected to Three Cycles of Alternating Step Force 
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FIG. 30 Response Histories of High-Frequency Undamped Systems 
Subjected to Various Discontinuous Excitations 


