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ABSTRACT 

A model for two-phase, incompressible, immiscible fluid flow in a highly 
fractured porous medium is derived as a simplification of a much more de­
tailed dual-porosity model. This simplified model has a nonlinear matrix­
fracture interaction, and it is more general than similar existing "transfer 
function" models. It is computationally less complex than the detailed 
model, and simulation results are presented which assess any loss in accu­
racy. It is shown that the new model approximates capillary effects quite 
well, and better than similar existing models. 

1. INTRODUCTION 

The flow of fluids through highly fractured porous media is often modeled 
as a dual-porosity system in which the network of fractures and the matrix 
rock are viewed as distinct, interacting porous structures. Several strate­
gies have been proposed to model the matrix-fracture interaction. Among 
these are, one, to directly compute the internal flow within the matrix 
blocks as it is affected at the blocks' surfaces by the external fracture flow 
[6, 7], and, two, to define the matrix-fracture interaction by a "transfer 
function" [10, 5, 8, 6]. The first approach should be considered to be the 
most accurate, as the equations are derived by homogenization (i.e., av­
eraging) of the equations describing the flow on a microscopic level ( see, 
e.g., (6)). We pay for this accuracy through computational complexity. 

In this paper we mathematically simplify the equations for the first, 
more detailed model for two-phase, immiscible, incompressible flow. The 
result is a new model of the second type that has a nonlinear transfer func­
tion, with well defined physical parameters. It is more general than similar 
existing models, and it is better able to capture the important capillary 
effects [9] between the two porous media, yet it remains computationally 
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about as simple. The model is also extended to cover groundwater flow. 
Computational results are presented which assess the validity of the 

new model by comparing it to the first, more detailed one, and which 
demonstrate the unique features of the new model over the existing trans­
fer function models. 

2. DERIVATION OF THE SIMPLIFIED MODEL 

We begin by presenting the homogenized dual-porosity model [6]. Let x 

denote a point in the medium fl, and t denote time. For wetting and 
nonwetting phases e = w, n, respectively, let pe,r(x, t), <Pe,r(x, t), se,r(x, t), 
</>r(x), kr(x), Pc,r(sw,f), and ,\~,r(sw,r) denote the fracture system's pressure, 
fl.ow potential, saturation ( so Sw ,f + Sn,f = 1 ), porosity, permeability, cap­
illary pressure, and relative mobility (i.e., relative e-permeability divided 
bye-viscosity). (These are macroscopic quantities defined on the scale of 
the fracture spacing, not on the scale of the fracture width.) We denote 
the corresponding quantities for the matrix system similarly, but we must 
account for the complicated topology of a dual-porosity system. First re­
place subscript f by m and then replace x by (x, y), where x determines 
the matrix block Q(x) and y determines the point within that block. 

Flow in the fracture system is governed by the usual equations of 
two-phase incompressible, immiscible flow, except for the addition of two 
"matrix source" terms qe ,m. For e = w, n, 

(a) 

(b) 

(c) 

(d) 

ve,r = -kr>-e,r(sw,r)V<Pe,r for x En, t > 0, 

</>r8tse,r + V · ve,r = qe + qe,m, for x E n, t > 0, 

Pc,r(sw,r) = Pn,f - Pw,f, 

<Pe,r = Pe,r - ,ex3, 

(1) 

where ve,r(x, t) is the Darcy phase velocity, 8t = 8/8t, ,e is the gravity­
density term, x3 is the vertical coordinate, and qe(sw,1, x, t) is the external 
volumetric source. To these we add boundary and initial conditions. 

The matrix system satisfies on each matrix block Q( x) the usual equa­
tions of porous media flow written in terms of the flow potential [2]. Hence, 
for each fixed XE n and e = w, n, 

(a) ve,m = -km>-e,m(sw,m)Vy<Pe,m, for y E Q(x), t > 0, 

(b) </>m8tse,m +Vy· ve,m = 0, for y E Q(x), t > 0, 

(c) Pc,m(sw,m) = Pn,m - Pw,m, 
(2) 

(d) <Pe,m = Pe,m - ,e(x3 + y3). 

Here, the boundary conditions are very important, since the fracture sys­
tem influences the matrix fl.ow through them. For X En and e = w, n 

<Pe,m(x,y,t) = <Pe,r(x,t) for y E 8Q(x), t > 0. (3) 



Note that the scale of the matrix blocks is so much finer than that of 
the fracture system that these right-hand sides are constant in space over 
8Q(x ). For the initial condition, assume equilibrium with the fracture 
system. 

- 1 [ 
Let <l>m(x) = IQ(x )I } Q(x) </>m(x, y) dy. Define the average matrix w-

saturation at x E Q to be 

_ 1 [ </>m ( X, y) 
Sw,m(x,t) = -IQ(x)I JQ(x) </>m(x) Sw,m(x,y,t)dy. 

Finally, define the matrix w-source function at x E Q to be 

qw ,m ( X, t) = -¢m ( X) 8t Sw ,m ( X, t) 

and set qn,m = -qw,m by incompressibility. 

(4) 

(5) 

This model as stated must necessarily give rise to a fairly complicated 
numerical approximation scheme [7]. We now derive a computationally 
more tractable simplification of the model. We assume that imbibition is 
the dominant physical process affecting the movement of fluids between 
the matrix and the fractures, and we neglect all other processes. 

Following [4], we omit the 1ey3 gravitational term in (2d), and rewrite 
(2) in terms of the global pressure 

1Sw,m ( ,\ p' ) 
Pm =Pn,m - ,\ w,:~m (s)ds,. 

Swr,m W ,m n,m 
(6) 

where Swr,m is the residual wetting saturation in the matrix. By adding 
together the two equations in (2b ), we obtain for Pm an elliptic equation 
with a constant Dirichlet boundary condition; hence, Pm is constant in 
space over Q(x) and Vw,m + Vn,m ·= 0. Consequently, we ignore the n­
equation in (2b) and rewrite thew-equation as 

[ (
Aw,mAn,mP~,m) ] 

</>m8tSw,m + 'v y · km >. >. (sw,m)'v ySw,m = 0. 
w,m + n,m 

(7) 

Let (J' = P;,in o Pc,f relate fracture w-saturations to matrix ones through 
continuity of the phase pressures. Linearization now yields the system 

(a) </>m8tSw,m - 'vy · (Km 'vysw,m) = 0 for y E Q(x), t > 0, 

(b) Sw,m = (J'(Sw,f) for y E 8Q(x), t > 0, 
} (8) 

for x E Q and for some Km(x, y) uniformly positive in y, defined in the 
next section. This system is easily solved by means of a Green's function. 
In fact, for x E il, let w(x, y, t) be defined by 

(a) 

(b) 

(c) 

</>m8tw - 'v y · (Km 'v yw) = 0 for y E Q(x), t > 0, 

w=l foryE8Q(x), t>0, 

w=0 foryE Q(x), t=0. 
} (9) 



Then, 

Sw,m(x, y, t) = lt w(x, y, t - T) 8ta(sw,r(x, T)) dr + a(sw,r(x, 0)) (10) 

is a convolution in time ( as in the case of single phase flow [1 ]). 
As a final simplification, note that w varies from O to 1 in time, so 

approximate it by a sum of m exponentials as follows: Choose ai(x) and 
/Ji(x), i = 1, ... , m, such that 

IQ~x )I l </>m(x, y)w(x, y, t) dy ~ ¢m(x) (1 -t /Ji(x)e-a,(x)t), (11) 
Q(x) z=l 

where I:i /Ji(x) = l. Then the average matrix saturation in Q(x) is 

Sw,m(x, t) = t, /J;(x ){ ct;( x) J,' a( Sw,1(x, T )) e-•, (z)(t-r) dr 

+ a(sw,r(x, O))e-a,(x)t} · (12) 

The simplified model is (1), (5), and (12), and it is somewhat more 
general than that proposed by deSwaan [10] and independently by Chen 
[5], where a is a multiple of the identity and m = 1. This model is also 
more general than the "limit model" of Douglas and Paes Leme [8, 6], 
where simply 

Sw,m(x, t) = a(sw,r(x, t)); (13) 

this is our model with m = 1 and a 1 = +oo. The existence of a solution 
to the model, in fact (1), (5), and (10), has been shown by the author [3]. 

3. SELECTION OF PARAMETERS 

It remains to define Km, ai, and /Ji, i = 1, ... , m. Clearly we must choose 
Km so that 

Km~ -km w,m n,mPc,m (s) (,\ ,\ / ) 
Aw,m + An,m 

(14) 

for all values s of interest. Let us take the arithmetic average in both s 
and y, over the region of interest Swr,m :'.S s '.'.S 1 - Snr,m and y E Q(x). 

Now for the ai and /Ji, assume that the matrix blocks Q(x) are rect­
angular, of size f 1 x £2 x £3 , and that the permeability is a diagonal tensor. 
Also replace </>m ( x, y) by ¢m ( x ). In that case, separation of variables ap­
plied to ( 9) shows that 

IQ
ll {Q¢m(x)w(x,y,t)dy=¢m{l- ~ 2 52122 

}, L- mm m 1r6 
m1,m2,m3odd 1 2 3 

[ (
m2 m2 m2 ) 1r2 l} 

X exp - el Km,11 + fl Km,22 + fl Km,33 ef>m t • (15) 



We may truncate (15) as we wish. For this paper, assume that Rj = £ 
and r;,m,jj = r;,m, j = 1, 2, 3, and take m = 2. Then a1 = 3r;,m1r

2 
/ ¢m£

2
. Let 

a2 = O; then, /32 = 1 - /31 represents the fraction of essentially immobile 
fluid over the time-scale of interest. 

Of course, if possible we should adjust the O'.i and /3i to match empirical 
data; (14)-(15) is merely for theoretical guidance. 

4. DISCRETIZATION OF THE MODEL 

Apart from the qe,m term, there are many ways to discretize (1). This 
author chose to use a fully implicit, backward Euler time approximation 
coupled to a standard cell-centered finite difference scheme with upstream 
weighted relative mobilities, solved by a Newton iteration. The approxi­
mation of the average matrix saturation (12) at any grid cell j at time tN 
can be given as follows: 

m 

-N L/3 -N s · = · ·s · · w,m,J 1,J w,m,1,J 

i=l 

-N { LN lt" s - a·· w ,m,i,j - i,J 
tn-1 

n=l 

(16) 

+ w,f,J w,f,j (r-tn-1) eOli,jTdT+a(SQ f ·) e-Oli,jt 
a(sn ·) - a(sn-l) ] } N 

tn _ tn-1 w, ,J 

[ 

( N ) ( N-1 )] as . -as . N N1 
-N-1 ( N-1) + w,f,J w,f,J -01· ·(t -t - ) = s . - a s . _ ___;....;.;;_ ___ ..:.....:..:._ e '·' 
w,m,i w,f,J a· ·(tN _ tN-1) 

1,J 

a(sN ) a(sN-l) 
+ ( N ) w,f,j - w,f,j 

as r· -
w,,J a· ·(tN -tN-1) . 

&,J 
(17) 

where s~,m,i,j = a(s~,f)· This definition does not require that the entire 
past history of the solution be saved in memory. 

Finally, over the time interval tN - 1 to tN ( cf. ( 5)), 

-N -N-1 s . - s . N N :i. w,m,J w,m,J 
-qn,m,j = qw,m,j = -'//m,j tN _ tN-1 (18) 

5. SOME COMPUTATIONAL RESULTS 

To assess the loss in accuracy due to the simplifications we made to the 
original, homogenized model (1)-(5), a two dimensional, vertical water­
flood problem was simulated. In this problem, oil plus residual water 
initially fills the reservoir, water is injected along one vertical face, and 
fluids are collected along the opposite face. The reservoir is water-wet, so 
imbibition is the dominant physical force on the fluids. 
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Fig. 1. A graph of a( s ). Fig. 2. Cumulative oil production vs. 
water injection (in pore-volumes). 

The reservoir is rectangular, 1080 m long and 24 m in depth, and the 
matrix blocks are 2 m square. The fracture thickness is 100 micrometers 
(so <pr = .0001). Also, kr = 42.2md, <Pm = .2, km = 40md, Swr,f = 0, 
Sn r,f = 0, Swr,m = .25, and 1-Snr,m = . 7. Reasonable relative permeability 
and capillary pressure functions were used; a( s) is shown in Figure 1. 
Water density. was 1 g/cm3 and viscosity was .5 cp, and oil density was 
.9 g/cm3 and viscosity was 2 cp. Injection rate was .2 pore-volumes of 
water per year. In these simulations, it was appropriate to take /31 = .85, 
since about 15% of the recoverable oil was essentially immobile over the 
span of a few years. From (15), a 1 = .012/day. 

A uniform fracture grid of size 25 x 6 was used, and, in the homogenized 
model, the matrix grid was 6 x 6. The final time is 4.3 years, and the time­
step varied from .01 to 8 days. 

Solutions were obtained for four models: the homogenized model (1)­
(5); the simplified model (1 ), (5), and· (12); the model of deSwaan (10, 
5], where a(s) = Swr,m + (1 - Snr,m - Swr,m)s; and the limit model of 
Douglas and Paes Leme [8, 6] (1), (5), and (13). The latter two models 
were modified to account for the essentially immobile fluid. 

Figure 2 shows the cumulative production of fluids from the reservoir. 
It is evident that /31 is correctly chosen for the three simpler models. 
Note that breakthrough occurs too soon for the deSwaan model, while 
the models with the nonlinear a( s) provide much better results. This 
is understood from Figure 1, since the linearized a( s) clearly predicts 
too little imbibition of the w-saturation fracture front as the simulation 
proceeds. The proper nonlinear influence of capillary pressure is simulated 
by the simplified and limit models. 

Figures 3 and 4 show water saturation contours for the simulation at 
one year. Water is injected from the left-hand side of the figure, and pro­
duced. from the right-hand side. Clearly the simplified model of this paper 
provides the best match with the homogenized (most nearly correct) so­
lution. Again, we see that the deSwaan model produces far too broad a 
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front. The limit model assumes that fluid flow into the matrix is immedi­
ate, subject only to the capillary force; consequently, it produces far too 
sharp a front. The delay in matrix-fracture fluid transfer associated with 
a finite o:1 results in a widening of the front; the figures show that the 
simplified model obtained approximately the correct front width. 

The simplified model is limited in its ability to model relative perme­
ability effects. Matrix-fracture fluid transfer is most rapid for moderate 
saturations and slowest for extreme saturations, since then the medium is 
much less permeable to one of the two fluids. Hence, the average matrix 
saturation front for the simplified model is advanced at low saturations, 
and lags at high saturations. The fractures lose water to the matrix due 
to excessive imbibition at the leading edge, causing the front to lag there. 
The full, homogenized model simulates these relative permeability effects, 
since then we obtain not just the average saturation, but the full satura­
tion distribution within the matrix blocks. Perhaps a modification of a( s) 
in the simplified model would allow us to obtain a better empirical match. 

6. EXTENSIONS TO GROUNDWATER FLOW 

The extension of the model to groundwater flow is easily obtained. First, 
replace (1) by Richard's equation in the fractures: 

8tf)(1Pr) - \7 · [Kr(1Pr)\7(1Pr - x3)] = q + qm, for x E .fl, t > 0, (19) 



where, in the fractures, Kf is the macroscopic hydraulic conductivity, '!pf 
is the pressure head, and Bf is the moisture content. If Bm is the moisture 
content in the matrix, we replace (5) and (12) by 

qm(x, t) = -Ot0m(1Pf(X, t)), (20) 

Om( 'Pr(x, t)) = t /3;( X ){ <>;( X) J.' Om( 'Pr(x, T )) ,-o;(•)(t-r) dT 

+0m(1Pf(x,O))e-a;(x)t}· (21) 
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