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Abstract 
 

Principal component analysis (PCA) and factor analysis (FA) are two time-honored 
dimension reduction methods. In this paper, some inequalities are presented to contrast PCA 
and FA solutions for the same data set. For this reason, we take advantage of the recently 
established matrix decomposition (MD) formulation of FA. In summary, the resulting 
inequalities show that [1] FA gives a better fit to the data than PCA, [2] PCA extracts a larger 
amount of common “information” than FA, and [3] For each variable, its unique variance in 
FA is larger than its residual variance in PCA minus the one in FA. The resulting inequalities 
can be useful to suggest whether PCA or FA should be used for a particular data set. The 
answers can also be valid for the classic FA formulation not relying on the MD-FA definition, 
as both “types” FA provide almost equal solutions. Additionally, the inequalities give 
theoretical explanation of some empirically observed tendencies in PCA and FA solutions, 
e.g., that the absolute values of PCA loadings tend to be larger than those for FA loadings, 
and that the unique variances in FA tend to be larger than the residual variances of PCA.    

 
Key words: Matrix decomposition; Dimesion reduction; Common parts; Unique parts; 
Loadings; Residuals. 
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1. Introduction 
 

Principal component analysis (PCA) was conceived by Pearson (1901) and formulated 
by Hotelling (1933) who named the procedure PCA. On the other hand, factor analysis (FA) 
was proposed by Spearman (1904) and further developed to its modern form as known today 
by Thurstone (1935). Both procedures are time-honored dimension reduction methods for an 
n-observations × q-variables column-centered data matrix X = [x1, … , xq]. Thus, PCA and 
FA are often performed for an identical data set (e.g., Adachi, 2016; Jolliffe, 2002). Their 
solutions are compared mathematically and numerically in this paper. Throughout the paper, n 
≥ rank(X) = q is supposed with rank(X) denoting the rank of X. 

PCA can be formulated in a number of different ways (Okamoto, 1969; ten Berge & 
Kiers, 1996). One of them is to define PCA as “composing scores by variables”, i.e., 
summing weighted observed variables to provide composite scores (Hotelling, 1933). This 
formulation of PCA is rather opposite to the FA assumption of “composing variables by 
scores”, i.e., summing the weighted unobserved (factor) scores to provide observed variables. 
An approach, which is comparable with FA, is to formulate PCA as  

X = PC′ + EPC ,                             (1) 

where P = [p1, … , pm] is an n-observation × m-components PC score matrix, C = (cjk) is a q × 
m component loading matrix, and EPC (n × q) contains errors, with m ≤ q. (e.g., Adachi, 2016). 
The implication of (1) can be illustrated as in Figure 1(A): in (1) the variables x1, … , xq are 
commonly explained by the PC scores p1, … , pm which are weighted by their loadings cjk, 
and the errors in EPC remain unexplained. In this point, we call PC′ a common part.. The 
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Figure 1. Graphical representation of PCA as reduced rank approximation (RRA) and FA 
with q = 5 and m = 2  
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matrices P and C that minimize a least square error ||EPC||2 = trEPC′EPC = ||X − PC′||2 is given 
through the singular value decomposition (SVD) of X (Eckart & Young, 1936). Thus, PCA 
can be regarded as a matrix decomposition problem for approximating X by a lower rank 
matrix PC′ with rank(PC′) = m ≤ q, also known as the truncated SVD. 
    In a similar manner as PCA, FA can be formulated as a matrix decomposition problem. 
It was firstly proposed by Henk A. L. Kiers as described in Sočan (2003, pp. 19-20) and 
recently established (Unkel & Trendafilov, 2010; Stegeman, 2016; Adachi & Trendafilov, 
2017). In this formulation, FA is modeled as  

                          X = FA′ + UΨ + EFA .                           (2) 

Here, F = [f1, … , fm] is the n × m matrix containing common factor scores, U = [u1, … , uq] is 
the n × q matrix of unique factor scores, A = (ajk) is a q × m factor loading matrix, and Ψ is 
the q × q diagonal matrix, the squares of whose diagonal elements ψ1, … , ψq are called 
unique variances, with EFA (n × q) containing unsystematic errors. The factor score matrices 
are constrained as  

n
1 F′F = Im,  

n
1 U′U = Iq,  and  F′U = O                   (3) 

with O being a matrix of zeros. The implications of (2) can be illustrated in Figure 1(B): FA′ 
is the common part as PC′ in (1), while a unique part UΨ is added in FA with the jth unique 
factor uj being weighted by ψj, which affects only (uniquely) the corresponding variable xj. 
    In (2), all F, A, U, and Ψ are treated as fixed unknown matrices. In contrast, the classic 
formulation of FA treats the elements of F and U as the random variables following 
distributional assumptions associated with (3). Then, the covariance matrix among the 
columns of FA′ + UΨ can be expressed as AA′+Ψ2, which is supposed to approximate the 
sample counterpart SXX = n−1X′X: 

                             SXX ≅ AA′+Ψ2 .                            (4) 

In the classic FA, the discrepancy between SXX and AA′+Ψ2 is minimized over A and Ψ2 (e.g., 
Harman, 1976; Mulaik, 2010). It is known that this approach and the one in the last paragraph 
provide almost equivalent solutions (Adachi, 2012, 2015; Stegeman, 2016). However, it is 
difficult to compare (4) with (1), as the former concerns moments (i.e., covariances), while 
the latter directly fits the data. Nevertheless, several studies exist comparing the classic FA (4) 
with PCA (e.g., Bentler & Kano, 1990; Ogasawara, 2000; Sato, 1990). In contrast, comparing 
(2) with (1) is straightforward, as they both fit the data. The only difference is that (2) also 
involves an unique part. In this paper, we compare the properties of the PCA solutions with 
those obtained by the FA procedure based on (2), referred to simply as FA and the classic one 
based on (4) - as random FA (RFA).  
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    The main goal of this paper is to quantify the illustration in Figure 2. It depicts how ||X||2, 
i.e., the total sum of squares (SS) of a data set is decomposed into some SS’s. There, the areas 
of the common part and residuals for PCA stand for || CP ˆˆ ′ ||2 and || PCÊ ||2, respectively. On the 
other hand, the areas of the common part, unique part, and residuals for FA correspond to 
|| AF ′ˆˆ ||2, || Ψ̂Û ||2, and || FAÊ ||2, respectively. Here, CP ˆˆ ′  denotes the PCA solution for PC′ 
with PCÊ containing the resulting residuals, while AF ′ˆˆ  and Ψ̂Û  are the FA solutions for 
FA′ and UΨ, respectively, with FAÊ  the resulting residual matrix. The relative largeness of 
the areas in Figure 2 show that:  

[1] The common part for PCA is larger than that for FA; 
[2] The residual part for FA is smaller than that for PCA;  
[3] The unique part for FA is larger than the residual one for PCA.  

Here, [1] and [2] always hold, while it is suggested that [3] is often observed. Those 
assertions are proved in Section 3 in the form of several inequalities, after preliminary results 
are presented in the Section 2. The theoretical results obtained in Section 3 are illustrated in 
Sections 4 and 5.    
  
2. Preliminary Notes  
    
    In this section, the solutions of PCA and FA are described, which are followed by their 
rotational indeterminacy. It serves as the preparations for the next section. 
 
2.1. PCA Solution 
   As described in the last section, PCA can be formulated as minimizing  

                       fPC(P, C) = ||EPC||2 = ||X − PC′||2                       (5) 

over P and C. It is attained through the SVD of X defined as X = VΘW′ with V′V = W′W = 
Iq and Θ the q × q diagonal matrix whose diagonal elements are arranged in decreasing order. 

Common Part Unique Part Res 

Common Part Res PCA 

FA 

||X||2

Figure 2. Relative largeness of common parts, unique part, and residuals in PCA and 
FA solutions, 
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The solution satisfies CP ˆˆ ′= VmΘmWm′. Here, Vm (n × m) and Wm (q × m) contain the first m 
columns of V and W, respectively, and Θm is the first m × m diagonal block of Θ. For an 
identification purpose, the condition 

                                PP′
n
1 = Im                               (6) 

is introduced. Then, we can choose P̂  and Ĉ  as 

P̂  = n1/2Vm = n1/2XWmΘm
−1  and Ĉ = n−1/2WmΘm             (7) 

(e.g., Adachi, 2016), though rotational indeterminacy remains as explained in Section 2.3.  

          
2.2. FA Solution 

The FA model (2) leads to the minimization of the following least squares function  

fFA(F, A, U, Ψ) = ||EFA||2 = ||X − (FA′+ UΨ)||2                   (8) 

over F, A, U, and Ψ subject to (3). Though the solution cannot be given explicitly and must 
be obtained through iterative algorithms, the optimal A and Ψ are known to satisfy 

Â  = F̂XS  and Ψ̂  = diag( ÛXS ) ,                      (9) 

with F̂XS = n−1X′ F̂ , ÛXS = n−1X′ Û , and diag( ÛXS ) denotes the diagonal matrix containing 

the main diagonal of ÛXS (e.g., Adachi & Trendafilov, 2017; Stegeman, 2016). The optimal 

factor score matrices F̂  and Û  are undetermined, but F̂XS  and ÛXS  can be uniquely 

determined (Adachi & Trendafilov, 2017). Using (4), the function (8) is rewritten as fFA(F, A, 
U, Ψ) = tr(X′X + nAA′ + nUU′ + X′FA′+ X′U). Here, we can substitute (9) to have 

                 fFA( F̂ , Â , Û , Ψ̂ ) = n tr(SXX − AA ′ˆˆ − 2Ψ̂ ) .                  (10) 

It is irrelevant to this paper how F̂ , Û , F̂XS , and ÛXS  are expressed. Also, in spite of (8) 

being a data-fitting problem, the solution { Â , Ψ̂ } can be obtained without explicitly given X, 
if only SXX is available (Adachi, 2012; Adachi & Trendafilov, 2017).  
 
2.3. Rotational Indeterminacy 
   The rotational indeterminacy of the loading matrices in PCA and FA affect some of the 
results to be presented in the next section.  
   Let TP and TF be m × m arbitrary orthogonal matrices, with  
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TP′TP = TPTP′ = TF′TF = TFTF′ =Im .                     (11) 

Since PTP and FTF can be substituted for P in (6) and for F in (3), respectively, with PC′ = 
PTPTP′C′ and FA′ = FTFTF′A′, PCA and FA solutions have the rotational indeterminacy: 
score and loading matrices can be rotated without affecting the PCA and FA fit. This property 
is exploited to obtain the unique orthogonal TP or TF which make the rotated loading matrices 
P̂ TP or Â TF most interpretable in some sense. This procedure is called orthogonal rotation 
(e.g., Adachi, 2016; Mulaik, 2010). 
    The constraint (6) and n−1F′F = Im in (3) are sometimes relaxed to n−1diag(F′F) and 
n−1diag(P′P), respectively. Then, PCA and FA have the following rotational indeterminacy: if 
the m × m nonsingular matrices N P and NF satisfy 

n
1 diag(NP′P′PNP) = Im and   

n
1 diag(NF′F′FNP)= Im ,             (12) 

then PNP and FNF can be substituted for P and F in the above relaxed constraints, with PC′ = 
PNPNP

−1C′ and FA′ = FNFNF
−1A′. These are called oblique rotations and are also used to 

obtain NP or NF satisfying (11), such that Ĉ NP′−1 and Â NF are most interpretable (e.g., 
Adachi, 2016; Mulaik, 2010). 
   
3. Results 

 
In this section, we present four theorems, which help to contrast the PCA and FA 

solutions minimizing (5) subject to (6) and minimizing (8) under (3), respectively.  
We start with introducing Trendafilov, Unkel, and Krzanowski’s (2013) FA-like PCA 

which is utilized in the proof for the following theorems. In the FA-like PCA, the PCA 
solution CP ˆˆ ′  minimizing (5) is substituted for FA′ in the FA loss function (8) as    

g(U*,Ψ*) = ||X − ( CP ˆˆ ′+ U*Ψ*)||2 .                   (13) 

Then, it is minimized over U* and Ψ* subject to P̂ ′U* = pOm and n−1U*′U* = Ip, with Ψ* 
being diagonal.  

Theorem 1. FA model (2) always fits better for a certain data matrix X than PCA (1):  

|| PCÊ ||2 ≥ || FAÊ ||2                            (14) 

Proof. Obviously, ||X − CP ˆˆ ′ ||2 ≥ ||X − CP ˆˆ ′ ||2 − ||U*Ψ*||2 holds true. Further, the FA-like PCA 
optimality condition Ψ = diag(U*′X) (Trendafilov, et al’s, 2013, 5.2.1) shows ||X − CP ˆˆ ′ ||2 − 
||U*Ψ*||2 = ||X − ( CP ˆˆ ′+ U*Ψ*)||2. Thus, the value of PCA loss function (5) cannot be less than 
the (13) value:   
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       ||X − CP ˆˆ ′ ||2 ≥ ||X − ( CP ˆˆ ′+ U*Ψ*)||2 .                   (15)          

Now, CP ˆˆ ′ , U*, and Ψ* in the right-hand side of (15) can be replaced by the corresponding 
FA solutions AF ′ˆˆ , Û , and Ψ̂ . The function value after this substitution cannot exceed the 
right-hand side of (15):   

||X − ( CP ˆˆ ′+ U*Ψ*)||2 ≥ ||X − ( AF ′ˆˆ + Ψ̂Û )||2 ,                 (16) 

because the FA loss function ||X − (FA′ + UΨ)||2 is minimized for FA′ + UΨ = AF ′ˆˆ + Ψ̂Û  
but not for FA′ + UΨ = CP ˆˆ ′+ U*Ψ*. Thus, the inequalities (15) and (16) lead to (14).  

The theorem suggests that for better fit to the data, FA should be preferred over PCA. 
The next theorem concerns the largeness of squared loadings and common parts: 

Theorem 2. For certain X, the sum of squared PCA loadings is always equal to or larger than 
the sum of squared FA ones (under constraints (3) and (6)), 

          || Ĉ ||2 ≥ || Â ||2 ,                             (17)            

|| Pˆ TC ||2 ≥ || Fˆ TA ||2 ,                           (18) 

with TP and TF satisfying (11). This implies that the common part in PCA is always equal to 
or larger than that one for FA: 

|| CP ˆˆ ′ ||2 ≥ || AF ′ˆˆ ||2 ,                            (19)            

|| CNNP ˆˆ 1
PP ′− ||2 ≥ || ANNF ′− ˆˆ 1

FF ||2 .                       (20) 

with NP and NF arbitrary nonsingular m × m matrices. 
Proof. The PCA loss function (5) is expanded as ||X||2 − 2trX′ CP ˆˆ ′+ || CP ˆˆ ′ ||2, which is equal to 
n(trSXX − tr CC ′ˆˆ ) since of (6) and (7). That is, we have  

             fPC( P̂ , Ĉ ) = n(trSXX − tr CC ′ˆˆ ) .                   (21) 

Now, let us consider fPC( F̂ , Â ) = ||X − AF ′ˆˆ ||2, i.e., the PCA function (5) with the FA solution 
AF ′ˆˆ  substituted for PC′. Using (3) and (9), fPC( F̂ , Â ) can be rewritten as n(trSXX − 

2tr F̂XS A′ˆ − tr AA ′ˆˆ ) = n(trSXX − tr AA ′ˆˆ ). Clearly, fPC( F̂ , Â ) = n(trSXX − tr AA ′ˆˆ ) cannot be 
lower than (21), since the PCA solution is known as the best low rank approximation (Eckart 
& Young, 1936). Thus, we finally have 

trSXX − tr CC ′ˆˆ ≤ trSXX − tr AA ′ˆˆ ,                     (22)  

which gives (17). It also implies (18), because of the orthogonality propety (11).  
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Inequality (17) leads to (19), since || AF ′ˆˆ ||2 = ntr AA ′ˆˆ = n|| Â ||2 and || CP ˆˆ ′ ||2= ntr CC ′ˆˆ = 
n|| Ĉ ||2 follow from (3) and (6), respectively. Obviously, (19) leads to (20).  

This theorem shows that the common part in PCA is larger than in FA. Inequality (20) shows 
that the common part is larger in PCA solutions even after oblique rotation. On the other hand, 
TP and TF in (18) cannot be replaced by NP and NF. That is, after the oblique rotation, 

|| 1
P

ˆ −′NC ||2 ≥ || 1
F

ˆ −′NA ||2 does not necessarily hold. 

Though Theorem 2 discuss the magnitudes of the squared loadings and common part in 
PCA solutions, the next one shows their upper limits.   

Theorem 3. For certain X, the sum of the squared PCA loadings cannot exceed the sum of the 
squared loadings and unique variances in the FA solution: 

|| Ĉ ||2 ≤ || Â ||2+|| Ψ̂ ||2 ,                          (23)            

         || Ĉ TP||2 ≤ || Fˆ TA ||2 +|| Ψ̂ ||2 ,                        (24)   

with TP and TF satisfying (11). It implies that the squared norm of the PCA common part 
cannot exceed the FA model part one:  

                            || CP ˆˆ ′ ||2 ≤|| AF ′ˆˆ + Ψ̂Û ||2  ,                       (25) 

                       || CNNP ˆˆ 1
PP ′− ||2 ≤ || ANNF ′− ˆˆ 1

FF + Ψ̂Û ||2   .                (26)          

with NP and NF arbitrary nonsingular m × m matrices. 
Proof.  (10) and (21) are rewritten as || FAÊ ||2 = n(trSXX − tr AA ′ˆˆ − tr 2Ψ̂ ) and || PCÊ ||2 = 
n(trSXX − tr CC ′ˆˆ ), respectively. Using them in (14), we have (23) and it leads to (24), since of 
(11). Inequality (23) leads to (25) and thus (26), since || AF ′ˆˆ + Ψ̂Û ||2 = n|| Â ||2+n|| Ψ̂ ||2 and 
|| CP ˆˆ ′ ||2= n|| Ĉ ||2 follow from (3) and (6), respectively.  

Inequality (26) shows that the model part is larger in FA even after oblique rotation. 
However, after the rotation, the sum of squared loadings in PCA is not necessarily less than 
the sum of squared loadings and unique variances in FA, since TP and TF in (24) cannot be 
replaced by NP and NF. 
   The following theorem concerns the magnitudes of the unique variances in FA:  

Theorem 4. For a certain X, the sum of the unique variances in FA is larger than the sum of 
squared residuals for PCA minus the sum for FA:  
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|| Ψ̂ ||2 ≥ 
n
1
|| PCÊ ||2 − 

n
1
|| FAÊ ||2 .                     (27) 

Proof. We can rewrite (10) as n−1|| FAÊ ||2 = tr(SXX − AA ′ˆˆ − 2Ψ̂ ), which leads to trSXX − tr AA ′ˆˆ  
= 2Ψ̂ + n−1|| FAÊ ||2. We can also rewrite (21) as trSXX − tr CC ′ˆˆ = n−1|| PCÊ ||2. Their use in (22) 
we have to n−1|| PCÊ ||2 ≤ 2Ψ̂ + n−1|| FAÊ ||2, which can be rewritten as (27).  

    The mathematical results presented so far always hold. However, Theorems 2 and 4 also 
make the following suggests, which are likely but not necessarily holding in every occasion:  

[S1] The absolute value of each PCA loading before/after orthogonal rotation tends to 
be greater than the absolute one of the corresponding FA loading (though 
exceptions can also exist), which is suggested by (17) and (18).  

[S2] If || FAÊ ||2 is small enough, || Ψ̂ ||2 tends to be larger than n−1|| PCÊ ||2. The unique 
variance 2ˆ jψ  for variable j tends to be greater than the corresponding PCA residual 

variance n−1|| PCˆ je ||2, where PCˆ je  and 2ˆ jψ  are the j-th column and diagonal element 

of PCÊ  and Ψ̂ , respectively. Note, n−1|| PCˆ je ||2 is a variance, because PCÊ = X − CP ˆˆ ′  

and X is column-centered and implies (7) for P. 
 

These features are numerically assessed in the following sections. 
 
4. Illustration 

 
In this section, two real data examples are used in order to illustrate the theorems in the 

last section as well as [S1] and [S2]. For the every data set, we carry out PCA and FA, 
together with two classic RFA procedures. One of the two RFA procedures is the least 
squares RFA (LS-RFA) with loss function ||SXX−(AA′+Ψ2)||2. The other one is the maximum 
likelihood RFA (ML-RFA), whose loss function is trSXX(AA′+Ψ2)−1−log|AA′+Ψ2| following 
from certain normality assumptions, with |•| denoting the determinant of its argument. As the 
theorems in the last section are derived from the formulation of FA with (2), they are not 
guaranteed to hold in RFA with (4). Thus, it is of interest to see to what extent the RFA 
solutions follow the inequalities in the theorems. Of course, Theorem 1 is not considered 
because the error matrix FAÊ  is not relevant to RFA with (4). The resulting loadings in LS- 
and ML-RFA are expressed as LÂ  and MÂ , respectively, with the corresponding unique 

variances matrices denoted as 2
LΨ̂  and 2

MΨ̂ . The loading matrices in all procedures are 



                                                                                                                                                      

 11

rotated by the orthogonal varimax rotation (Kaiser, 1958). We denote the rotated PCA, FA, 
LS-RFA, and ML-RFA loading matrices as Pˆ TC , Fˆ TA , LLˆ TA , and MMˆ TA , respectively. 

The first example is the standardized version of the test score data with q = 5 courses for 
n = 20 examinees (Adachi & Trendafilov, 2017, Table 1), which is a part of Tanaka and 
Tarumi’s (1995) data. Table 1 shows the solutions with m = 2. First, let us consider the 
bottom parts in the left two panels of PCA and FA. Those parts illustrate Theorems 1 to 4, as 
listed below. 

[Theorem 1] n−1|| PCÊ ||2 = 1.38 > n−1|| FAÊ ||2 = 0.008;  
[Theorem 2] n−1|| CP ˆˆ ′ ||2 = || Ĉ ||2 = 3.62 ≥ n−1|| AF ′ˆˆ ||2 = || Â ||2 = 2.81; 
[Theorem 3] || Ĉ ||2 = 3.62 ≤ || Â ||2+|| Ψ̂ ||2 = 2.81+2.18 = 4.99;  
[Theorem 4] || Ψ̂ ||2 = 2.18 ≥ n−1|| PCÊ ||2 − n−1|| FAÊ ||2 = 1.38 − 0.008 = 1.37. 

Next, we consider the loadings, residuals, and unique variance in the left two panels in 
Table 1. Seven PCA loadings among all ten are bold-faced. Their absolute values are larger 
than their FA counterparts, which supports the suggestion by [S1]. We also find that || FAÊ ||2 is 
close to zero and || Ψ̂ ||2 = 2.18 > n−1|| PCÊ ||2 = 1.38 with all unique variances in FA larger than 
the corresponding “Res” (residual variances) in PCA, i.e. as suggested by [S2].      

 Now, we consider the right three panels. The panels for RFA do not have column “Res”, 

since 2
LΨ̂ = diag(SXX − LL ˆˆ AA ′ ) and 2

MΨ̂ = diag(SXX − MM ˆˆ AA ′ ): the residual variances for 

variables are always estimated as zero. Besides “Res”, all three FA solutions (loadings and 
unique variances) are almost identical. Thus, the RFA solutions show the same relationships 
to PCA ones as the FA solutions.  

The second example is the Mullen’s (1939) data set with q = 8 physical variables for n = 
305 girls. The inter-variable correlation matrix is also available from Harman (1976, p. 22). 
Table 2 presents the m = 2 solutions. Again, we can empirically confirmed the theoretical 
results established in the last section. The findings are pretty similar to those observed in the 
first example, and are summarized as follows: 

 

Table 1. The solution of PCA, FA, LS-RFA, and ML-RFA for a part of Tanaka and Tarumi’s (1995) 
test score data (Adachi & Trendafiov, 2017), with Res standing for residual variances. 

 PCA FA LS-RFA ML-RFA 
 

P
ˆ TC  Res F

ˆ TA  2Ψ̂  Res LL
ˆ TA  2

LΨ̂  M
ˆ TA  2

MΨ̂
Japanese 0.51  0.62 0.13 0.38  0.60 0.50 0.001 0.38 0.60 0.50  0.37  0.61 0.50 
English 0.25  0.81 0.08 0.21  0.76 0.37 0.002 0.19 0.77 0.37  0.21  0.76 0.38 
Social* -0.02  0.86 0.07 0.03  0.65 0.58 0.002 0.03 0.64 0.59  0.02  0.65 0.58 
Mathematics 0.80  0.26 0.08 0.59  0.34 0.53 0.003 0.58 0.35 0.54  0.58  0.34 0.55 
Sciences 0.90  0.02 0.03 0.89  0.10 0.19 0.001 0.91 0.10 0.17  0.90  0.11 0.17 

2
Ĉ  

2

PC
1 Ê−n

2
Â  

2
Ψ̂

2

FA
1 Ê−n

2

LÂ  
2

LΨ̂
2

MÂ  
2

MΨ̂Sum of  
Squares 3.62 1.38 2.81 2.18 0.008 2.83 2.17  2.82 2.18 
*Social Studies 
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[O1] The absolute values of the PCA loadings tend to be greater than those of FA. 
[O2] || Ψ̂ ||2 tends to be larger than n−1|| PCÊ ||2.  
[O3] The unique variance 2ˆ jψ  for variable j tends to be greater than the variance of 

PCA residuals n−1|| PCˆ je ||2 for j 

[O4] FA and RFA solutions are broadly equivalent. 
[O5] The inequalities in Theorems 2 to 4 also hold in RFA solutions.   

Here [O1] corresponds to [S1] from Section 3, while [S2] is divided into [O2] and [O3].  
 
5. Supplementary Simulation Studies 

 
In this section, we explore whether [O1] to [O5] from the last section are fulfilled for 

most of the data sets in practice. It is not efficient to make such assessments with real data 
sets. We thus resort to use simulated data. Indeed, the correctness of [O4] was demonstrated 
in the past simulation studies in Adachi (2012, 2015) (unfortunately Adachi (2015) is in 
Japanese) and Stegeman (2016). Adachi (2012) and Stegeman (2016) have indirectly shown 
[O4]. This has been assessed without direct comparison of FA and RFA solutions. Instead, it 
has been shown that the true parameters are recovered well both by FA and RFA. Here, we 
assess [O4] with direct comparisons.      

We simulate two types of data sets: one is the PCA-modeled data set synthesized with (1) 
and (6), while the other type is the FA-modeled data set following (2) and (3). For each of m 
= 1, … , 5, we synthesize a data set with the following procedure:  

[1] Choose q from DU(4m, 8m) and n from DU(8q, 12q), with DU(4m, 8m) the discrete 
uniform distribution defined for the integers within the range [4m, 8m]. 

 

Table 2. The solution of PCA, FA, LS-RFA, and ML-RFA for a part of Mullen’s (1939) 
physical variables data, with Res standing for residual variances. 

 PCA FA LS-RFA ML-RFA 
 P

ˆ TC  Res F
ˆ TA  2Ψ̂  Res LL

ˆ TA  2
LΨ̂  M

ˆ TA  2
MΨ̂

Height 0.24 0.91 0.12 0.26 0.88 0.16 0.005 0.25 0.88 0.16 0.27 0.87 0.17 
Arm span 0.18 0.93 0.10 0.17 0.93 0.10 0.006 0.18 0.93 0.11 0.16 0.93 0.11 
Forearm1 0.14 0.92 0.13 0.16 0.89 0.17 0.002 0.16 0.89 0.18 0.16 0.90 0.17 
Lower leg1 0.21 0.90 0.14 0.23 0.87 0.19 0.005 0.22 0.87 0.19 0.23 0.86 0.20 
Weight 0.88 0.27 0.15 0.91 0.26 0.10 0.002 0.91 0.26 0.11 0.92 0.25 0.09 
Bitrochanteric2 0.84 0.20 0.26 0.77 0.21 0.36 0.002 0.77 0.21 0.36 0.77 0.21 0.36 
Chest girth 0.84 0.12 0.28 0.75 0.15 0.41 0.002 0.75 0.15 0.42 0.75 0.15 0.42 
Chest width 0.74 0.27 0.38 0.64 0.28 0.52 0.002 0.64 0.28 0.51 0.62 0.29 0.54 

2
Ĉ  2

PC
1 Ê−n  

2
Â  

2
Ψ̂

2

FA
1 Ê−n

2

LÂ  2

LΨ̂  
2

MÂ  2

MΨ̂Sum of 
Squares 6.44 1.56 5.97 2.01 0.025 5.96 2.04 5.95 5.95 

 1 length  2diameters 
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[2] Draw each element of P, F, U, and E (n × p) from the standard normal distribution. 
[3] Draw each element of q × m matrix A0 from U(−1, 1) and each diagonal element of 

q × q diagonal matrix Ψ0 from U(0.1, 1), with U(−1, 1) the uniform distribution 
defined for [−1, 1]. 

[4] Set C = αA0 and EPC = E so that ||PC′||2/(||PC′||2 +||EPC||2) = 0.75 with α > 0. 
[5] Set A = βA0, Ψ = γΨ0, and EFA = E so that ||FA′||2 /SST = 0.55 and ||UΨ||2/SST = 

0.42 with SST = ||FA′||2 + ||UΨ||2 + ||EFA||2, β > 0, and γ > 0. 
[6] Generate X with (1) and another one with (2), followed by the column 

standardization.  

The procedures were repeated 250 times to provide 250 (replications) × 5 (m) × 2 (PCA-FA) 
= 2500 data sets. They are analyzed as in the last section. 
   We first assess how [O4] (the equivalences of solutions between FA procedures) is 
fulfilled making use of the averaged absolute difference (AAD) of the elements between the 
resulting matrices. It is defined as AAD( Â , LÂ ) = (qm)−1|| Â − LÂ R||l1 for Â  and LÂ , 
where ||•||l1 denotes the l1 matrix norm, and R is the m × m orthonormal matrix minimizing 
|| Â − LÂ R||2 = || Â R ′− LÂ ||2, i.e., perfoming Procrustes rotation (e.g., Gower & Dijksterhuis, 
2004). This is required, since the loading matrices have rotational indeterminacy. The 
averages and 95 percentiles of the AAD values among Â , LÂ , MÂ , and P̂  are presented 
for each of the two types of data in Table 3, where the cells concerning PCA solutions are 
colored gray. In the other cells, we can find that the FA loadings are broadly equivalent to 
RFA ones, with the averages less than 0.010 and even the highest 95 percentile 0.012. These 
statistics are rather higher within the RFA procedures than between them and FA. In contrast 
to the equivalence between FA and RFA loadings, it is found that the PCA ones differ from 
FA and RFA loadings, as the averaged AAD between FA and PCA are about seven to ten 

Table 3. Averages and 95 percentiles of AAD values for loading matrices. 
  PCA-modeled Data FA-modeled Data 

  FA LS-RFA ML-RFA FA LS-RFA ML-RFA 
Ave 0.021 0.021 0.021 0.033 0.033 0.035 PCA 

[95%] [0.048] [0.048] [0.048] [0.069] [0.069] [0.074] 
Ave  0.002 0.002  0.004 0.005 FA 

[95%]  [0.006] [0.006]  [0.009] [0.012] 
Ave   0.004   0.009 LS-RFA 

[95%]   [0.011]   [0.020] 

Table 4. Averages and 95 percentiles of AAD values for unique variances. 
  PC-modeled Data FA-modeled Data 
  LS-RFA ML-RFA LS-RFA ML-RFA 

Ave 0.006 0.006 0.010 0.010 FA [95%] [0.011] [0.010] [0.016] [0.017] 
Ave  0.007  0.013 LS-RFA [95%]  [0.017]  [0.026] 
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times of the values within FA solutions. Table 4 shows the statistics of the AAD values for 
unique variances, with AAD( Ψ̂ , LΨ̂ ) = (qm)−1|| Ψ̂ − LΨ̂ ||l1. Clearly, the FA and RFA solutions 
are pretty close.  

The RFA solutions were found to satisfy the inequalities in Theorems 2 to 4 for every 
simulated data set, i.e. [O5] is also verified: 

Next, we consider [O2], i.e. that || Ψ̂ ||2 tends to be larger than n−1|| PCÊ ||2. It turns out, that 
this fulfilled for every data set, in the FA solutions, and also in the LS- and ML-RFA 
solutions.  

To assess [O3], i.e. that 2ˆ jψ  tends to be greater than n−1|| PCˆ je ||2, for each data set we 

count U/q, where U is the number of variables for which n−1|| PCˆ je ||2 > 2ˆ jψ , where a deviation 

from [O3] occurs. The resulting statistics are presenting in Tables 5. The average and 95 
percentiles are found to be substantially smaller than 0.5. It allows us to conclude that 

n−1|| PCˆ je ||2 tends to be smaller than 2ˆ jψ . 

 Now, let us consider [O1]. The proportion L/(qm) measuring the deviation from [O1] is 
recorded for each data set. Here, L is the number of the PCA loadings whose absolute values 
are less than their FA counterparts. The resulting statistics are presenting in Tables 6(A). The 
averages are found to be substantially less than 0.5, which shows that [O1] is observed in 
around 30% of the data sets or less. But, the 95 percentiles in Table 5 are close to 0.5, 
suggesting that the solutions without feature [O1] is likely to be observed. 

We further assess whether the relationships (18) and (24) often occur, even if the 
orthonormal matrices TP and TF are replaced by nonsingular matrices subject to (12), i.e., 

 

Table 5. Averages and 95 percentiles of the proportions of the squared sum of PCA 
residuals less than the FA unique variances for variables. 

 PCA-modeled Data FA-modeled Data 
 FA LS-RFA ML-RFA FA LS-RFA ML-RFA 

Ave 0.10 0.07 0.07 0.21 0.18 0.19 
[95%] [0.29] [0.25] [0.25] [0.35] [0.30] [0.33] 

 
Table 6. Averages and 95 percentiles of the proportions of the PCA loadings whose 

absolute values are less than the FA counterparts. 
  (A) After Orthogonal Rotation (B) After Oblique Rotation 
  FA LS-RFA ML-RFA FA LS-RFA ML-RFA 

Ave 0.27 0.27 0.28 0.26 0.25 0.27 PCA-modeled
Data [95%] [0.44] [0.44] [0.44] [0.45] [0.45] [0.46] 

Ave 0.30 0.30 0.31 0.30 0.29 0.31 FA-modeled 
Data [95%] [0.46] [0.47] [0.46] [0.46] [0.46] [0.47] 
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even after oblique rotation. For this assessment, we perform Jennrich’s (2006) oblique 
rotation, in which || Pˆ NC ||l1 is minimized over NP and || Fˆ NA ||l1 is minimized over NF under 
(12) for PCA and FA solutions, respectively. As a result, it was found for every data set that 
the sum of the squares of obliquely rotated PCA loadings was greater than the sum for 
FA/RFA, but less than that sum plus the sum of FA/RFA unique variances.   

 

6. Discussion 
    
   In this paper, we derive several theorems contrasting PCA and FA solutions, with both 
PCA and FA formulated as matrix decomposition problems. Next, the conclusions from the 
theorems are assessed numerically.     
   Theorems 1 and 2 show that FA fits better than PCA, but PCA extracts a larger common 
part than FA, for a certain data set. To the best of our knowledge, no research exists 
suggesting which technique, PCA or FA, should be used for a particular data set X. This 
might be due to the fact that PCA (1) had been originally considered the transformation of the 
observed variables (Hotelling, 1933), while the classic FA (4) looks for new latent variables. 
However, the whole comparative story makes perfect sense, when the FA formulation (2) is 
introduced. Then, PCA and FA can be considered purely as data matrix decompositions, and 
thus, comparable. In this respect, these theorems suggest: 
[P] Choose PCA when a large common part is wished to be found in X. 
[F] Choose FA when X is wished to be better explained. 
   The conclusions from the theorems are numerical assessessed in Sections 4 and 5. The 
experimental findings are summarized as follows: 
[1] The absolute values of PCA loadings tend to be greater than the corresponding FA ones, 
though solutions can also occur in which this is not clearly found. 
[2] It is a common result that the sum of unique variances in FA is larger than the sum of error 
variances of PCA. Further, the unique variance for each variable in FA tends to be greater 
than the corresponding residual variance in PCA. 
Finding [1] can be restated as that the relationships of variables to components tend to be 
estimated as stronger than those to common factors. This suggests that in a number of cases 
interpreting component loadings may provide more reliable information than interpreting 
factor loadings. On the other hand, [2] impresses how important the role of the unique factors 
is in FA.    

As the inequalities in Section 4 are derived from the matrix decomposition formulation of 
FA with (2), they are not guaranteed to hold in the classic random FA (RFA) formulated as 
(4). However, as found in Sections 4 and 5, the matrix decomposition FA solutions are 
broadly equivalent to the RFA ones. Thus, the inequalities in the theorems are likely to hold 
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for RFA, except Theorem 1 which does not make sense in RFA. 
   The above statement “FA fits better than PCA” is to be carefully reconsidered. As found 
in (1) and (2), the addition of the unique part UΨ to the PCA model leads to the FA model. 
Thus, PCA has fewer parameters than FA, and can be viewed as more parsimonious. This 
suggests that a model selection strategy taking into account the model’s parsimony remains to 
be studied for prescribing whether PCA or FA is suitable for a particular data set.  
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