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Abstract. Microservices-based applications are considered to be a promising 
paradigm for building large-scale digital systems due to its flexibility, scalability, 
and agility of development. To achieve the adoption of digital services, applica-
tions holding personal data must be secure while giving end-users as much con-
trol as possible. On the other hand, for software developers, adoption of a security 
solution for microservices requires it to be easily adaptable to the application 
context and requirements while fully exploiting reusability of security compo-
nents. This paper proposes a solution that targets key security challenges of mi-
croservice-based applications. Our approach relies on a coordination of security 
components, and offers a fine-grained access control in order to minimise the 
risks of token theft, session manipulation, and a malicious insider; it also renders 
the system resilient against confused deputy attacks. This solution is based on a 
combination of OAuth 2 and XACML open standards, and achieved through re-
usable security components integrated with microservices. 

Keywords: Microservices, Security, Confused Deputy Attack, Gateways, Ac-
cess Control. 

1 Introduction 

Enterprise applications nowadays require using multiple, distributed and multi-owner 
components. While Service Oriented Architecture has been adopted for over a decade, 
its underlying model is now proving complex to manage given its tendency to a small 
number of large and complex components, referred to as monolithic applications 
(“monoliths”) [4]. To ensure better software maintainability, faster development and 
deployment, and a more efficient scalability, microservice architecture is gaining pop-
ularity. With Microservices, monolithic applications are replaced by a large number of 
loosely coupled components, yet each small and easy to maintain.  By definition, mi-
croservices need to have a small role and should be designed to communicate with other 
services over a network [4] in a distributed fashion. Compared to monoliths, the con-
siderable number of independent services renders enforcing security solutions and ver-
ifying every request's authenticity much more challenging. 

However, Microservices do introduce coordination complexity which, in turn, cre-
ates new security risks. This brings forward trust challenges as, effectively, every mi-
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croservice is an independent party that, in the extreme case, cannot be trusted. In par-
ticular, distributed architectures create access control problems such as the so-called 
confused deputy attacks and the use of powerful tokens. A confused deputy, referred to 
as the ‘vulnerability du jour’ [7], is a privilege escalation attack in which a microservice 
that is trusted by other microservices is compromised; this results in the trustees re-
sponding to the compromised microservice requests, not knowing that it is acting on 
behalf of the attacker [14]. Powerful tokens, in turn, result from the fact that, typically, 
one valid authorisation token is enough to have access to every microservice since re-
quests pass through a gateway (the orchestrator) that can access all the system services 
with that access token. These are normally Open Authorization (OAuth) tokens that are 
created through one OAuth client, and their theft leads to data exposure at the level of 
every microservice [1].  

The context of this paper is user-centred services that are multi-party and inter-
domain. In particular, we consider scenarios where multiple parties are requesting ac-
cess to personal data or assets; the data exchange process should be transparent to and 
controlled by the data owners. One example of such systems is a digital government 
portal: multiple administrations, that are nevertheless independent and segregated, have 
to coordinate to provide services for citizens, and citizens need to ensure that their data 
is safe, while being aware of how this data is being used, and what is being processed; 
on the other hand, each administration is responsible of protecting the citizens’ data, 
and of correctly performing its role. Our solution for these requirements applies to mi-
croservice-based systems with access to sensitive data in different administrative do-
mains. 

This paper proposes a security solution for Microservices that enables fine-grained 
access-control policies to be deployed, thus mitigating several problems while giving 
the user control over their requests. Beyond globally validating a token at the entrance 
(the Gateway interfacing the user or another external application), we propose that each 
service has its own local Gateway that validates highly-descriptive and fine-grained 
tokens. These tokens are centrally generated, short-lived and have a narrow access 
scope. Additionally, these gateways include security checks that reveal and mitigate 
potential malicious activities, like data theft from government departments or tamper-
ing with government digital services, through a compromised microservice in one de-
partment. Furthermore, to enable scalability and reusability, we propose that these gate-
ways are configurable and reusable security components that get added to micro-
services templates outside their core functionalities, and can scale with them when 
needed. Our solution is based on OAuth 2 and eXtensible Access Control Markup Lan-
guage (XACML) open standards. In a nutshell, our architecture requires a user to ex-
plicitly allow actions from the multiple services engaged and belonging to different 
parties, while confining permissions of the services with pre-defined policies that all 
parties agree on. 

The structure of this paper is as follows. The next section reviews related work and 
Section III describes the problem. In Section IV we describe our solution, followed by 
an analysis in section V. Section VI discusses our implementation, section VII shows 
the experimental results, and we conclude the paper in section VIII with some future 
directions for our work. 
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2 Related Work 

Many approaches found in the literature rely on powerful tokens strategy, i.e. one access 
token giving access to all the system’s components, for access control. This results from 
using one OAuth client for a microservice-based application: [12] is an example of an 
implementation where powerful tokens are being used, and [3, 5, 6, 16] also point out 
to using similar approaches in their systems. OAuth token theft has been approached in 
literature. Azeem et al. [2] used ID and OAuth tokens to minimise the possibility of 
token theft; however, the combination only reduces the chances of a successful attack, 
and does not protect against powerful tokens theft in the service-to-service communi-
cation. Security architectures, [19] for example, recommend using standard mecha-
nisms like OAuth 2 and XACML for API protection. XACML and OAuth 2 are dis-
cussed separately in [9, 15, 15], and Bojan [18] mentioned the possibility of combining 
the two standards; however the combination was not detailed or applied by any of them. 
Hui et al. [21] based their implementation on this combination; however, their solution 
targets a specific use case that is not applicable to microservices. The confused deputy 
is another possible attack. Härtig et al.  [7] call for tools to detect this attack; our work 
directly addresses that. Finally, work on a new OAuth grant type, Token Exchange [10], 
still in progress, tackles a similar problem as this paper. It is equally tailored for micro-
services in which the authorization server is in charge of policy decisions based on the 
identity of users, calling and called services, predefined action and access rules.  

In short, to the best of our knowledge, this is the first attempt for designing a reusable 
and user centric Identity and Access Management (IAM) security solution for primitive 
(only implementing functional requirements) microservices that mitigates token theft 
and the confused deputy problem. The reusability and configurability of our solution 
renders it scalable and adaptable in agile Microservice Architecture (MSA) systems.  

3 Problem Statement 

This section presents a scenario to illustrate our security requirements. We then show 
our threat model for a Microservice-based system, give an overview on the principles 
that we are abiding to, the inadequacy of most used approaches and their common vul-
nerabilities, and a rationale for our design decisions. 

To illustrate, we consider a digital government scenario of applying for a passport at 
the department of State. The applicant needs to be a citizen to be eligible to apply for 
the passport service. The user logs in to a central portal, and selects the passport service; 
by logging in, the portal fetches the required information for access control: the citizen-
ship status in this example. The passport service asks for  further identity information 
required from the department of Interior Affairs, and other data attributes from the de-
partment of Justice to show a clean record; these attributes are already agreed on be-
tween the departments. The user needs to approve on the personal data attributes that 
will be shared between departments, and an access token will be produced for each 
consent. Each token only serves to access one specific service of one department. 
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3.1 Threat Model 

In this threat model, we assume that traditional inter-domain security mechanisms, in-
cluding intrusion detection and prevention systems, firewalls, input validation, mutual 
TLS authentication and encryption are placed between different security domains. We 
trust these security mechanisms, and that the authentication and authorisation servers 
are not compromised, but not the application microservices.  
These microservices, and the Virtual machines (containers) which they run on, can be 
under the control of an attacker, or even abused by a privileged insider. This gives the 
adversary the ability to intercept requests and responses, steal and manipulate tokens, 
and send requests from the compromised microservice. Access Token theft can happen 
at the level of any compromised microservice, or by an insider monitoring local traffic. 

3.2 Security Requirements: 

Taking the previous scenario as an illustration, our approach uses the following as 
requirements:  

─ R1: Access policies are needed to control which services a user can access. 
─ R2: Every personal data attribute at each department needs user consent to be shared 

with another department. 
─ R3: Departments only share data following pre-defined and verifiable agreements 

with service consumers.  
─ R4: An access token should only serve to access the assets of a user exposed by a 

single service in one department. 

Where the corresponding security goals are: 

• R1 requires fine-grained access policies, that must relate to the (micro-)service itself  
• R2 separates control between user and service providers by allowing administrative 

policies on a per-service basis 
• R3 verifies the authenticity of consumers and limits insiders malicious activities   
• R4 protects against Powerful Token and Confused Deputy attacks.  

 

3.3 Decoupling security from functional requirements 

A further requirement is to decouple the control of the microservice from the service 
itself. We approach this by designing our architecture using reusable and configurable 
gateways at the level of each microservice. These components can be added to secure 
primitive services, and modified to meet different policies. Figure 1 shows a primitive 
Resource Microservice (RMS) protected by a local Gateway (GW). In order for a request 
to reach the RMS, security policies enforced by GW have to be met by the requesting 
service or party (the consumer microservice); note that the consumer microservice 
should have another gateway to enforce access control policies. The Resource Micro-
service (RMS), which encapsulates only the primitive functionality, is thus released from 
the verification logic and only manages the assets themselves (such as personal data). 
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Figure 1: Gateway to Secure Primitive Services 

A reusable security solution placed around services provides better consistency, sim-
plicity, and portability [22]; adaptability and flexibility are essential requirements to 
follow. For different scenarios, a variety of attributes have to be considered when de-
signing security solutions, and a trade-off has to be made between multiple variables 
including performance, security tightness, user friendliness, and ease and flexibility of 
management.  

3.4 Limitations of Current Practices 

Open Authorization 2 (OAuth 2) is one of the most commonly used mechanisms in a 
microservice architecture for access delegation. OAuth 2 access scopes are used to de-
fine the token holder’s access rights. However, the standard only gives the ability to 
define static, normally coarse grained scopes, and does not provide any support for au-
diting and flexible policy enforcement [17, 18]. OpenID Connect, built on top of OAuth 
2, is commonly used for authentication with MSA [12]; it is an enabler for identity fed-
eration by producing an ID token with end-user information, and a practice of the sepa-
ration of concerns principal. Nevertheless, these approaches are not particularly suitable 
for MSA due to their large attack surface in such a fine-grained architecture [4]. These 
approaches normally rely on a single token that is used to access all parts of the system 
resulting in several problems, Powerful Token Theft being the most obvious [1, 2]. With 
this approach, any service having access to a session with a valid token can make requests 
to other components on behalf of the user [12].  

On the other hand, we have the confused deputy problem. As explained, this consists 
of a component which has access to sensitive resources, and which can be manipulated 
by an adversary to have an indirect access to these resources [14]. In essence, the confused 
deputy attack arises from trusting a component based on mere identity information such 
as the component’s IP address or an ID token [11]; in our scenario, presented in section 
3, the passport service is a potential confused deputy. The key point to prevent this is to 
have the resource services, the department of Justice and of Interior Affairs micro-
services in our scenario, verify that the calling microservice is acting truthfully on behalf 
of the user. This requires, for example, tokens to be individual to each component, and 
have finer granularity reflecting users’ consents on access rules. 
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4 An Access Control Solution for Microservices 

Figure 2 represents our approach for access control between consumer and resource 
microservices. This solution is built on a combination of XACML for administrative 
and OAuth 2 for user-defined policies. The architecture involves an Access Control 
Server (ACS) acting as an OAuth 2 and XACML server, consumer microservices 
(CMS) containing OAuth 2 client credentials and requiring access to resources, Re-
source Microservices (RMS) hosting and exposing assets, and a Gateway (GW) to se-
cure each microservice.  

 
Figure 2: Overview of our Security Architecture: Gateways for security enforcement, and an 

OAuth client per consumer-resource.  

 
A request to CMS requires an ID token, generated by ACS when the user logs in, 

from the authentication session to verify the access rights of the user; to request re-
sources from RMS, it also needs to generate an OAuth 2 token by having the user con-
sent on the access scopes. As shown in Figure 2, RGW1 and RGW2 are gateways to the 
resource microservices RMS1 and RMS2; consumer microservices also have a gateway 
each, CGW1 and CGW2, to enforce administrative access control policies. Typically, 
a central gateway in MSA sits in front of all services and can take different roles ranging 
from a simple address forwarder to an orchestrator. In our architecture, each micro-
service has its own gateway that gathers security and control functions, and is mini-
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mally dependent of the microservice; this makes it reusable as a configurable compo-
nent across different microservices.  Note that a central gateway is still present as a 
single entry point to the administrative and security domain to provide conventional 
network security services such as intrusion detection and prevention, firewalls, input 
validation, mutual TLS authentication or encryption. 

The key functionality of a gateway per microservice is becoming a single entry point 
to each microservice that, while being fairly agnostic to the service itself, is able to 
validate the authenticity of the incoming requests. Our implementation of these gateways 
include other mechanisms for security assurance, policy enforcement, token theft detec-
tion, auditing and incident reporting; these serve to minimise blind trust between ser-
vices, and therefore limit the effect of a successful confused deputy attack. The details 
for these checks and the requests flow of requests are explained in the next parts of this 
section.   

4.1 A Fine-grained Access Control 

XACML is used to create access control policies. These define whether a user can in-
terface a particular microservice. Policies are directly enforced by the GWs, each acting 
as a Policy Enforcement Point (PEP). The PEP component of the GW checks the user’s 
identifier by inspecting the user’s ID token in the authentication session. The ACS is 
the Policy Decision Point (PDP), and determines if this user is authorized to access a 
microservice endpoint to make a particular request. In case of resource microservices, 
the request goes through other security checks discussed in section 4.2.  

OAuth 2 is used for users to delegate access to part of their protected data, residing 
at a resource microservice, to a consumer microservice. We use OAuth 2 to produce a 
token that maps to access scopes; these scopes are indicators for what the token gives 
access to. Being part of the token, scopes are used by RMS to share only the data that 
the owner has given consent for. Our proposal includes creating an OAuth client for 
every pair of consumer-resource microservices, to allow the generation of verifiable 
tokens with access scopes tailored for the combination.  

Consider Figure 2. OAuth clients C1 and C2 are used to send requests from the con-
sumer microservice CMS1 to two different resource services, RMS1 and RMS2 respec-
tively, exposing user’s data. Although our approach gives the flexibility of using one 
OAuth client for multiple microservices, we recommend one OAuth client per con-
sumer-resource microservices to limit the power of access tokens. Also, a microservice 
can receive requests from more than one consumer service as shown with RMS2 re-
ceiving requests from both CMS1 and CMS2. OAuth client creation is always done at 
the ACS level following the OAuth 2 common practice. Scopes are defined during cre-
ation, and client credentials (a unique identifier and a password) are generated to be 
used by consumer microservices for access tokens production. 

4.2 Proposed Security Checks 

For each request from microservices to access resources of another, an OAuth access 
token needs to be provided, alongside the ID token in the authentication session, by the 
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sender of the request. The ID token is inspected by the GW of every microservice (Con-
sumer or Resource) to verify the eligibility of access of the user, and the OAuth token 
is to be inspected by the RGW of the resource microservice before the request gets 
through to the RMS. This gateway sends the access token to an endpoint of the ACS to 
verify its authenticity and retrieve the information mapped to it. 

To illustrate with Figure 2, if a service CMS1 needs some of the user's personal 
information from RMS1, CMS1 uses C1's client credentials to produce an OAuth ac-
cess token following OAuth 2 common practice. The user is required to choose the 
access scopes and confirm access for the OAuth token to be produced for CMS1. An 
access request is sent from service CMS1 to RMS1. RMS1, through its gateway RGW1, 
uses the token inspection endpoint of ACS to verify the authenticity of the access token 
and to decode it. The token would have a reference to the OAuth client ID, token scopes, 
the subject (user) identifier, and an expiry date. Given that the token is authentic and 
valid, RGW1 would perform the following security checks:  

1. ‘User Identity Check’ by verifying that the user in the ID Token (the user that au-
thenticated to the portal) is the same as the subject of the token 

2. ‘Client ID Check’, by checking C1's client ID against a set of authorized client IDs 
to access the service  

The first check reveals tokens’ theft and manipulation attempts, and the second di-
minishes a token's power, and limits blind trust between components. If these checks 
pass, the gateway forwards the token information to the microservice; otherwise, the 
request is denied and the incidence gets reported. If the gateway lets the request through 
to the resource microservice, the latter returns the attributes of the user mapped to the 
scopes of the access token. 

4.3 Operational Flow 

The sequence diagram in Figure 3 shows a representative example of our proposal. This 
shows the dataflow of an operation between a CMS and RMS of Figure 2; it also reflects 
an access request between the passport microservice and one of the resource micro-
services in the scenario presented in section 3. One service, the CMS, is to retrieve 
resources from another service, the RMS. A central ACS is used as an OAuth 2 author-
ization server, as well as an XACML server with policy administration and decision 
points. The ACS can include or be linked to an authentication server that produces and 
keeps track of authentication sessions with ID tokens. Each gateway (CGW and RGW) 
functions as a PEP which inspects the ID token, and uses the ACS PDP to check the 
policy rules. Access rules can be defined as a set of URLs and actions mapped to a 
group of users (i.e. Role-based); however, more complex policies can be defined fol-
lowing any policy definition criteria. 
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Figure 3: Sequence diagram representing a service-to-service interaction.   

Before any attempt to access CMS, the user has to have an active session with an ID 
token. When the user sends a request, the PEP at CGW inspects the user’s ID token 
with the Policy Decision Point of ACS, and if the action with CMS is allowed, this user 
is able to initiate a request with the service. When CMS requires data/service from an 
external resource (RMS), it first needs to request an OAuth access token. CMS uses its 
OAuth credentials, specific for RMS, to initiate the token production request with ACS. 
In turn, ACS requires the user to be authenticated and to choose the access scopes. At 
the level of ACS, an Intrusion Detection System can detect session manipulation at-
tempts between the last two interactions with it. The produced access token is sent to 
CMS, and a request with the ID and OAuth tokens in the header is sent to RGW. RGW, 
protecting the resource microservice, checks if the user is authorized to access the ser-
vice that it protects and, if so, the OAuth token is sent to the OAuth token inspection 
endpoint of ACS. This token gets verified, decoded, and sent back to RGW to perform 
the User Identifier and Client ID Checks described in 4.2. If any of the previous checks 
fails, an appropriate alert will be sent to the system administration and the user session 
and access token get deactivated. If all conditions are met, RGW sends the request with 
the user ID and the access scopes to RMS. This service has now the data attributes 
and/or methods mapped to the token scopes and the data of the user will now be sent to 
CMS. 
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5 Analysis 

  We now revisit the early requirements listed in section 3, and discuss how our proposal 
addresses them. 

5.1 Fine-grained Access Control 

With PEPs used at each microservice gateway level, access policies allow defining ac-
cess roles for users to particular services (R1). Gateways here keep any unnecessary 
potential load off the microservices, and act as a further defence layer. Since XACML 
allows to define complex policies, one can further add contextual access rules such as 
time and location. 

Having multiple OAuth 2 clients helps to enforce transparency in the system by re-
quiring users’ consent for each access operation to their personal data, and giving them 
the option to choose what they want to share. Scopes are defined during OAuth 2 client 
creation following agreements between the resource and consumer microservices de-
partments (R3), and having an OAuth client per consumer-resource microservice ena-
bles a fine-grained user centered access control at the level of microservices (R2). 
Scope to resource mapping is done at the RMS level, and having scopes tailored to each 
service gives the transparency needed for systems in which privacy is key to users’ 
trust. 

5.2 Token Theft Mitigation 

Having multiple OAuth 2 clients, for different consumer-resource combinations, limits 
the power of access tokens. With one OAuth 2 token per access task, a stolen token 
would only be a threat to the data of a particular person in one microservice only. These 
tokens can have a short lifespan since they are meant to be used once and for one par-
ticular request. Also, due to the User Identity Check at the gateway level, access to 
information from a stolen access token is not possible without access to the ID token of 
the same user. Any attempt from a conflicting user session would result in deactivating 
the tokens and reporting the incidence; even session hijacking can be rendered ineffec-
tive with a stolen token's short lifespan. Also, the Client ID Check diminishes the to-
ken's power, by limiting the services that accept the token. This partially fulfils the 
security goal of R4. 

5.3 Confused Deputy Mitigation 

Going back to Figure 2, a token produced with C1, belonging to CMS1 and valid for 
RMS1, would not be valid for RMS2. This is also valid if service CMS1 is allowed to 
access both services RMS1 and RMS2, and even if RMS1 and RMS2 belong to the same 
department (R4). The combination of the User Identity Check, the Client ID Check, and 
requiring user consent for every service to service data access is a mitigation against the 
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confused deputy attack. These security checks and practices minimise trust between ser-
vices and give an assurance that a service is acting faithfully on behalf of the user. There-
fore, this solution achieves the security goal of R4.  

On a related note, our design mitigates against some malicious insiders’ activities. 
According to an IBM report in 2015, 60% of attacks are due to an insider [8]. If she or 
he manages to create an OAuth client on ACS to be used by a malicious node, the 
resource microservices would not accept any access token from this new client since 
its ID is not in the list of trusted clients of any RGW. This approach minimises the 
possibility of having a service confused with a rogue/fake client (R3). 

5.4 Manageability and Reusability 

To help manageability, categorising services into groups, according to their security 
requirements is likely necessary. These requirements are decided based on the func-
tionality of the microservices, the criticality of assets, and the trust context. This is a 
common approach for large enterprise software to protect their resources [20]. In our 
scenario, we separated consumer from resource microservices and required different 
gateways for each; other microservices may require encrypting their data at rest and on 
exchange for example. Having reusable security component helps to define configura-
tions with security functions to meet different requirements; this facilitates securing 
new primitive microservices by plugging in these predefined gateways. Security gate-
ways are extensible and can include other security functionalities including, but not 
limited to, logging and auditing, cryptographic roles, throttling… however, these are 
out of the scope of this paper. 

6 Implementation  

We implemented a proof of concept using ForgeRock1 open source components. 
ForgeRock Access Management (AM2) is used as the central access control server 
(ACS) for its ability to manage authentication, OAuth access delegation and XACML 
policies. As for microservices local gateways, ForgeRock Identity-Gateway (IG3) is 
used due to its Policy Enforcement and OAuth 2 token validation filters, and the flexi-
bility that it provides to extend its functionality. This solution is feasible using any 
technological stack implementing OAuth 2 and XACML; a gateway can be written with 
any programming language that supports XACML, HTTPS calls, and the implementa-
tion of our proposed security checks. For the sake of clarity of this demonstration, we 
have used Postman4 to play the role of a consumer microservice with an ID token, 
accessed by the authentication cookie, and an OAuth 2 token, sending an access request 

                                                           
1 https://www.forgerock.com/platform/ 
2 https://www.forgerock.com/platform/access-management 
3 https://www.forgerock.com/platform/identity-gateway 
4 https://www.getpostman.com/ 
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to an RMS protected behind an IG. This shows the same behaviour of a consumer-to-
resource microservice call, with the resource microservice protected by RGW. 

Figure 4 shows the response of a RGW on a failed User Identification Check. This 
is one approach to detect session hijacking and OAuth token theft. Both tokens would 
be deactivated in this case. 

 

 
Figure 4: Token Theft Detection 

Figure 5 shows a request sent to RMS from an unauthorized OAuth client; this re-
flects the response of using an access token for a different consumer-resource combi-
nation, even if this resource and RMS are part of the same department. Client ID Check 
weakens the power of tokens, limits the trust between services to minimize the effect 
of a successful confused deputy attack, and mitigates creating fake OAuth clients by an 
insider. 

 
Figure 5: Unauthorized Client Detection 
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In Figure 6, we show a successful malicious request caused by the absence of our 
security checks. In this case, an unauthorized client, potentially created by an insider, is 
used to send the request, and the resource microservice responded with the data. Due to 
the lack of our Client ID Check, a malicious microservice with a fake OAuth client can 
be a threat, leading to data exfiltration from RMS. Having an OAuth client per consumer-
resource combination, alongside the Client ID Check mitigates this threat. It also mini-
mizes the trust between microservices by only allowing essential communications be-
tween them, and requiring the access control server involvement for token production 
and verification rather than blindly trusting a microservice or its domain. This practice 
minimises the impact of a confused deputy attack by limiting what can be done with a 
potentially compromised microservice. 

Figure 6: Malicious Request without our Security Checks. 

Moreover, the user of the session and the OAuth token subject are not the same, 
which suggests using a stolen token for the request. Without our User Identity Check, 
token theft would not be detected. This gives this malicious user the ability to apply to 
services using another user’s information. Our User Identity Check mitigates these at-
tacks.  

6.1 Performance 

In this section, we show the overhead resulting from our proposed solution. We have 
conducted this experiment on an Ubuntu 17.10 running on a machine with 2.6 GHz 
Core i7 processor and 12 GB of RAM; we show the overhead caused by adding gate-
ways configured for consumer microservices (CGW) and resource microservices 
(RGW). The line chart in Figure 7 visualises the response time of 250 service calls for 
the same microservice without any gateways, with CGW, and with RGW.  ACS is 
placed in a separate Linux containers, on the same machine, to isolate the effect of data 
propagation over the internet. The lines show that the response time is the highest for 
microservices protected by RGW; the numbers confirm that, on average, an overhead 



14    

of 23% results from adding a CGW, and of 32% occurs from adding RGW to a micro-
service; the overhead of User Identity Check and Client ID Check is minimal, given 
that it is all done within the GW program with no data propagation to the ACS.  

As for ACS, the load factor is mostly affected by the number of exposed resource 
microservices due to the extra checks of OAuth 2 tokens; this is relatively easy to over-
come with the cheap cloud elastic scaling. 

 
Figure 7: Line Chart Showing Our Experimental Results 

7 Conclusions and Future Work 

In this paper, we highlighted security challenges that microservice-based applications 
are prone to in connection to access control and authorisation, both when the User is 
the trust anchor and when microservices work in conjunction. We presented a security 
design allowing fine-grained access control, while not compromising scalability, by 
proposing an access gateway at a per-microservice level. We have demonstrated the 
concept by implementing a prototype using XACML and OAuth 2, two leading open 
standards and readily available for microservices. 

This work is part of a larger project that, on one hand, is looking into the chain of 
trust of distributed, multi-party many-component systems; on the other hand, we are 
developing solutions for digital governments where user control and trust are the central 
requirements. Several challenges are kept open. Our solution still largely depends on 
trusting key elements – for example, the Access Control Servers pose a risk and are 
able to compromise the whole system if they get compromised. On the other hand, from 
a user perspective, aspects such as repudiation and secure delegation of control are still 
open. Finally, we are also looking into the implications of having interdomain borders 
on which different (human) administrations sit. In other words, how to dynamically set 
very short-lived and on-on-the-fly trust boundaries, between multiple security admin-
istrations and environments. 
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