
Fine-Grained Access Control for Microservices

Antonio Nehme, Vitor Jesus, Khaled Mahbub, and Ali Abdallah

Birmingham City University, School of Computing and Digital Technologies,
Birmingham, UK,

{antonio.nehme,vitor.jesus,khaled.mahbub,ali.abdallah}@bcu.ac.uk

Abstract. Microservices-based applications are considered to be a promising
paradigm for building large-scale digital systems due to its flexibility, scalability,
and agility of development. To achieve the adoption of digital services, applica-
tions holding personal data must be secure while giving end-users as much con-
trol as possible. On the other hand, for software developers, adoption of a security
solution for microservices requires it to be easily adaptable to the application
context and requirements while fully exploiting reusability of security compo-
nents. This paper proposes a solution that targets key security challenges of mi-
croservice-based applications. Our approach relies on a coordination of security
components, and offers a fine-grained access control in order to minimise the
risks of token theft, session manipulation, and a malicious insider; it also renders
the system resilient against confused deputy attacks. This solution is based on a
combination of OAuth 2 and XACML open standards, and achieved through re-
usable security components integrated with microservices.

Keywords: Microservices, Security, Confused Deputy Attack, Gateways, Ac-
cess Control.

1 Introduction

Enterprise applications nowadays require using multiple, distributed and multi-owner
components. While Service Oriented Architecture has been adopted for over a decade,
its underlying model is now proving complex to manage given its tendency to a small
number of large and complex components, referred to as monolithic applications
(“monoliths”) [4]. To ensure better software maintainability, faster development and
deployment, and a more efficient scalability, microservice architecture is gaining pop-
ularity. With Microservices, monolithic applications are replaced by a large number of
loosely coupled components, yet each small and easy to maintain. By definition, mi-
croservices need to have a small role and should be designed to communicate with other
services over a network [4] in a distributed fashion. Compared to monoliths, the con-
siderable number of independent services renders enforcing security solutions and ver-
ifying every request's authenticity much more challenging.

However, Microservices do introduce coordination complexity which, in turn, cre-
ates new security risks. This brings forward trust challenges as, effectively, every mi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BCU Open Access

https://core.ac.uk/display/163078591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

croservice is an independent party that, in the extreme case, cannot be trusted. In par-
ticular, distributed architectures create access control problems such as the so-called
confused deputy attacks and the use of powerful tokens. A confused deputy, referred to
as the ‘vulnerability du jour’ [7], is a privilege escalation attack in which a microservice
that is trusted by other microservices is compromised; this results in the trustees re-
sponding to the compromised microservice requests, not knowing that it is acting on
behalf of the attacker [14]. Powerful tokens, in turn, result from the fact that, typically,
one valid authorisation token is enough to have access to every microservice since re-
quests pass through a gateway (the orchestrator) that can access all the system services
with that access token. These are normally Open Authorization (OAuth) tokens that are
created through one OAuth client, and their theft leads to data exposure at the level of
every microservice [1].

The context of this paper is user-centred services that are multi-party and inter-
domain. In particular, we consider scenarios where multiple parties are requesting ac-
cess to personal data or assets; the data exchange process should be transparent to and
controlled by the data owners. One example of such systems is a digital government
portal: multiple administrations, that are nevertheless independent and segregated, have
to coordinate to provide services for citizens, and citizens need to ensure that their data
is safe, while being aware of how this data is being used, and what is being processed;
on the other hand, each administration is responsible of protecting the citizens’ data,
and of correctly performing its role. Our solution for these requirements applies to mi-
croservice-based systems with access to sensitive data in different administrative do-
mains.

This paper proposes a security solution for Microservices that enables fine-grained
access-control policies to be deployed, thus mitigating several problems while giving
the user control over their requests. Beyond globally validating a token at the entrance
(the Gateway interfacing the user or another external application), we propose that each
service has its own local Gateway that validates highly-descriptive and fine-grained
tokens. These tokens are centrally generated, short-lived and have a narrow access
scope. Additionally, these gateways include security checks that reveal and mitigate
potential malicious activities, like data theft from government departments or tamper-
ing with government digital services, through a compromised microservice in one de-
partment. Furthermore, to enable scalability and reusability, we propose that these gate-
ways are configurable and reusable security components that get added to micro-
services templates outside their core functionalities, and can scale with them when
needed. Our solution is based on OAuth 2 and eXtensible Access Control Markup Lan-
guage (XACML) open standards. In a nutshell, our architecture requires a user to ex-
plicitly allow actions from the multiple services engaged and belonging to different
parties, while confining permissions of the services with pre-defined policies that all
parties agree on.

The structure of this paper is as follows. The next section reviews related work and
Section III describes the problem. In Section IV we describe our solution, followed by
an analysis in section V. Section VI discusses our implementation, section VII shows
the experimental results, and we conclude the paper in section VIII with some future
directions for our work.

3

2 Related Work

Many approaches found in the literature rely on powerful tokens strategy, i.e. one access
token giving access to all the system’s components, for access control. This results from
using one OAuth client for a microservice-based application: [12] is an example of an
implementation where powerful tokens are being used, and [3, 5, 6, 16] also point out
to using similar approaches in their systems. OAuth token theft has been approached in
literature. Azeem et al. [2] used ID and OAuth tokens to minimise the possibility of
token theft; however, the combination only reduces the chances of a successful attack,
and does not protect against powerful tokens theft in the service-to-service communi-
cation. Security architectures, [19] for example, recommend using standard mecha-
nisms like OAuth 2 and XACML for API protection. XACML and OAuth 2 are dis-
cussed separately in [9, 15, 15], and Bojan [18] mentioned the possibility of combining
the two standards; however the combination was not detailed or applied by any of them.
Hui et al. [21] based their implementation on this combination; however, their solution
targets a specific use case that is not applicable to microservices. The confused deputy
is another possible attack. Härtig et al. [7] call for tools to detect this attack; our work
directly addresses that. Finally, work on a new OAuth grant type, Token Exchange [10],
still in progress, tackles a similar problem as this paper. It is equally tailored for micro-
services in which the authorization server is in charge of policy decisions based on the
identity of users, calling and called services, predefined action and access rules.

In short, to the best of our knowledge, this is the first attempt for designing a reusable
and user centric Identity and Access Management (IAM) security solution for primitive
(only implementing functional requirements) microservices that mitigates token theft
and the confused deputy problem. The reusability and configurability of our solution
renders it scalable and adaptable in agile Microservice Architecture (MSA) systems.

3 Problem Statement

This section presents a scenario to illustrate our security requirements. We then show
our threat model for a Microservice-based system, give an overview on the principles
that we are abiding to, the inadequacy of most used approaches and their common vul-
nerabilities, and a rationale for our design decisions.

To illustrate, we consider a digital government scenario of applying for a passport at
the department of State. The applicant needs to be a citizen to be eligible to apply for
the passport service. The user logs in to a central portal, and selects the passport service;
by logging in, the portal fetches the required information for access control: the citizen-
ship status in this example. The passport service asks for further identity information
required from the department of Interior Affairs, and other data attributes from the de-
partment of Justice to show a clean record; these attributes are already agreed on be-
tween the departments. The user needs to approve on the personal data attributes that
will be shared between departments, and an access token will be produced for each
consent. Each token only serves to access one specific service of one department.

4

3.1 Threat Model

In this threat model, we assume that traditional inter-domain security mechanisms, in-
cluding intrusion detection and prevention systems, firewalls, input validation, mutual
TLS authentication and encryption are placed between different security domains. We
trust these security mechanisms, and that the authentication and authorisation servers
are not compromised, but not the application microservices.
These microservices, and the Virtual machines (containers) which they run on, can be
under the control of an attacker, or even abused by a privileged insider. This gives the
adversary the ability to intercept requests and responses, steal and manipulate tokens,
and send requests from the compromised microservice. Access Token theft can happen
at the level of any compromised microservice, or by an insider monitoring local traffic.

3.2 Security Requirements:

Taking the previous scenario as an illustration, our approach uses the following as
requirements:

─ R1: Access policies are needed to control which services a user can access.
─ R2: Every personal data attribute at each department needs user consent to be shared

with another department.
─ R3: Departments only share data following pre-defined and verifiable agreements

with service consumers.
─ R4: An access token should only serve to access the assets of a user exposed by a

single service in one department.

Where the corresponding security goals are:

• R1 requires fine-grained access policies, that must relate to the (micro-)service itself
• R2 separates control between user and service providers by allowing administrative

policies on a per-service basis
• R3 verifies the authenticity of consumers and limits insiders malicious activities
• R4 protects against Powerful Token and Confused Deputy attacks.

3.3 Decoupling security from functional requirements

A further requirement is to decouple the control of the microservice from the service
itself. We approach this by designing our architecture using reusable and configurable
gateways at the level of each microservice. These components can be added to secure
primitive services, and modified to meet different policies. Figure 1 shows a primitive
Resource Microservice (RMS) protected by a local Gateway (GW). In order for a request
to reach the RMS, security policies enforced by GW have to be met by the requesting
service or party (the consumer microservice); note that the consumer microservice
should have another gateway to enforce access control policies. The Resource Micro-
service (RMS), which encapsulates only the primitive functionality, is thus released from
the verification logic and only manages the assets themselves (such as personal data).

5

Figure 1: Gateway to Secure Primitive Services

A reusable security solution placed around services provides better consistency, sim-
plicity, and portability [22]; adaptability and flexibility are essential requirements to
follow. For different scenarios, a variety of attributes have to be considered when de-
signing security solutions, and a trade-off has to be made between multiple variables
including performance, security tightness, user friendliness, and ease and flexibility of
management.

3.4 Limitations of Current Practices

Open Authorization 2 (OAuth 2) is one of the most commonly used mechanisms in a
microservice architecture for access delegation. OAuth 2 access scopes are used to de-
fine the token holder’s access rights. However, the standard only gives the ability to
define static, normally coarse grained scopes, and does not provide any support for au-
diting and flexible policy enforcement [17, 18]. OpenID Connect, built on top of OAuth
2, is commonly used for authentication with MSA [12]; it is an enabler for identity fed-
eration by producing an ID token with end-user information, and a practice of the sepa-
ration of concerns principal. Nevertheless, these approaches are not particularly suitable
for MSA due to their large attack surface in such a fine-grained architecture [4]. These
approaches normally rely on a single token that is used to access all parts of the system
resulting in several problems, Powerful Token Theft being the most obvious [1, 2]. With
this approach, any service having access to a session with a valid token can make requests
to other components on behalf of the user [12].

On the other hand, we have the confused deputy problem. As explained, this consists
of a component which has access to sensitive resources, and which can be manipulated
by an adversary to have an indirect access to these resources [14]. In essence, the confused
deputy attack arises from trusting a component based on mere identity information such
as the component’s IP address or an ID token [11]; in our scenario, presented in section
3, the passport service is a potential confused deputy. The key point to prevent this is to
have the resource services, the department of Justice and of Interior Affairs micro-
services in our scenario, verify that the calling microservice is acting truthfully on behalf
of the user. This requires, for example, tokens to be individual to each component, and
have finer granularity reflecting users’ consents on access rules.

6

4 An Access Control Solution for Microservices

Figure 2 represents our approach for access control between consumer and resource
microservices. This solution is built on a combination of XACML for administrative
and OAuth 2 for user-defined policies. The architecture involves an Access Control
Server (ACS) acting as an OAuth 2 and XACML server, consumer microservices
(CMS) containing OAuth 2 client credentials and requiring access to resources, Re-
source Microservices (RMS) hosting and exposing assets, and a Gateway (GW) to se-
cure each microservice.

Figure 2: Overview of our Security Architecture: Gateways for security enforcement, and an

OAuth client per consumer-resource.

A request to CMS requires an ID token, generated by ACS when the user logs in,

from the authentication session to verify the access rights of the user; to request re-
sources from RMS, it also needs to generate an OAuth 2 token by having the user con-
sent on the access scopes. As shown in Figure 2, RGW1 and RGW2 are gateways to the
resource microservices RMS1 and RMS2; consumer microservices also have a gateway
each, CGW1 and CGW2, to enforce administrative access control policies. Typically,
a central gateway in MSA sits in front of all services and can take different roles ranging
from a simple address forwarder to an orchestrator. In our architecture, each micro-
service has its own gateway that gathers security and control functions, and is mini-

7

mally dependent of the microservice; this makes it reusable as a configurable compo-
nent across different microservices. Note that a central gateway is still present as a
single entry point to the administrative and security domain to provide conventional
network security services such as intrusion detection and prevention, firewalls, input
validation, mutual TLS authentication or encryption.

The key functionality of a gateway per microservice is becoming a single entry point
to each microservice that, while being fairly agnostic to the service itself, is able to
validate the authenticity of the incoming requests. Our implementation of these gateways
include other mechanisms for security assurance, policy enforcement, token theft detec-
tion, auditing and incident reporting; these serve to minimise blind trust between ser-
vices, and therefore limit the effect of a successful confused deputy attack. The details
for these checks and the requests flow of requests are explained in the next parts of this
section.

4.1 A Fine-grained Access Control

XACML is used to create access control policies. These define whether a user can in-
terface a particular microservice. Policies are directly enforced by the GWs, each acting
as a Policy Enforcement Point (PEP). The PEP component of the GW checks the user’s
identifier by inspecting the user’s ID token in the authentication session. The ACS is
the Policy Decision Point (PDP), and determines if this user is authorized to access a
microservice endpoint to make a particular request. In case of resource microservices,
the request goes through other security checks discussed in section 4.2.

OAuth 2 is used for users to delegate access to part of their protected data, residing
at a resource microservice, to a consumer microservice. We use OAuth 2 to produce a
token that maps to access scopes; these scopes are indicators for what the token gives
access to. Being part of the token, scopes are used by RMS to share only the data that
the owner has given consent for. Our proposal includes creating an OAuth client for
every pair of consumer-resource microservices, to allow the generation of verifiable
tokens with access scopes tailored for the combination.

Consider Figure 2. OAuth clients C1 and C2 are used to send requests from the con-
sumer microservice CMS1 to two different resource services, RMS1 and RMS2 respec-
tively, exposing user’s data. Although our approach gives the flexibility of using one
OAuth client for multiple microservices, we recommend one OAuth client per con-
sumer-resource microservices to limit the power of access tokens. Also, a microservice
can receive requests from more than one consumer service as shown with RMS2 re-
ceiving requests from both CMS1 and CMS2. OAuth client creation is always done at
the ACS level following the OAuth 2 common practice. Scopes are defined during cre-
ation, and client credentials (a unique identifier and a password) are generated to be
used by consumer microservices for access tokens production.

4.2 Proposed Security Checks

For each request from microservices to access resources of another, an OAuth access
token needs to be provided, alongside the ID token in the authentication session, by the

8

sender of the request. The ID token is inspected by the GW of every microservice (Con-
sumer or Resource) to verify the eligibility of access of the user, and the OAuth token
is to be inspected by the RGW of the resource microservice before the request gets
through to the RMS. This gateway sends the access token to an endpoint of the ACS to
verify its authenticity and retrieve the information mapped to it.

To illustrate with Figure 2, if a service CMS1 needs some of the user's personal
information from RMS1, CMS1 uses C1's client credentials to produce an OAuth ac-
cess token following OAuth 2 common practice. The user is required to choose the
access scopes and confirm access for the OAuth token to be produced for CMS1. An
access request is sent from service CMS1 to RMS1. RMS1, through its gateway RGW1,
uses the token inspection endpoint of ACS to verify the authenticity of the access token
and to decode it. The token would have a reference to the OAuth client ID, token scopes,
the subject (user) identifier, and an expiry date. Given that the token is authentic and
valid, RGW1 would perform the following security checks:

1. ‘User Identity Check’ by verifying that the user in the ID Token (the user that au-
thenticated to the portal) is the same as the subject of the token

2. ‘Client ID Check’, by checking C1's client ID against a set of authorized client IDs
to access the service

The first check reveals tokens’ theft and manipulation attempts, and the second di-
minishes a token's power, and limits blind trust between components. If these checks
pass, the gateway forwards the token information to the microservice; otherwise, the
request is denied and the incidence gets reported. If the gateway lets the request through
to the resource microservice, the latter returns the attributes of the user mapped to the
scopes of the access token.

4.3 Operational Flow

The sequence diagram in Figure 3 shows a representative example of our proposal. This
shows the dataflow of an operation between a CMS and RMS of Figure 2; it also reflects
an access request between the passport microservice and one of the resource micro-
services in the scenario presented in section 3. One service, the CMS, is to retrieve
resources from another service, the RMS. A central ACS is used as an OAuth 2 author-
ization server, as well as an XACML server with policy administration and decision
points. The ACS can include or be linked to an authentication server that produces and
keeps track of authentication sessions with ID tokens. Each gateway (CGW and RGW)
functions as a PEP which inspects the ID token, and uses the ACS PDP to check the
policy rules. Access rules can be defined as a set of URLs and actions mapped to a
group of users (i.e. Role-based); however, more complex policies can be defined fol-
lowing any policy definition criteria.

9

Figure 3: Sequence diagram representing a service-to-service interaction.

Before any attempt to access CMS, the user has to have an active session with an ID
token. When the user sends a request, the PEP at CGW inspects the user’s ID token
with the Policy Decision Point of ACS, and if the action with CMS is allowed, this user
is able to initiate a request with the service. When CMS requires data/service from an
external resource (RMS), it first needs to request an OAuth access token. CMS uses its
OAuth credentials, specific for RMS, to initiate the token production request with ACS.
In turn, ACS requires the user to be authenticated and to choose the access scopes. At
the level of ACS, an Intrusion Detection System can detect session manipulation at-
tempts between the last two interactions with it. The produced access token is sent to
CMS, and a request with the ID and OAuth tokens in the header is sent to RGW. RGW,
protecting the resource microservice, checks if the user is authorized to access the ser-
vice that it protects and, if so, the OAuth token is sent to the OAuth token inspection
endpoint of ACS. This token gets verified, decoded, and sent back to RGW to perform
the User Identifier and Client ID Checks described in 4.2. If any of the previous checks
fails, an appropriate alert will be sent to the system administration and the user session
and access token get deactivated. If all conditions are met, RGW sends the request with
the user ID and the access scopes to RMS. This service has now the data attributes
and/or methods mapped to the token scopes and the data of the user will now be sent to
CMS.

10

5 Analysis

 We now revisit the early requirements listed in section 3, and discuss how our proposal
addresses them.

5.1 Fine-grained Access Control

With PEPs used at each microservice gateway level, access policies allow defining ac-
cess roles for users to particular services (R1). Gateways here keep any unnecessary
potential load off the microservices, and act as a further defence layer. Since XACML
allows to define complex policies, one can further add contextual access rules such as
time and location.

Having multiple OAuth 2 clients helps to enforce transparency in the system by re-
quiring users’ consent for each access operation to their personal data, and giving them
the option to choose what they want to share. Scopes are defined during OAuth 2 client
creation following agreements between the resource and consumer microservices de-
partments (R3), and having an OAuth client per consumer-resource microservice ena-
bles a fine-grained user centered access control at the level of microservices (R2).
Scope to resource mapping is done at the RMS level, and having scopes tailored to each
service gives the transparency needed for systems in which privacy is key to users’
trust.

5.2 Token Theft Mitigation

Having multiple OAuth 2 clients, for different consumer-resource combinations, limits
the power of access tokens. With one OAuth 2 token per access task, a stolen token
would only be a threat to the data of a particular person in one microservice only. These
tokens can have a short lifespan since they are meant to be used once and for one par-
ticular request. Also, due to the User Identity Check at the gateway level, access to
information from a stolen access token is not possible without access to the ID token of
the same user. Any attempt from a conflicting user session would result in deactivating
the tokens and reporting the incidence; even session hijacking can be rendered ineffec-
tive with a stolen token's short lifespan. Also, the Client ID Check diminishes the to-
ken's power, by limiting the services that accept the token. This partially fulfils the
security goal of R4.

5.3 Confused Deputy Mitigation

Going back to Figure 2, a token produced with C1, belonging to CMS1 and valid for
RMS1, would not be valid for RMS2. This is also valid if service CMS1 is allowed to
access both services RMS1 and RMS2, and even if RMS1 and RMS2 belong to the same
department (R4). The combination of the User Identity Check, the Client ID Check, and
requiring user consent for every service to service data access is a mitigation against the

11

confused deputy attack. These security checks and practices minimise trust between ser-
vices and give an assurance that a service is acting faithfully on behalf of the user. There-
fore, this solution achieves the security goal of R4.

On a related note, our design mitigates against some malicious insiders’ activities.
According to an IBM report in 2015, 60% of attacks are due to an insider [8]. If she or
he manages to create an OAuth client on ACS to be used by a malicious node, the
resource microservices would not accept any access token from this new client since
its ID is not in the list of trusted clients of any RGW. This approach minimises the
possibility of having a service confused with a rogue/fake client (R3).

5.4 Manageability and Reusability

To help manageability, categorising services into groups, according to their security
requirements is likely necessary. These requirements are decided based on the func-
tionality of the microservices, the criticality of assets, and the trust context. This is a
common approach for large enterprise software to protect their resources [20]. In our
scenario, we separated consumer from resource microservices and required different
gateways for each; other microservices may require encrypting their data at rest and on
exchange for example. Having reusable security component helps to define configura-
tions with security functions to meet different requirements; this facilitates securing
new primitive microservices by plugging in these predefined gateways. Security gate-
ways are extensible and can include other security functionalities including, but not
limited to, logging and auditing, cryptographic roles, throttling… however, these are
out of the scope of this paper.

6 Implementation

We implemented a proof of concept using ForgeRock1 open source components.
ForgeRock Access Management (AM2) is used as the central access control server
(ACS) for its ability to manage authentication, OAuth access delegation and XACML
policies. As for microservices local gateways, ForgeRock Identity-Gateway (IG3) is
used due to its Policy Enforcement and OAuth 2 token validation filters, and the flexi-
bility that it provides to extend its functionality. This solution is feasible using any
technological stack implementing OAuth 2 and XACML; a gateway can be written with
any programming language that supports XACML, HTTPS calls, and the implementa-
tion of our proposed security checks. For the sake of clarity of this demonstration, we
have used Postman4 to play the role of a consumer microservice with an ID token,
accessed by the authentication cookie, and an OAuth 2 token, sending an access request

1 https://www.forgerock.com/platform/
2 https://www.forgerock.com/platform/access-management
3 https://www.forgerock.com/platform/identity-gateway
4 https://www.getpostman.com/

12

to an RMS protected behind an IG. This shows the same behaviour of a consumer-to-
resource microservice call, with the resource microservice protected by RGW.

Figure 4 shows the response of a RGW on a failed User Identification Check. This
is one approach to detect session hijacking and OAuth token theft. Both tokens would
be deactivated in this case.

Figure 4: Token Theft Detection

Figure 5 shows a request sent to RMS from an unauthorized OAuth client; this re-
flects the response of using an access token for a different consumer-resource combi-
nation, even if this resource and RMS are part of the same department. Client ID Check
weakens the power of tokens, limits the trust between services to minimize the effect
of a successful confused deputy attack, and mitigates creating fake OAuth clients by an
insider.

Figure 5: Unauthorized Client Detection

13

In Figure 6, we show a successful malicious request caused by the absence of our
security checks. In this case, an unauthorized client, potentially created by an insider, is
used to send the request, and the resource microservice responded with the data. Due to
the lack of our Client ID Check, a malicious microservice with a fake OAuth client can
be a threat, leading to data exfiltration from RMS. Having an OAuth client per consumer-
resource combination, alongside the Client ID Check mitigates this threat. It also mini-
mizes the trust between microservices by only allowing essential communications be-
tween them, and requiring the access control server involvement for token production
and verification rather than blindly trusting a microservice or its domain. This practice
minimises the impact of a confused deputy attack by limiting what can be done with a
potentially compromised microservice.

Figure 6: Malicious Request without our Security Checks.

Moreover, the user of the session and the OAuth token subject are not the same,
which suggests using a stolen token for the request. Without our User Identity Check,
token theft would not be detected. This gives this malicious user the ability to apply to
services using another user’s information. Our User Identity Check mitigates these at-
tacks.

6.1 Performance

In this section, we show the overhead resulting from our proposed solution. We have
conducted this experiment on an Ubuntu 17.10 running on a machine with 2.6 GHz
Core i7 processor and 12 GB of RAM; we show the overhead caused by adding gate-
ways configured for consumer microservices (CGW) and resource microservices
(RGW). The line chart in Figure 7 visualises the response time of 250 service calls for
the same microservice without any gateways, with CGW, and with RGW. ACS is
placed in a separate Linux containers, on the same machine, to isolate the effect of data
propagation over the internet. The lines show that the response time is the highest for
microservices protected by RGW; the numbers confirm that, on average, an overhead

14

of 23% results from adding a CGW, and of 32% occurs from adding RGW to a micro-
service; the overhead of User Identity Check and Client ID Check is minimal, given
that it is all done within the GW program with no data propagation to the ACS.

As for ACS, the load factor is mostly affected by the number of exposed resource
microservices due to the extra checks of OAuth 2 tokens; this is relatively easy to over-
come with the cheap cloud elastic scaling.

Figure 7: Line Chart Showing Our Experimental Results

7 Conclusions and Future Work

In this paper, we highlighted security challenges that microservice-based applications
are prone to in connection to access control and authorisation, both when the User is
the trust anchor and when microservices work in conjunction. We presented a security
design allowing fine-grained access control, while not compromising scalability, by
proposing an access gateway at a per-microservice level. We have demonstrated the
concept by implementing a prototype using XACML and OAuth 2, two leading open
standards and readily available for microservices.

This work is part of a larger project that, on one hand, is looking into the chain of
trust of distributed, multi-party many-component systems; on the other hand, we are
developing solutions for digital governments where user control and trust are the central
requirements. Several challenges are kept open. Our solution still largely depends on
trusting key elements – for example, the Access Control Servers pose a risk and are
able to compromise the whole system if they get compromised. On the other hand, from
a user perspective, aspects such as repudiation and secure delegation of control are still
open. Finally, we are also looking into the implications of having interdomain borders
on which different (human) administrations sit. In other words, how to dynamically set
very short-lived and on-on-the-fly trust boundaries, between multiple security admin-
istrations and environments.

15

References

1. Our approach to api authentication. https://gdstechnology.blog.gov.uk/2016/11/14/our-ap-
proach-to-authentication. Accessed 20 May 2018

2. Ahmad, A., Hassan, M. M., & Aziz, A. (2014, April). A multi-token authorization strategy
for secure mobile cloud computing. In Mobile Cloud Computing, Services, and Engineering
(MobileCloud), 2014 2nd IEEE International Conference on (pp. 136-141). IEEE.

3. Yarygina, T., & Bagge, A. H. (2018, March). Overcoming Security Challenges in Micro-
service Architectures. In Service-Oriented System Engineering (SOSE), 2018 IEEE Sym-
posium on (pp. 11-20). IEEE.

4. Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., &
Safina, L. (2017). Microservices: yesterday, today, and tomorrow. In Present and Ulterior
Software Engineering (pp. 195-216). Springer, Cham.

5. Gao, X., & Uehara, M. (2017, March). Design of a Sports Mental Cloud. In Advanced In-
formation Networking and Applications Workshops (WAINA), 2017 31st International
Conference on (pp. 443-448). IEEE.

6. Geisriegler, M., Kolodiy, M., Stani, S., & Singer, R. (2017, August). Actor Based Business
Process Modeling and Execution: A Reference Implementation Based on Ontology Models
and Microservices. In Software Engineering and Advanced Applications (SEAA), 2017
43rd Euromicro Conference on (pp. 359-362). IEEE.

7. Härtig, H., Roitzsch, M., Weinhold, C., & Lackorzynski, A. (2017, June). Lateral Thinking
for Trustworthy Apps. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th Inter-
national Conference on (pp. 1890-1899). IEEE. https://doi.org/10.1109/ICDCS.2017.29

8. IBM: An integrated approach to insider threat protection. https://www-05.ibm.com/ser-
vices/europe/digital-whitepaper/security/growing_threats.html. Accessed: 15 May 2018.

9. Ilhan, Ö. M., Thatmann, D., & Küpper, A. (2015, November). A performance analysis of
the XACML decision process and the impact of caching. In Signal-Image Technology &
Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 216-223).
IEEE.

10. M. Jones, A. Nadalin, M.B.C.E.J.B.P.I.C.M.S.: Oauth 2.0 token exchange draft-ietf-oauth-
token-exchange-13. https://tools.ietf.org/html/draft-ietf-oauth- token-exchange-13

11. Newman, S. (2015). Building microservices: designing fine-grained systems. " O'Reilly Me-
dia, Inc.".

12. Patanjali, S., Truninger, B., Harsh, P., & Bohnert, T. M. (2015, July). Cyclops: a micro ser-
vice based approach for dynamic rating, charging & billing for cloud. In Telecommunica-
tions (ConTEL), 2015 13th International Conference on (pp. 1-8). IEEE.

13. Pereira, O.M., Semenski, V., Regateiro, D.D., Aguiar, R.L. The xacml standard addressing
architectural and security aspects. In Proceedings of the 2nd International Conference on
Internet of Things, Big Data and Security. pp. 189–197 (2017).
https://doi.org/10.5220/0006224901890197

14. Rajani, V., Garg, D., & Rezk, T. (2016, June). On access control, capabilities, their equiva-
lence, and confused deputy attacks. In Computer Security Foundations Symposium (CSF),
2016 IEEE 29th (pp. 150-163). IEEE.

15. Samlinson, E., & Usha, M. (2013, July). User-centric trust based identity as a service for
federated cloud environment. In Computing, Communications and Networking Technolo-
gies (ICCCNT), 2013 Fourth International Conference on (pp. 1-5). IEEE.

16. Suryotrisongko, H., Jayanto, D. P., & Tjahyanto, A. (2017). Design and Development of
Backend Application for Public Complaint Systems Using Microservice Spring Boot. Pro-
cedia Computer Science, 124, 736-743.

https://gdstechnology.blog.gov.uk/2016/11/14/our-approach-to-authentication
https://gdstechnology.blog.gov.uk/2016/11/14/our-approach-to-authentication
https://doi.org/10.1109/ICDCS.2017.29
https://www-05.ibm.com/services/europe/digital-whitepaper/security/growing_threats.html
https://www-05.ibm.com/services/europe/digital-whitepaper/security/growing_threats.html

16

17. Suzic, B. (2016, April). Securing integration of cloud services in cross-domain distributed
environments. In Proceedings of the 31st Annual ACM Symposium on Applied Compu-
ting (pp. 398-405). ACM.

18. Suzic, B. (2016, April). User-centered security management of API-based data integration
workflows. In Network Operations and Management Symposium (NOMS), 2016
IEEE/IFIP (pp. 1233-1238). IEEE.

19. Tang, L., Ouyang, L., & Tsai, W. T. (2015, August). Multi-factor web API security for se-
curing Mobile Cloud. In Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th In-
ternational Conference on (pp. 2163-2168). IEEE.

20. Yu, Y., Silveira, H., & Sundaram, M. (2016, October). A microservice based reference ar-
chitecture model in the context of enterprise architecture. In Advanced Information Man-
agement, Communicates, Electronic and Automation Control Conference (IMCEC), 2016
IEEE (pp. 1856-1860). IEEE.

21. Zhang, H., Li, Z., & Wu, W. (2012, November). Open Social and XACML Based Group
Authorization Framework. In Cloud and Green Computing (CGC), 2012 Second Interna-
tional Conference on (pp. 655-659). IEEE.

22. Linthicum, D. S. (2016). Practical use of microservices in moving workloads to the
cloud. IEEE Cloud Computing, 3(5), 6-9.

	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Threat Model
	3.2 Security Requirements:
	3.3 Decoupling security from functional requirements
	3.4 Limitations of Current Practices

	4 An Access Control Solution for Microservices
	4.1 A Fine-grained Access Control
	4.2 Proposed Security Checks
	4.3 Operational Flow

	5 Analysis
	5.1 Fine-grained Access Control
	5.2 Token Theft Mitigation
	5.3 Confused Deputy Mitigation
	5.4 Manageability and Reusability

	6 Implementation
	6.1 Performance

	7 Conclusions and Future Work
	References

