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ABSTRACT

In this paper, we describe the construction of an efficient probabilistic parameterization that could be used

in a coarse-resolution numerical model in which the variation of moisture is not properly resolved. An

Eulerian model using a coarse-grained field on a grid cannot properly resolve regions of saturation—in which

condensation occurs—that are smaller than the grid boxes. Thus, in the absence of a parameterization

scheme, either the grid box must become saturated or condensation will be underestimated. On the other

hand, in a stochastic Lagrangian model of moisture transport, trajectories of parcels tagged with humidity

variables are tracked, and small-scale moisture variability can be retained; however, explicitly implementing

such a scheme in a global model would be computationally prohibitive. One way to introduce subgrid-scale

saturation into anEulerianmodel is to assume the humiditywithin a grid box has a probability distribution. To

close the problem, this distribution is conventionally determined by relating the required subgrid-scale

properties of the flow to the grid-scale properties using a turbulence closure. Here, instead, we determine an

assumed probability distribution by using the statistical moments from a stochastic Lagrangian version of the

system. The stochastic system is governed by a Fokker–Planck equation, and we use that, rather than ex-

plicitly following the moisture parcels, to determine the parameters of the assumed distribution. We are thus

able to parameterize subgrid-scale condensation in an Eulerian model in a computationally efficient and

theoretically well-founded way. In two idealized advection–condensation problems, we show that a coarse

Eulerian model with the subgrid parameterization is well able to mimic its Lagrangian counterpart.

1. Introduction

Water vapor is carried around as a tracer, normally

condensing when the vapor pressure reaches the satu-

ration value given by the Clausius–Clapeyron relation.

(Strictly, the Clausius–Clapeyron relation determines

the vapor pressure for water, or other condensible, in

thermodynamic equilibriumwith liquid water or ice, and

if neither are present, then the water vapor can become

supersaturated, but for the purposes of this paper, we

will assume condensation occurs upon saturation.)

Furthermore, condensation normally occurs quickly

upon saturation, and it is common in the atmospheric

sciences to refer to the ‘‘fast condensation limit.’’ The

liquid water produced by condensation may then, in

simplemodels, be assumed to fall to the ground, or more

realistically, it may be advected by the flow before the

drops coalesce and fall as rain or form ice, as determined

in models by more or less complicated microphysical

parameterization schemes.

Putting aside the complications of microphysical ef-

fects, the simplest advection–condensation model con-

sistent with this picture postulates that as an air parcel is

advected by the large-scale wind, and away from evapo-

ration sources, the moisture content of the parcel remains

constant except when it exceeds the local saturation limit,

at which point the excessive water vapor is removed by

condensation. Previous work (e.g., Salathé and Hartmann

1997; Pierrehumbert and Roca 1998; Galewsky et al. 2005;

Dessler and Minschwaner 2007) has applied this idea to

reconstruct large-scale features of the atmospheric mois-

ture distribution. In these studies, the trajectory of a parcel

is traced backward in time to the location where the parcel

is last saturated, for example, the point at which it lastCorresponding author: Yue-Kin Tsang, y.tsang@leeds.ac.uk
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encounters convection or the lower boundary layer. The

specific humidity of the parcel at its present location is

then given by the minimum saturation specific humidity

encountered along the trajectory. The success of these

studies highlights the Lagrangian nature of the large-

scale transport and condensation of atmospheric mois-

ture. Indeed, Pierrehumbert et al. (2007) suggested that

the proper approach to represent moisture transport in

climate models is to take the stochastic Lagrangian

viewpoint whereby the fluctuations in the trajectories of

moist parcels are parameterized by random processes.

Over the past few decades, stochastic Lagrangian

models, which describe the trajectories of air parcels

using a model of random velocity, have been developed

to study turbulent transport in the atmosphere (Wilson

and Sawford 1996; Thomson andWilson 2013). Under a

Markov assumption, the parcel position and velocity are

random variables satisfying some stochastic differen-

tial equations. Equivalently, the model can also be

specified by a Fokker–Planck equation that governs

the joint probability density function (PDF) of posi-

tion and velocity. Applying this approach to moisture

transport, various studies (O’Gorman and Schneider

2006; Pierrehumbert et al. 2007; Sukhatme and Young

2011; Beucler 2016; Tsang and Vanneste 2017) have

investigated theoretically the advection–condensation

of water vapor by evolving an ensemble of particles,

each carrying its own set of dynamical and thermody-

namical variables obeying stochastic model equations.

Whereas the stochastic Lagrangian description does

have the advantage of, in principle, retaining local fluc-

tuations at small scales, it also comes with a high com-

putational cost—it is simply impractical to carry

around a very large number of Lagrangian particles

representing moist air parcels. One possible way to ad-

dress this problem is to use a hybrid parcel-in-cell

method (Dritschel et al. 2018), but below, we will

describe a qualitatively different approach, in which the

resulting equations are Eulerian (and so can be effi-

ciently solved) but the underlying parameterization is

explicitly based on a Lagrangian description.

The conventional practice is to represent atmospheric

water vapor as a coarse-grained field on a numerical grid,

writing the equations of motion in the Eulerian form as a

partial differential equation (PDE), for example,

›q

›t
1 u � =q5= � (D=q)1 S2C . (1)

In this equation, u is velocity, q is specific humidity, S is

a moisture source, C represents the effects of conden-

sation, andD(x, t) is a diffusivity. The condensation term

is zero until saturation occurs. In reality,D would be the

molecular diffusivity and is very small indeed, so that the

specific humidity of an unsaturated parcel is essentially

conserved. However, in a coarse-resolution model—

such as a climate model with a horizontal resolution

measured in kilometers—D is often a parameterized

diffusivity much larger than the molecular one. It also

cannot be small for numerical reasons. (A semi-implicit,

semi-Lagrangian schememay be stable at low resolution

without a high explicit diffusivity, but these methods

can also be diffusive or inaccurate.) Furthermore, if

condensation is only allowed to occur at saturation,

then the effects of diffusion are in many circumstances

such as to make large regions saturated, producing

moisture fields noticeably different from a Lagrangian

model (Pierrehumbert et al. 2007; Vallis 2017, chapter

18). In a climate model with a moisture equation

similar to (1), condensation and rainfall will only occur

when a grid box is entirely saturated. This has long been

recognized to be in many circumstances quite unrealistic

(e.g., Sommeria and Deardorff 1977), and because of

the strong dependence of the absorption of outgoing

longwave radiation on water content, such a mis-

representation can be especially significant in the

modeling of Earth’s radiation budget.

The problem with the Eulerian approach, as noted by

Pierrehumbert et al. (2007), is that the coarse graining

that is in practice required does not commute with the

highly nonlinear condensation process. Our first goal is

in fact to demonstrate theoretically how this causes an

Eulerian model without subgrid-scale condensation to

produce large regions of saturation compared to its

Lagrangian counterpart. A possible solution to such

problems, sometimes used in cloudmodeling (Tompkins

2002; Jakob and Miller 2002), is to suppose that the

specific humidity (and possibly other thermodynamical

variables) inside a given grid box is not single valued but

has a probability distribution, thus introducing local

fluctuations into the system. Then part of the boxmay be

saturated even though the average specific humidity

over the box is less than the saturation limit, and some

fraction of the water vapor content, as determined by

the probability function, may then be removed by con-

densation. A probabilistic parameterization of subgrid-

scale condensation along these lines was proposed by

Sommeria and Deardorff (1977) and Mellor (1977) to

model moist convection in the boundary layer. They

assumed the total mixing ratio and the liquid potential

temperature have a joint Gaussian PDF and determined

the cloud fraction within a grid cell from such a PDF.

Bougeault (1981) later used this ‘‘assumed PDF’’

method with several different PDF shapes to model the

trade wind cumulus layer. Since then, numerous varia-

tions have been developed and employed in atmo-

spheric numerical models. For example, one of the cloud
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schemes in the Met Office Unified Model is the Smith

(1990) scheme, which uses a triangular PDF (Wilson

et al. 2008); a somewhat more complicated scheme has

been used at ECMWF (Tiedtke 1993); and various

other, sometimes still more complicated (and compu-

tationally intensive) schemes have been proposed (e.g.,

Lappen and Randall 2001; Tompkins 2002; Golaz et al.

2002; Kuwano-Yoshida et al. 2010; Bogenschutz and

Krueger 2013). A crucial step in these probabilistic

schemes is to determine the parameters of the pre-

scribed PDF, such as width and skewness. This is often

done by linking the PDF parameters to various eddy

fluxes or correlation functions, and turbulence closure

models are then used to predict these correlations from

the resolved scales. The difficulty with these approaches

is, of course, that the parameterization is only as good as

the turbulence closure it is based upon.

Evidently, then, both Lagrangian and Eulerian ap-

proaches have advantages and shortcomings—the for-

mer is accurate but impractical, and the latter is practical

but less accurate, with the contrast stemming from the

fundamental differences in the representation of parti-

cle motion and condensation of the two formulations. In

this paper, we seek to combine these two approaches.

The idea is to use information extracted from a corre-

sponding stochastic Lagrangian model to derive a pa-

rameterized Eulerian model that can produce similar

results to the stochastic Lagrangian model but at a

fraction of the computational cost. We aim to achieve

two goals. The first is to provide a sound theoretical basis

to the heuristic probabilistic schemes that are in com-

mon use. The second is to describe a systematic way

whereby a probabilistic parameterization for the con-

densation in an Eulerian model may be derived, for

example, to provide a C in the Eulerian equation, (1).

The premise of our method is that the small-scale

velocityV0 of amoist parcel can bemodeled as a random

process.Wemay then represent themoist dynamics by a

stochastic Lagrangian model in which an ensemble of

moist parcels is advected by the velocity V 1 V0, where
V is the deterministic large-scale parcel velocity. Since

V0 is random, at each location and time, the stochastic

system produces a PDF of the humidity, P̂(qjx, t). Now,

it is expensive to obtain P̂ by performing a Monte Carlo

simulation of the stochastic differential equations or by

solving the high-dimensional Fokker–Planck equation

governing P̂. Instead, we use an assumed PDF F* as

surrogate for P̂ and require the moments ofF* to match

those of P̂ derived from the Fokker–Planck equation.

TheF* so determinedwill then be used in a probabilistic

parameterization ofC for an Eulerian model such as (1).

Thus, our scheme involves two steps. First, an appro-

priate stochastic Lagrangianmodel must be constructed,

and second, the Fokker–Planck equation—as an alterna-

tive to turbulence closures—must be used to derive pa-

rameters for an assumedPDF.We carry out this procedure

in two idealized advection–condensation problems and

show that a coarse Eulerian model with the subgrid pa-

rameterization is, in fact, well able to mimic its Lagrangian

counterpart. Because of the idealized nature of these

problems, we are able to solve the Lagrangian model di-

rectly, by Monte Carlo simulations of moist particles ad-

vected by a large-scale field and a random component, and

so provide a true test of the methodology.

The paper is organized as follows. In section 2, we

present the basic Lagrangian and Eulerian methodolo-

gies using a model of moisture transport in an over-

turning cell and show that an Eulerian model tends to

produce saturated air. Section 3 gives the details of

probabilistic parameterization of condensation. We

then compare results from Eulerian models with and

without parameterization to those of Lagrangianmodels

for a steady flow in section 4 and for an unsteady flow in

section 5. In section 6, we discuss the use of an un-

derlying stochastic Lagrangian model to parameterize

condensation in coarse-grained atmospheric models,

and we conclude the paper in section 7.

2. Lagrangian particles versus Eulerian fields

a. Advection–condensation in an overturning cell

We consider the advection of moist air in a square

domain [0, p]3 [0, p] on the x–y plane. Condensation

occurs aswater vapor is transported by a prescribed velocity

through a saturation specific humidity field qs. We assume

the velocity has an incompressible large-scale component

u5 (u, y) and a turbulent component at the small scales.

In this section, as a crude model with some similarities to

the Hadley cell, we take (u, y)5 (2›yc, ›xc) as a steady

overturning flow with streamfunction

c(x, y)5 sinx siny . (2)

Figure 1 shows the streamlines of u in a schematic of the

system.We assume qs varies only with the altitude y and

is independent of time. Specifically, we assume a linear

temperature profile in y:

T(y)5T
max

2 (T
max

2T
min

)
y

p
. (3)

Using an empirical Magnus or Tetens formula (Bolton

1980; Lawrence 2005) for the saturation vapor pressure,

e
s
(T)5 6:112 exp

�
17:67T

T1 243:3

�
hPa, (4)
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together with qs ’ 0:622es/(1010 hPa) gives

q
s
(y)5 3:6193 1023exp

�
17:67T(y)

T(y)1 243:3

�
, (5)

and we define

q
min

[ q
s
(p), q

max
[ q

s
(0). (6)

Here, we set Tmax 5 268C and Tmin 52508C. Hence,

qmax 5 0:019 and qmin 5 3:73 1025. We assume there is

an evaporation source S located at the bottom boundary

to maintain the specific humidity along y5 0 at qmax.

The interplay between large-scale coherent flow,

small-scale turbulence, and condensation in this model

roughly reproduces several interesting features of the

atmosphere (Tsang and Vanneste 2017): a humid bot-

tom boundary layer that resembles the planetary

boundary layer, a narrow region of intense condensation

along x5 0 reminiscent of the tropics, and a relative

humidity minimum at the center of the cell.

b. Deterministic coarse-grained field formulation

For a deterministic Eulerian formulation of the

advection–condensation problem described above,

the specific humidity is represented by a coarse-

grained field q(x, y, t) whose time evolution is gov-

erned by the PDE:

›q

›t
1 u � =q5k

q
=2q2C . (7)

Above, u is the large-scale velocity, and unresolved

small-scale turbulence is represented by the diffusion

termwith constant eddy diffusivity kq. In accord with the

advection–condensation paradigm, molecular diffusion

is assumed to be negligible. The condensation Cmay be

written as

C5
1

t
c

(q2 q
s
)H(q2 q

s
) , (8)

where tc is the condensation time scale and H is the

Heaviside step function. For most of this paper, we

employ the rapid-condensation limit of tc / 0 and im-

plement C as a rule to prevent supersaturation:

C : q(x, y, t)/min[q(x, y, t), q
s
(y)]. (9)

The source S is implemented as a boundary condition:

q(x, 0, t)5q
max

. (10)

At the other boundaries, we have the no-flux conditions:

›q

›x

����
x50

5
›q

›x

����
x5p

5
›q

›y

����
y5p

5 0: (11)

We solve (7) for the field q(x, y, t) using the split-step

approach. Given q(x, y, tn) at time tn, we obtain an in-

termediate (supersaturated) field q*(x, y, tn11) by time

stepping forward the advection–diffusion equation

›q

›t
1u � =q5 k

q
=2q (12)

to tn11 5 tn 1Dt. (Here and elsewhere in the paper, we

write the equations with partial derivatives with respect

to time, such as ›q/›t, with the understanding that the

procedure takes us from tn to tn11.) We use a semi-

Lagrangian scheme for the advection and the alternative

direction implicit method for the diffusion. We then

carry out the condensation using (9) to produce the

moisture field at time tn11:

q(x, y, t
n11

)5min[q*(x, y, tn11
), q

s
(y)]. (13)

Figure 2c shows the steady-state relative humidity field,

r(x, y, t)5
q(x, y, t)

q
s
(y)

, (14)

at a large time t from a 5132 simulation with kq 5 1021.

c. Stochastic particle formulation

We now turn to a stochastic Lagrangian model of the

system. Inside the square domain, the moist air is now

represented by an ensemble of air parcels. The domain

boundaries are reflective. The parcels are initially uni-

formly distributed over the domain and will remain so

for an incompressible advecting flow.

FIG. 1. Schematic of moisture transport in an overturning cell

described in section 2a. The streamlines of the large-scale circu-

lation, (2), is shown as solid lines with arrows, and qs(y) is the

saturation specific humidity. An evaporation source S is located at

y5 0 to maintain the moisture in the system.
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Let (X, Y) be the position of a parcel and Q be its

specific humidity. Consider (Q, X, Y) as random vari-

ables, the advection–condensation of each moist parcel

is described by the following set of stochastic differential

equations:

dX(t)5 u(X,Y)dt1
ffiffiffiffiffiffiffiffi
2k

b

q
dW

1
(t) , (15a)

dY(t)5 y(X,Y)dt1
ffiffiffiffiffiffiffiffi
2k

b

q
dW

2
(t) , (15b)

dQ(t)5 (S2C)dt . (15c)

The resolved large-scale velocity u is once again given by

(2);W1(t) and W2(t) are Wiener processes, and kb is the

associated Brownian diffusivity. Thus, the small-scale tur-

bulent velocity is modeled as white noise, denoted by
_Wi(t). In other words, the turbulent velocity of each parcel

is aGaussian random variable at any instance of time t and

is uncorrelated in time with correlation function:

_W
i
(t) _W

j
(s)5 2k

b
d(t2 s)d

ij
, i5 1, 2 . (16)

Above, (�) denotes ensemble average. To match the

simulation in the Eulerian formulation, we set kb equals

kq in anticipation of the discussion surrounding (28) and

(29) and denote their common value by k:

k
b
5k

q
5k . (17)

Exchange of moisture between parcels, which may be

important in some situations (Haynes and Anglade

1997), is not included in this model, and each parcel

evolves independently. For finite condensation rate

(tc . 0), C is given by

C5
1

t
c

(Q2 q
s
)H(Q2 q

s
) , (18)

and in the limit of tc / 0, we have

C :Q/min[Q,q
s
(Y)]. (19)

The action of the source S at y5 0 is that it resets the

specific humidity of air parcels to the local saturation

value qmax upon hitting the bottom boundary. For a

FIG. 2. Advection–condensation by the overturning flow, (2), and with k5 1021. (a) Snapshot of the statistically steady state in aMonte

Carlo simulation of (15). Color indicates the relative humidity of each parcel. Solid lines are streamlines of (2). (b) Bin-averaged relative

humidity field rbin(x, y) calculated from the simulation in (a) as described below (20). (c) Steady-state relative humidity field r(x, y, t) at

large t from a solution of the Eulerian coarse-grained model, (7). (d) Steady-state relative humidity rpara(x, y, t) from the same model in

(c), but with condensation parameterization implemented as described in section 4. (e) Deviation of r(x, y, t) in (c) from rbin(x, y) in (b).

(f) Deviation of rpara(x, y, t) in (d) from rbin(x, y) in (b).
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detailed analysis of this stochastic system, we refer the

readers to Tsang and Vanneste (2017).

We performMonte Carlo simulation of (15) using the

Euler–Murayama method (Higham 2001). At t5 0, 106

saturated parcels are uniformly distributed over the

domain. Figure 2a shows a snapshot of a subset of the

parcels after the system has reached a statistically steady

state. The color indicates the relative humidity of each

parcel:

R(t)5
Q(t)

q
s
[Y(t)]

. (20)

To visualize the spatial distribution of moisture over the

domain, we construct a bin-averaged field rbin(x, y) from

the Monte Carlo data by dividing the domain into a

uniform gird of square bins. We then average R(t) over

all parcels inside the bin centered at (x, y) to obtain

rbin(x, y, t). As the velocity u is steady and we are in-

terested in the statistically steady distribution, we further

average over time to obtain rbin(x, y). Figure 2b shows

rbin(x, y) corresponding to the simulation in Fig. 2a; 5132

bins have been used. An interpretation of this averaging

procedure is that many parcels with different R(t) con-

tribute to a single observation of rbin(x, y, t) taken over a

small area about (x, y).

d. Noncommutation between condensation and
coarse graining

Let us now compare the relative humidity field cal-

culated from the two formulations. As shown clearly in

Figs. 2b and 2c, the Lagrangian and the Eulerian models

produce starkly different results. The Eulerian model

has the unrealistic feature that a large part of the domain

is fully saturated with r 5 1. Figure 2e plots the differ-

ence in the relative humidity field from the two models.

Unsurprisingly, the largest discrepancy occurs in the

rising half of the cellular flow where most of the con-

densation happens. Generally, the saturated region in

the Eulerian model will shrink as kq decreases (e.g., cf.

Figs. 2c and 7a). However, regardless of the value of kq,

the boundary at x 5 0 will remain saturated. This is fun-

damentally different from the results of the Lagrangian

model. Pierrehumbert et al. (2007) had observed similar

behavior in simple one-dimensional models and attrib-

uted it to the loss of local fluctuation in a coarse-grained

field representation, and Vallis (2017) qualitatively de-

scribed similar behavior in a two-dimensional model.

Here, we investigate this effect quantitatively in the two-

dimensional case.

Figure 2a clearly shows parcels with a broad range of

specific humidity coexist within a small area. When the

moisture distribution is represented by a coarse-grained

field, such subgrid-scale fluctuation is averaged out,

leading the system to bias toward saturation. Mathe-

matically, this is because the condensation process

and the coarse-graining process do not commute. To

elucidate, we examine from a theoretical viewpoint

how one goes from Fig. 2a to Fig. 2b. To this end, it is

more convenient to momentarily revert to a small but

nonzero condensation time tc. For an ensemble of

parcels described by the random variables (Q, X, Y)

obeying the stochastic differential equations, (15), the

joint PDF P(q0, x, y; t) of specific humidity and posi-

tion satisfies the Fokker–Planck equation (Pavliotis

2014),

›P

›t
1u � =P2

›

›q0 (CP)5 k
b
=2P , (21)

supplemented by appropriate boundary conditions in

the domain [qmin, qmax]3 [0, p]3 [0, p]. Above, we

have used the incompressibility condition = � u5 0 and

C(q0, y)5
1

t
c

[q0 2 q
s
(y)]H[q0 2 q

s
(y)] . (22)

The mean specific humidity at a given position (x, y) is

the conditional expectation value,

q(x, y, t)5

ðqmax

qmin

q0P̂(q0jx, y; t) dq0, (23)

where P̂(q0jx, y; t) is the conditional probability density

for a parcel to have specific humidity q0 given it is located
at (x, y). So the bin-averaged field rbin in Fig. 2b is a

numerical approximation to q/qs.

We now derive the evolution equation of q. By the

definition of conditional PDF, P̂ in (23) is related toP by

P̂(q0jx, y; t)5P(q0, x, y; t)
p(x, y; t)

, (24)

where

p(x, y; t)5

ðqmax

qmin

P(q0, x, y; t) dq0 (25)

is the marginal PDF that gives the probability that a

parcel is located at (x, y) regardless of its specific hu-

midity. Integrating (21) over q0 yields

›p

›t
1 u � =p5 k

b
=2p . (26)

Note that the boundary term involving C from the in-

tegration vanishes. This is becauseC(qmin, y)5 0 by (22)

and also as tc / 0, no parcel can have Q5 qmax inside
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the domain: P(qmax, x, y; t)/ 0 for all y. 0. It then

follows from (21) and (26) that P̂ satisfies

›P̂

›t
1

�
u2

2k
b

p
=p

�
� =P̂2

›

›q0 (CP̂)5 k
b
=2P̂ . (27)

Since the parcels are uniformly distributed at t5 0 in our

setup, (26) implies p5p22 for all t; hence, the parcels

remain uniformly distributed, and the term involving =p

in (27) vanishes. This simply means we are concerned

with a constant air density.

Multiplying (27) by q0 and integrating over q0, we
finally get the equation for q:

›q

›t
1 u � =q5k

b
=2q2

1

t
c

ðqmax

qmin

(q0 2 q
s
)H(q0 2 q

s
)P̂ dq0 .

(28)

On the other hand, the governing equation, (7), of

q(x, y, t) in the Eulerian formulation for nonzero tc
reads

›q

›t
1 u � =q5 k

q
=2q2

1

t
c

(q2 q
s
)H(q2 q

s
) . (29)

Comparing (28) with (29), we see that the differences in

q and q stem from the condensation term. In (28), con-

densation for each individual parcel is considered before

their contributions to q are added up. Thus, local fluc-

tuations are accounted for. In (29), only the coarse-

grained value q is available, and condensation only

happens when q. qs, causing the system to retain more

moisture as seen in Fig. 2c. Figure 3 illustrates this

noncommutation between condensation and coarse

graining pictorially with an example.

3. Probabilistic parameterization of condensation

a. An effective condensation

We have seen in previous sections that modeling wa-

ter vapor distribution using a coarse-grained field is

prone to producing saturation. On the other hand, the

Lagrangian approach is able to produce more realistic

results, albeit with higher computational cost, by ac-

counting for the effects of subgrid-scale moisture fluc-

tuation on condensation. Here, we ask the question, If

we regard the Lagrangian model as ‘‘truth,’’ how do we

construct an Eulerian PDE-based model that might be

used in its place to give similar results? Comparing (28)

and (29) suggests naturally the answer is to replace the

condensation term in the Eulerian equation, (29), by an

effective condensation:

C
eff

5
1

t
c

ðqmax

qs(y)

(q0 2 q
s
)F*(q

0jx, y; t) dq0, (30)

where F*(q
0jx, y; t) is an approximation to the ‘‘true’’

conditional PDF P̂(q0jx, y) in the Lagrangian model.

Equation (30) resembles the formula for liquid water

content in a conventional probabilistic subgrid-scale

cloud scheme (Sommeria and Deardorff 1977). To

specify F*, we take the assumed PDF approach by

assuming a functional form for F* that contains a small

FIG. 3. Assume there are three moist parcels within an infinitesimal area DxDy where the

local saturation value is qs. The numbers inside the circles indicate their specific humidity. In

the upper branch, we first condense each parcel individually according to its value of specific

humidity and then ‘‘measure’’ the average value of these condensed parcels. In the lower

branch, we first average over the initial specific humidity within DxDy and then carry out the

condensation process according to this coarse-grained specific humidity. We see that these

two approaches produce different results, with more moisture being retained when averaging

precedes condensation. However, note that if all three parcels are initially supersaturated,

then the order of condensation and averaging does not matter.
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number of parameters. These parameters are then de-

termined by matching the moments of F* to those of

P̂ up to a certain order. Note that F* is not governed by

an evolution equation and there is the freedom to as-

sume different functional forms at different times. We

shall explain the detailed procedure through examples

in sections 4 and 5.

b. Numerical implementation

To adopt the above representation of condensation

into our numerical framework, first recall from the dis-

cussion around (12) that we employ the split-step algo-

rithm and first solve the advection–diffusion step to

obtain the intermediate field q*. This is then followed by

solving the condensation step:

›q*
›t

52C . (31)

In the limit tc / 0, we can consistently set tc 5Dt in
the effective condensation, (30), where Dt is the time

step of the simulation. Assume F* at the end of the

advection–diffusion step is known, and denote it by

F*(q
0jx, y; tn11). Discretizing (31) in time with C given

by (30) leads to the condensation formula:

q(x, y, t
n11

)5 q*(x, y, tn11
)

2

ðqmax

qs(y)

(q0 2 q
s
)F*(q

0jx, y; t
n11

) dq0, (32)

which gives the value of the specific humidity at the end

of one full time step.

Before we proceed further, we give a physical inter-

pretation to (32) and also set the stage for specifyingF*
in the next sections. The idea is to interpret the value of

the specific humidity at a given grid point (x, y) after the

advection–diffusion step as the mean from an ensemble

of parcels with specific humidity distribution F*; that is,

q*(x, y, tn11
)5

ðqmax

qmin

q0F*(q
0jx, y; t

n11
) dq0. (33)

Note that some of these imagined parcels can have

specific humidity higher than qs even if q*, qs. This is

illustrated in the top panel of Fig. 4. Next, we carry out

rapid condensation (tc 5 0) on this ensemble to reduce

the specific humidity of all supersaturated parcels to qs.

The distribution after condensation is

F
1
(q0jx, y; t

n11
)5

8>><
>>:

F*(q
0jx, y; t

n11
) , q0 , q

s
,

ad(q2 q
s
) , q0 5 q

s
,

0 , q0 . q
s
,

(34)

where a is fixed by the normalization conditionÐ qmax

qmin
F1 dq

0 5 1. Figure 4 shows a schematic of this pa-

rameterized condensation. Finally, the specific humidity

field at time tn11 is given by

q(x, y, t
n11

)5

ðqmax

qmin

q0F
1
(q0jx, y; t

n11
) dq0 5 q*(x, y, tn11

)

1aq
s
2

ðqmax

qs

q0F*(q
0jx, y; t

n11
) dq0 , (35)

from which (32) follows.

4. A steady overturning flow

In our first example of applying the condensation

parameterization, we use the system introduced in sec-

tion 2 where moist air in a square cell is advected by the

steady overturning flow u in (2). The coarse-grained

specific humidity field q(x, y, t) in the Eulerian

FIG. 4. Schematics of the condensation parameterization dis-

cussed in section 3b. The specific humidity q* at position (x, y) and

time t is thought of as the mean value of a distribution F*. The F*
illustrated here is defined in (36). The action of rapid condensation

collapses the part of F* beyond the saturation limit qs onto a delta

function at qs.
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formulation is governed by the PDE (7). The fairly large

diffusivity of kq 5 1021 magnifies the susceptibility to

saturation in the coarse-grained model and puts the

condensation parameterization to stringent test.

Our first task is to choose an ansatz for F*. For this

particular setup, subsidence of dry parcels from the

upper part of the domain significantly affect the distri-

bution of specific humidity. The driest parcels are cre-

ated at the top boundary. They roam through the

domain and maintain their dryness ofQ5 qmin until they

hit the localized moisture source at the bottom boundary.

As a consequence, we expectF* to be composed of a dry

spike of amplitude b (Sukhatme and Young 2011; Tsang

and Vanneste 2017) and a continuous part ~F*:

F*(q
0jx, y; t)5b(x, y, t)d(q2 q

min
)

1 ~F*(q
0jx, y; t). (36)

In part for simplicity and in part because we expect the

distribution of specific humidity to be smooth over a range

of values (as we show later), we assume a top-hat shape for
~F* at all times. Referring to the top panel of Fig. 4, ~F* is

centered at awith width 2s. Normalization condition gives

~F*(q
0jx, y; t)5

8><
>:

12b

2s
[ h , a2s, q0 , a1s ,

0 , otherwise.

(37)

Thus, F* is fixed by the three parameters (b, a, s) that

generally vary with both position and time. For compari-

son, Fig. 5 shows the true (time averaged) PDF P̂(q0jx, y)
from theMonte Carlo simulation of Fig. 2a. To obtain the

specific humidity field q(x, y, tn11) after condensation, we

substitute (36) into the condensation formula given in

(32), or equivalently (35). Depending on the proportion of

supersaturated parcels in the distribution, in other words,

the location of ~F* relative to qs, we have three cases:

q(x, y, t
n11

)5

8>>><
>>>:

bq
min

1 (12b)q
s

if q
s
# a2s ,

q*2
12b

4s
(a1s2 q

s
)2 if a2s, q

s
, a1s ,

q* if a1s# q
s
.

(38)

We discuss how to determine (b, a, s) in the next sec-

tions with further technical details concerning some

exceptional cases given in appendix A.

a. Amplitude of the dry spike b

Because the dry parcels with Q5qmin simply move

around the domain without undergoing condensation,

it is particularly easy to calculate the amplitude of the

dry spike b. Recalling from (24) that P5p22P̂, we

substitute P5p22b(x, y, t)d(q2 qmin) into (21). Noting

that C(qmin, y)5 0, we find b satisfies

›b

›t
1 u � =b5 k

b
=2b . (39)

Because of rapid condensation, parcels at the top boundary

always have Q5 qmin. At the bottom boundary where the

source is located, there is zero probability that Q5 qmin.

Hence, the boundary conditions at the top and bottom are

FIG. 5. Time-averaged probability distribution P̂(q0 jx, y) of spe-
cific humidity at three different locations (x, y) in the Monte Carlo

simulation of Fig. 2a. The solid line is the continuous component of

the distribution and the arrow represents the discrete dry spike at

q0 5qmin. The dashed line indicates the value of the local saturation

value qs(x, y).
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b(x, 0, t)5 0, b(x,p, t)5 1: (40)

At the other boundaries, the normal derivative vanishes.

Unlike (28) for q, (39) is a closed equation in b and can

be solved to obtain b for all t.

b. Center of ~F*, a

The value of a(x, y, t) is determined by the intermediate

field q*(x, y, t) obtained at the end of the advection–

diffusion stage in the split-step algorithm described around

(12).Asmentioned before,q* is interpreted as themean of

the distribution F*. Substitution of (36) into (33) yields

a5
q*2bq

min

12b
. (41)

Note that no extra prognostic equation is introduced

here.

c. Width of ~F*, s

The width of ~F* describes the subgrid-scale fluctua-

tion of the specific humidity about its mean value before

the action of condensation in each time step. To de-

termine s(x, y, t), we use the second moment,

m(x, y, t)5

ðqmax

qmin

q02P̂(q0jx, y; t) dq0, (42)

from the stochastic model. Consider the advection–

diffusion of the ensemble of parcels without condensa-

tion from time tn to tn11 and assume the initial condition

m(x, y, tn) is known. During this time, m evolves to an

intermediate value m*(x, y, tn11) according to

›m

›t
1 u � =m5k

b
=2m , (43)

which follows from (21). The boundary conditions are

m(x, 0, t)5 q2
max (44)

and vanishing normal derivative at all other boundaries.

Knowing m*, we set the value of s in ~F* by requiring

ðqmax

qmin

q02F*(q
0jx, y; t

n11
) dq0 5m*(x, y, tn11

). (45)

This gives

s2 5 3

"
m*2bq2

min

12b
2

�
q*2bq

min

12b

�2
#
. (46)

After rapid condensation, the conditional PDF of spe-

cific humidity of the imagined ensemble becomes F1

given by (34) and depicted in the bottom panel of Fig. 4.

Therefore, the initial condition for the next iteration is

m(x, y, t
n11

)5

ðqmax

qmin

q02F
1
(q0jx, y; t

n11
) dq0 5

8>>>>><
>>>>>:

bq2
min 1 (12b)q2

s if q
s
# a2s ,

m*1aq2
s 2

h

3
[(a1s)3 2 q3

s ] if a2s, q
s
, a1s ,

m* if a1s# q
s

(47)

with a defined in (34) and h in (37).

d. Results

Let us now summarize the full procedure. Given q(tn),

b(tn), and m(tn) at time tn (with spatial arguments mo-

mentarily suppressed for clarity), we time step forward

the three advection–diffusion equations: (12) for the

moisture q itself, (39) for the amplitude of the dry spike

b, and (43) for the second moment m of the ‘‘true’’ dis-

tribution P̂. This gives q*(tn11), b(tn11), and m*(tn11),

which in turn allows us to calculate a ands from (41) and

(46), respectively, and hence fully specify F*. Finally,

the action of parameterized condensation depicted in

Fig. 4 gives q(tn11) in (38) and m(tn11) in (47). Note that

the full Fokker–Planck equation is not solved (nor could

it be). Rather, there are only as many evolution equa-

tions as there are parameters in the assumed PDF.

We run the parameterized system until it reaches the

steady state.We first examine the spatial structure of the

PDF parameters (b, a, s) in order to gain further in-

sights into the parameterization process. Figure 6a plots

the steady-state dry spike amplitude b. As expected

from the boundary condition and the circulating flow

pattern, b’ 1 along the top and east edges, while b � 1

along the bottom and west boundaries. A more sur-

prising feature is that b’ 0:5 for much of the area away

from the boundaries. This means that in the central area,

roughly half of the parcels in the imagined ensemble

have the minimum specific humidity qmin. This evinces

the importance of subsidence of dry parcels by the

random velocity. Figure 6b shows how close the center

of ~F* is to the local saturation limit qs at different po-

sitions (x, y). We find that q*, a, qs for all (x, y) with

the first inequality follows directly from (41). Figure 6c
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plots the measure of supersaturation (a1s2qs)/qs of

the ensemble. Recalling the schematic in Fig. 4, we

see that inside the red supersaturated region where

(a1s2 qs)/qs . 0, some of the imagined parcels are

about 1%–3% over the local saturation limit. This is

the region where the condensation parameterization is

in action.

We now assess the effectiveness of the condensation

parameterization. Figure 2d shows the relative humidity

field rpara(x, y, t) of the parameterized system at a late

time. In contrast to r(x, y, t) from the unparameterized

model with the same simulation parameters shown in

Fig. 2c, rpara does not have large areas of complete sat-

uration and approximately resembles the bin-averaged

field rbin(x, y) from the Lagrangianmodel in Fig. 2b. The

most visibly noticeable discrepancy appears inside the

boundary layer near x 5 0. Figure 2f plots rpara 2 rbin
and shows that the biggest difference is located be-

tween such a boundary layer and the central dry region.

Comparing Fig. 2f to Fig. 2e and noting the difference

in the color scales, we can see quantitatively the im-

provement due to the parameterization. Figure 7 plots

r, rpara, and rbin for the case of small eddy diffusivity

k5 1022 and shows the condensation parameterization

is similarly effective.

For further comparison, we plot the variation of the

relative humidity along y at a fixed x5p/2 for k 51021

and 1022 in Figs. 8a and 8b, respectively. For both values

of k, rpara, r for all y. Near the top and bottom bound-

aries, rpara and rbin virtually have the same values, whereas

rpara . rbin elsewhere. We also examine the total moisture

content in the system by calculating the mean specific

humidity. For the Lagrangian formulation, we have

Mean specific humidity5

*
1

N
�
N

i51

Q
i
(t)

+
t

, (48)

where N is the total number of parcels and h�it indicates
averaging over many snapshots in the statistically steady

state. In the Eulerian formulation, using the steady so-

lution at some large time t‘, we compute

Mean specific humidity5
1

p2

ðp
0

ðp
0

q(x, y, t
‘
) dx dy. (49)

FIG. 6. Spatial structure of the parameters (b, a, s) that specify the assumed PDF F*(q
0jx, y; t) employed in the condensation pa-

rameterization in section 4; F* is given by (36) and (37) and illustrated in Fig. 4. (a) The amplitude of the dry spike b. (b) The distance

of the center of ~F* from the local saturation limit (normalized by qs), (qs 2 a)/qs. (c) Degree of supersaturation as measured by

(a1s2qs)/qs. The black solid line is (a1s2qs)/qs 5 0 separating the unsaturated and the supersaturated regions.

FIG. 7. Advection–condensation by the overturning flow, (2), andwith k5 1022. (a) Steady-state relative humidity field r(x, y, t) at large

t from a solution of the Eulerianmodel, (7), without condensation parameterization. (b)As in (a), but with condensation parameterization

implemented in the model. (c) Bin-averaged relative humidity field rbin(x, y) derived from a Monte Carlo simulation of the Lagrangian

model, (15), as described below (20).
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Figure 8c plots the mean specific humidity versus k for

the three models studied here. The moisture content of

the unparameterized Eulerian system is the highest, and

it also increases the fastest with k. With the condensa-

tion parameterization implemented, the mean specific

humidity in the Eulerian model and the rate at which it

increases with k are both reduced to nearly the same as

those in the Lagrangian model.

An important quantity in atmospheric moisture trans-

port is the vertical moisture flux F. As the advecting ve-

locity in our present system is steady, we focus on the

steady-state flux.Hence, for theEulerian formulation, we

compute

F(x, y)5 y(x, y)q(x, y, t
‘
)2 k

q

›

›y
q(x, y, t

‘
) , (50)

where t‘ is some large time in the simulations. In the

Lagrangian formulation, we estimate F(x, y) by moni-

toring over a long period of time in the statistically

steady state the specific humidity Q of those parcels

crossing a given altitude y. We relegate the detailed

implementation of this diagnostic to appendix B.

Figure 9a plots the horizontal profile of the vertical

moisture flux F(x, p/2) across y5p/2 for different

models at k5 1021. Figure 9b shows the same for the case

of k5 1022. Generally, there is a large positive flux asso-

ciated with the rising arm of the overturning cell for x,
p/2 and a small negative flux in the descending arm for

x.p/2. For both values of k, the unparameterized system

has the largest flux in magnitude jF(x, p/2)j because of its
high moisture content. When the condensation is param-

eterized in the Eulerianmodel, themagnitude of the flux is

reduced, and the profileF(x, p/2) becomes close to that of

the Lagrangian model. Figure 9c plots the total vertical

moisture flux across y5p/2,

F
tot

5

ðp
0

F(x,p/2) dx , (51)

for different k. The total flux generally increases with k.

Not surprisingly, the unparameterized Eulerian model

FIG. 8. Comparison of moisture content in the Eulerian model, (7), with and without condensation parameterization, and in the

Lagrangianmodel, (15), for the overturning cell of section 4. (a) Variation of relative humidity along y at x5p/2 for k5 1021. (b)As in (a),

but for k5 1022. (c) Mean specific humidity, defined in (48) and (49), for different k.

FIG. 9. Comparison of vertical moisture flux in the Eulerian model, (7), with and without condensation parameterization, and in the

Lagrangian model, (15), for the overturning cell of section 4. (a) Horizontal profile of the vertical moisture flux F(x, p/2) across y5p/2

for k5 1021. (b) As in (a), but for k5 1022. (c) Total vertical moisture flux Ftot across y5p/2, defined in (51), for different k.
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produces the largest Ftot at all k. With the condensa-

tion parameterized, Ftot in the Eulerian model is re-

duced by about 50%. The smallest Ftot is observed in the

Lagrangian model.

5. An unsteady channel flow

For our second example, we apply the condensation

parameterization to a time-dependent flow.We introduce a

configuration that roughly mimics the transport of moisture

by baroclinic eddies along moist isentropic surfaces in

midlatitudes (Vallis 2017). Consider a channel of widthp in

the y direction and periodic in the x direction. The stream-

function of the unsteady velocity (u, y)5 (2›yc, ›xc) in

the channel is taken to be

c(x, y, t)52Uy1C(t) sin(kx2vt) sinly , (52)

where

C(t)5C
0
[12 d cos(gvt)] . (53)

The values of the parameters are U5 2p, k5 4, l5 1,

v5 4p, C0 5 3p/2, d5 0:5, and g5 0:75. We choose

U/C0 . 1 to ensure all streamlines are open and wrap

around the periodic x direction. Figure 10c shows sev-

eral streamlines of (52) at one instance of time. The

waviness of the streamlines, controlled by C(t), varies

with time as the whole pattern propagates eastward.

We use the saturation profile qs given in (5) with y in-

terpreted as the meridional direction. Hence, we take

Tmax 5 208C and Tmin 52108C, which gives qmax 5 1:39

and qmin 5 0:17. We once again assume an evaporation

source that saturates air parcels is located along y5 0.

At y5p, we have ›yq5 0. The domain is initially

saturated. Advected by the time-periodic velocity, the

moisture field eventually reaches a time-periodic state

that varies at the same frequency f0 5 0:5 as the velocity.

We first consider the Lagrangian formulation of the

problem. As in the previous example, we performMonte

Carlo simulation of the stochastic system (15) and cal-

culate the bin-averaged relative humidity field rbin(x, y, t)

from the data. Figure 10c shows rbin for kb 5 1021 at a late

time after the transient, specifically, t5 14:5.We see that

the areas along the top and bottom edges are close to

saturation. Large regions of low relative humidity are

formed in the middle of the channel. These dry patches

are separated by tongues of humid air erupting period-

ically from the top and bottom boundary layers as the

general large-scale pattern propagates eastward. In-

terestingly, the jets of humid air emerging from the

bottom boundary are filamentous, creating sharp gra-

dients in humidity. Similar features have been reported

in more complexmodels of moisture decay on isentropic

surfaces (Yang and Pierrehumbert 1994).

Turning to the Eulerian formulation, we recall that

the system is now governed by the PDE (7). Figure 10a

shows the relative humidity field r(x, y, t) obtained

from a solution of (7) with unparameterized rapid con-

densation and Fig. 10b shows rpara(x, y, t) for the case

when condensation is parameterized.We once again use

the ansatz (36) in our parameterization with the three

parameters determined by the same procedure de-

scribed in the previous section. In both figures, kq 5 1021

and t5 14:5, that is, the same diffusivity and time in-

stance as in Fig. 10c. All three relative humidity fields in

Fig. 10 display the same general structure of high and

low values. However, large areas of complete saturation

can be seen in the unparameterized Eulerian model.

Furthermore, the minimum relative humidity inside the

dry patches is about 20%–30% higher than those in the

other two models. Figure 11 shows the meridional rel-

ative humidity profile obtained by averaging over the

zonal direction x and time t after the initial transient.

The difference in the magnitude of the relative humidity

FIG. 10. Relative humidity field at time t5 14:5 for the unsteady channel flow of section 5 with k5 1021. (a) The r(x, y, t) from

the Eulerian model, (7), with no parameterization; (b) rpara(x, y, t) from the Eulerian model with condensation parameterization; and

(c) bin-averaged field rbin(x, y, t) obtained from aMonte Carlo simulation of the Lagrangianmodel, (15). The solid lines are streamlines of

(52) at t5 14:5.
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minimum in the profile from the threemodels is obvious.

The high moisture content in the unparameterized system

is also evident in Fig. 12a, which plots the time evolution of

the mean specific humidity. Interestingly, Fig. 12a also

shows that the mean specific humidity oscillates with a

much larger amplitude in the unparameterized system.

Figure 12b shows how the specific humidity changes with

time at one particular location (x, y)5 (p/2, p/4) over a

single period of variation. We see that the evolution

from the parameterized Eulerian model approximately

follows the one from the Lagrangian model. This dem-

onstrates that these two systems are not only close to

each other in the average sense but actually have similar

spatiotemporal behavior.

6. Parameterization in atmospheric models

Probabilistic (or statistical) schemes are often used

in atmospheric general circulation models (GCMs), and

sometimes cloud-resolving models, to parameterize

subgrid-scale moisture variability. As discussed in the

introduction, these schemes often employ turbulence

closures to obtain the moments required to fix the as-

sumed PDF. In view of our results that an Eulerian

model with probabilistic condensation, namely, (30),

can successfully mimic a Lagrangian model, we suggest

a strategy that makes use of a stochastic Lagrangian

model instead of turbulence closures. Of course, at a

fundamental level, the two methodologies are not so

different, for there is a close relationship between sto-

chastic Lagrangian models and turbulence models, in

particular, second-moment closures (Pope 1994b). How-

ever, our method avoids the ‘‘intermediate’’ step of

constructing a closure. Stochastic Lagrangian models

are also often used as models of turbulent diffusion

(Rodean 1996) and the dispersion of passive, nonreactive

scalars in the atmosphere (Wilson and Sawford 1996). It

may also be noted (e.g., Pope 1994a) that the Lagrangian

framework is especially fit for modeling reactive flows, and

condensation can be considered mathematically as a form

of reaction.

To construct a parameterization that might be used in

an atmospheric GCM, one would first construct a sto-

chastic Lagrangian model of water vapor transport, such

as (15), for the atmospheric flow under consideration.

Imagine an ensemble of moist parcels advected by the

flow. Each parcel carries a set of thermodynamical var-

iables (e.g., specific humidity and potential tempera-

ture) that evolves because of moist processes such as

condensation and evaporation. The parcel moves with

velocity V 1 V0. The large-scale velocity V is interpo-

lated from the Eulerian velocity field u provided by the

atmospheric model. To complete the model, we assume

the salient properties of the small-scale parcel velocity

FIG. 11. Meridional profile of relative humidity for the channel

flow in section 5, obtained by averaging the relative humidity field

over the zonal direction x and time t after the initial transient.
FIG. 12. For the channel flow in section 5, (a) time evolution of

the mean specific humidity defined in (48) and (49). The period of

variation f21
0 5 2 is the same as that of the advecting velocity, (52).

There are three peaks in each period. (b) Time variation of

the specific humidity at the location (x, y)5 (p/2, p/4) over

one period.
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V0 can be captured by a suitably chosen random pro-

cess—so that our stochastic system is a good represen-

tation of the moisture dynamics. This is a nontrivial

issue, and the details will depend on the particular ap-

plication. For example, in some cases, the Markovian

(i.e., memoryless), Brownian process is a sufficiently

good model, while in other cases, it may be necessary to

consider time-correlated or non-Markovian random

processes.

If computational cost were not a constraint, we could

perform Monte Carlo simulation (as in Fig. 2b) or solve

for the governing PDF P using the Fokker–Planck

equation of the stochastic system. The mean humidity

field can then be computed. However, the large number

of parcels required to obtain good statistics and the high

dimension of the Fokker–Planck equation render these

propositions impractical (and, in any case, were com-

putational costs not a consideration, one could perform

extremely high-resolution Eulerian simulations without

the need to parameterize subgrid-scale motion). In-

stead, we apply the effective condensation Ceff, given in

(30), to the evolution PDE for the Eulerian humidity

field q in the atmospheric model; for example,

›q

›t
1 u � =q5= � (D=q)1 S2C

eff
. (54)

At each time step, the parameters of the assumed PDF

F* embedded in Ceff are determined, as described in

section 4, by matching a certain number of moments of

F* to those of P. Investigation in sections 4 and 5 sug-

gests that (54) will produce similar results to the sto-

chastic Lagrangian model. Therefore, we can use (54) in

place of the Lagrangian model to parameterize the ac-

tual moisture transport.

In the procedure presented here, the stochastic

Lagrangianmodel forms the foundation of an integrated

parameterization scheme. It provides the theoretical

basis for the effective condensation, that is (30) (as dis-

cussed in section 3), as well as fixing the parameters in

F*. It is in the explicit use of an underlying Lagrangian

model that our method differs from other parameteri-

zation schemes in which moisture variability is not in-

corporated so directly. A possible advantage of the

approach is the flexibility to incorporate different

Lagrangian dynamics into the parameterization through

the stochastic model (Wilson and Sawford 1996; Sawford

2001). Results from atmospheric tracer experiments (Stohl

1998) or novel theoretical transport models such as

anomalous fractional diffusion (Goulart et al. 2017) may

also be adopted into the scheme.

The potential disadvantage of the scheme is that it

requires extra prognostic equations in addition to the

one for the humidity q. Generally, the total number of

equations equals the number of undetermined parame-

ters in the assumed PDF; thus, in our examples where

F* has three parameters, two additional equations are

introduced, namely, (39) and (43). However, these

prognostic equations are solved at the same resolution

as the other variables in the atmospheric model. Modern

GCMs often have a very large number of prognostic

equations, especially if themodel has an aerosol scheme,

so that the additional expense of our scheme would be

relatively small.

7. Summary and conclusions

The representation of subgrid-scale condensation of

moisture in climate or weather models is a matter of both

theoretical interest and considerable practical concern.

Using the simple advection–condensation model, (7), we

have shown that, without any condensation parameteri-

zation, a coarse-grained PDE model tends to retain ex-

cessive moisture and develop large regions of high

humidity. Fundamentally, this is because the nonlinear

condensation process and the coarse-graining operation

do not commute, and local fluctuations are therefore lost

whenmoisture is represented by a coarse-grained field, as

illustrated in Fig. 3. On the other hand, the comparison in

Fig. 2 shows that a Lagrangian formulation, where air

parcels tagged with a humidity variable are tracked, is

able to account for small-scale fluctuations, as found

in nature.

It is, however, possible for an Eulerian model to

produce results similar to the corresponding Lagrangian

model if subgrid-scale moisture variability is properly

introduced. Section 3 presents a way of achieving

this using a probabilistic condensation parameterization

given in (30). This mimics the Lagrangian representa-

tion of condensation in (28) by using an assumed PDF of

humidity, with the parameters of the PDF being given

through the use of the Fokker–Planck equation that

governs the stochastic Lagrangian model. In both the

simple single-celled circulation patterns shown in Fig. 7

and in the unsteady channel flow shown in Fig. 10, we see

that this methodology reduces the excessive saturation

in the Eulerian model, allowing it to produce moisture

distribution close to that of the original Lagrangian

model, obtained by a Monte Carlo simulation that ex-

plicitly follows the moist parcels. That the Eulerian

model with a probabilistic parameterization can mimic

the explicit Lagrangianmodel is a quite stringent test for

the method.

The use of such a parameterization of condensation

in a GCM trying to model real atmospheric flows would

be rather more complex than our examples but would

NOVEMBER 2018 T SANG AND VALL I S 3939



follow the same methodology. That is, presuming that

trajectories in the atmosphere can be modeled by a

stochastic Lagrangian model, a coarse-resolution Eulerian

model that incorporates subgrid-scale Lagrangian in-

formation via the probabilistic condensation, (30), could

be used to parameterize water vapor transport effi-

ciently, as discussed in section 6. The first step is to

construct a stochastic model analogous to (15) but with a

more complete thermodynamics and, potentially, non-

Markovian dynamics. The second step is to choose an

ansatz for the PDF of the thermodynamic variables, a

PDF that is determined by a small number of parame-

ters, and to use that ansatz in the Fokker–Planck equa-

tion to determine those parameters. In the examples we

computed, we chose the PDF to be a dry spike plus a

continuous (top hat) component with a finite width, but

other choices, with more free parameters, are possible.

Since explicitly computing the Lagrangian model with a

Monte Carlo simulation will not generally be possible in

such cases, the efficacy of the choices will ultimately be

determined by comparison with observation.

Testing this method in a range of models of varying

complexity is the next step, starting from fairly idealized

settings such as nonprecipitating moist Rayleigh–Bénard
convection (Pauluis and Schumacher 2013) or a minimal

precipitating convection model (Hernandez-Duenas et al.

2013). Note too that the general idea behind the method is

not limited to the condensation ‘‘reaction’’—its appli-

cability to the parameterization of mix-down time in at-

mospheric chemical transport (Thuburn and Tan 1997)

could also be explored.
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APPENDIX A

Exceptional Cases in the Determination of (b, a, s)

As discussed in sections 4 and 5, we take the La-

grangian model, (15), as a good parameterization of the

moist dynamics in the two systems considered there. We

then determine the parameters (b, a, s) of the assumed-

shaped PDF F*(q
0jx, y, t) in the effective condensa-

tion, (30), using information from the Lagrangian model.

Although it rarely occurs in practice, two issues could, in

principle, arise becauseF* generally does not satisfy the

Fokker–Planck equation of the Lagrangian model.

First, we would have s2 , 0 in (46) if

m*. q2

*1
b

12b
(q*2 q

min
)2 . (A1)

If this occurs, we set s5 0. Second, when q*, and hence

a, gets close to qmin or qmax, it is possible for a portion of
~F* (the continuous top-hat component of F*) to lie

outside the range [qmin, qmax]. When this happens, we

reduce s so that either a2s5 qmin or a1s5 qmax. In

the highly unlikely case that a. qmax, we set s5 0 and

adjust b to make a5 qmax.

APPENDIX B

Estimation of Vertical Moisture Flux in
Monte Carlo Simulations

Consider a Monte Carlo simulation using N parcels

in a p3p domain. Following Tsang and Vanneste

(2017), we estimate the vertical moisture flux F(x, y, t)

as follows. Assume between time t and t1Dt, there are

Np(x, y, t) parcels crossing a given height y in either di-

rection and whose x-position Xi(t) lies in [x2Dx/2,
x1Dx/2]. Let ji(t) be the sign of dYi/dt; then

F(x, y, t)5
p2

NDxDt
�
Np

i51

j
i
Qy

i (t) ,

where

Qy
i (t)5

(
min[Q

i
(t), q

s
(y)] if j

i
. 0,

Q
i
(t) if j

i
, 0:

(B1)

The statistically steady F(x, y) is then obtained by av-

eraging F(x, y, t) over t.

REFERENCES

Beucler, T., 2016: A correlated stochastic model for the large-scale

advection, condensation and diffusion of water vapour. Quart.

J.Roy.Meteor. Soc.,142, 1721–1731, https://doi.org/10.1002/qj.2768.

Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF

parameterization of subgrid-scale clouds and turbulence for

cloud-resolvingmodels. J. Adv.Model. Earth Syst., 5, 195–211,

https://doi.org/10.1002/jame.20018.

Bolton, D., 1980: The computation of equivalent potential temper-

ature. Mon. Wea. Rev., 108, 1046–1053, https://doi.org/10.1175/

1520-0493(1980)108,1046:TCOEPT.2.0.CO;2.

Bougeault, P., 1981: Modeling the trade-wind cumulus boundary

layer. Part I: Testing the ensemble cloud relations against

numerical data. J. Atmos. Sci., 38, 2414–2428, https://doi.org/

10.1175/1520-0469(1981)038,2414:MTTWCB.2.0.CO;2.

Dessler, A. E., and K. Minschwaner, 2007: An analysis of the

regulation of tropical tropospheric water vapor. J. Geophys.

Res., 112, D10120, https://doi.org/10.1029/2006JD007683.

3940 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 75

https://doi.org/10.1002/qj.2768
https://doi.org/10.1002/jame.20018
https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<2414:MTTWCB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<2414:MTTWCB>2.0.CO;2
https://doi.org/10.1029/2006JD007683


Dritschel, D. G., S. J. Böing, D. J. Parker, and A. M. Blyth, 2018:

The moist parcel-in-cell method for modelling moist con-

vection. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/

qj.3319, in press.

Galewsky, J., A. Sobel, and I. Held, 2005: Diagnosis of subtropical

humidity dynamics using tracers of last saturation. J. Atmos.

Sci., 62, 3353–3367, https://doi.org/10.1175/JAS3533.1.

Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based

model for boundary layer clouds. Part I: Method and model

description. J. Atmos. Sci., 59, 3540–3551, https://doi.org/10.1175/

1520-0469(2002)059,3540:APBMFB.2.0.CO;2.

Goulart, A., M. Lazo, J. Suarez, and D. Moreira, 2017: Frac-

tional derivative models for atmospheric dispersion of

pollutants. Physica A, 477, 9–19, https://doi.org/10.1016/

j.physa.2017.02.022.

Haynes, P., and J. Anglade, 1997: The vertical-scale cascade in

atmospheric tracers due to large-scale differential advection.

J. Atmos. Sci., 54, 1121–1136, https://doi.org/10.1175/1520-

0469(1997)054,1121:TVSCIA.2.0.CO;2.

Hernandez-Duenas, G., A. J. Majda, L. M. Smith, and S. N.

Stechmann, 2013: Minimal models for precipitating turbulent

convection. J. FluidMech., 717, 576–611, https://doi.org/10.1017/

jfm.2012.597.

Higham, D. J., 2001: An algorithmic introduction to numerical

simulation of stochastic differential equations. SIAMRev., 43,

525–546, https://doi.org/10.1137/S0036144500378302.

Jakob, C., and M. Miller, 2002: Parameterization of physical pro-

cesses: Clouds. Encyclopedia of Atmospheric Sciences, 1st ed.

J. A. Curry and J. A. Pyle, Eds., Elsevier, 1692–1698.

Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi, 2010: An

improved PDF cloud scheme for climate simulations. Quart.

J. Roy. Meteor. Soc., 136, 1583–1597, https://doi.org/10.1002/

qj.660.

Lappen, C.-L., and D. A. Randall, 2001: Toward a unified param-

eterization of the boundary layer and moist convection. Part I:

A new type of mass-flux model. J. Atmos. Sci., 58, 2021–2036,

https://doi.org/10.1175/1520-0469(2001)058,2021:TAUPOT.
2.0.CO;2.

Lawrence,M. G., 2005: The relationship between relative humidity

and the dewpoint temperature in moist air: A simple conver-

sion and applications. Bull. Amer. Meteor. Soc., 86, 225–233,

https://doi.org/10.1175/BAMS-86-2-225.

Mellor, G., 1977: The Gaussian cloud model relations. J. Atmos.

Sci., 34, 356–358, https://doi.org/10.1175/1520-0469(1977)

034,0356:TGCMR.2.0.CO;2.

O’Gorman, P.A., and T. Schneider, 2006: Stochasticmodels for the

kinematics of moisture transport and condensation in homo-

geneous turbulent flows. J. Atmos. Sci., 63, 2992–3005, https://

doi.org/10.1175/JAS3794.1.

Pauluis, O., and J. Schumacher, 2013: Radiation impacts on con-

ditionally unstable moist convection. J. Atmos. Sci., 70, 1187–

1203, https://doi.org/10.1175/JAS-D-12-0127.1.

Pavliotis, G. A., 2014: Stochastic Processes and Applications.

Springer, 339 pp.

Pierrehumbert, R. T., and R. Roca, 1998: Evidence for control of

Atlantic subtropical humidity by large scale advection.

Geophys. Res. Lett., 25, 4537–4540, https://doi.org/10.1029/

1998GL900203.

——, H. Brogniez, and R. Roca, 2007: On the relative humidity

of the atmosphere. The Global Circulation of the Atmosphere,

T. Schneider and A. Sobel, Eds., Princeton University Press,

143–185.

Pope, S. B., 1994a: Lagrangian PDF methods for turbulent flows.

Annu. Rev. Fluid Mech., 26, 23–63, https://doi.org/10.1146/

annurev.fl.26.010194.000323.

——, 1994b: On the relationship between stochastic Lagrangian

models of turbulence and second-moment closures. Phys.

Fluids, 6, 973–985, https://doi.org/10.1063/1.868329.

Rodean, H., 1996: Stochastic Lagrangian Models of Turbulent Dif-

fusion. Meteor. Monogr., No. 48, Amer. Meteor. Soc., 84 pp.,

https://doi.org/10.1175/0065-9401-26.48.1.

Salathé, E. P., and D. L. Hartmann, 1997: A trajectory analysis of

tropical upper-tropospheric moisture and convection. J. Climate,

10, 2533–2547, https://doi.org/10.1175/1520-0442(1997)010,2533:

ATAOTU.2.0.CO;2.

Sawford, B., 2001: Turbulent relative dispersion. Annu. Rev.

Fluid Mech., 33, 289–317, https://doi.org/10.1146/annurev.

fluid.33.1.289.

Smith, R. N. B., 1990: A scheme for predicting layer clouds and

their water contents in a general circulation model. Quart.

J. Roy. Meteor. Soc., 116, 435–460, https://doi.org/10.1002/

qj.49711649210.

Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale conden-

sation in models of nonprecipitating clouds. J. Atmos. Sci.,

34, 344–355, https://doi.org/10.1175/1520-0469(1977)034,0344:

SSCIMO.2.0.CO;2.

Stohl, A., 1998: Computation, accuracy and applications of tra-

jectories—A review and bibliography. Atmos. Environ., 32,
947–966, https://doi.org/10.1016/S1352-2310(97)00457-3.

Sukhatme, J., andW.R. Young, 2011: The advection–condensation

model and water-vapour probability density functions.Quart.

J. Roy. Meteor. Soc., 137, 1561–1572, https://doi.org/10.1002/
qj.869.

Thomson, D. J., and J. D. Wilson, 2013: History of Lagrangian

stochastic models for turbulent dispersion. Lagrangian Mod-

eling of the Atmosphere, Geophys. Monogr., Vol. 200, Amer.

Geophys. Union, 19–36.

Thuburn, J., and D. G. H. Tan, 1997: A parameterization of mix-

down time for atmospheric chemicals. J. Geophys. Res., 102,
13 037–13 049, https://doi.org/10.1029/97JD00408.

Tiedtke, M., 1993: Representation of clouds in large-scale models.

Mon. Wea. Rev., 121, 3040–3061, https://doi.org/10.1175/1520-

0493(1993)121,3040:ROCILS.2.0.CO;2.

Tompkins, A. M., 2002: A prognostic parameterization for the

subgrid-scale variability of water vapor and clouds in large-

scalemodels and its use to diagnose cloud cover. J. Atmos. Sci.,

59, 1917–1942, https://doi.org/10.1175/1520-0469(2002)059,1917:

APPFTS.2.0.CO;2.

Tsang, Y.-K., and J. Vanneste, 2017: The effect of coherent stirring

on the advection–condensation of water vapour. Proc. Roy.

Soc., 473A, 20170916, https://doi.org/10.1098/rspa.2017.0196.

Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics:

Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge

University Press, 946 pp.

Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and

C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and

condensation scheme. I: Scheme description. Quart. J. Roy.

Meteor. Soc., 134, 2093–2107, https://doi.org/10.1002/qj.333.
Wilson, J. D., and B. L. Sawford, 1996: Review of Lagrangian

stochastic models for trajectories in the turbulent atmosphere.

Bound.-Layer Meteor., 78, 191–210, https://doi.org/10.1007/

BF00122492.

Yang, H., and R. T. Pierrehumbert, 1994: Production of dry air by

isentropicmixing. J. Atmos. Sci., 51, 3437–3454, https://doi.org/

10.1175/1520-0469(1994)051,3437:PODABI.2.0.CO;2.

NOVEMBER 2018 T SANG AND VALL I S 3941

https://doi.org/10.1002/qj.3319
https://doi.org/10.1002/qj.3319
https://doi.org/10.1175/JAS3533.1
https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2
https://doi.org/10.1016/j.physa.2017.02.022
https://doi.org/10.1016/j.physa.2017.02.022
https://doi.org/10.1175/1520-0469(1997)054<1121:TVSCIA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054<1121:TVSCIA>2.0.CO;2
https://doi.org/10.1017/jfm.2012.597
https://doi.org/10.1017/jfm.2012.597
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1002/qj.660
https://doi.org/10.1002/qj.660
https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
https://doi.org/10.1175/BAMS-86-2-225
https://doi.org/10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2
https://doi.org/10.1175/JAS3794.1
https://doi.org/10.1175/JAS3794.1
https://doi.org/10.1175/JAS-D-12-0127.1
https://doi.org/10.1029/1998GL900203
https://doi.org/10.1029/1998GL900203
https://doi.org/10.1146/annurev.fl.26.010194.000323
https://doi.org/10.1146/annurev.fl.26.010194.000323
https://doi.org/10.1063/1.868329
https://doi.org/10.1175/0065-9401-26.48.1
https://doi.org/10.1175/1520-0442(1997)010<2533:ATAOTU>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<2533:ATAOTU>2.0.CO;2
https://doi.org/10.1146/annurev.fluid.33.1.289
https://doi.org/10.1146/annurev.fluid.33.1.289
https://doi.org/10.1002/qj.49711649210
https://doi.org/10.1002/qj.49711649210
https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2
https://doi.org/10.1016/S1352-2310(97)00457-3
https://doi.org/10.1002/qj.869
https://doi.org/10.1002/qj.869
https://doi.org/10.1029/97JD00408
https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2
https://doi.org/10.1098/rspa.2017.0196
https://doi.org/10.1002/qj.333
https://doi.org/10.1007/BF00122492
https://doi.org/10.1007/BF00122492
https://doi.org/10.1175/1520-0469(1994)051<3437:PODABI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1994)051<3437:PODABI>2.0.CO;2

