
A Comparative Analysis of Bloom Filter-based
Routing Protocols for Information-Centric Networks

Ali Marandi∗, Torsten Braun∗, Kavé Salamatian† and Nikolaos Thomos‡
∗University of Bern, Bern, Switzerland
Email:{marandi, braun@inf.unibe.ch}

†Université de Savoie, France
Email: kave.salamatian@univ-savoie.fr

‡University of Essex, Colchester, United Kingdom
Email: nthomos@essex.ac.uk

Abstract—Bloom filter-based routing protocols for Named Data
Networking (NDN) aim at facilitating content discovery in NDN.
In this paper, we compare the performance of two Bloom filter-
based routing protocols, namely BFR and COBRA. BFR is a
push-based routing protocol that works based on Bloom filter-
based content advertisements, while COBRA is a pull-based
routing protocol that operates based on route traces left from
previously retrieved content objects, which are stored in Stable
Bloom Filters. In this paper, we show that BFR outperforms
COBRA in terms of average memory needed for storing routing
updates, average round-trip delay, normalized communication
overhead, total Interest communication overhead, and mean hit
distance.

I. INTRODUCTION

In Information-Centric Networking (ICN) [1], content objects
are decoupled from locations in contrast to IP systems where
users’ requests have to be forwarded to servers’ locations. The
main difference between routing in IP and ICN architectures
is that in IP architectures routing is location-oriented, while in
ICN architectures routing is content-oriented. Content-oriented
routing consists of routing users’ requests according to their
names. Thus, due to the importance of name-based routing,
several works have studied this topic recently [2]–[5].

In IP systems, Bloom Filters (BFs) [6] have been used for
different purposes, e.g., finding longest prefix matching IP
addresses [7], exchanging summary caches [8], etc. Inspired
by these works, researchers have proposed to use BFs for
similar purposes in ICN as well [2], [4], [9]–[12]. In [9], a
BF-based data structure called Prefix BF (PBF) is proposed
to determine the size of longest prefix match quickly. SCAN
[10] is a BF-based routing protocol for ICN, but it is not
a fully content-oriented routing protocol, because it uses IP
routing as a fall-back approach. SCAN uses BFs to represent
the content objects’ names passing through each interface. The
main drawback of this approach is that the number of elements
inserted to the BF associated with the interface increases with
the number of content objects passing through each interface.
This will result in all the BF bits to be set to 1. Thus, the
BF will not represent the elements that have passed over the
interface correctly. To cope with this problem, COntent-oriented
intra-domain Bloom filter-based Routing Algorithm (COBRA)
[4] proposed Stable Bloom Filters (SBFs) [13] to represent

the content objects’ names passing through each interface.
SBFs need more storage overhead compared to standard BFs.
However, they maintain only the names of the content objects
that recently passed through each interface and discard the
names of older content objects randomly. Another alternative
is to use Bloom Filter-based Routing (BFR) [2], which is a
routing protocol for ICN that allows origin servers to use BFs
for content advertisements. In BFR, clients and routers benefit
from BF-based content advertisements to populate the FIBs
and to route the Interests over multiple paths towards the origin
servers.

To the best of our knowledge, BFR and COBRA are the
only BF-based routing protocols that have been proposed
for ICN that are fully content-oriented and do not need any
fall-back routing protocol as a complementary component of
the routing process. BFR routes Interests according to push-
based content advertisements, whereas COBRA routes Interests
according to path traces left from previously retrieved content
objects. COBRA is assumed to be a simple and efficient routing
protocol because it does not require nodes to exchange routing
information messages, which leads in reduced communication
overhead [4], [14].

In this paper, we show that even if BFR requires nodes to
exchange Bloom filter-based routing information, it still incurs
much less communication overhead than COBRA, because in
COBRA the nodes flood with Interests the network during the
learning phase. Further, we show that, in COBRA, nodes need
significantly more memory for storing routing information
than BFR. This is problematic in case nodes have limited
memory space. The experimental evaluation shows that BFR
outperforms COBRA in terms of average round-trip delay and
mean hit distance, among others.

The remainder of this paper is structured as follows. Sections
II and III briefly describe BFR and COBRA routing protocols
respectively. Then, in Section IV we analyze the performance
of BFR and COBRA schemes. Finally, we conclude the paper
in Section V.

II. BLOOM FILTER-BASED ROUTING (BFR)

In [2], we have proposed BFR as an intra-domain routing
protocol for ICN. BFR allows the origin servers that provide

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00255

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/163077889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

content objects to represent and to advertise their available
content objects using BFs. An advantage of using BFs for
representing sets rather than regular lists is the lower complexity
of query operations. The complexity of checking whether an
element exists in a list that contains n elements is in the order
of O(n). However, to check whether an element exists in a
BF, one only needs to give the element to all the k hash
functions and check whether all the bits indexed by the outputs
of the hash functions are set to 1. Thus, the complexity of a
query operation for BFs is in the order of O(k). For large sets,
k << n, the complexity of the query operation for BFs is much
less than the complexity of query operation for regular lists.
When one uses BFs, false positive errors occur with probability
p, but false negative errors are impossible to happen. Now, if
n is the number of elements to be inserted into the BF, m is
the size of the bit table, k is the number of hash functions,
and p is the probability of false positive error, the values for
m and k can be calculated as in [6]:

m = −nln(p)

(ln2)2
, k =

m

n
ln2 (1)

In the first phase of BFR, servers describe their content
objects using BFs. Assume that server SA produces a content
object with name /unibe.ch/images/fileName1 at time
instance t1. This server immediately creates an empty BF
and maps the name /unibe.ch/images/fileName1 as well
as the name prefixes of this name into the BF. Right after
BF calculation, server SA should propagate the generated
BF to inform all nodes in the network about its available
content objects. For this purpose, we introduce a new Interest
message type called Content Advertisement Interest (CAI). Fig.
1 shows the structure of a CAI message. CAI messages have a
name prefix of type /ContentAdvertisement/publisherID,
a nonce field for loop avoidance, a lifetime field, and a field with
the required information for retrieving the BF. CAI messages
do not demand any content object and they are only used
in order to advertise the produced content objects at servers
in the network. BFR respects all the design principles of
NDN. At each node, we populate the FIB for name prefix
/ContentAdvertisement and add all the faces as the next
hop faces for this name prefix. To permit broadcasting CAI
messages, we consider the multicast forwarding strategy for
name prefix /ContentAdvertisement.

In Fig. 2, when server SA encapsulates its content adver-
tisement BF in a CAI message called CAIA with name prefix
of type /ContentAdvertisement/SA, server SA broadcasts
CAIA to its neighborhood, i.e., router R8. When router R8

receives this message, it inserts this message in the Pending
Interest Table (PIT) and creates a new PIT entry for name prefix
/ContentAdvertisement/SA. Further, router R8 updates the
face ID, over which it has received CAIA, in a field called
in-record. Fig. 3 shows the structure of an in-record field.
In NDN, when an Interest message is stored in the PIT, the
incoming face ID is updated in the in-record field. When router
R8 updates the information regarding the face over which it
has received message CAIA in the corresponding in-record,

Fig. 1. CAI message format

Fig. 2. A topology for describing BFR and COBRA

R8 broadcasts this message to all the neighbors except to
server SA from which message CAIA has been received. This
broadcast process is repeated at all the other routers until all
network nodes receive message CAIA. Note that: 1) when a
node receives message CAIA, it stores this message in the
PIT, and 2) since CAI messages are of Interest message type,
the NDN Forwarding Daemon (NFD) [15] avoids loops and
duplicates for these messages.

The same content advertisement process takes place at
server SB and message CAIB is the CAI message prop-
agated from this server. When all nodes receive and store
messages CAIA and CAIB , they can route each Interest
issued to demand a content object produced by server SA

or server SB . Let us explain the Interest routing process
again using Fig. 2. Assume that router R1 receives an
Interest from client CZ demanding the first segment of a
content object named /unibe.ch/images/fileName1, i.e.,
the Interest name is /unibe.ch/images/fileName1/01. To
route this Interest at router R1, the router first processes
the Interest’s name and eliminates the last name component,
which is the sequence number 01 of fileName1. Then, router
R1 checks the resulting name against the BFs that exist
in messages CAIA and CAIB . Assume that the content
object named /unibe.ch/images/fileName1 is produced
by server SA. Thus, only the BF of CAIA contains name
/unibe.ch/images/fileName1 . Therefore, since false nega-
tive errors do not happen with BFs, the BF of CAIA correctly
claims that it contains name /unibe.ch/images/fileName1.
According to this positive feedback from the BF of mes-
sage CAIA, router R1 creates a FIB entry for name
/unibe.ch/images/fileName1 and lists all the face IDs over
which message CAIA has been received as the next hop faces
for this FIB entry. Now, when the FIB is populated for name
/unibe.ch/images/fileName1, router R1 sends the Interest
for name /unibe.ch/images/fileName1/01 over all the next
hop faces mentioned in the FIB entry that is just populated.
Note that BFR forwards each Interest over all the next hop
faces benefiting from multi-path routing.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00256

Fig. 3. In-record information

As we explained before, we assume in this example that the
content object with name /unibe.ch/images/fileName1 is
produced by server SA. When router R4 receives the Interest
for name /unibe.ch/images/fileName1/01 from router R1,
router R4 checks the name /unibe.ch/images/fileName1
against the BF of messages CAIA and CAIB . Assume that the
BF of CAIB gives a false positive report. In such a case, router
R4 assumes that server SB also provides the demanded content
object and routes the Interest towards server SB accordingly.
In [2], we have shown that the impact of such false positive
reports on the BFR operation is negligible. This is due to the
fact that it is guaranteed that all the Interests will be routed
towards the servers that provide the demanded content object,
while in the worst case only a very small percentage of all the
Interests (1.73% of all the Interests in the worst case) might
also reach the server(s) that do not provide the demanded
content object. Nevertheless, we have shown in [2] that all the
Interests are satisfied in presence of false positive reports from
BFs.

When a node detects a link failure, it knows that it should
avoid sending Interest flows over the failed link. Therefore,
with BFR a node that detects a link failure removes the
corresponding face ID from the in-records of all the CAI
messages that contain it. As a result, the node assumes that
no BF has been received from the failed link and thus avoids
sending any Interests over the failed link. Nevertheless, the
node keeps a list of the CAI messages that their in-records
were updated due to the link failure for the face ID associated
with the failed link. When the link recovers, the node again
inserts the corresponding face ID to the in-records from which
this face ID has been previously removed. Thus, the node
immediately uses the recovered link for forwarding Interests.

A server might move some content objects from its repository
to the repository of another server. This process is called content
migration. When content migration happens, clients and routers
should be informed about this event to avoid wrong forwarding
decisions. With BFR, the two servers that are involved in the
content migration immediately propagate new CAI messages
representing their new sets of available content objects. Further,
these servers activate a flag called discardOldAdverts in the new
CAI messages to inform clients and routers that the previous
CAI messages received from these servers should be removed
from PITs.

III. CONTENT-DRIVEN, BLOOM FILTER-BASED
INTRA-DOMAIN ROUTING ALGORITHM (COBRA)

COBRA [4] is an intra-domain, BF-based routing protocol
proposed for NDN. COBRA routes Interests according to route
traces left from paths over which previous content objects
have been retrieved. To store these route traces, COBRA uses
SBFs. In the following, we briefly introduce SBFs and then
we describe the operation of COBRA routing protocol.

Fig. 4. SBF insertion with parameter set {m = 15, k = 3, d = 3, p = 5}

A. Stable Bloom Filter

In contrast to BF that is a table of bits, SBF is a table
of counters. Assume that an SBF consists of n counters
SBF [1], .., SBF [n] and the length of each counter is d bits.
Thus, the minimum and the maximum values for each counter
are 0 and 2d − 1, respectively. SBF is a variant of BF, it
also uses hash functions for insertion and query operations.
Like in standard BF, SBF’s table is also initialized by zero.
However, the insertion operation for SBF differs from the
insertion process of BF.

When one wants to insert an element into an SBF, it gives
the element to the k hash functions and the k counters indexed
by the outputs of the k hash functions are set to their maximum
values (2d − 1). Then, p counters are randomly selected and
their values are decremented. Fig. 4 illustrates the insertion
operation for an NDN name into an SBF with parameter set
{m = 15, k = 3, d = 3, p = 5}. This figure also shows the
states of the SBF before (i.e., Fig. 4(a)) and after (i.e., Fig.
4(b)) the insertion operation, respectively.

This insertion mechanism aims at keeping the elements that
have been recently inserted into the SBF and removing elements
that were previously inserted in the SBF randomly.

B. COBRA Operation

COBRA equips nodes with SBFs. Each node maintains
as many SBFs as it has interfaces. When a content object
travels over a path towards a client, each node located on
this path receives the content object over an interface and
stores the name of the content object as well as all the
name prefixes of it into the SBF associated with the interface.
This leads to storing a trace of the retrieval path for the
content object at all nodes located on the retrieval path of
the content object. In the beginning of the network operation,
all SBFs of all nodes are empty because no content objects
has been retrieved yet. Therefore, nodes do not have route
traces stored in SBFs. Thus, nodes end up in flooding all the
Interests until the SBFs learn the route traces. This phase is
called learning phase. Flooding Interests during the learning
phase does not scale well with increasing size of the content
universe. In Fig. 2, assume that at time instance t1, client CY

issues an Interest to demand a content object segment named
/unibe.ch/images/fileName1/0, which is stored at server
SA. When the SBFs are empty, both client CY and router R3, as
well as the other routers have to flood the Interest until it reaches

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00257

server SA. Then, this server sends the demanded Data packet
backwards to client CY . Since the Interest has been flooded,
the corresponding Data packet comes back over different paths
(e.g., path SA − R8 − R6 − R3 − CY (blue in Fig. 2), path
SA−R8−R5−R2−R4−R3−CY (red n Fig. 2)). Therefore,
for router R8, name /unibe.ch/images/fileName1 and all
its name prefixes are inserted into the SBF of interface 1. But
for router R6, the same name prefixes are inserted into the SBFs
of interfaces 1, 2, and 3. This is because router R8 receives the
Data packet only from server SA, while router R6 receives the
Data packet from routers R8, R5, and R9. After storing the
route traces for name /unibe.ch/images/fileName1/0 and
its name prefixes, client CY and all the routers that stored these
name prefixes in their SBFs, do not need to flood anymore the
Interests that come for the subsequent segments of the same
file name.

When SBFs are not empty for a name prefix, another phase
of COBRA routing called interface ranking takes place. Let
us explain this phase with the help of the topology in Fig. 2.
Let us assume that at time instance t2, when the route traces
for name /unibe.ch/images/fileName1 are stored in SBFs,
client CY issues Interest I1 to demand the subsequent segment
of the same file name, i.e., /unibe.ch/images/fileName1/1.
Client CY checks the full name against the SBF of interface 1.
The SBF of interface 1 does not contain the full name. Thus,
client CY increases the routing cost (initialized by zero) and
eliminates the last name component. Then, client CY checks
the resulting name against the SBF of interface 1. Since the
SBF of this interface contains the name, client CY assigns the
current routing cost in the FIB to interface 1. Client CY does
not have any more interfaces. Thus, it forwards the Interest
over interface 1 towards router R3. When router R3 receives
the Interest, it checks the full name against the SBFs of all
the interfaces except the incoming one. Since the SBFs of
interfaces 1 and 2 do not contain the full name, router R3

increases the routing cost (initialized by zero) and eliminates
the last name component. Then, router R3 checks the resulting
name against the SBFs of interfaces 1 and 2. Both of these
SBFs contain the name. Thus, interfaces 1 and 2 are ranked
with the current routing cost. The same process continues at the
other routers until one of the following conditions happens: 1)
all the interfaces of the router are ranked; 2) the last component
of the Interest is eliminated and still one or more interfaces are
not ranked. In the latter case, the router assigns the maximum
routing cost to those not yet ranked interfaces.

To deal with link failures, COBRA permits nodes to reset
the SBF(s) associated with a failed link upon detecting a link
failure, i.e., setting all the bits of the SBF(s) to zero. Following
this reset strategy, the nodes that are directly connected to the
failed link know that no content object is reachable through the
failed link. Thus, they avoid to forward any Interests over the
failed link. When a link recovery is detected, COBRA allows
nodes to set the values of all the counters of the associated
SBF(s) to the maximum value. This strategy encourages the
nodes that are directly connected to the recovered link to
forward all Interests through the recovered link. The forwarding

through the recovered link is temporarily. When new content
object names are inserted into the SBFs associated with the
newly recovered link, the route traces will be corrected in the
SBFs.

If content migration takes place, the route traces stored in
SBFs should be corrected, because the location of permanent
copies of the migrated content objects has changed and the
temporary cached copies might be evicted due to a caching
policy, e.g, LRU. With COBRA, clients and routers are not
explicitly informed about a content migration event. However,
they consider Interest retransmissions as indications of wrong
forwarding decisions made in the past. Thus, when a node
observes an Interest retransmission event, it retransmits the
Interest not only over the interface with the smallest routing
cost, but also over the interface(s) with higher routing cost(s) to
increase the probability that the retransmitted Interest reaches
the right server.

IV. PERFORMANCE ANALYSIS OF BFR AND COBRA
In this Section, we compare the performance of BFR and

COBRA using our BFR and COBRA implementations in
ndnSIM [15].

A. Simulation Settings

To evaluate the performance of BFR and COBRA, we use
two topologies: 1) the GEANT network topology depicted in
Fig. 5, and 2) a 10× 10 grid topology depicted in Fig. 6. We
use the GEANT topology for performance comparison because
BFR and COBRA used this topology as an example network
[2], [4]. The GEANT topology is a tree-based topology. In
the GEANT topology, we attach the clients and origin servers
randomly in each simulation to the GEANT core routers. We
connect a different number of clients (between three to six
nodes) to each randomly selected GEANT router. We randomly
place five origin servers in each simulation and we have 56
clients connected to GEANT core routers. Therefore, the tested
topology consists of 101 nodes. We also use in this paper
the grid topology to assess the performance of both BFR and
COBRA when the topology is more connected. In the grid
topology, we attach the end-points, i.e., the 5 origin servers
and the 25 clients randomly in each simulation to the grid
routers. Thus, we obtain in total 131 nodes. We use a dataset
of URLs extracted from real traces of HTTP requests [16].
We consider a content universe, i.e., the set of produced files
at origin servers, that includes 100, 000 file names in total.
Each file has 100 segments. Thus, we generate 107 unique
segments. Each node has limited cache space and can store up
to 10, 000 segments in its CS. The content popularity follows
the Zipf-Mandelbrot law. Equation (2) shows the probability
distribution for this law, where M is the cardinality of the
content universe and α is the Zipf’s power parameter, which
is the skewness of the popularity function (the larger α is, the
smaller is the cardinality of the set of popular content objects.)

P (x = i) =
1/iα

∑M
j=1 1/j

α
(2)

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00258

Fig. 5. Geant topology and attached clients and servers

Fig. 6. Grid topology and attached clients and servers

For evaluating the performance of BFR and COBRA, we
consider values of α in range [0.8, 1.4]. We ran ten simulations,
each lasted for 100, 000 seconds. We report the average
measured values over these simulations. The mean values have
95% confidence intervals. For BFs, we use the parameters
N = 1000 and pfpp = 0.0638, where N denotes the number of
inserted elements in the BF and pfpp denotes the false positive
errors’ probability. Therefore, the size of each advertised BF
is roughly 716 bytes for advertising 1000 URLs. For SBFs,
we use parameter set {N = 106, pfpp = 0.0638, d = 3} to
create the SBFs at nodes. Therefore, we obtain SBFs of size
m = 2.05 Mbytes with k = 4 hash functions.

B. Results

Below, we compare the performance of BFR and COBRA
with respect to the following metrics: 1) Average memory
needed for storing routing information, 2) Average round-
trip delay, 3) Normalized communication overhead, 4) Total
communication overhead for Interests, and 5) Mean hit distance.

1) Average memory needed for storing routing information:
Table I compares BFR and COBRA in terms of the average
memory space that each node needs to store routing infor-
mation. In BFR, routing information consists of the content
advertisement information that servers propagate. Thus, the

TABLE I
AVERAGE MEMORY NEEDED FOR STORING ROUTING INFORMATION AT

EACH NODE WITH DIFFERENT FALSE POSITIVE ERROR RATES.

Average allocated memory per node (KBytes)
pfpp (%) COBRA COBRA BFR

(GEANT) (Grid) (Any topology)
28.30% 6235.392 14725.121 32.072
23.70% 7111.619 16783.365 36.579
16.00% 9052.344 21370.883 46.561
6.38% 13594.010 32880.641 69.921
2.29% 18655.232 44042.242 95.954

storage overhead for routing information is not related with
the structure of the topology. However, in COBRA, routing
information consists of the route traces stored in the SBFs.
In COBRA, each node stores as many SBFs as the number
of its interfaces. Therefore, the number of SBFs is directly
proportional to the number of links. Thus, the more connected
the topology is, the higher is the storage overhead COBRA
requires to store SBFs. To better understand this, we compare
the average memory needed for storing SBFs in COBRA for
GEANT and grid topologies in Table I. For COBRA, columns
2 and 3 of Table I show that in the grid topology each node
needs approximately 2.36 times more memory to store SBFs
than in the GEANT topology. Nevertheless, we observe a
significant difference between the values of columns 2 and 4.
This means that even if the GEANT topology is used, BFR
needs much less memory space for storing routing information
than COBRA. Therefore, when nodes have restricted memory
capacity (e.g., sensors in IoT scenarios with constrained nodes),
it is more appropriate to use BFR than COBRA.

2) Average round-trip delay: Figs. 7a and 8a compare BFR
and COBRA in terms of average round-trip delay, i.e., the
average delay between the time when clients send Interests and
the time they retrieve the demanded content objects for GEANT
and grid topologies, respectively. From Figs. 7a and 8a, we
observe that BFR outperforms COBRA without link failures.
To further understand the performance of all the schemes, we
schedule three link failures at time instants 5, 000 s, 15, 000
s, and 25, 000 s. These links recover at time instants 10, 000
s, 20, 000 s, and 30, 000 s, respectively. In presence of link
failures, both BFR and COBRA routing protocols avoid sending
an Interest through the path over which a link has failed.
However, BFR forwards the Interest over the rest of the paths
towards the server that provides the demanded content object,
while with COBRA, nodes do not always benefit from all the
paths towards the demanded content objects. We see in Fig.
8a a smaller impact of link failures on BFR’s performance in
terms of average round-trip delay than in Fig. 7a. This means
that BFR is more resilient to link failures when the topology
is more connected. We also examine the performance of BFR
and COBRA with content migrations. We schedule a random
number of content migration events (between 2 to 4 content
migration events) between randomly selected servers at random
time instants. We observe from Figs. 7a and 8a that with BFR,
content migration events have a slight impact on the average
round-trip delay. The reason is that, when a content migration
happens and BFR is used, servers immediately propagate new

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00259

(a) (b) (c)

Fig. 7. Results for GEANT topology for different values of Zipf’s power parameter: (a) Average round-trip delay; (b) Normalized communication overhead;
(c) Total Interest communication overhead.

(a) (b) (c)

Fig. 8. Results for GRID topology for different values of Zipf’s power parameter: (a) Average round-trip delay; (b) Normalized communication overhead; (c)
Total Interest communication overhead.

(a) (b) (c)

Fig. 9. Results for different values of Zipf’s power parameter: (a) A comparison of content advertisement communication overhead vs. false positive probability
for the grid and GEANT topologies; (b) Mean hit distance for GEANT topology; (c) Mean hit distance for the grid topology.

CAI messages to inform clients and routers about this event,
thus clients and routers update routes once they receive new
CAI messages. However, with COBRA, clients and routers are
unaware of content migration events until they detect Interest
retransmissions. Therefore, for COBRA, we see from Figs. 7a
and 8a a much higher impact of content migration events on
the average round-trip delay.

3) Normalized communication overhead: Figs. 7b and 8b
compare results for normalized communication overhead, i.e.,
the total bandwidth used to forward all Interests and Data pack-
ets divided by the number of retrieved Data packets, for GEANT
and grid topologies, respectively. We observe from these figures
that BFR needs much less communication overhead to retrieve
a Data packet than COBRA. The reason is that during the
learning phase SBFs are empty and COBRA needs to flood
the Interests, which incurs significant communication overhead.
On the other hand, BFR nodes do not flood the Interests and
nodes forward each Interest only over the paths en-route to
the server(s) that provide the demanded content object. Thus,
BFR shows much less normalized communication overhead
compared to COBRA. For BFR, when the grid topology is used,

Fig. 8b shows that the normalized communication overhead
for all values of the Zipf’s power parameter are approximately
twice than when GEANT topology is used. The reason is
that the grid topology is more connected than the GEANT
topology and BFR uses multi-path content discovery. Thus,
each Interest is forwarded over more links when the grid
topology is used. Nevertheless, when the grid topology is
used, Fig. 8b shows much higher normalized communication
overhead for COBRA than when the GEANT topology is used.
This is due to the Interest floodings in the learning phase of
COBRA that entails much higher communication overhead
when a grid-like topology is used.

4) Total communication overhead for Interests: Figs. 7c and
8c compare BFR and COBRA in terms of total communication
overhead needed for sending Interests for different values of
the Zipf’s power parameter for GEANT and grid topologies,
respectively. From these figures, it is clear that the total
communication overhead for sending Interests is much higher
for COBRA than for BFR. This is because COBRA needs to
flood Interests during the learning phase when SBFs are empty.
Nevertheless, the gap between the curves of COBRA Interest

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00260

overhead and BFR Interest overhead is much bigger in Fig. 8c
than in Fig. 7c, because the number of links are much higher in
the grid topology than GEANT topology. Thus, it leads to much
higher communication overhead for forwarding the Interests,
specifically during the learning phase when COBRA floods the
Interests. For COBRA, if we increase the value of Zipf’s power
parameter, we observe that the total communication overhead
decreases significantly. The reason is that by increasing the
value of Zipf’s power parameter, the cardinality of the set
of popular content objects decreases. Thus, the number of
Interest floodings during the learning phase also decreases
significantly. In Figs. 7c and 8c, for BFR, we see results in
terms of (Interest+CA) overhead, i.e., the sum of the values
of total communication overhead needed for sending Interests
and the total communication overhead needed for propagating
content advertisements in BFR. We still observe a big gap
between the curves of COBRA Interest overhead and BFR
(Interest+CA) overhead in both Figs. 7c and 8c. In Fig. 7c, we
observe this gap at least if α = 0.8 or α = 1. If α = 1.4, Fig. 7c
shows that COBRA needs much less communication overhead
for flooding Interests during the learning phase, because the
number of popular content objects is much smaller and the
topology is tree-like, thus having less number of links. Fig. 9a
compares the communication overhead that BFR requires to
propagate all the content advertisements in the grid and GEANT
topologies, for different values of false positive probability. In
Fig. 8c, we observe a bigger gap between the curves of COBRA
Interest overhead and BFR (Interest+CA) overhead than the
gap between these curves in Fig. 7c. This is due to the higher
impact of Interest floodings in COBRA during the learning
phase, in a more connected topology.

5) Mean hit distance: In Figs. 9b and 9c, we show the
performance of BFR and COBRA in terms of mean hit distance,
i.e., the mean path length an Interest requires traveling to reach
the demanded content object, for GEANT and grid topologies,
respectively. The first transmission of each Interest in the
network has to reach the server that provides the demanded
content object. However, the subsequent transmissions of the
Interest can be retrieved from routers’ caches. When the value
of Zipf’s α increases, a smaller number of content objects
is popular, which are mostly cached at routers closer to the
clients. Thus, we observe smaller values of mean hit distance
for bigger values of α. We see from Figs. 9b and 9c smaller
values of mean hit distance for BFR than for COBRA, which
does not exceed 0.45 hops. Fig. 9c shows much larger mean
hit distance than Fig. 9b. The reason is that the initial distance
between the clients and servers is much longer in the grid
topology than in the GEANT topology.

V. CONCLUSIONS

In this paper, we compared the performance of BFR and CO-
BRA routing protocols. BFR works based on proactive content
advertisements from servers, while COBRA routes Interests
according to the route traces left from previously retrieved
content objects. Neither BFR nor COBRA use any IP-based
routing protocol as primary or fall-back routing mechanism,

meaning that both BFR and COBRA are fully content-oriented
routing policies. BFR outperforms COBRA in terms of average
memory needed for storing routing information, average round-
trip delay, normalized communication overhead, total Interest
communication overhead, and mean hit distance. In future, we
plan to study the scalability of BF-based routing protocols for
ICN and to design scalable BF-based routing protocols.

REFERENCES

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of Information-Centric Networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, Jul. 2012.

[2] A. Marandi, T. Braun, K. Salamatian, and N. Thomos, “BFR: A Bloom
filter-based routing approach for Information-Centric Networks,” in Proc.
of the 16th International IFIP Networking Conference, Jun. 2017, pp.
1–9.

[3] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“NLSR: named-data link state routing protocol,” in Proc. of the 3rd ACM
SIGCOMM workshop on Information-centric networking, Aug. 2013, pp.
15–20.

[4] M. Tortelli, L. A. Grieco, G. Boggia, and K. Pentikousisy, “COBRA:
Lean intra-domain routing in NDN,” in Proc. of the IEEE 11th Consumer
Communications and Networking Conference (CCNC), Jan. 2014, pp.
839–844.

[5] H. Liu, X. De Foy, and D. Zhang, “A multi-level DHT routing framework
with aggregation,” in Proc. of the ACM 2nd edition of the ICN workshop
on Information-centric networking, Aug 2012, pp. 43–48.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul.
1970.

[7] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using Bloom filters,” in Proc. of the 2003 conference on
Applications, technologies, architectures, and protocols for computer
communications, Aug. 2003, pp. 201–212.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 3, pp. 281–293, Jun. 2000.

[9] M. Varvello, D. Perino, and J. Esteban, “Caesar: A content router for high
speed forwarding,” in Proc. of the Second Edition of the ICN Workshop
on Information-centric Networking, Oct. 2012, pp. 73–78.

[10] M. Lee, K. Cho, K. Park, T. T. Kwon, and Y. Choi, “SCAN: Scalable
content routing for content-aware networking,” in Proc. of the IEEE Int.
Conf. on Communications (ICC), Jun. 2011, pp. 1–5.

[11] Y. Wang, K. Lee, B. Venkataraman, R. L. Shamanna, I. Rhee, and
S. Yang, “Advertising cached contents in the control plane: Necessity
and feasibility,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 286–291.

[12] A. W. Kazi, “Prefetching Bloom filters to control flooding in content-
centric networks,” in Proc. of the ACM CoNEXT Student Workshop, Nov.
2010, p. 22.

[13] F. Deng and D. Rafiei, “Approximately detecting duplicates for streaming
data using Stable Bloom Filters,” in Proc. of the ACM SIGMOD
international conference on Management of data, Jun. 2006, pp. 25–36.

[14] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang,
“On the role of routing in Named Data Networking,” in Proc. of the 1st
international conference on Information-Centric Networking, Sep. 2014,
pp. 27–36.

[15] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2.0:
A new version of the NDN simulator for NS-3,” Tech. Rep., Jan. 2015.

[16] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web
traffic: evidence and possible causes,” IEEE/ACM Transactions on
Networking (TON), vol. 5, no. 6, pp. 835–846, Dec. 1997.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00261

