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The transition from Tayor vortex flow to wavy-vortex flow is revisited. The Self-Sustaining Pro-
cess (SSP) of Waleffe [Phys. Fluids 9, 883–900 (1997)] proposes that a key ingredient in transition
to turbulence in wall-bounded shear flows is a three-step process involving rolls advecting stream-
wise velocity, leading to streaks which become unstable to a wavy perturbation whose nonlinear
interaction with itself feeds the rolls. We investigate this process in Taylor-Couette flow. The in-
stability of Taylor-vortex flow to wavy-vortex flow, a process which is the inspiration for the second
phase of the SSP, is shown to be caused by the streaks, with the rolls playing a negligible role,
as predicted by Jones [J. Fluid Mech. 157, 135–162 (1985)] and demonstrated by Martinand et
al. [Phys. Fluids 26, 094102 (2014)]. In the third phase of the SSP, the nonlinear interaction of
the waves with themselves reinforces the rolls. We show this both quantitatively and qualitatively,
identifying physical regions in which this reinforcement is strongest, and also demonstrate that this
nonlinear interaction depletes the streaks.
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I. INTRODUCTION

The first successful linear stability analysis for a viscous fluid was carried out in 1923 by G.I. Taylor [1] for the
flow between two concentric differentially rotating cylinders. What then became known as Taylor-Couette flow has
played a central role in hydrodynamic stability theory ever since. In the standard configuration of a stationary outer
cylinder, as the inner cylinder rotation rate is increased, laminar flow is succeeded by axisymmetric Taylor vortices via
the centrifugal instability first explained by Rayleigh [2]. The Taylor vortices subsequently develop azimuthal waves,
seen in experiments by researchers such as Coles [3], Swinney and co-workers [4–6] and others [7, 8]. Wavy-vortex
flow was studied computationally when this became possible in the 1980s by authors such as Jones [9, 10], Marcus
[11, 12] and others [13, 14].

Taylor-Couette flow has also been studied as a way of approaching plane Couette flow, which undergoes transition
to three-dimensional turbulence despite being linearly stable at all Reynolds numbers. The azimuthal, radial, and axial
directions of Taylor-Couette flow play the role of the streamwise, cross-channel, and spanwise direction, respectively.
As the ratio between the cylinder radii approaches one, the correspondence between the two flows becomes exact.
The possibility of approaching plane Couette flow via Taylor-Couette flow has been used by many authors for many
different purposes. Nagata [15] used homotopy to calculate otherwise inaccessible unstable steady states of plane
Couette flow. Hristova et al. [16] and Meseguer et al. [17] compared transient growth rates between the two flows.
Prigent et al. [18] extended the observation of coexisting turbulent and laminar regions seen in Taylor-Couette by
Coles [3] to plane Couette flow. Faisst and Eckhardt [19] used Taylor-Couette flow to approach the turbulent lifetimes
and intermittency of plane Couette flow. A very narrow gap Taylor-Couette geometry was used as a proxy for plane
Couette flow by Shi et al. [20] to calculate the statistical threshold of sustained turbulence and by Lemoult et al. [21]
to establish that this transition was manifested as a directed percolation phase transition.

Here, we take the analogy in the opposite direction: extending an idea developed for plane Couette flow to Taylor-
Couette flow. Waleffe [22–24] has proposed a now widely-accepted three-part mechanism, by which streamwise
rolls (damped in the plane Couette case), cause streamwise streaks (by simple advection of the streamwise velocity
contours), which become wavy (through instability), acquiring streamwise dependence. The nonlinear self-interaction
of the wavy streaks drives the streamwise rolls, thus closing the cycle. The mechanism is similar to that proposed
by Hall and co-workers [25–27] and by Beaume and co-workers [28–30]. Experimental evidence for the SSP in plane
boundary layer and channel flow has been reported by Wesfreid and colleagues in [31, 32]. These experiments show
a strong correlation between the growth of rolls and the presence of waves: both phenomena occur above the same
Reynolds-number threshold.

Although the SSP was influenced by these phenomena in Taylor-Couette flow, it has not actually been applied
to Taylor-Couette flow itself. The main purpose of this paper is to see how the Self-Sustaining Process plays out in
Taylor-Couette flow, where the analogous structures, i.e. axisymmetric and wavy Taylor vortices, are actually stable
equilibrium states.

II. EQUATIONS, METHODS AND PARAMETERS

The equations governing Taylor-Couette flow and the methods for computing it are sufficiently well known as to
warrant only a very brief exposition. The inner and outer cylinders have radii and angular velocities Rj and Ωj . From
these, along with the kinematic viscosity ν, can be constructed the length scale d ≡ R2 − R1, the time scale d2/ν,
the two Reynolds numbers Rej ≡ RjΩjd/ν, and the radius ratio η ≡ R1/R2. The non-dimensionalized governing
equations and boundary conditions are then

∂tU = U×∇×U−∇P +∇2U (1a)

∇ ·U = 0 (1b)

U = Rejeθ at r = rj ≡ Rj/d, j = 1, 2 (1c)

We will restrict our consideration to the classic inner-cylinder-rotation case with Ω2 = 0 so that Re2 = 0 and hence
we use Re to denote the inner Reynolds number Re1. Nonlinear Taylor-vortex and wavy-vortex flows, denoted by
TVF and WVF or UTVF and UWVF, are calculated by solving the evolution equations (1) numerically. For linear



3

stability analysis, the nonlinear code has been adapted to solve the linearized equations

∂tu = U×∇× u + u×∇×U−∇p+∇2u (2a)

∇ · u = 0 (2b)

u = 0 at r = rj , j = 1, 2 (2c)

where U is the flow whose stability is sought. Temporal integration of (2) effectively carries out the power method,
converging to the eigenvector whose eigenvalue has largest real part. Most commonly, we take U to be Taylor-vortex
flow, UTVF, and the power method returns the wavy vortex eigenvector uwvf and corresponding eigenvalue.

The code we use represents functions on a spatial Chebyshev grid in the radial direction r and on equally spaced
points in the azimuthal θ and axial z directions, with spatial derivatives taken via finite differences in r and by
differentiation of Fourier series in θ, z. Multiplications are carried out in the grid space representation by Fourier
transforming in θ, z. Taylor-vortex flow is calculated in an axisymmetric domain with Nr = 33 radial points and
Nz = 16 points over the axial domain [0, Lz] or, equivalently, multiples of the wavenumber 2π/Lz. Computations
of wavy-vortex flow eigenvectors use a single azimuthal mode M0. Nonlinear wavy-vortex flow is calculated using
Nθ = 16 points in the azimuthal sector [0, 2π/M0] or, equivalently, multiples of the wavenumber M0.

One difficulty is deciding which of the many TVFs or WVFs to study. Each TVF is characterized by an axial
wavenumber, and each WVF has an axial and an azimuthal wavenumber. States with different wavenumbers can
be simultaneously stable, as emphasized by Coles [3] and by many subsequent researchers [4, 5, 7]. Jones [10] and
Antonijoan & Sanchez [14] have shown the complexity of the bifurcations and ranges of existence of wavy-vortex
states with different azimuthal wavenumbers as the radius ratio and the axial wavelength are varied. We select the
radius ratio to be η = 0.92, corresponding to r1 = 11.5 and r2 = 12.5. To make connection with the SSP in plane
Couette flow, we take the axial wavelength to be Lz = 2, corresponding to a spanwise wavelength of 4 half-gaps, near
the length considered by Waleffe [22–24]. (Note that the length scale in the Taylor-Couette problem is the full gap.)
We use the term circumferential wavelength to denote a length at the midgap r = r̄, in contrast with an azimuthal
wavelength, which is expressed in radians and necessarily a fraction of 2π. To approximate the streamwise wavelength
of 10 half-gaps studied by Waleffe, we first express the circumferential wavelength Lθ of a wavy-vortex state with
azimuthal wavenumber M0 in units of the gap

Lθ =
2πr̄

M0
=

2π

M0

(r2 + r1)/2

r2 − r1
=

π

M0

1 + r1
r2

1− r1
r2

=
π

M0

1 + η

1− η
(3)

Setting η = 0.92 and Lθ = 5, corresponding to 10 in half-gaps, leads to

M0 =
π

Lθ

1 + η

1− η
=
π

5

1.92

0.08
≈ 15 (4)

The critical Reynolds number for onset of Taylor-vortex flow in which only the inner cylinder rotates is approximately

ReTVF ≈

√
1708

η(1− η)

1 + η

2
(5)

which diverges as the narrow-gap (or plane Couette) limit η → 1 is approached [19]. The dependence of the critical
Reynolds on η is shown in Fig. 1(a), together with the relationship between M0 and η for Lθ = 5. For η = 0.92,
Taylor vortices appear above ReTVF ≈ 146. For these values of η, Lz, and M0, Taylor-vortex flow remains stable until
ReWVF ≈ 201, above which the flow becomes unstable to wavy Taylor vortices. Figure 2(a) shows the Taylor-vortex
flow while Fig. 3 shows the wavy-vortex flow, both computed at Re = 300.

III. ANALYSIS IN TERMS OF SELF-SUSTAINING PROCESS

We begin our analysis by introducing notation. Flow fields U can be decomposed as follows; see Fig. 1(b).

U =
∑
k

∑
m

(
Ûk,mr (r)er + Ûk,mθ (r)eθ + Ûk,mz (r)ez

)
ei(kz/Lz+mM0θ) (6a)

= UCou + Umean + Uroll + Ustreak + Uwave (6b)



4

FIG. 1. (a) Dependence of critical Reynolds number ReTVF on the radius ratio η for transition to Taylor-vortex flow (right
scale). Also shown is the relationship between azimuthal wavenumber M0 and η for circumferential wavelength Lθ = 5 (left
scale). Our chosen parameter values are η = 0.92 and M0 = 15. (b) Schematic decomposition of flow into UCou, Umean, Uroll,
Ustreak, Uwave according to axial and azimuthal Fourier modes k and m.

where

UCou ≡
(
Ar +

B

r

)
eθ (7a)

Umean ≡ Û0,0
θ (r)eθ −UCou (7b)

Uroll ≡
∑
k 6=0

(
Ûk,0r (r)er + Ûk,0z (r)ez

)
eikz/Lz (7c)

Ustreak ≡
∑
k 6=0

Ûk,0θ (r)eθ e
ikz/Lz (7d)

Uwave ≡
∑
k

∑
m 6=0

Ûkm(r)ei(kz/Lz+mM0θ) (7e)

Note that (7b) defines Umean to be the (θ, z)-independent deviation from laminar Couette flow UCou, in contrast to
Waleffe [22–24] whose mode M includes the laminar Couette solution (7a). In terms of this decomposition, Taylor-
vortex flow and wavy-vortex flow take the form

UTVF = UCou + Umean + Uroll + Ustreak (8a)

UWVF = UCou + Umean + Uroll + Ustreak + Uwave (8b)

Waleffe’s Self-Sustaining Process [22–24] describes three steps involving the components Uroll, Ustreak, and Uwave:
A) Uroll =⇒ Ustreak. This is a statement of kinematic advection of the azimuthal velocity.
B) Ustreak =⇒ Uwave. This is described by Waleffe as a linear instability.
C) Uwave =⇒ Uroll. The nonlinear interaction of the wave with itself reinforces the rolls.

A. Rolls to streaks

The SSP begins with streamwise invariant rolls Uroll and considers the development of streaks from these rolls.
Rolls transport fluid with high azimuthal velocity from the inner cylinder towards the outer cylinder and vice versa,
causing the azimuthal velocity profile to vary along z with the axial periodicity of the rolls. In plane Couette flow, or
Waleffe’s free-slip version [24] now sometimes called Waleffe flow [28–30, 33, 34], rolls are not themselves an equilibrium
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FIG. 2. Visualizations in the meridional (r, z) plane of (a) Taylor-vortex flow (without laminar Couette flow), (b) the M0 = 15
eigenvector leading to wavy-vortex flow, and (c) nonlinear interaction of this eigenvector with itself. The parameters are
Re = 300 and η = 0.92. The inner cylinder is on the left and the outer cylinder on the right. In each case, the meridional
velocity within the plane is indicated by arrows and the azimuthal velocity perpendicular to it is indicated by colors. Red
indicates a positive deviation of the azimuthal velocity from laminar Couette flow, blue a negative deviation, and green no
deviation. Thus, in (a) the arrows show the rolls and the colors show the streaks of Taylor-vortex flow. The white dashed boxes
in (c) and (a) highlight the alignment between the axial components (arrows) of 〈uwvf ×∇× uwvf〉 and of the rolls of UTVF,
which comprise the third step of the SSP.

state. Hence in the planar case it is necessary to initiate the SSP by inserting rolls into the flow and observing the
resulting streak development. Permanent rolls and streaks have been produced in variants of plane Couette flow
by including a spanwise-oriented wire or ribbon experimentally [35–37] or numerically [38]. For the Taylor-Couette
problem, however, this phase is straightforward. The rolls and the streaks that they generate are contained in Taylor-
vortex flow, which bifurcates supercritically and exists as a stable nonlinear equilibrium. In Fig. 2(a), calculated at
Re = 300, the rolls are the meridional-plane flow indicated by arrows. The streaks are the axial variation in the
azimuthal flow driven by the rolls and are seen as the colored patches.

B. Streaks to waves

We now turn to the second stage of the SSP in which the streaks become unstable to waviness. Once again,
the situation in the Tayor-Couette problem is much more clear cut than in the planar case. The onset of waviness
is a distinct supercritical instability – the transition from Taylor-vortex flow UTVF to wavy-vortex flow UWVF. In
the UWVF state shown in Fig. 3, the flow has azimuthal variation (waviness) and is an azimuthally travelling wave.
In 1985, Jones [10] suggested that the instability arose from the streaks, i.e. the axial variation of the azimuthal
flow, which he called azimuthal jets. Thirty years later, Martinand, Serre and Lueptow [39] confirmed this idea by
constructing the linear operator governing the wavy instability and showing that the eigenvalues of the portion of
the operator arising from the azimuthal shear, i.e. the streaks, best matched the eigenvalues of the entire operator.
They also demonstrated a number of common features between the transition to wavy vortex flow and the Kelvin-
Helmholtz instability, notably a phase speed intermediate between that of the two cylinders and the multiplicity of
possible azimuthal wavenumbers.

We show this by a different procedure, carrying out linearization about UTVF and about UTVF −Uroll, i.e. the
Taylor vortex flow without its radial or axial components; see Eqs. (8). Fig. 4 compares the eigenvectors and growth
rates resulting from these two linearizations. Since omitting Uroll from the base flow barely changes the eigenvector
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FIG. 3. Wavy-vortex flow (including Taylor-vortex flow but not laminar Couette flow) at Re = 300. Above: four meridional
planes over azimuthal period [0, 2π/15]. Azimuthal velocity indicated by colors, meridional velocity by arrows. Below: one
azimuthal period [0, 2π/15] at mid-gap r̄ = 12. Radial velocity indicated by colors. The dashed lines indicate the positions of
the four meridional planes shown above.

or eigenvalue, it is clear that it plays no role in the instability. In contrast, linearization about UTVF −Ustreak, i.e.
omitting the axial dependence of the azimuthal flow, leads to eigenvalues with very small growth rate and eigenvectors
with no resemblance to those of UTVF. (These results are not displayed.) These numerical experiments confirm that
the instability mechanism responsible for the transition of UTVF to UWVF is the axial variation of the azimuthal
velocity.

In addition to linearization, we examine the energy content in the flow components of the nonlinear states. We
decompose both Taylor-vortex flow UTVF and the wavy-vortex flow UWVF into components given in Eqs. (6)-(8)
and compute the energy of each. Fig. 5(a) shows the variation of the energy components as a function of Reynolds
number. (The much larger energy of UCou and a contribution combining UCou and Umean are not shown.) UTVF

appears at Re = 146 and UWVF appears at Re = 201. It can be seen that EWVF
streak, the energy of the streaks in

UWVF, is substantially decreased from the analogous quantity ETVF
streak in UTVF. This decrease is almost exactly

counterbalanced by the energy in the waviness, EWVF
wave , suggesting that the energy in the waviness is extracted from

the streaks. The energy in the rolls is small and is almost the same in the two states. Thus, in addition to the linear
instability mechanism, the comparison between the energy content of the saturated nonlinear states with and without
waves shows that streaks feed the waves. As stated by Waleffe [24], it is not the rolls but the streaks whose energy is
drained by the waves.

C. Waves to rolls

The key novelty of the SSP is the positive feedback of the waviness on the rolls. To study this in Taylor-Couette
flow, we calculate the eigenvector uwvf responsible for the bifurcation to wavy vortices, shown in Fig. 2(b). (This
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FIG. 4. Comparison of linearization about UTVF and about UTVF−Uroll. Eigenvectors uwvf resulting from linearization about
(a) only UTVF −Uroll and (b) the full UTVF for Re = 300. Azimuthal velocity designated by color (red for positive, blue for
negative, green for zero) and radial and axial velocity by arrows. (c) Growth rate (real part of eigenvalue) for linearization
about UTVF (black, solid), UTVF −Uroll (blue, dashed), as a function of Re. Since omitting Uroll from the base flow barely
changes the eigenvector or eigenvalue, it is clear that it plays no role in the instability.

complex eigenvector is shown here at one spatial or temporal phase.) We then compute the nonlinear interaction of
uwvf with itself, in the form uwvf×∇×uwvf . Since uwvf ∼ e±iM0θ, this quadratic term leads to azimuthal dependence
of the form e±2iM0θ (second harmonic) and 1 (constant). We are interested in the constant contribution which has
the form:

NL ≡ 〈uwvf ×∇× uwvf〉 ≡ uRwvf ×∇× uRwvf + uIwvf ×∇× uIwvf (9)

This term feeds back on the θ-independent contributions Uroll, Ustreak and Umean. A visualization of this vector
quantity is shown in Fig. 2(c). On a qualitative level, by comparing the arrows of Fig. 2(c) with those of Fig. 2(a), one
can see the feedback of this term on Uroll. The white-dashed boxes highlight regions in which the axial component of
the Taylor-vortex flow is strong and aligned with the axial component of NL. The resemblance is especially strong on
near-axial curves in NL converging towards saddles above and below regions with high azimuthal component shown
in red.

A more quantitative picture of the feedback is presented in Fig. 5(b). Shown is the normalized inner product
between NL and each of Uroll, Ustreak and Umean defined by:

〈NL,U−−−〉 =

∫ Lz

0

dz

∫ r2

r1

r drNL(r, z) ·U−−−(r, z) (10)

where U−−− is any of Uroll, Ustreak and Umean. It can be seen that NL has a positive overlap with Uroll, meaning
that indeed, the nonlinear interaction of uwvf with itself acts as a driving mechanism for rolls. NL also drives Umean.
In contrast, NL has a negative overlap with Ustreak and hence this term tends to suppress the streaks.

IV. CONCLUSION

According to the self-sustaining process (SSP) of [24], the building block of transition to turbulence in plane Couette
flow and other wall-bounded shear flows, rolls induce streaks, which in turn undergo an instability to waviness, whose
nonlinear interaction feeds the rolls. In plane Couette flow, laminar flow (the analogue of UCou) is stable for all
Reynolds numbers; there is no equivalent of the steady Taylor-vortex flow. For Taylor-vortex flow, however, most of
the steps of the SSP are already in place. Vortices (rolls) induce streaks (axially periodic variation of the azimuthal
flow) kinematically via advection, as in plane Couette flow. We have confirmed that the instability to wavy-vortex
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FIG. 5. (a) Energy decomposition for UTVF and UWVF. (See Fig. 1(b) for definitions of this decomposition.) Curves marked
with crosses correspond to the components of UTVF originating at Re = 146. Curves marked with circles correspond to the
energy components of UWVF which bifurcates at Re = 201. The streak energy is lower for WVF than it is for TVF; the
difference between the two is close to the energy in the waves (which is necessarily zero for TVF). The energy in the deviation
of the mean from Couette flow is also lower for WVF than for TVF. The energy in the rolls is approximately the same for
the two flows. (b) Normalized inner product of nonlinear self-interaction 〈NL,Uroll〉/||Uroll||, 〈NL,Ustreak〉/||Ustreak|| and
〈NL,Umean〉/||Umean|| for rolls, streaks, and deviation of the mean from Couette flow. The nonlinear term NL feeds the rolls
and mean but drains the streaks.

flow is due to this variation [39]. In addition, we have shown that the energy of the waves in nonlinear wavy-vortex
flow compensates almost exactly for the decreased energy in the streaks, as compared to the energy in the streaks of
nonlinear Taylor-vortex flow. The third step is the feedback of the waves on the rolls, which is crucial for the SSP
since in plane Couette flow the rolls do not arise from a linear instability leading to a nonlinear equilibrium. We have
shown that this feedback mechanism exists in Taylor-Couette flow and that it is the rolls that are fed and not the
streaks. The nonlinear self-interaction of the waves generates localized regions with strong axial forcing: this is the
nature of the feedback on the Taylor vortices which closes the SSP.
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