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Abstract

This work introduces liftings and their associated Young measures as new
tools to study the asymptotic behaviour of sequences of pairs (u j , Du j ) j for
(u j ) j ⊂ BV(�;Rm) under weak* convergence. These tools are then used to prove
an integral representation theorem for the relaxation of the functional

F : u �→
∫

�

f (x, u(x),∇u(x)) dx, u ∈ W1,1(�;Rm), � ⊂ R
d open,

to the space BV(�;Rm). Lower semicontinuity results of this type were first ob-
tained by Fonseca and Müller (Arch Ration Mech Anal 123:1–49, 1993) and later
improved by a number of authors, but our theorem is valid under more natural,
essentially optimal, hypotheses than those currently present in the literature, re-
quiring principally that f be Carathéodory and quasiconvex in the final variable.
The key idea is that liftings provide the right way of localising F in the x and u
variables simultaneously under weak* convergence. As a consequence, we are able
to implement an optimal measure-theoretic blow-up procedure.

1. Introduction

Finding an integral representation for the relaxation F∗∗ of the functional

F[u] :=
∫

�

f (x, u(x),∇u(x)) dx, u ∈ W1,1(�;Rm),

� ⊂ R
d open, d, m � 1, (1)

to the space BV(�;Rm) of functions of bounded variation, where f : � × R
m ×

R
m×d → [0,∞) has linear growth in the last variable, is of great importance in

the Calculus of Variations. Defined by the formula

F∗∗[u] := inf

{
lim inf
j→∞ F [u j ] : (u j ) j ⊂ W1,1(�;Rm) and u j � u ∈ BV(�;Rm)

}
,
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where, for the moment, we do not specify the notion of convergence “�” with
respect to which F∗∗ is computed, the relaxation is the greatest functional on
BV(�;Rm) which is both less than or equal to F on W1,1(�;Rm) and lower
semicontinuous (with respect to �) over BV(�;Rm). From a theoretical point of
view, identifying F∗∗ is a necessary step in the application of the Direct Method to
minimisation problems with linear growth: indeed, if f is coercive, minimising se-
quences forF are merely bounded in the non-reflexive spaceW1,1(�;Rm) and can
only be expected to converge weakly* in BV(�;Rm). Since candidate minimisers
are only guaranteed to exist in this larger space, there is a need to find a ‘faithful’
extension of F to BV(�;Rm) to which the Direct Method can be applied. If they
exist, minimisers in BV(�;Rm) of this extension of F can then be seen as weak
solutions to the original minimisation problem over W1,1(�;Rm).

From the perspective of applications, if f (x, y, A) = g(x, y)h(x, y, A) then
the Cauchy–Schwarz inequality implies that computing F∗∗ provides a (usually
optimal) lower bound for the �-limit of the sequence of singular perturbations

Eε[u] := ε−1
∫

�

[g(x, u(x))]2 dx + ε

∫
�

[h(x, u(x),∇u(x))]2 dx, (2)

which arise in a vast number of phase transition problems from the physical sci-
ences [9,12,20,24,27,35,40]. In this context, minimisers of F∗∗ can be seen as
“physically reasonable” solutions to the highly non-unique problem of minimising
the coarse-grain energy

∫
�
[g(x, u(x))]2 dx , which take into account the fact that

transitions between phases should have an energetic cost.
The first general solution to the relaxation problem was provided by Fon-

seca and Müller in [22] (see also Ambrosio and Dal Maso [6] for the u-
independent case). Motivated by problems in the theory of phase transitions, the
authors showed that, if f is quasiconvex in the final variable, satisfies

g(x, y)|A| � f (x, y, A) � Cg(x, y)(1 + |A|)
for some g ∈ C(� × R

m; [0,∞)), and strong localisation hypotheses (see be-
low) hold, then the relaxation of F with respect to the strong L1-convergence in
BV(�;Rm) is given by

F∗∗[u] =
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f #
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x),

(3)

where f # is the recession function of f defined by f #(x, y, A) := lim supt→∞ t−1

f (x, y, t A), and

K f [u](x) := inf

{
1

ωd−1

∫
Bd

f ∞(x, ϕ(y),∇ϕ(y)) dy : ϕ ∈ C∞(Bd;Rm),

ϕ|∂Bd = u±(x) if 〈y, nu(x)〉 ≷ 0

}
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is the surface energy density associated with f . Here, d, m � 1, and we have used
the usual decomposition

Du = ∇uLd + Dsu, Dsu = (u+ − u−) ⊗ nu Hd−1 Ju + Dcu

for the derivative Du of a function u ∈ BV(�;Rm) (see, for example [7]). Fon-
seca andMüller’s result, later improved in the subsequent papers [15,21], makes
use of theblow-up method to obtain a lower bound forF∗∗: if (u j ) j ⊂ W1,1(�;Rm)

is such that (F[u j ]) j is bounded, then, upon passing to a subsequence, ( f (x, u j (x),

∇u j (x))Ld �) j must converge weakly* in M+(�) to some Radon measure μ.
Next, one computes lower bounds for the Radon–NikodymDerivatives dμ

dLd ,
dμ

d|Dcu| ,
dμ

dHd−1 Ju
via estimates of the form

dμ

dLd
(x0) � lim inf

r→0
lim

j→∞
1

rd

1

ωd

∫
B(x0,r)

f (x, u j (x),∇u j (x)) dx . (4)

To obtain the inequality “�” in (3), it suffices to bound the right hand side of (4)
from below by f (x0, u(x0),∇u(x0)) and to obtain analogous results for

dμ
|Dcu| and

dμ

dHd−1 Ju
. The authors of [22] achieve this by noting that the partial coercivity

property g(x, y)|A| � f (x, y, A) � Cg(x, y)(1+ |A|) combined with the rescal-
ing in r of each u j allows for (u j ) j to be replaced by a rescaled and truncated
sequence (w j ) j , which is crucially weakly* and L∞ convergent in BV(Bd;Rm) to
a blow-up limit z �→ ∇u(x0)z.

Fonseca and Müller’s result confirms that, as in the case for problems posed
over W1,p(�;Rm) for p > 1, quasiconvexity is still the right qualitative condition
to require for variational problems with linear growth. However, it has been an open
question as to whether the (x, y)-localisation hypotheses which have been used un-
til now (both for the results in [22] and for the substantial later improvements in
[21]) are truly necessary for (3) to hold. Up to an error which grows linearly in A,
these assumptions state that f must be such that f (x0, y0, A) ≈ f (x, y, A) when-
ever (x, y) is sufficiently close to (x0, y0) and that f #(x0, y, A) ≈ f #(x, y, A)

uniformly in y for |x0 − x | sufficiently small.
It is known in the case of superlinear growth that for F to be weakly lower

semicontinuous over W1,p(�;Rm), f need only be quasiconvex in the final vari-
able, Carathéodory, and satisfy the growth bound 0 � f (x, y, A) � C(1 + |A|p).
For the situation where f has linear growth and the task is to find the relaxation of
F to BV(�;Rm), a short overview of available results is as follows: in the scalar
valued case where m = 1, Dal Maso [17] obtained the scalar counterpart to (3)
(the term overJu admits a simpler form) under the assumption of coercivity for the
general case where f = f (x, y, A). If no coercivity is required of f , the task of
finding the L1-relaxation F 1∗∗ is highly non-trivial and involves the regularity of f
in the x variable, see for instance [5]. In the vector-valued case, Aviles and Giga
used the theory of currents to obtain (3) under the assumption that f is continuous,
convex in the final variable, coercive, and also satisfies a specific isotropy property,
see [10,11]. The situation where f is quasiconvex in the final variable is harder:
the case where f is independent of both x and u was settled byAmbrosio andDal
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Maso [6], and Kristensen together with the first author obtained (3) under just
the assumption that f = f (x, A) is u-independent, Carathéodory and such that
f ∞ exists [31].

For the u-dependent case where f = f (x, y, A) and f is quasiconvex in the
final variable, the only available results are the original identification in [22] due to
Fonseca and Müller, later improvements in [14,15], and finally the most recent
results in Fonseca and Leoni [21]. Roughly, these results require (in addition to
quasiconvexity) that f is Borel, such that f # exists, and that, for every (x0, y0) ∈
� × R

m and ε > 0, there exists δ > 0 such that |x − x0| + |y − y0| < δ

implies f (x0, y0, A) − f (x, y, A) � ε(1+ f (x, y, A)) for all A ∈ R
m×d and that

|x − x0| � δ implies f #(x0, y, A) − f #(x, y, A) � ε(1 + f #(x, y, A)) for all
(y, A) ∈ R

m × R
m×d .

Reasoning by analogy with the cases where f has superlinear growth over
W1,p(�;Rm) or where f has linear growth and either m = 1 (so that f : � ×R×
R

d → R) or f is u-independent (so that f = f (x, A)), the implication is that (3)
should hold under just the assumptions that f be quasiconvex in the final variable
and possesses sufficient growth and regularity to ensure that the right hand side
of (3) is well-defined over BV(�;Rm). This result is, essentially, our Theorem A
below.

To avoid the use of extraneous hypotheses, wemust pass from lim j f (x, u j (x),

∇u j (x)) to lim j f (x0, u(x0),∇u j (x)) in (4) using only the behaviour of the se-
quence (u j ) j rather than any special properties of the integrand. In order to do
this, we must improve our understanding of the behaviour of weakly* conver-
gent sequences in BV(�;Rm), particularly under the blow-up rescaling x �→
(x−x0)/r . These aremuchmore poorly behaved thanweakly convergent sequences
in W1,p(�;Rm) for p > 1 thanks to interactions between (u j ) j and (Du j ) j in
the limit as j → ∞, see Example 3.10. In the reflexive Sobolev case, powerful
truncation techniques [23,30] mean that these interactions can be neglected in the
sequence under consideration, but no such tools are available in BV(�;Rm) when
m > 1.

Themain contributions of this paper are the development of a new theory for un-
derstandingweakly* convergent sequences and blow-up procedures inBV(�;Rm),
together with the use of this theory to provide a new proof for the integral represen-
tation of the weak* relaxation F∗∗ of F to BV(�;Rm) under weaker hypotheses.
This representation is valid for Carathéodory integrands and does not require the
(x, y)-localisation properties of f which have previously been used:

Theorem A. Let f : � × R
m × R

m×d → R where d � 2 and m � 1 be such that

(i) f is a Carathéodory function whose recession function f ∞ exists in the
sense of Definition 2.8 and satisfies f ∞ � 0;

(ii) f satisfies a growth bound of the form

−C(1 + |y|p + h(A)) � f (x, y, A) � C(1 + |y|d/(d−1) + |A|), (5)

for some C > 0, p ∈ [1, d/(d − 1)), h ∈ C(Rm×d) satisfying h∞ ≡ 0, and
for all (x, y, A) ∈ � × R

m × R
m×d ;

(iii) f (x, y, � ) is quasiconvex for every (x, y) ∈ � × R
m.
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Then the sequential weak* relaxation of F to BV(�;Rm) is given by

F∗∗[u] =
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

The hypotheses of Theorem A are essentially the optimal conditions under which
F∗∗ is guaranteed to be finite over all of BV(�;Rm), and this result consequently
identifies the extension of F to BV(�;Rm) for the purposes of the Direct Method
whenever such an extension is well-defined. Theorem A can therefore be seen as
a BV-version of the optimal Sobolev lower semicontinuity theorems obtained by
Acerbi and Fusco [1] and Marcellini [33].

Example 2.9 below shows that, unlike in the case where f = f (x, A) does not
depend explicitly on u (see [31]), the positivity assumption f ∞ � 0 is necessary
for F∗∗ to be finite and for a general integral formula to hold. In fact, assuming
f ∞ � 0 alone, without also requiring the lower bound in (ii), is not enough, see
Example 2.14. The situation here is subtle, and (ii) can be improved slightly to
a bound that is truly sharp in this regard at the expense of a more complicated
statement, see Definition 2.13 and Theorem 6.7.

Thehypotheses ofTheoremAarevalid in situationswhere the (x, y)-localisation
hypotheses used in [21,22] do not hold and also where partial coercivity fails:
for example, the function f (x, y, A) = (1 + |y|)−1|y|1−|x ||A| defined on B

d ×
R

m × R
m×d , which violates (H4) and Equation (1.15) in [22] and [21] respec-

tively, and functions of the form f (x, y, A) = [B(x, y) : A]+ where B(x, y) ∈
C(�×R

m;Rm×d) is bounded (A : B is the usual Frobenius inner product between
matrices and [ � ]+ denotes the positive part).

We emphasise that our F∗∗ is the relaxation of F to BV(�;Rm) with respect
to sequential weak* convergence, whereas the relaxation of interest from the per-
spective of some applications and the one which is the subject of the earlier works
works [8,11,15,21,22] isF 1∗∗, the relaxation ofF with respect to strong L1(�;Rm)

convergence in BV(�;Rm). In the absence of coercivity F 1∗∗ might be strictly less
thanF∗∗, but it is always the case that f in these applications is partially coercive in
the sense that g(x, y)|A| � f (x, y, A) � Cg(x, y)(1 + |A|) for some continuous
g : �×R

m → [0,∞) and C > 0. In these circumstances it is therefore reasonable
to expect that the problem of computing F 1∗∗ reduces to that of computing F∗∗
‘locally’ in regions of � × R

m where g(x, y) > 0 (and this is in fact the strategy
followed in previous works), and so our work opens the possibility of new progress
in this area. Indeed, in the sequel to this paper, [39] we use Theorem A to derive an
integral representation forF 1∗∗ valid under improved hypotheses on the integrand f .

Theorem A assumes that f ∞ exists in a stronger sense than has been classi-
cally required in the literature (see Definition 2.8), where only the upper recession
function f # is used. In fact, the other properties required of f in [21] imply that
their f # must exist in the sense of Definition 2.8 at every point of continuity for f #,
that f # must be lower semicontinuous, and such that f #( � , y, � ) is continuous in
(x, A) for every y ∈ R

m .



Filip Rindler & Giles Shaw

Our proof of the lower semicontinuity “�” component of Theorem A is based
on the idea of understanding joint limits for pairs (u j , Du j ) j under weak* conver-
gence as objects in the graph space � × R

m , rather than solely in �. To do this,
we develop a theory of liftings (ideas of this type were first introduced by Jung
and Jerrard in [28]), which replaces functions u ∈ BV(�;Rm) by graph-like
measures γ [u] := gru

#(Du) ∈ M(� × R
m;Rm×d), where gru : x �→ (x, u(x)) is

the graph map of u. Using a Reshetnyak-type perspective construction, the func-
tional F can be generalised to one defined on the space of liftings. The key point
is that working in this more general setting means that we can think of sequences
( f (x, u j (x),∇u j (x))) j as convergingweakly* toRadonmeasures inM+(�×R

m)

rather than merely inM+(�). This allows us to estimate F∗∗ more precisely from
below by computing Radon–Nikodym derivatives at points (x, u(x)) ∈ � × R

m

with respect to the total variation of the (elementary) lifting γ [u] rather than merely
at points x ∈ �with respect to the derivative |Du|. In order to carry out these com-
putations, we lay out a framework of generalized Young measures associated to
liftings under weak* convergence that allows us to “freeze the u-variable” for a
wide class of functionals with linear growth by employing robust tools from Geo-
metric Measure Theory. In particular we use a new type of Besicovitch Derivation
Theorem which allows us to differentiate in � × R

m with respect to graphical
measures of the form η = gru

# λ, λ ∈ M+(�) using very general families of sets
B(x, r) × B(y, R) ⊂ � × R

m (see the discussion which precedes Theorem 5.1).
The idea of understanding the jointweak limits of sequences of pairs (u j ,∇u j ) j

by considering instead objects defined over the graph space � ×R
m has of course

been explored before. This strategy is successfully followed in [17] to identify F∗∗
in the case m = 1 and, for m > 1 with f coercive, convex, and isotropic in the
final variable, currents are used to identify F∗∗ in [10,11]. More generally, ‘graph-
like’ objects have beenwidely used to better understand nonlinear functionals in the
Calculus of Variations and GeometricMeasure Theory in the context of currents (in
particular, Cartesian currents) and varifolds [3,4,18,19,25,26,34]. Liftings seem
to be situated at a sweet spot between the usual techniques of the Calculus of
Variations and the higher abstractions of geometric analysis, admitting a simple
yet surprisingly powerful calculus which appears to be well-suited for functionals
of this type. We hope that this tool will prove to be useful in a variety of related
problems.

The final step in the proof of Theorem A is to show that the lower bound for
F∗∗ obtained via our theory of liftings is optimal. This is equivalent to constructing
weak* approximate recovery sequences (uε) j ⊂ C∞(�;Rm) for F∗∗ and ε > 0

which are such that uε ∗
⇀ u and

lim sup
j→∞

∣∣∣F[uε
j ] − F∗∗[u]

∣∣∣ � ε.

Perhaps surprisingly, Example 6.1 demonstrates that it is not always possible to
construct genuine weak* recovery sequences which satisfy

u j
∗
⇀ u and lim

j→∞F[u j ] = F∗∗[u],
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even for f continuous and convex in the final variable: in contrast to the u-
independent cases where f = f (x, A) or the scalar valued case where u : � → R,
it can occur in the absence of coercivity that F∗∗ admits a global minimiser for
which no weakly* convergent minimising sequence exists. Nevertheless, we are
able to construct approximate recovery sequences for F∗∗ using a novel ‘cut and
paste’ technique based around the rectifiability of the measure K f [u]Hd−1 Ju

combined with Young measure techniques.
This paper is organised as follows: after notation is established and preliminary

results and concepts are introduced in Section 2, liftings are defined and their theory
developed in Section 3. We prove a structure theorem, establish the convergence
and compactness properties of liftings, and we show how F can be extended to a
functional FL defined on the space of liftings. In Section 4, we develop a theory of
Young measures associated to liftings, including representation and compactness
theorems. Section 5 introduces tangent Youngmeasures and their associated Jensen
inequalities, which together suffice to implement an optimal weak* blow-up pro-
cedure and deduce the lower semicontinuity component of Theorem A. Finally, in
Section 6, we construct approximate recovery sequences forF∗∗, before combining
these with the results Section 5 to state and prove Theorem 6.7, which is a slightly
more general version of Theorem A.

2. Preliminaries

Throughout this work, � ⊂ R
d will always be assumed to be a bounded open

domain with compact Lipschitz boundary ∂� in dimension d � 2, andBk , ∂Bk will
denote the open unit ball in Rk and its boundary (the unit sphere) respectively. The
open ball of radius r centred at x ∈ R

k is B(x, r), althoughwewill sometimes write
Bk(x, r) if the dimension of the ambient space needs to be emphasised for clarity.
The volume of the unit ball in R

k will be denoted by ωk := Lk(Bk), where Lk is
the usual k-dimensional Lebesgue measure. We will write Rm×d for the space of
m×d real valuedmatrices, and idRm for the identitymatrix living inRm×m . Themap
π : � × R

m → � denotes the projection π((x, y)) = x , and T (x0,r) : Rd → R
d ,

T (x0,r),(y0,s) : Rd × R
m → R

d × R
m represent the homotheties x �→ (x − x0)/r

and (x, y) �→ ((x − x0)/r, (y − y0)/s)). Tensor products a ⊗ b ∈ R
m×d and

f ⊗ g for vectors a ∈ R
m , b ∈ R

d , and real valued functions f , g, are defined
componentwise by (a ⊗ b)i, j = ai b j and ( f ⊗ g)(x, y) = f (x)g(y) respectively.

The closed subspaces of BV(�;Rm) and C∞(�;Rm) consisting only of the
functions satisfying (u) := −

∫
�

u(x) dx = 0 are denoted by BV#(�;Rm) and
C∞
# (�;Rm) respectively. We shall use the notation (u)� when the domain of in-

tegration might not be clear from context, as well as the abbreviation (u)x,r :=
(u)B(x,r). We shall sometimes use subscripts for clarity when taking the gradient
with respect to a partial set of variables: that is, if f = f (x, y) ∈ C1(� × R

m)

then ∇x f = (∂x1 f, ∂x2 f, . . . , ∂xd f ) and ∇y f = (∂y1 f, ∂y2 f, . . . , ∂ym f ).
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2.1. Measure Theory

For a separable locally convexmetric space X , the space of vector-valuedRadon
measures on X taking values in a normed vector space V will bewritten asM(X; V )

or justM(X) if V = R. The cone of positive Radon measures on X isM+(X), and
the set of elementsμ ∈ M(X; V )whose total variation |μ| is a probability measure,

is M1(X; V ). The notation μ j
∗
⇀ μ will denote the usual weak* convergence of

measures, and we recall that μ j is said to converge to μ strictly if μ j
∗
⇀ μ and in

addition |μ j |(X) → |μ|(X). Given a map T from X to another separable, locally
convex metric space Y , the pushforward operator T# : M(X; V ) → M(Y ; V ) is
defined by

〈ϕ, T#μ〉 := 〈ϕ ◦ T, μ〉 , ϕ ∈ C0(Y ).

If T is continuous and proper, then T# is continuous whenM(X; V ) andM(Y ; V )

are equipped with their respective weak* or strict topologies.
We omit the proof of the following simple lemma:

Lemma 2.1. Let μ ∈ M(X; V ), ν ∈ M+(X) satisfy μ � ν and let T : X → Y be
a continuous injective map. Then it holds that

dT#μ

dT#ν
◦ T = dμ

dν
and |T#μ| = T#|μ|.

Given a function f : X × V → R which is positively one-homogeneous in the
final variable (that is, f (x, t A) = t f (x, A) for all t � 0 and A ∈ V ) and a measure
μ ∈ M(X; V ), we shall use the abbreviated notation∫

X
f (x, μ) :=

∫
X

f

(
x,

dμ

d|μ| (x)

)
d|μ|(x). (6)

We note that, if T : X → Y is an injection, then applying Lemma 2.1 to T#μ and
|T#μ| lets us deduce∫

Y
f (y, T#μ) =

∫
Y

f

(
y,

dT#μ

d|T#μ| (y)

)
d|T#μ|(y)

=
∫

Y
f

(
y,

dT#μ

dT#|μ| (y)

)
dT#|μ|(y)

=
∫

X
f

(
T (x),

dμ

d|μ| (x)

)
d|μ|(x) =

∫
X

f (T (x), μ). (7)

If μ is a measure on X × Y then we recall that the Disintegration of Measures
Theorem (see Theorem 2.28 in [7]) allows us to decompose μ as the (generalised)
product μ = π#|μ| ⊗ ρ, where π#|μ| is the pushforward of |μ| onto X and ρ is
a (π#|μ|-almost everywhere defined) parametrised measure. Here, π#|μ| ⊗ ρ is
defined (uniquely) via

(π#|μ| ⊗ ρ)(E × F)

:=
∫

E
ρx (F) d[π#|μ|](x) for all Borel subsets E ⊂ X and F ⊂ Y.
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For k ∈ [0,∞), the k-dimensional Hausdorff (outer) measure on Rd is written
as Hk and, if A ∈ B(Rd) is a Borel set satisfying Hk(A) < ∞, its restriction
Hk A to A defined by [Hk A]( � ) := Hk( � ∩ A) is a finite Radon measure. A
set A ⊂ R

m is said to be countably Hk-rectifiable if there exists a sequence of
Lipschitz functions fi : Rk → R

d (i ∈ N) such that

Hk

(
A\

∞⋃
i=1

fi (R
k)

)
= 0,

and Hk-rectifiable if in addition Hk(A) < ∞. We say that μ ∈ M(Rd ; V ) is a
k-rectifiable measure if there exists a countably Hk-rectifiable set A ⊂ R

d and a
Borel function f : A → V such that μ = f Hk A.

With A assumed to be countably Hk-rectifiable, we can define the Radon–
Nikodym derivative for any μ ∈ M(Rd) with respect to Hk A, given for Hk-
almost every x ∈ A, by

dμ

dHk A
(x) := lim

r→0

μ(B(x, r))

ωkrk
. (8)

The function dμ

dHk A
is aRadon–NikodymDerivative in the sense that dμ

dHk A
Hk A

is a k-rectifiable measure and that we can decompose

μ = dμ

dHk A
Hk A + μs, where μs satisfies

dμ

dHk A
Hk A ⊥ μs

in analogy with the usual Lebesgue–Radon–Nikodym decomposition.
A measure μ ∈ M(Rd; V ) is said to be admit a (k-dimensional) approximate

tangent space at x0 if there exists an (unoriented) k-dimensional hyperplane τ ⊂
R

d and θ ∈ V such that

r−k T (x0,r)
# μ → θHk (Bd ∩ τ) strictly inM(Bd; V ) as r → 0.

The existence of approximate tangent spaces characterises the class of rectifiable
measures in the sense that μ ∈ M(Rd; V ) possesses a k-dimensional approximate
tangent space at |μ|-almost every x0 ∈ R

d if and only if μ is k-rectifiable (see
Theorem 2.83 in [7]).

The (column-wise) divergence of a measure μ ∈ M(Rm;Rm×d), written as
divμ or ∇ · μ, is an R

d row vector-valued distribution on R
m defined by duality

via the formula

∫
Rm

ϕ(y) d(∇ · μ)(y) = −
∫
Rm

∇ϕ(y) dμ(y) for all ϕ ∈ C∞
c (Rm).

Lemma 2.2. Any μ ∈ M(Rm;Rm×d) satisfying divμ ≡ 0 (column-wise) is non-
atomic. That is, μ({a}) = 0 for every a ∈ R

m.
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Proof. Let g ∈ C1
0(R

m) be arbitrary. Defining gλ(y) := 1
λ

g(a + λ(y − a)) for
λ ∈ R, we therefore have that

0 = −〈gλ, divμ〉 := −
∫
supp gλ

∇gλ(y) dμ(y).

Noting that ∇gλ(a) = ∇g(a) and ‖∇gλ‖∞ = ‖∇g‖∞, we can let λ → ∞ so that
1supp gλ∇gλ → 1{a}∇g(a) pointwise before using the Dominated Convergence
Theorem to deduce

∇g(a)μ ({a}) = 0.

By varying ∇g(a) through R
m , we see that μ({a}) = 0, as required. ��

2.2. BV Functions

Given a function u ∈ BV(�;Rm), we recall the mutually singular decomposi-
tion Du = ∇Ld � + Dcu + D j u of the derivative Du, where |Dcu| � Hd−1,
D j u is absolutely continuous with respect to Hd−1 Ju , and Ju is the countably
Hd−1-rectifiable jump set of u. Each u ∈ BV(�;Rm) admits a precise representa-
tive ũ : � → R

m which is defined Hd−1-almost everywhere in �\Ju . The jump
interpolant associated to u is then the function uθ : � × [0, 1] → R

m defined, up
to a choice of orientation nu for the jump setJu of u, forHd−1-almost every x ∈ �

by

uθ (x) :=
{

θu−(x) + (1 − θ)u+(x) if x ∈ Ju,

ũ(x) otherwise.
(9)

The need to fix a choice of orientation for Ju in order to properly define uθ is
obviated by the fact that uθ will only appear in expressions of the form

∫ 1

0
ϕ(uθ (x)) dθ,

which are invariant of our choice of nu .
Given (the precise representative of) a function u ∈ BV(�;Rm), the function

associated to its graph is denoted by gru : x �→ (x, u(x)). If μ is a measure on
� satisfying both |μ| � Hd−1 and |μ|(Ju) = 0 (we will usually take μ =
|Du| (�\Ju), its pushforward under gru then still makes sense as the Radon
measure gru

# μ on � × R
m .

A sequence (u j ) j ⊂ BV(�;Rm) is said to converge strictly to u ∈ BV(�;Rm)

if u j → u in L1(�;Rm) and Du j → Du strictly inM(�;Rm×d) as j → ∞. We
say that u j converges area-strictly to u if u j → u in L1(�;Rm) and, in addition,
∫

�

√
1 + |∇u j (x)|2 dx + |Dsu j |(�) →

∫
�

√
1 + |∇u(x)|2 dx + |Dsu|(�),

as j → ∞. It is the case that area-strict convergence implies strict convergence
in BV(�;Rm) and that strict convergence implies weak* convergence. That none
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of these notions of convergence coincide follows from considering the sequence
(u j ) j ⊂ BV((−1, 1)) given by u j (x) := x + (a/j) sin( j x) for some a �= 0 fixed.
This sequence converges weakly* to the function x �→ x for any a ∈ R\{0}, strictly
if and only if |a| � 1, but (since the function z �→ √

1 + |z|2 is strictly convex away
from 0) never area-strictly. Smooth functions are area-strictly (and hence strictly)
dense in BV(�;Rm); indeed, if u ∈ BV(�;Rm) and (uρ)ρ>0 is a family of radially
symmetric mollifications of u then it holds that uρ → u area-strictly as ρ ↓ 0.

If � ⊂ R
d is such that ∂� is Lipschitz and compact, then the trace onto ∂�

of a function u ∈ BV(�;Rm) is denoted by u|∂� ∈ L1(∂�;Rm). The trace map
u �→ u|∂� is norm-bounded from BV(�;Rm) to L1(∂�;Rm) and is continuous
with respect to strict convergence (see Theorem 3.88 in [7]). If u, v ∈ BV(�;Rm)

are such that u|∂� = v|∂�, then we shall sometimes simply say that “u = v on
∂�”.

The following proposition, a proof for which can be found in the appendix of
[32] (or Lemma B.1 of [13] in the case of a Lipschitz domain �), states that we can
even require that smooth area-strictly convergent approximating sequences satisfy
the trace equality u j |∂� = u|∂�:

Proposition 2.3. For every u ∈ BV(�;Rm), there exists a sequence (u j ) j ⊂
C∞(�;Rm) with the property that

u j → u area-strictly in BV(�;Rm) as j → ∞ and u j |∂� = u|∂�.

Moreover, if u|∂� ∈ L∞(∂�;Rm) we can assume that (u j ) j ⊂ (C∞∩L∞)(�;Rm)

and, if u ∈ L∞(�;Rm), then we can also require that sup j ‖u j‖L∞ � ‖u‖L∞ .

Theorem 2.4. (Blowing up BV functions) Let u ∈ BV(�;Rm) and write � as the
disjoint union

� = Du ∪ Ju ∪ Cu ∪ Nu

and Du as the mutually singular sum

Du = ∇uLd + D j u + Dcu, ∇uLd = Du Du,

D j u = Du Ju, Dcu = Du Cu,

where Du denotes the set of points at which u is approximately differentiable,
Ju denotes the set of jump points of u, Cu denotes the set of points where u is
approximately continuous but not approximately differentiable, and Nu satisfies
|Du|(Nu) = Hd−1(Nu) = 0. For r > 0 and x ∈ Du ∪ Cu ∪ Ju, define ur ∈
BV(Bd;Rm) by

ur (z) := cr

(
u(x + r z) − (u)x,r

r

)
, cr :=

⎧⎪⎨
⎪⎩
1 if x ∈ Du,

r if x ∈ Ju,
rd

|Du|(B(x,r))
if x ∈ Cu .

Then the following trichotomy relative to Ld � + |Du| holds:



Filip Rindler & Giles Shaw

(i) For Ld -almost every x ∈ �,

ur → ∇u(x) � strongly in BV(Bd;Rm) as r ↓ 0;
(ii) For Hd−1-almost every x ∈ Ju,

ur → 1

2

{
u+(x) − u−(x) if

〈
z, nu(x)

〉
� 0

u−(x) − u+(x) if
〈
z, nu(x)

〉
< 0,

strictly in BV(Bd;Rm) as r ↓ 0;
(iii) For |Dcu|-almost every x ∈ � and for any sequence rn ↓ 0, the sequence

(urn )rn contains a subsequence which converges weakly* in BV(Bd;Rm) to
a non-constant limit function of the form

η(x)γ (〈 � , ζ(x)〉) ,
dDcu

d|Dcu| (x) = η(x) ⊗ ζ(x), (10)

where γ ∈ BV((−1, 1);R) is non-constant and increasing. Moreover, if
(urn )n is a sequence converging weakly* in this fashion then, for any ε > 0,
there exists τ ∈ (1 − ε, 1) such that the sequence (uτrn )n converges strictly
in BV(Bd;Rm) to a limit of the form described by (10).

In all three situations, we denote limr ur (or limn urn ) by u0. If the base (blow-up)
point x needs to be specified explicitly to avoid ambiguity, then we shall write ur

x ,
urn

x and u0
x .

Proof. For points x ∈ Du∪Ju , the conclusion ofTheorem2.4 follows directly from
the approximate continuity of ∇u at Ld -almost every x ∈ � and the existence of
the jump triple (u+, u−, nu) forHd−1-almost every x ∈ Ju . For points x ∈ Cu , the
weak* precompactness of sequences (urn )n follows from the fact that (urn )Bd = 0
and |Durn |(Bd) = 1 combined with the weak* compactness of bounded sets in
BV(Bd;Rm). The representation of u0 is non-trivial and can only be obtained
through the use of Alberti’s RankOne Theorem, see Theorem 3.95 in [2]. It remains

for us to show that, given aweakly* convergent sequenceurn
∗
⇀ u and ε > 0,we can

always find τ ∈ (1 − ε, 1) such that (uτrn )n is strictly convergent in BV(Bd;Rm).

First note that we can assume that |Durn | ∗
⇀ |Du0| in M+(Bd) since (see for

instance Theorem 2.44 in [7]) for arbitrary μ ∈ M(�;Rm×d) it is always true that

Tan(μ, x) = dμ

d|μ| (x)Tan(|μ|, x) for |μ|-almost every x ∈ �.

Now let τ ∈ (1 − ε, 1) be such that |Du0|(τ∂Bd) = 0 and |Du0|(τBd) > 0.
This implies that |Durn |(τBd) → |Du0|(τBd) and hence that Durn τBd →
Du0 τBd strictly. Since

Duτrn = |Du|(B(x0, rn))

|Du|(B(x0, τrn))
T (0,τ )
# Durn τBd ,
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and

|Du|(B(x0, rn))

|Du|(B(x0, τrn))
= 1

|Durn |(τBd)
→ 1

|Du0|(τBd)
as n → ∞,

we therefore see that

Duτrn → 1

|Du0|(τBd)
T (0,τ )
# Du0 τBd strictly in BV(Bd;Rm) as n → ∞,

as required. ��
For x ∈ Ju , the function u0 gives a ‘vertically recentered’ description of the

behaviour of u near x . It will be convenient to have a compact notation for also
describing this behaviour when u is not recentered.

Definition 2.5. For x ∈ Ju , define u± ∈ BV(Bd;Rm) by

u±(z) :=
{

u+(x) i f 〈z, nu(x)〉 � 0,

u−(x) i f 〈z, nu(x)〉 < 0.

If the choice of base point x ∈ Ju needs to be emphasised for clarity, we shall write
u±

x .

This definition is independent of the choice of orientation (u+, u−, nu) and, for
Hd−1-almost every x ∈ Ju , the rescaled function u(x + r � ) converges strictly to
u± as r ↓ 0.

The following proposition was first proved in [38]:

Proposition 2.6. Let � ⊂ R
d be a domain with Lipschitz boundary and assume

that d > 1. Then the embedding

BV(�;Rm) ↪→ L
d

d−1 (�;Rm)

is continuous whenBV(�;Rm) is equipped with the topology of strict convergence.

Theorem 2.7. (The chain rule in BV) Let u ∈ BV(�;Rm) and let f ∈ C1(Rm;Rk)

be Lipschitz. It follows that v := f ◦ u ∈ BV(�;Rk) and that

Dv =
(∫ 1

0
∇ f (uθ (x)) dθ

)
Du

= ∇ f (u)∇uLd � + ∇ f (u)Dcu + ( f (u+) − f (u−)) ⊗ nuHd−1 Ju .

2.3. Integrands and Compactified Spaces

Definition 2.8. (Recession functions) For f : � × R
m × R

m×d → R, define the
recession function f ∞ : � × R

m × R
m×d → R of f by

f ∞ (x, y, A) = lim
(x, yk ,Ak )→(x,y,A)

tk→∞

f (xk, yk, tk Ak)

tk
,
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whenever the right hand side exists for every (x, y, A) ∈ � × R
m × R

m×d inde-
pendently of the order in which the limits of the individual sequences (xk)k ⊂ �,
(yk)k ⊂ R

m , (Ak)k ⊂ R
m×d , (tk)k ⊂ (0,∞) are taken and of the sequences used.

The definition of f ∞ implies that, whenever it exists, it must be continuous.

The following example demonstrates that the assumption in Theorem A that
f ∞ � 0 cannot be relaxed independently of the other requirements on f :

Example 2.9. Define f ∈ C(R2 ×R
2) by f (y, A) = − y2

1+|y2| · A1 so that f ≡ f ∞

and let vk, j ⊂ W1,1((−1, 1);R2) be given by

v j,k(x) :=
{

k(1 − cos( j x), sin( j x)) if x ∈ (0, 2π/j),

0 otherwise.

For each fixed k, it is clear that v j,k
∗
⇀ 0 in BV((−1, 1);R2) as j → ∞. We can

also see, however, that

lim
j→∞

∫ 1

−1
f (v j,k,∇v j,k) dx = lim

j→∞ k j
∫ 2π/j

0

−k sin( j x)

1 + k| sin( j x)| sin( j x) dx

= k
∫ 2π

0

−(sin z)2

1/k + | sin z| dz → −∞ as k → ∞.

It therefore follows thatF∗∗[0] = −∞.Moreover, for u ∈ (C1∩BV)((−1, 1);R2),
we can repeat the procedure above with u j,k = u + v j,k in place of v j,k to obtain

F∗∗ ≡ −∞ on BV((−1, 1);R2).

Defining ṽ j,k ∈ BV((−1, 1)2;R2) by ṽ j,k(x, y) = v j,k(x) (since Theorem A is

only stated for d > 1) and noting both that ṽ
∗
⇀ 0 in BV((−1, 1)2;R2) and

∫
(−1,1)2

f (̃v j,k,∇ṽ j,k) dx =
∫ 1

−1
f (v j,k,∇v j,k) dx,

we see that the conclusion of Theorem A cannot hold for f and that no general
integral formula is possible in this case.

Not every function f : Rm×d → R with linear growth possesses a recession
function in the sense of Definition 2.8, as simple examples show (this even holds
for quasiconvex functions, see [37]). The upper recession function defined by

f #(A) := lim sup
t→∞

f (t A)

t
,

however, always exist in R, and is often denoted by f ∞ in the literature. If f ∞
does exist in the sense of Definition 2.8, then it is clear that f # = f ∞.

Define the sphere compactification σRm ofRm to be the locally convexmetric
space given by the disjoint union

σRm := R
m � ∞∂Bm, ∞∂Bm := {∞e : e ∈ ∂Bm},
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endowed with the metric induced by the bijection i : σRm → Bm ,

i(y) =
{

y
1+|y| if y ∈ R

m,

e if y = ∞e ∈ ∞∂Bm .

That is, dσRm (y, w) := |i(y)− i(w)| and we have that f : σRm → R is continuous
if and only if f ◦ i−1 : Bm → R is continuous.

The spaceM(�× σRm) is now abstractly defined as the dual of C(�× σRm),
and can also be understood in terms of more familiar spaces of measures as follows:
μ ∈ M(�×σRm) if and only if there exist ρ ∈ M(�×R

m) and η ∈ M(�×∂Bm)

such that

μ(E) = ρ(E ∩ (� × R
m))

+ η
({(x, e) ∈ � × ∂Bm : (x,∞e) ∈ E ∩ (� × ∞∂Bm)})

for every Borel subset E ⊂ � × σRm .
A function f defined on�×R

m ×R
m×d admits a canonical extension h defined

on the partially compactified space � × σRm × R
m×d , where h is defined by

h(x, y, A)

:=
⎧⎨
⎩

f (x, y, A) for (x, y, A) ∈ � × R
m × R

m×d ,

lim
(x j ,y j ,A j )→(x,y,A)

f (x j , y j , A j ) for (x, y, A) ∈ � × ∞∂Bm × R
m×d ,

(11)

whenever the limit appearing in (11) exists independently of our choice of con-
vergent sequence ((x j , y j , A j )) j ⊂ � × R

m × R
m×d . This method of extension

is canonical in the sense that f ∈ C(� × R
m × R

m×d) occurs as the restriction
f = g|�×Rm×Rm×d for some g ∈ C(� × σRm × R

m×d) if and only if g = h.
Given c ∈ R

m we extend the addition operator y �→ y + c continuously from
R

m to σRm in this way by setting

y + c :=
{

y + c if y ∈ R
m,

y if y ∈ ∞∂Bm .
(12)

Definition 2.10. A function f ∈ C(� ×R
m ×R

m×d) is a member of E(� ×R
m)

if there exists a function g f ∈ C(� × σRm × Bm×d) which is such that

f (x, y, A) = (1 + |A|)g f

(
x, y,

A

1 + |A|
)

for (x, y, A) ∈ � × R
m × R

m×d .

We see that f ∈ E(� × R
m) implies | f (x, y, A)| � C(1 + |A|) (with C =

‖g f ‖∞) for all (x, y, A) ∈ � × σRm × R
m×d . and that the recession function

f ∞ exists. In addition, both f and f ∞ admit extensions to C(� × σRm ×R
m×d)

in the sense of (11). Note however that, as the example f (y, A) = exp(−(|y| −
|A|)2)|A| demonstrates, the existence of continuous extensions for f and f ∞ does
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not guarantee that f ∈ E(� × R
m). For this to be the case, we must also require

that

h(x, y, A) = lim
j→∞

f (x j , y j , t j A j )

t j
for (x, y, A) ∈ � × ∞∂Bm × R

m×d

(13)

for any sequences ((x j , y j , A j )) j ⊂ � × R
m × R

m×d , (t j ) j ⊂ [0,∞) such
that (x j , y j , A j ) → (x, y, A) and t j → ∞, where h is the extension of f ∞ to
� × σRm ×R

m×d given by (11). For f ∈ E(� ×R
m), this limit always exists by

virtue of the continuity of g f at points (x, y, A) ∈ � × σRm × ∂Bm×d .
Our interest in integrands which admit extensions to � × σRm ×R

m×d stems
from the fact that, in order to compute limits of the form

lim
j→∞

∫
�

f (x, u j (x),∇u j (x)) dx (14)

for weakly* convergent sequences (u j ) j ⊂ W1,1(�;Rm), it is necessary that the
extension h of f ∞ exists in some sense. This can be seen by considering sequences
of the form u j (x) := jd−1u( j x) (where u ∈ Cc(R

d;Rm) is fixed), which are such
that |u j (x)| → ∞ on supp |∇u j |Ld �. It turns out (see Example 2.14 below
in conjunction with Proposition 4.18) that it is not sufficient to require that this
extension exists as the limit (11) (with f = f ∞).On the other hand, the requirement
that h exist in the sense of the limit (13) is clearly stronger than necessary, since
it precludes us from considering any integrands which are unbounded in y such
as f (x, y, A) = |y|, for which we can compute representation. Definition 2.11
below provides the optimal existence requirement for an extension of f ∞ from the
perspective of computing (14) for as wide a class of integrands f as possible.

Definition 2.11. Given f : � ×R
m ×R

m×d → R, define the extended recession
function σ f ∞ : � × σRm × R

m×d → R of f by

σ f ∞(x, y, A) = lim
(x j ,y j ,A j )→(x,y,A)

t j →∞
|y j |d/(d−1)=O(t j )

f (x j , y j , t j A j )

t j
, (15)

whenever the right hand side exists for every (x, y, A) ∈ � × σRm × R
m×d

independently of which sequences t j ↑ ∞ and ((x j , y j , A j )) j ⊂ �×R
m ×R

m×d

are used provided that the constraint |y j |d/(d−1) = O(t j ) is satisfied, that is,

lim sup
j→∞

|y j |d/(d−1)

t j
< ∞.

The definition of σ f ∞ implies that, whenever it exists, σ f ∞ is continuous and also
that f ∞ exists and satisfies f ∞ = σ f ∞ (� × R

m × R
m×d).

Thanks to the existence of the limit (13), we see that σ f ∞ exists for all f ∈
E(� × R

m).
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Lemma 2.12. Let f : �×R
m ×R

m×d be such that f ∞ exists and f ∞ ≡ 0. Then,
for any ε > 0 and K � R

m, there exists R > 0 such that |A| � R implies

| f (x, y, A)| � ε(1 + |A|) for all (x, y) ⊂ � × K .

If f is such that σ f ∞ exists with σ f ∞ ≡ 0 then, for any ε > 0 and k > 0, there
exists R > 0 such that |A| � R implies

| f (x, y, A)| � ε(1 + |A|) for all x ∈ � and y ∈ R
m satisfying |y|d/(d−1)

� k(1 + |A|).
Proof. To prove the first statement, assume for a contradiction that there exists a
sequence of points ((xk, yk, Ak))k ⊂ � × K × R

m×d such that |Ak | → ∞ and
| f (xk, yk, Ak)| > ε(1+ |Ak |) for some fixed ε > 0. By passing to a subsequence,
we can assume that ((xk, yk)) → (x, y) in � × K and that A′

k := Ak/(1 + |Ak |)
converges to some limit B ∈ ∂Bm×d and tk := (1 + |Ak |) → ∞. Taking the
limit in f (xk, yk, Ak)/(1 + |Ak |) = t−1

k f (xk, yk, tk A′
k) we would then have that

| f ∞(x, y, B)| � ε, which is a contradiction.
To prove the second statement, we proceed similarly by assuming that there

exists a sequence of points ((x j , y j , A j )) j ⊂ �×R
m ×R

m×d such that |A j | → ∞,
|y j |d/(d−1) � k(1+|A j |), and | f (x, y, A)| > ε(1+|A|). Letting t j := 1+|A j | and
passing to a subsequence we can assume that ((x j , y j , A j/(1+|A j |))) j converges
to some limit (x, y, B) ∈ �×σRm×∂Bm×d . Since |y j |d/(d−1) � kt j , the definition
of σ f ∞ then implies that

0 = |σ f ∞(x, y, B)| =
∣∣∣∣ limj→∞

f (x j , y j , t j A j/(1 + |A j |))
t j

∣∣∣∣ � ε,

which gives us the required contradiction. ��
Definition 2.13. (Representation integrands) A function f : �×R

m ×R
m×d → R

is said to be a member of R(� × R
m) if f is Carathéodory and its recession

function f ∞ exists. We shall primarily be interested in the following subsets of
R(�×R

m), defined by the growth bounds (which are understood to hold uniformly
in their respective parameters for all (x, y, A) ∈ � × R

m × R
m×d ) satisfied by

their members:

• f ∈ RL(�×R
m) if there exists an exponent p ∈ [1, d/(d − 1)) and a constant

C > 0 such that | f (x, y, A)| � C(1 + |y|p + |A|);
• f ∈ Rw∗(� ×R

m) if there exists C > 0 and a function h ∈ RL(� ×R
m) with

h � 0 for which σh∞ exists and satisfies σh∞ ≡ 0 such that

−h(x, y, A) � f (x, y, A) � C(1 + |y|d/(d−1) + |A|). (16)

The classes RL(� × R
m) and Rw∗(� × R

m) are named as such because they
represent the largest classes of integrands to which we will refer whilst making
statements about liftings and weakly* convergent BV-functions. In particular, the
conclusion of Theorem A also holds for all f ∈ Rw∗(� × R

m). The following
example demonstrates that the lower bound which we require for members of
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Rw∗(� × R
m) is optimal in the sense that Theorem A does not hold if we merely

assume that f : � × R
m × R

m×d → R satisfies | f (x, y, A)| � C(1 + |A|), is
such that f ∞ exists with f ∞ � 0, and is quasiconvex (or even convex) in the final
variable:

Example 2.14. For d � 2, fix e ∈ ∂Bd+1 and let u ∈ (W1,1∩C∞
0 )(Bd; ∂ Bd+1(e, 1)

\{0}) be a homeomorphism which can be extended continuously to a map defined
on Bd by setting u(∂Bd) = 0. For example, we can take u to be the composition
w−1◦v of the dilation map v : x ∈ B

d → x/(1−|x |)with the inverse of the stereo-
graphic projection w : ∂ Bd+1(e, 1)\{0} → R

d . It follows that x �→ u(x)/|u(x)| is
a homeomorphism between Bd and the upper hemisphere {y ∈ ∂Bd+1 : y · e > 0}.

As u is not constant, there exists ϕ ∈ C0(B
d;R(d+1)×d) such that

∫
Bd

∇u(x) : ϕ(x) dx > 0.

Since ϕ|∂Bd = 0, we can define the zero-homogeneous function B ∈ C(Rd+1;
R

(d+1)×d) by

B(y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ

((
u
|u|

)−1 ( y
|y|

))
i f y · e > 0,

ϕ

((
u
|u|

)−1 (− y
|y|

))
i f y · e < 0,

0 i f y · e = 0.

By construction, we have that B satisfies

∫
Bd

∇u(x) : B(u(x)) dx =
∫
Bd

∇u(x) : ϕ(x) dx > 0.

Since the function B is zero-homogeneous and u(x) �= 0 for x ∈ B
d , for every

x ∈ B
d it holds that

s∇u(x) : B(su(x)) = s∇u(x) : B(u(x)) < sd/(d−1)|u(x)|d/(d−1)

for all s > sufficiently large. We can therefore find s > 1 such that, if we define
u ∈ (W1,1 ∩ C∞

0 )(Bd;Rd+1) by u(x) = su(x), it holds that

∫
{∇u(x)<|u(x)|d/(d−1)}

∇u(x) : B(u(x)) dx > 0. (17)

Now, define f : Rd+1 × R
(d+1)×d → R by

f (x, y, A)

:=
{

−|y|d/(d−1) − log(A : B(y) − |y|d/(d−1) + 1) if A : B(y) � |y|d/(d−1),

−A : B(y) if A : B(y) < |y|d/(d−1),
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where A : B = ∑
i, j Ai j Bi j denotes the Frobenius product defined on matrices in

R
(d+1)×d . Note that f ∈ C(Rd+1 × R

(d+1)×d), satisfies | f (y, A)| � 2‖B‖∞|A|,
and is such that f ∞ exists and is given by the formula

f ∞(y, A) =
{
0 i f A : B(y) � 0,

−A : B(y) i f A : B(y) < 0.

In particular, f ∞ � 0 on Rd+1 ×R
(d+1)×d . We also note that, whilst f ∞ extends

continuously to a non-negative function defined on all of σRd+1 ×R
(d+1)×d in the

sense of (11) (with f = f ∞), σ f ∞ does not exist according to Definition 2.11.
Finally, we claim that f (y, � ) is convex on R(d+1)×d for every y ∈ R

d+1: this
follows from the fact that the function

t �→
{

−a − log(t − a + 1) if t � a,

−t if t < a,

is convex on R for each fixed a � 0 and that the map A �→ A : B(y) is linear.
Next, define the functional F : W1,1(Bd;Rd+1) → R by

F[u] :=
∫
Bd

f (u(x),∇u(x)) dx,

and for each r ∈ (0, 1) define ur ∈ (W1,1 ∩ C∞
0 )(Bd;Rd+1) by

ur (x) :=
{

r1−du
( x

r

)
if |x | � r,

0 if |x | > r.

Using the change of variables z = x/r , the fact that limr↓0 r log(r−1) = 0, and the
zero-homogeneity of B, we can compute

lim
r→0

F[ur ] = −
∫

{∇u(z):B(u(z))<|u(z)|d/(d−1)}
∇u(z) : B(u(z)) dz

−
∫

{∇u(z):B(u(z))�|u(z)|d/(d−1)}
|u(z)|d/(d−1) dz.

By virtue of (17), then, we have that limr↓0 F[ur ] < 0. It is easy to see that ur
∗
⇀ 0

in BV(Bd;Rd+1) as r → 0 and so we deduce thatF∗∗[0] < 0. In fact, by replacing
u with k · u, repeating the procedure above and then letting k → ∞, we can even
see that F∗∗[0] = −∞. On the other hand, since f (y, 0) = 0 for all y ∈ R

d+1

and f ∞ � 0 on Rd+1 ×R
(d+1)×d , the integral functional given in the statement of

Theorem A must be non-negative at u ≡ 0. Hence, the conclusion of Theorem A
cannot hold for the integrand f defined above.
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2.4. Functionals and Surface Energies

For f ∈ R(� ×R
m), we define the extended functional F : BV(�;Rm) → R

by

F[u] :=
∫

�

f (x, u(x),∇u(x)) dx

+
∫

�

∫ 1

0
f ∞

(
x, uθ (x),

dDsu

d|Dsu| (x)

)
dθ d|Dsu|(x), (18)

where uθ is the jump interpolant defined above by (9).
This choice of extension forF to BV(�;Rm) is different to the one discussed in

Section 1, whereF is extended to BV(�;Rm) byF∗∗, and is used for technical rea-
sons: whilst the method of extension forF by relaxation is the right choice from the
point of view of seeking existence ofminimisers,F∗∗ is not continuous with respect
to any convergence with respect to which C∞(�;Rm) is dense in BV(�;Rm) (see
Example 6.1) and hence not an ideal functional to work with with respect to analy-
sis in BV(�;Rm). By contrast, for integrands f ∈ Rw∗(� ×R

m) (which need not
be quasiconvex in the final variable), Theorem 2.15 below, states that F as defined
by (18) is the area-strictly continuous extension of u �→ ∫

�
f (x, u(x),∇u(x)) dx

from W1,1(�;Rm) (and even C∞(�;Rm)) to BV(�;Rm). Proposition 2.3 there-
fore implies that Theorem A can equivalently be seen as identifying the weak*
relaxation of this continuously extendedF fromBV(�;Rm) to BV(�;Rm), which
is the approach that we take in what follows.

Theorem 2.15. Let � ⊂ R
d be a bounded domain with Lipschitz boundary and let

f ∈ R(� × R
m) satisfy the growth bound

| f (x, y, A)| � C(1 + |y|d/(d−1) + |A|) for all (x, y, A) ∈ � × R
m × R

m×d .

(19)

Then the functional F : BV(�;Rm) → R is area-strictly continuous.

Theorem 2.15 is proved under slightly more general hypotheses in Theorem 5.2 of
[38].

Given u ∈ BV(�;Rm) and x ∈ Ju , define the class of functions Au(x) by

Au(x) :=
{
ϕ ∈ (

C∞ ∩ L∞)
(Bd;Rm) : ϕ = u±

x on ∂Bd
}

, (20)

where u±
x is as given in Definition 2.5. For f ∈ R(� × R

m) and u ∈ BV(�;Rm),
the surface energy density K f [u] is defined for x ∈ Ju via

K f [u](x) := inf

{
1

ωd−1

∫
Bd

f ∞(x, ϕ(z),∇ϕ(z)) dz : ϕ ∈ Au(x)

}
. (21)

Lemma 2.16 below shows that K f [u] is always Hd−1-measurable and hence
that the integral ∫

Ju

K f [u[(x) dHd−1(x),

is always well-defined for every u ∈ BV(�;Rm).
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Lemma 2.16. If f ∈ R(�×R
m) then K f [u] is Hd−1 Ju-measurable and equal

Hd−1 Ju-almost everywhere to an upper-semicontinuous function.

Proof. First, fix a triple (u+, u−, nu) : Ju → R
m ×R

m ×∂Bd such that nu orients
Ju and u+, u− are the one sided jump limits of u with respect to nu . Fix also ε > 0.
The triple (u+, u−, nu) is Borel and hence |D j u|-measurable, and so Lusin’s The-
orem implies that there exists a compact set Kε � Ju such that |D j u|(Ju\Kε) � ε

and (u+, u−, nu) is continuous when restricted to Kε.
Let x ∈ Kε and (x j ) j ⊂ Kε be such that x j → x . For each j ∈ N let

R j : Bd → B
d be a rotation mapping nu(x) to nu(x j ) such that R j → idRd as

j → ∞ and let S j : Rm → R
m be a sequence of linear maps mapping u+(x) to

u+(x j ) and u−(x) to u−(x j ) such that S j → idRm as j → ∞ (such a choice of
(R j ) j , (S j ) j is possible by the fact that x, x j ∈ Kε). Now for δ > 0, let ϕ ∈ Au(x)

be such that
1

ωd−1

∫
Bd

f ∞(x, ϕ(z),∇ϕ(z)) dz � K f [u](x) + δ.

Define ϕ j ∈ C∞(Bd;Rm) by ϕ j (z) := S jϕ
(
R j z

)
and note that ϕ j ∈ Au(x j ). By

the convergence properties assumed of (R j ) and (S j ), we have that ϕ j → ϕ strictly
in BV(Bd;Rm) as j → ∞. Next, define μ j , μ ∈ M(� × R

m;Rm×d) by

μ j := δx j ⊗ ϕ#(∇ϕ jLd
B

d), μ := δx ⊗ ϕ#(∇ϕLd
B

d).

It can easily be seen that μ j converges strictly inM(Bd ×R
m;Rm×d) to μ as j →

∞. Using Reshetnyak’s Continuity Theorem and the positive one-homogeneity of
f ∞, we therefore deduce∫

Bd
f ∞(x j , ϕ j (z),∇ϕ j (z)) dz =

∫
B×Rm

f ∞
(

z, y,
dμ j

d|μ j | (z, y)

)
d|μ j |(z, y)

→
∫
B×Rm

f ∞
(

z, y,
dμ

d|μ| (z, y)

)
d|μ|(z, y)

=
∫
Bd

f ∞(x, ϕ(z),∇ϕ(z)) dz

as j → ∞. By our choice of ϕ and the boundary condition satisfied by each ϕ j ,
we therefore have that

K f [u](x) + δ � lim
j→∞

1

ωd−1

∫
Bd

f ∞(x j , ϕ j (z),∇ϕ j (z)) dz � lim sup
j→∞

K f [u](x j ).

It follows from the arbitrariness of x ∈ Kε and δ > 0 that K f [u] is upper semi-
continuous when restricted to Kε. Finally, define Fε : Ju → [0,∞] by

Fε(x) :=
{

K f [u](x) if x ∈ Kε,

∞ otherwise,

and note that F := infε>0 Fε is equal to K f [u] at |D j u|-almost every x ∈ Ju and
henceHd−1 Ju-almost every x ∈ Ju . The conclusion now follows from the fact
that the pointwise infimum of a collection of upper semicontinuous functions is
upper semicontinuous and hence measurable. ��
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Corollary 2.17. If f ∈ R(� ×R
m) satisfies f ∞ � 0 and u ∈ BV(�;Rm) is such

that ∫
Ju

K f [u](x) dHd−1(x) < ∞,

then K f [u]Hd−1 Ju ∈ M+(�) is a (d − 1)-rectifiable measure.

Proof. This follows directly fromLemma 2.16 combinedwith the discussion about
rectifiability in Section 2.1. ��

3. Liftings

In this section, we develop a theory of liftings. In turn we investigate their
functional analytic properties, their relationship to BV-functions, a structure the-
orem, some blow-up results, and a discussion of how integral functionals over
BV(�;Rm) can be represented in terms of liftings. Two separate spaces are intro-
duced: the space of liftings L(� × R

m), and the space of approximable liftings
AL(� × R

m) ⊂ L(� × R
m). The space L(� × R

m) is larger than strictly nec-
essary for our purposes, but has good compactness properties and is sufficiently
well behaved that working in this setting of extra generality allows for a cleaner
presentation of most of the results described here and in Sections 4 and 5. The
exceptions to this rule is the Jensen inequalities for F , derived in Theorems 5.3
and 5.5, Section 5.2, for which we must work within the more restrictive class
AL(� × R

m).
The assumption that � ⊂ R

d with d � 2 is used in this paper only in Proposi-
tion 2.6 and the Young measure theory developed in Section 4. Consequently, the
results presented here are also valid for domains � ⊂ R.

3.1. Functional Analysis and the Structure Theorem

Definition 3.1. A lifting is a measure γ ∈ M(� × R
m;Rm×d) for which there

exists a function u ∈ BV#(�;Rm) such that the chain rule formula∫
�

∇xϕ(x, u(x)) dx

+
∫

�×Rm
∇yϕ(x, y) dγ (x, y) = 0 for all ϕ ∈ C1

0(� × R
m) (22)

holds. The space of all liftings is denoted by L(� × R
m). Weak* convergence of

liftings in L(� × R
m) means weak* convergence of the liftings in considered as

measures inM(� × R
m;Rm×d).

Definition 3.1 was first given by Jung and Jerrard in [28] where the authors
initiated the study of elementary liftings (which they refer to as minimal liftings),
introduced below in Definition 3.5. This paper also contains the first proofs of
Lemma 3.2 and Proposition 3.15 below. Our proofs for these results are new and,
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in the case of Proposition 3.15, are obtained as a corollary of the Structure Theorem
(Theorem 3.11), which does not feature in [28].

The following lemma implies that each γ ∈ L(� × R
m) is associated to a

unique u ∈ BV#(�;Rm) satisfying (22). We shall refer to this u as the barycentre
of γ , writing [γ ] = u.

Lemma 3.2. If γ ∈ L(� × R
m) satisfies (22), then it holds that

π#γ = Du in M(�;Rm×d) and π#|γ | � |Du| in M+(�).

In particular, if γ ∈ L(� × R
m), then the element u ∈ BV#(�;Rm) with respect

to which γ verifies (22) is unique.

Proof. Let ψ(x, y) = f (x)y, where f ∈ C0(�) is arbitrary, so that ∇ψ =
(∇xψ,∇yψ) = (∇ f ⊗ y, f idRm ). Now let (χR)R>0 ⊂ C1

c(R
m) be a family of

cut-off functions satisfying 1B(0,R) � χR � 1B(0,3R2), ‖∇χR‖∞ � 1/R2, χR ↑ 1
as R → ∞. Setting ϕR(x, y) := χR(y)ψ(x, y), we see that ∇ϕR ∈ C0(� × R

m),
supR ‖∇ϕR‖∞ < ∞, and ∇ϕR → ∇ϕ pointwise as R → ∞. The chain rule (22)
then implies that∫

�

∇xϕR(x, u(x)) dx +
∫

�×Rm
∇yϕR(x, y) dγ (x, y) = 0.

Letting R → ∞ and using the Dominated Convergence Theorem, we therefore
obtain

0 =
∫

�

∇ f (x)u(x) dx +
∫

�×Rm
f (x) idRm dγ (x, y)

=
∫

�

∇ f (x)u(x) dx +
∫

�

f (x) d(π#γ )(x).

Hence, after an integration by parts,∫
�

f (x) dDu(x) =
∫

�

f (x) d(π#γ )(x) for all f ∈ C1
0(�),

which implies the first result. For A ∈ B(�), we can now compute

π#|γ | (A) = |γ | (A × R
m)

= sup

{ ∞∑
h=0

|γ (Bh) | : (Bh) ⊂ B(Rd × R
m) is a partition of A × R

m .

}

� sup

{ ∞∑
h=0

|γ (
Ah × R

m) | : (Ah) ⊂ B(Rd) is a partition of A.

}

= sup

{ ∞∑
h=0

|Du(Ah)| : (Ah) ⊂ B(Rd) is a partition of A.

}

= |Du| (A) ,

from which it follows that π#|γ | � |Du| as desired. ��
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Lemma 3.3. (Compactness forL)Let (γ j ) j ⊂ L(�×R
m)be such that sup j |γ j |(�×

R
m) < ∞. Then there exists a subsequence (γ jk )k ⊂ (γ j ) j and a limit γ ∈

L(� × R
m) such that

γ jk
∗
⇀ γ in M(� × R

m;Rm×d) and [γ jk ]
∗
⇀ [γ ] in BV#(�;Rm).

Moreover, the map γ �→ [γ ] is sequentially weakly* continuous from L(� × R
m)

to BV#(�;Rm) and the space L(� × R
m) is sequentially weakly* closed.

Proof. Lemma 3.2 implies that ([γ j ]) j is bounded in BV#(�;Rm)whenever (γ j ) j

is bounded inM(� × R
m;Rm×d). If (γ j ) j ⊂ L(� × R

m) satisfies sup j |γ j |(� ×
R

m) < ∞, we can therefore use the sequential weak* compactness of bounded sets
in M(� × R

m;Rm×d) and BV#(�;Rm) to pass to a subsequence (γ jk )k ⊂ (γ j ) j

converging weakly* in M(� × R
m;Rm×d) to a limit γ and such that [γ jk ]

∗
⇀ u

for some u ∈ BV#(�;Rm). Taking the limit in (22) as j → ∞ and using the
Dominated Convergence Theorem, it follows that the pair (u, γ ) satisfies (22) and
hence that γ ∈ L(� × R

m) with u = [γ ]. The space L(� × R
m) is therefore

sequentially weakly* closed.
To see that γ �→ [γ ] is sequentially weak* continuous, note that if (γ j ) j ⊂

L(� × R
m) is such that γ j

∗
⇀ γ in L(� × R

m) as j → ∞ then (γ j ) j must be
uniformly bounded in M(� × R

m). The preceding discussion therefore implies

that, upon passing to a further subsequence, [γ j ] ∗
⇀ u for some u ∈ BV#(�;Rm).

Passing to the limit again in (22), we find that u = [γ ] and so, since this argument
can be applied to any subsequence of (γ j ) j , we reach the desired conclusion. ��

Corollary 3.4. If γ j
∗
⇀ γ in L(� × R

m) then gr
[γ j ]
# (Ld �) → gr[γ ]

# (Ld �)

strictly in M1(� × R
m).

Proof. Since weak* convergence in BV(�;Rm) implies strong L1(�;Rm) con-

vergence, Lemma 3.3 implies that [γ j ] → [γ ] in L1(�;Rm) whenever γ j
∗
⇀ γ

in L(� × R
m). Using the Dominated Convergence Theorem, we therefore deduce

that, for any ϕ ∈ Cb(� × R
m),

∫
ϕ(x, y) d gr

[γ j ]
# (Ld)(x, y) =

∫
�

ϕ(x, [γ j ](x)) dx

→
∫

�

ϕ(x, [γ ](x)) dx

=
∫

ϕ(x, y) d gr[γ ]
# (Ld)(x, y) as j → ∞,

which is what was to be shown. ��
Definition 3.5. (Elementary Liftings) Given u ∈ BV#(�;Rm), the elementary
lifting γ [u] ∈ L(� × R

m) associated to u is defined by

γ [u] := |Du| ⊗
(

dDu

d|Du|
∫ 1

0
δuθ dθ

)
,
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that is,

〈ϕ, γ [u]〉 =
∫

�

∫ 1

0
ϕ(x, uθ (x)) dθ dDu(x) for all ϕ ∈ C0(� × R

m),

where uθ is the jump interpolant defined in Section 2.

That γ [u] ∈ L(� × R
m) follows from the chain rule for BV-functions: if

u ∈ BV(�;Rm) and ϕ ∈ C1
0(�×R

m), then the composition ϕ◦gru = ϕ( � , u( � ))

is an element of BV(�) satisfying (ϕ ◦ gru)|∂� = 0. By Stokes’ Theorem, this
implies

∫
�

dD(ϕ ◦ gru)(x) =
∫

∂�

(ϕ ◦ gru)|∂� n∂�(x) dHd−1(x) = 0,

where n∂� is the (inwards pointing) normal orientation vector for ∂�. Applying
the chain rule, Theorem 2.7, to ϕ ◦ gru and writing ∇ϕ = (∇xϕ,∇yϕ), we see that

D(ϕ ◦ gru) =
(∫ 1

0
∇ϕ ◦ (gru)θ dθ

)
· D(gru)

=
(∫ 1

0
∇ϕ( � , uθ ( � )) dθ

)
· (idRd Ld �, Du)

= ∇ϕ( � , u( � )) · (idRd ,∇u)Ld � + ∇ϕ( � , u( � )) · (0, Dcu)

+
(∫ 1

0
∇ϕ( � , uθ ( � )) dθ

)
· (0, D j u)

= ∇xϕ( � , u( � ))Ld � + ∇yϕ( � , u( � ))∇u( � )Ld �

+ ∇yϕ( � , u( � ))Dcu +
(∫ 1

0
∇ϕy( � , uθ ( � )) dθ

)
D j u.

Integrating over � with respect to x , we deduce

∫
�

∇xϕ(x, u(x)) dx +
∫

�×Rm
∇yϕ(x, y) dγ [u](x, y) = 0,

as required.

Remark 3.6. We note here that (22) and Definition 3.5 both make sense for u ∈
BV(�;Rm) (rather than just BV#(�;Rm)) and γ ∈ M(�×R

m;Rm×d) and could
be used to define liftings associated to arbitrary BV-functions. The downside for
this extra generality is that the barycentre [0] of the zero lifting is no longer unique
and, more importantly, that the control sup j |γ j |(�×R

m) < ∞ no longer enforces
sup j ‖[γ j ]‖BV < ∞. As a result, the map γ �→ [γ ] is no longer continuous and
Lemma 3.3 is no longer true. Instead, the discussion surrounding (27) in Section 3.4
shows how the behaviour of arbitraryweakly* convergent sequences in BV(�;Rm)

can be described in terms of liftings as we have chosen to define them.
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Definition 3.7. (Approximable liftings) A lifting γ is said to be approximable if
it arises as the weak* limit of a sequence of elementary liftings. The space of all
approximable liftings is denoted by AL(� × R

m),

AL(� × R
m) := {

γ ∈ L(� × R
m) :

γ = w*-lim γ [u j ] for some (u j ) j ⊂ BV#(�;Rm)
}
.

Note that, despite being defined as a sequential closure, it is an open ques-
tion as to whether AL(� × R

m) is either sequentially weakly* closed or weakly*
closed since weak* topologies are not in general metrizable on unbounded sets.
Example 3.8 demonstrates that, in the one-dimensional case at least, the inclusion
AL(� × R

m) ⊂ L(� × R
m) is strict:

Example 3.8. There exists γ ∈ L((−1, 1) ×R
2) such that γ /∈ AL((−1, 1) ×R

2).
Consequently, AL((−1, 1) × R

2) and L((−1, 1) × R
2) do not coincide.

Proof. First, we claim that any γ ∈ AL((−1, 1) × R
2) must satisfy

supp γ ⊂ (−1, 1) × B(0, R) for some R > 0.

To see this, let (u j ) j ⊂ BV#((−1, 1);R2) be such that

γ [u j ] ∗
⇀ γ inM((−1, 1) × R

2;R2).

Since the sequence (u j ) j is norm-bounded inBV((−1, 1);R2), the one-dimensional
Sobolev Embedding Theorem implies that sup j ‖u j‖∞ < ∞. Letting R > 0 be
such that ‖u j‖∞ < R for all j ∈ N we see that, for all ϕ ∈ C0((−1, 1) × R

2)

satisfying ϕ|(−1,1)×B(0,R) = 0,
∫

ϕ(x, y) dγ [u j ](x, y) =
∫ 1

−1

∫ 1

0
ϕ(x, uθ

j (x)) dθ dDu(x) = 0.

Letting j → ∞, we deduce∫
ϕ(x, y) dγ (x, y) = 0 for all ϕ ∈ C0((−1, 1) × R

2) with ϕ|(−1,1)×B(0,R) = 0

andhence that |γ |((−1, 1)×(R2\B(0, R))) = 0,which implies supp γ ⊂ (−1, 1)×
B(0, R) as required.

Next, define μk ∈ M((−1, 1) × R
2;R2) for each k ∈ N by

∫
ϕ(x, y) dμk(x, y) = k

∫ 2π

0
ϕ

(
0, k

(
cos z
sin z

))(
sin z

− cos z

)
dz.

Clearly, suppμk = {0} × ∂ B(0, k), |μk |((−1, 1) × R
2) = 2πk, and, since

∫
∇yϕ(x, y) dμk(x, y) = k

∫ 2π

0
∇yϕ

(
0, k

(
cos z
sin z

))(
sin z

− cos z

)
dz

=
∫ 2π

0
∇
(

ϕ

(
0, k

(
cos �

sin �

)))
(z) dz

= ϕ

(
0, k

(
cos 2π
sin 2π

))
− ϕ

(
0, k

(
cos 0
sin 0

))
= 0
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for every ϕ ∈ C1
0((−1, 1)×R

2), we have thatμk ∈ L((−1, 1)×R
2)with [μk] = 0

for each k. Defining

μ :=
∞∑

i=k

k−3μk, (23)

we have thatμ ∈ M((−1, 1)×R
2;R2)with |μ|({0}×∂ B(0, k)) = 2π/k2 > 0 for

each k.Moreover, since the sum (23) is strongly convergent inM((−1, 1)×R
2;R2),

we see that
∫

∇yϕ(x, y) dμ(x, y) = lim
n→∞

n∑
k=1

∫
∇yϕ(x, y) dμk(x, y) = 0

for every ϕ ∈ C1
0((−1, 1) × R

2), which implies that μ ∈ L((−1, 1) × R
2) with

[μ] = 0. Since |μ|({0}× ∂ B(0, k)) > 0 for every k ∈ N, however, this implies that
suppμ �⊂ (−1, 1) × B(0, R) for any R > 0, and so μ �∈ AL((−1, 1) × R

2). ��
The following is a direct corollary of Lemma 3.3 combined with Definition 3.7:

Corollary 3.9. (Liftinggeneration fromBV)Let (u j ) j ⊂ BV#(�;Rm)be a bounded

sequence with u j
∗
⇀ u in BV#(�;Rm). Then there exists a (non-relabelled) sub-

sequence and a limit γ ∈ AL(� × R
m) with [γ ] = u such that

γ [u j ] ∗
⇀ γ in AL(� × R

m).

Example 3.10 below demonstrates how non-elementary liftings can arise as
weak* limits of sequences of elementary liftings, and shows that this phenomenon
gives rise to behaviour for integrands which is very different to the u-independent
and scalar valued cases.

Example 3.10. Define (u j ) j ⊂ W1,1
# ((−1, 1);R2) by

u j (x) := −
(
1
0

)
1(−1,0](x) −

(
cos( j x)

sin( j x)

)
1(0,π/j](x) +

(
1
0

)
1(π/j,1)(x)

+1

j

[
π

2

(
1
0

)
+

(
0
1

)]

and note that

u j
∗
⇀ u0 := −

(
1
0

)
1(−1,0] +

(
1
0

)
1(0,1)

in BV((−1, 1);R2). By passing to a non-relabelled subsequence if necessary, we

can assume that γ [u j ] ∗
⇀ γ for some γ ∈ AL((−1, 1) × R

2) with [γ ] = u0.
Let ψ ∈ Cc((−1, 1) × [0,∞); [0, 1]) be such that ψ(t, s) = 1 for (t, s) ∈

[−1/2, 1/2] × [0, 2], and define ϕ ∈ C0(R
2) by

ϕ (x, y) = ψ(x, |y|)(|y|2 − 1)2.
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We can compute for j � 4,
∫

(−1,1)×R2
ϕ(x, y) dγ [u j ](x, y)

= j
∫ π/j

0

⎛
⎝
∣∣∣∣∣
(
cos( j x) + π

2 j

sin( j x) + 1
j

)∣∣∣∣∣
2

− 1

⎞
⎠

2 (− sin( j x)

cos( j x)

)
dx .

Thus,

lim
j→∞

∫
(−1,1)×R2

ϕ(x, y) dγ [u j ](x, y) =
∫ π

0

(∣∣∣∣
(
cos(z)
sin(z)

)∣∣∣∣
2

− 1

)2 (− sin(z)
cos(z)

)
dz

and so, by the construction of ϕ,∫
(−1,1)×R2

ϕ(x, y) dγ = 0.

However, we also see that

∫
(−1,1)×R2

ϕ(x, y) dγ [u0](x, y) =
∫ 1

0

(∣∣∣∣
(
2θ − 1

0

)∣∣∣∣
2

− 1

)2 (
2
0

)
dθ

=
∫ 1

0

(
4θ2 + 4θ

)2 (2
0

)
dθ �= 0,

from which we can conclude that γ �= γ [u0].

3.2. The Structure Theorem

We now investigate the structure of liftings γ ∈ L(� ×R
m) and, in particular,

how a general lifting γ must relate to the elementary lifting γ [u] where [γ ] = u. It
is clear that μ + γ [u] ∈ L(� × R

m) with [μ + γ [u]] = u whenever μ ∈ M(� ×
R

m;Rm×d) satisfies divy μ = 0 (column-wise divergence), since divy μ = 0
implies that

∫
f (x)∇y g(y) dμ(x, y) = 0 for all f ∈ C0(�) and g ∈ C1

0(R
m). It

turns out that every γ ∈ L(� × R
m) can be written in this form:

Theorem 3.11. (Structure Theorem for Liftings) If γ ∈ L(� ×R
m) with u = [γ ],

then γ admits the following decomposition into mutually singular measures:

γ = γ [u] ((�\Ju) × R
m) + γ gs.

Moreover, γ gs ∈ M(� × R
m;Rm×d) satisfies

divy γ gs = −|D j u| ⊗ nu

|u+ − u−| (δu+ − δu−),

and it is graph-singular with respect to u in the sense that γ gs is singular with
respect to all measures of the form gru

# λ where λ ∈ M(�) satisfies both λ � Hd−1

and λ(Ju) = 0.
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Proof. Since γ and γ [u] both satisfy the chain rule (22), we can test with functions
of the form ϕ = f ⊗ g for f ∈ C1

0(�), g ∈ C1
0(R

m) to obtain
∫

�

∇x f (x)g(u(x)) dx +
∫

�×Rm
f (x)∇y g(y) dγ [u](x, y) = 0

and ∫
�

∇x f (x)g(u(x)) dx +
∫

�×Rm
f (x)∇y g(y) dγ (x, y) = 0.

Taking the difference of these two equations then leads us to the identity
∫

�×Rm
f (x)∇y g(y) d(γ − γ [u])(x, y) = 0 for all f ∈ C1

0(�), g ∈ C1
0(R

m).

Nowwrite η := π#|γ −γ [u]| and disintegrate γ −γ [u] = η⊗ρ for some weakly*
η-measurable parametrised measure ρ : � �→ M1(Rm;Rm×d) so that

∫
�

f (x)

{∫
Rm

∇y g(y) dρx (y)

}
dη(x) = 0

for every f ∈ C1
0(�) and g ∈ C1

0(R
m). Varying f through a countable dense subset

of C0(�), we deduce∫
Rm

∇y g(y) dρx (y) = 0 for η-almost every x ∈ �.

Since g ∈ C1
0(R

m) was arbitrary, it follows that divy ρx = 0 (column-wise diver-
gence) for η-almost every x ∈ � and hence that divy(γ − γ [u]) = 0. Defining

γ gs := γ − γ [u] ((�\Ju) × R
m),

we therefore immediately obtain from the definition of γ [u] that

divy γ gs = divy
(
γ [u] (Ju × R

m)
) = |D j u| ⊗

(
divy

(
dD j u

d|D j u|
∫ 1

0
δuθ dθ

))
.

(24)

Abbreviating μx := dD j u
d|D j u| (x)

∫ 1
0 δuθ (x) dθ , we can compute, for η-almost every

x ∈ �,

− 〈
g, divy μx

〉 =
〈
∇g,

dD j u

d|D j u| (x)

∫ 1

0
δuθ (x) dθ

〉

=
∫ 1

0
∇g(uθ (x))

dD j u

d|D j u| (x) dθ

=
(∫ 1

0
∇g(uθ (x)) dθ

)[
(u+(x) − u−(x))

|u+(x) − u−(x)| ⊗ nu(x)

]

=
[(∫ 1

0
∇g(uθ (x)) dθ

)
· (u+(x) − u−(x))

]
nu(x)

|u+(x) − u−(x)|
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=
(∫ 1

0

d

dθ
g(uθ (x)) dθ

)
nu(x)

|u+(x) − u−(x)|
= g(u+(x)) − g(u−(x))

|u+(x) − u−(x)| nu(x),

which implies

divy

[
dD j u

d|D j u| (x)

∫ 1

0
δuθ (x) dθ

]
= − nu(x)

|u+(x) − u−(x)| (δu+(x) − δu−(x))

and hence that

divy γ gs = −|D j u| ⊗ nu

|u+ − u−| (δu+ − δu−),

as required.
To show that γ gs is graph-singular with respect to u, we argue as follows:

let λ ∈ M+(�) satisfy λ � Hd−1, λ(Ju) = 0, and let E ⊂ � be a set such
that λ(E) = λ(�), the precise representative u(x) is defined for all x ∈ E , and
E ∩ Ju = ∅. By Lemma 2.2, ρx ({u(x)}) = 0 for η-almost every x ∈ �, and so,
since E ∩ Ju = ∅,

|γ gs|(gru(E)) = |γ − γ [u]|(gru(E)) =
∫

E
|ρx |({u(x)}) dη(x) = 0.

Because (gru
# λ)(gru(E)) = (gru

# λ)(� × R
m), it follows that γ gs and gru

# λ charge
disjoint sets, which suffices to prove the claim. Since γ [u] ((�\Ju) × R

m) =
gru

#(∇uLd + Dcu) is a u-graphical measure, we therefore also deduce that γ [u]((�
\Ju) × R

m) ⊥ γ gs, as required. ��
Aswehave discussed, nomore can be said about the structure of γ ∈ L(�×R

m)

beyond the conclusion of Theorem 3.11 in general, but a lot more can be said for
the special cases where either m = 1 or π#|γ |(�) = |Du|(�) for u = [γ ].
Corollary 3.12. Every lifting γ ∈ L(� × R) is elementary: γ = γ [u] for some
u ∈ BV#(�;R).

Proof. If m = 1, then the operators divy and ∇y coincide, and so (24) now states

∇yγ
gs = ∇y

(
γ [u] (Ju × R)

)
.

Disintegrating

γ gs − γ [u] (Ju × R) = π#|γ gs − γ [u] (Ju × R)| ⊗ ρ,

we therefore have that ∇yρx ≡ 0 for π#|γ gs − γ [u] (Ju × R)|-almost every
x ∈ �. Since any distribution whose gradient vanishes must be constant, it must
follow that

ρx = cxL1
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for some constant cx ∈ R
d . As ρx ∈ M1(R;Rd) is a finite measure, however, we

see that cx = 0 and hence that γ gs = γ [u] (Ju × R
m). It then follows from

Theorem 3.11 that

γ = γ [u] (�\Ju × R) + γ gs = γ [u],
as required. ��

If π#|γ |(�) = |Du|(�), Lemma 3.2 implies that |γ |(A × R
m) = |Du|(A) =

|γ [u]|(A × R
m) for any Borel set A ⊂ �. Theorem 3.11 then yields

|γ [u]|(A × R
m) = |γ |(A × R

m) = |γ [u]|((A\Ju) × R
m) + |γ gs|(A × R

m).

In particular, if A ∩ Ju = ∅, then |γ [u]|((A\Ju) × R
m) = |γ [u]|(A × R

m) and
we deduce

|γ gs|(A × R
m) = 0 for all Borel sets A ⊂ �\Ju .

Thus γ gs = γ (Ju × R
m), and hence

γ ((�\Ju) × R
m) = γ [u] ((�\Ju) × R

m), π#|γ gs| = |D j u|.
Disintegrating γ gs = |D j u|⊗θ for some weakly* |D j u|-measurable parametrised
measure θ : � → M1(Rm;Rm×d), we see that the second part of Theorem 3.11
now reads

divy θx = − nu(x)

|u+(x) − u−(x)| (δu+(x) − δu−(x))

for |D j u|-almost every x ∈ Ju . (25)

Lemmas 3.13 and 3.14 below, which are special cases of Theorems 5.3 and D.1
respectively from [16] and for which simplified proofs can be found in [38], show
that, since |θx |(Rm) = 1, the identity (25) in fact forces

∫
Rm

g(y) dθx (y) =
∫ 1

0
g(uθ (x))

dDu

d|Du| (x) dθ,

and hence that γ = γ [u].
Lemma 3.13. Let a, b ∈ R

m with a �= b, c ∈ ∂Bd and μ ∈ M1(Rm;Rm×d) be
such that

divμ = c

|b − a| (δb − δa) in M(Rm;Rd).

Then

|μ|([a, b]) = |μ|(Rm),

where [a, b] denotes the (closed) straight line segment between a and b.

Lemma 3.14. Let a, b ∈ R
m with a �= b and let μ ∈ M(Rm;Rm×d) be such that

divμ ≡ 0 and |μ|(Rm\[a, b]) = 0. Then μ = 0.
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Applying Lemma 3.13 to θx and then applying Lemma 3.14 to the measure

θx − dDu

d|Du| (x)

∫ 1

0
δuθ (x) dθ,

we therefore arrive at the following proposition:

Proposition 3.15. Let γ ∈ L(� × R
m) with u = [γ ] be minimal in the sense that

|γ |(� × R
m) = |Du|(�). Then γ must be elementary, γ = γ [u]. In particular, if

u j → u in BV#(�;Rm) strictly, then γ [u j ] → γ [u] strictly in L(� × R
m).

Proof. It remains only to show the second statement: this follows from the fact that
the strict convergence of u j to u implies that lim j |γ [u j ]|(� × R

m) = |Du|(�).
Thus, for any (non-relabelled) subsequence converging to a limit γ , we can apply
Lemma 3.2 and the lower semicontinuity of the total variation on open sets to
deduce that |Du|(�) � |γ |(� × R

m) � |Du|(�). It follows that γ = γ [u] and,
since this argument can be applied to any subsequence of (u j ) j , that the entire
sequence converges γ [u j ] → γ [u]. ��

3.3. Rescaled Liftings and Tangent Liftings

Lemma 3.16. (Rescaled Liftings) Let γ ∈ L(� × R
m) and, for r > 0 and x0 ∈

D[γ ] ∪C[γ ] ∪J[γ ], let T (x0,r,s)
γ : B(x0, r)×R

m → B
d ×R

m be the homothety given
by

T (x0,r,s)
γ :=

(
x − x0

r
, s

y − ([γ ])x0,r

r

)
,

where

([γ ])x0,r = −
∫

B(x0,r)

[γ ](x) dx .

Defining the measure γ r,s ∈ M(Bd × R
m;Rm×d) by

γ r,s := s

rd

(
T (x0,r,s)

γ

)
#
γ,

we have that γ r,s ∈ L(Bd × R
m) with

[γ r,s](z) = s
[γ ](x0 + r z) − ([γ ])x0,r

r
, gr[γ

r,s ]
# (Ld

B
d)

= 1

rd
(T (x0,r,s)

γ )# gr
[γ ]
# (Ld B(x0, r)),

and

|γ r,s |(Bd × R
m) = s

rd
|γ |(B(x0, r) × R

m).

In addition γ r,s ∈ AL(Bd ×R
m) if γ ∈ AL(�×R

m) and (γ [u])r,s = γ [(s/cr )ur ],
where ur and cr are defined as in Theorem 2.4.
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In the special case where s = cr , we shall use the abbreviations

γ r := γ r,cr , T (x0,r)
γ := T (x0,r,cr )

γ . (26)

Proof. That γ r,s ∈ L(Bd ×R
m) follows from the fact that, for ϕ ∈ C1

0(B
d ×R

m),
we can compute
〈
∇yϕ,

s

rd
(T (x0,r,s)

γ )
#
(γ )

〉
= s

rd

〈
(∇yϕ) ◦ T (x0,r,s)

γ , γ
〉

= r1−d
〈
∇y

(
ϕ ◦ T (x0,r,s)

γ

)
, γ

〉

= −r1−d
∫

∇x
(
ϕ ◦ T (x0,r,s)

γ

)
(x, [γ ](x)) dx

= −r−d
∫

∇xϕ

(
x − x0

r
, s

[γ ](x) − ([γ ])x0,r

r

)
dx

= −
∫

∇xϕ

(
z, s

[γ ](x0 + r z) − ([γ ])x0,r

r

)
dz.

It is also clear that
∫
Bd

s
[γ ](x0 + r z) − ([γ ])x0,r

r
dz = 0,

and so we see that γ r,s ∈ L(Bd × R
m) with [γ r,s](z) = s

[γ ](x0+r z)−([γ ])x0,r

r as

required. To identify gr[γ
r,s ]

# (Ld
B

d), we need simply observe that

∫
ϕ(z, w) d gr[γ

r,s ]
# (Ld

B
d)(z, w)

=
∫

ϕ

(
z, s

[γ ](x0 + r z) − ([γ ])x0,r

r

)
dz

= 1

rd

∫
ϕ

(
x − x0

r
, s

[γ ](x) − ([γ ])x0,r

r

)
dz

= 1

rd

∫
B(x0,r)×Rm

ϕ

(
x − x0

r
, s

y − ([γ ])x0,r

r

)
d gr[γ ]

# (Ld)(x, y)

= 1

rd

∫
ϕ(z, w) d

[
(T (x0,r,s)

γ )# gr
[γ ]
# (Ld B(x0, r))

]
(z, w)

for all ϕ ∈ C0(B
d × R

m).
Moreover,

|γ r,s |(Bd × R
m) = s

rd
|γ |

(
(T (x0,r,s)

γ )−1(Bd × R
m)

)
= s

rd
|γ |(B(x0, r) × R

m).

To show that γ r,s ∈ AL(Bd × R
m) if γ ∈ AL(� × R

m), it suffices to note that, if

(γ [u j ]) j is such that γ [u j ] ∗
⇀ γ , then the liftings γ j,r,s ∈ L(Bd ×R

m) defined by
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∫
ϕ(z, w) dγ j,r,s(z, w)

= s
∫

ϕ

(
x − x0

r
, s

y − (u j )x0,r

r

)
dγ j (x, y) for ϕ ∈ C0(� × R

m)

converge weakly* to γ r,s as j → ∞.
Finally, ∫

ϕ(z, w) d(γ [(u])r,s(z, w)

= s
∫ ∫ 1

0
ϕ

(
x − x0

r
, s

uθ (x) − (u)x0,r

r

)
dθ dDu(x)

=
∫ ∫ 1

0
ϕ

(
z,

s

cr
(ur )θ (x)

)
dθ dD

[
s

cr
ur

]
(z)

=
∫

ϕ(z, w) dγ

[
s

cr
ur

]
(z, w),

which shows γ [(s/cr )ur ] = (γ [u])r,s . ��
The following result describes how liftings can be blown up around points

x0 ∈ D[γ ] ∪ C[γ ] in a similar fashion to the results presented for BV-functions
in Theorem 2.4. Theorem 3.17 will be an indispensable tool for the localisation
arguments carried out in Section 5. A similar procedure can be carried out at points
x0 ∈ Ju but this is not necessary for the rest of this paper and is therefore omitted
for brevity.

Theorem 3.17. (Tangent Liftings at diffuse points) Let x0 ∈ Du ∪ Cu and ur ,
u0 ∈ BV(Bd;Rm) be as defined in Theorem 2.4. Then, for Ld + |Dcu|-almost
every x0 ∈ Du ∪ Cu,

• if x0 ∈ Du then ur → u0 and γ [ur ] → γ [u0] strictly as r → 0,
• if x0 ∈ Cu then for any sequence rn ↓ 0 and ε > 0, there exists τ ∈ (1 − ε, 1)

such that uτrn → u0 and γ [uτrn ] → γ [u0] strictly as n → ∞.

Proof. Combine Theorem 2.4 with Proposition 3.15. ��

3.4. Perspective Constructions and Integral Representations

Given an integrand f ∈ R(� × R
m), define the corresponding perspective

integrand, P f : � × R
m × R

m×d × R → R by

(P f )(x, y, (A, t)) :=
{

|t | f (x, y, |t |−1A) if |t | > 0,

f ∞(x, y, A) if t = 0.

Similarly, the perspective measure Pγ ∈ M(� × R
m;Rm×d × R) of a lifting

γ ∈ L(� × R
m) is defined by

Pγ :=
(
γ, gr[γ ]

# (Ld �)
)

.
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Note that P f is positively one-homogeneous in the (A, t)-argument. Corollary 3.4

implies that Pγ j
∗
⇀ Pγ if γ j

∗
⇀ γ in L(� × R

m) and, letting

γ = ∇[γ ] gr[γ ]
# (Ld �) + γ s

be the Radon–Nikodym decomposition of γ with respect to gr[γ ]
# (Ld �) (that

dγ

d gr[γ ]
# (Ld �)

= ∇[γ ] follows from Theorem 3.11), we also see that Pγ admits

the following decomposition with respect to gr[γ ]
# (Ld �):

Pγ = (∇[γ ], 1) gr[γ ]
# (Ld �) + (γ s, 0).

Thus, Pγ j → Pγ strictly inM(� × R
m;Rm×d × R) if and only if γ j

∗
⇀ γ and

∫
�

√
|∇[γ j ](x)|2 + 1 dx + |γ s

j |(� × R
m)

→
∫

�

√
|∇[γ ](x)|2 + 1 dx + |γ s |(� × R

m)

as j → ∞. Note that this holds for (γ [u j ]) j and γ [u] whenever u j → u area-
strictly in BV#(�;Rm).

Recalling the notation introduced in (6) in Section 2, we see that these perspec-
tive constructions permit the following computation:

∫
�×Rm

P f (x, y, Pγ )

=
∫

�×Rm
P f

(
x, y, (∇[γ ], 1) gr[γ ]

# (Ld �)
)

+
∫

�×Rm
P f

(
x, y, (γ s, 0)

)

=
∫

�

P f

(
x, [γ ](x),

(∇[γ ](x), 1)√|∇[γ ](x)|2 + 1

)√
|∇[γ ](x)|2 + 1 dx

+
∫

�×Rm
f ∞ (

x, y, γ s)

=
∫

�

f (x, [γ ](x),∇[γ ](x)) dx +
∫

�×Rm
f ∞ (

x, y, γ s) .

Defining FL : L(� × R
m) → R by

FL[γ ] :=
∫

�×Rm
P f (x, y, Pγ )

=
∫

�

f (x, [γ ](x),∇[γ ](x)) dx +
∫

�×Rm
f ∞ (

x, y, γ s) ,

we therefore recover

F[u] = FL[γ [u]] for u ∈ BV#(�;Rm).
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For a general element u ∈ BV(�;Rm), we can still write

F[u] =
∫

�×Rm
P f (x, y + (u), Pγ [u − (u)]), (u) := −

∫
�

u(x) dx . (27)

Lemma 3.18 below and Proposition 4.18 in the next section imply that, whenever
(u j ) j is a sequence converging weakly* to u in BV(�;Rm), we can expect that

lim
j→∞

∣∣∣∣
∫

�×Rm
P f (x, y + (u j ), Pγ [u j − (u j )])

−
∫

�×Rm
P f (x, y + (u), Pγ [u j − (u j )])

∣∣∣∣ = 0,

for a large class of integrands f , and so for these we can gain a complete under-
standing of the functionalF on all of BV(�;Rm) by consideringFL onL(�;Rm).

Lemma 3.18. If f ∈ E(� × R
m), (γ j ) j ⊂ L(� × R

m) is a bounded sequence,
and (c j ) j ⊂ R

m is such that c j → c as j → ∞, then

lim
j→∞

∣∣∣∣
∫

�×Rm
P f (x, y + c j , Pγ j ) −

∫
�×Rm

P f (x, y + c, Pγ j )

∣∣∣∣ = 0.

Proof. Weclaimfirst that f ∈ E(�×R
m) implies that P f ∈ C(�×σRm×R

m×d×
R). The continuity of P f at points (x, y, A, t) ∈ � × σRm × R

m×d × (R\{0})
is clear from the continuity of f , whereas continuity at points (x, y, A, 0) for
(x, y, A) ∈ �×σRm ×R

m×d follows directly from the definition of P f combined
with the fact that σ f ∞ exists in the stronger sense that the limit (13) always returns
σ f ∞ as noted in Section 2. Consequently, P f must be uniformly continuous on
the compact set � × σRm × ∂Bm×d+1 and so we can estimate

lim
j→∞

∣∣∣∣
∫

�×Rm
P f (x, y + c j , Pγ j ) −

∫
�×Rm

P f (x, y + c, Pγ j )

∣∣∣∣
� lim

j→∞

∫
�×Rm

∣∣∣∣P f

(
x, y + c j ,

dPγ j

d|Pγ j | (x, y)

)

−P f

(
x, y + c,

dPγ j

d|Pγ j | (x, y)

)∣∣∣∣ d|Pγ j |(x, y)

� lim
j→∞ m(|c j − c|)|Pγ j |(� × R

m)

= 0,

where m : [0,∞) → [0,∞) is a modulus of continuity for P f so that

|P f (x1, y1, A1, t1) − P f (x2, y2, A2, t2)|
� m(|(x1, y1, A1, t1) − (x2, y2, A2, t2)|)

for all (x1, y1, A1, t1), (x2, y2, A2, t2) ∈ � × σRm × ∂Bm×d+1 and m(r) → 0 as
r → 0. ��
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4. Young Measures for Liftings

This section considers Young measures associated to liftings and presents the
technical machinery required to manipulate them. These Young measures are com-
pactness tools associated to weakly* convergent sequences (γ j ) j ⊂ L(� × R

m)

whose purpose is to allow us to compute the limiting behaviour of sequences
(
∫

P f (x, y, Pγ j )) j for as large a class of integrands f as possible simultane-
ously. Crucially, every bounded sequence (γ j ) j ⊂ L(� × R

m) can (upon passing
to a non-relabelled subsequence) be assumed to generate a Young measure ν with
the key property that

lim
j→∞

∫
P f (x, y, Pγ j ) = 〈〈

f, ν
〉〉

for all f ∈ E(� × R
m),

where the duality product 〈〈 f, ν〉〉 is defined below in Section 4.1. Together with the
localisation principles developed in Section 5, the theory developed in this section
will lead to a proof of the lower semicontinuity component of Theorem A.

The plan for this section is as follows: first, in Section 4.1, Young measures
over�×R

m with target spaceRm×d are defined abstractly. The elementary Young
measures associated to elements of L(�×R

m) are then introduced, as are the con-
cepts of Young measure convergence, generation, and the duality product 〈〈 � , � 〉〉.
Section 4.2 is concerned with the proof of the Young measure Compactness Theo-
rem (Theorem 4.13), which shows that any bounded sequence (γ j ) j ⊂ L(�×R

m)

possesses a subsequence generating aYoungmeasure ν. Section 4.3 then introduces
several techniques formanipulatingYoungmeasures and, finally, Section 4.4 proves
that Young measures can be also used to gain insight into lim j

∫
P f (x, y, Pγ j )

for integrands f from the larger class R(� × R
m).

4.1. Young Measures

In what follows, we will make use of the compactified space σRm := R
m �

∞∂Bm and the associated spaces of continuous functions and measures introduced
and discussed in Section 2.

Definition 4.1. (Generalised Young measures) An (� × R
m;Rm×d)-Young mea-

sure is a quadruple ν = (ιν, ν, λν, ν
∞) such that:

(1) ιν ∈ M+(� × R
m) satisfies π#(ιν) = Ld � and λν ∈ M+(� × σRm);

(2) ν : � × R
m → M1(Rm×d) and ν∞ : � × σRm → M1(∂Bm×d) are

parametrised measures which are weakly*-measurable with respect to ιν and
λν respectively. That is, (x, y) �→ νx,y(A) is ιν-measurable for every Borel
set A ⊂ � × R

m and (x, y) �→ ν∞
x,y(B) is λν-measurable for every Borel set

B ⊂ � × σRm ;
(3) (x, y) �→ 〈| � |, νx,y

〉 ∈ L1 (� × R
m, ιν);

(4) (ιν, ν, λν) satisfies the Poincaré condition∫
�×Rm

|y|d/(d−1) dιν(x, y)

� Md

(∫
�×Rm

〈| � |, νx,y
〉
dιν(x, y) + λν(� × σRm)

)d/(d−1)

(28)
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where Md := inf{|Du|(�) : u ∈ BV�(�;Rm) and ‖u‖Ld/(d−1) = 1}.
We denote the set of all (� ×R

m;Rm×d)-Young measures by Y(� ×R
m;Rm×d).

When there is no risk of confusion, we will usually abbreviate this to Y.

We shall refer to ιν and λν as the reference and concentration measures of ν,
respectively, and ν, ν∞ as the regular and singular oscillation measures of ν.

Recall from Definition 2.10 that E(�×R
m) is defined to be the set of functions

f ∈ C(� × R
m × R

m×d) for which there exists g f ∈ C(� × σRm × Bm×d)

satisfying

f (x, y, A) = (1 + |A|)g f

(
x, y,

A

1 + |A|
)

.

Under the duality product
〈〈

f, ν
〉〉 :=

∫
�×Rm

〈
f (x, y, � ), νx,y

〉
dιν(x, y)

+
∫

�×σRm

〈
σ f ∞ (x, y, � ) , ν∞

x,y

〉
dλν(x, y) (29)

for f ∈ E(� ×R
m), Young measures can be seen as continuous linear functionals

on E(� × R
m).

Whilst conditions (1), (2) and (3) are natural from the point of ensuring that (29)
is well-defined for integrands f ∈ E(� × R

m), (4) is a technical condition (used
in the proofs of Corollary 4.11 and Proposition 4.18) to ensure that the sequence
of measures (ιν j ) j∈N is tight in M+(� × R

m) whenever the sequence (ν j ) j∈N ⊂
Y(� × R

m;Rm×d) converges in the sense of Definition 4.3 below.

Definition 4.2. (Elementary Young measures) Given a lifting γ ∈ L(� ×R
m), the

elementary Young measure δ = δ[γ ] = (ιδ, δ, λδ, δ
∞) ∈ Y(� × R

m;Rm×d)

associated to γ is defined by

ιδ := gr[γ ]
# (Ld �), δx,y := δ∇[γ ](x),

λδ := |γ s |, δ∞
x,y := δ dγ s

d|γ s | (x,y)
,

where

γ s := γ − gr[γ ]
# (∇[γ ]Ld �) = gr[γ ]

# Dc[γ ] + γ gs

is the Lebesgue singular part of γ .

If γ ∈ L(� × R
m), it follows that we have the representation

〈P f, Pγ 〉 = 〈〈
f, δ[γ ]〉〉

for f ∈ E(� × R
m). Note that if γ [u] is an elementary lifting and δ[γ [u]] is the

elementary Young measure associated to γ [u], then

λδ = |Dsu| ⊗
(∫ 1

0
δuθ dθ

)
, δ∞

x,y = δp(x), p(x) = dDsu

d|Dsu| (x),

so that 〈〈
f, δ[γ [u]]〉〉 = 〈P f, Pγ [u]〉 = F[u].
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Definition 4.3. (Young measure convergence) We say that a sequence (ν j ) j ⊂
Y(� × R

m;Rm×d) weakly* converges to ν ∈ Y(� × R
m;Rm×d) as j → ∞

(written ν j
∗
⇀ ν) if

〈〈
f, ν j

〉〉 → 〈〈
f, ν

〉〉
as j → ∞

for every f ∈ E(� × R
m).

If ν ∈ Y is such that δ[γ j ] ∗
⇀ ν for some sequence of elementary Young

measures associated to (γ j ) j ⊂ L(�×R
m), then we simply write γ j

Y→ ν, saying
that (γ j ) j generates ν. Equivalently, (γ j ) j generates ν if and only if

lim
j→∞

∫
P f (x, y, Pγ j ) = 〈〈

f, ν
〉〉

for all f ∈ E(� × R
m).

Definition 4.4. (Young measure mass) The Young measure mass ‖ν‖Y of an ele-
ment ν ∈ Y(� × R

m;Rm×d) is defined by

‖ν‖Y := 〈〈
1 ⊗ | � |, ν〉〉,

where 1 ⊗ | � | ∈ E(� × R
m) denotes the function (x, y, A) �→ |A|.

The set of Young measures Y(� × R
m;Rm×d) is not a linear space and so

‖ � ‖Y cannot be a norm in the technical sense of being positively homogeneous and
subadditive. Nevertheless, ‖ � ‖Y-bounded sequences in Y(� × R

m;Rm×d) share
the same compactness properties as norm-bounded sequences in Banach spaces.

We note that the Poincaré condition (28) can now be rephrased as

(∫
�×Rm

|y|d/(d−1) dιν(x, y)

)(d−1)/d

� Md‖ν‖Y.

Definition 4.5. (LY) The spaceLY(�×R
m) ⊂ Y(�×R

m;Rm×d) is defined to be
the weak* sequential closure of the set of elementary Young measures associated
to liftings. That is, ν ∈ LY(� ×R

m) if and only if there exists a sequence (γ j ) j ⊂
L(� × R

m) such that γ j
Y→ ν.

Definition 4.6. The space ALY(� × R
m) ⊂ LY(� × R

m) is defined to be the
weak* sequential closure of the set of elementary Young measures associated to
elementary liftings. That is, ν ∈ ALY(�×R

m) if and only if there exists a sequence

(γ [u j ]) j ⊂ L(� × R
m) such that γ [u j ] Y→ ν.

Since the convergence
Y→ preserves more information than weak* convergence

in the space of liftings, we can show thatALY(�×R
m) is sequentially closed under

weak* convergence in Y(� × R
m;Rm×d), even though it is not known whether

AL(� × R
m) is sequentially weakly* closed inM(� × R

m;Rm×d):

Lemma 4.7. The spaces LY(�×R
m) and ALY(�×R

m) are closed under weak*
Young measure convergence.
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Proof. Since 1 ⊗ | � | ∈ E(� × R
m), ν j

∗
⇀ ν in Y implies that ‖ν j‖Y → ‖ν‖Y.

Thus, if (ν j ) j ⊂ LY(� × R
m) is a mass-bounded sequence such that ν j

∗
⇀ ν in

Y, we can assume that each ν j is the limit of a sequence (δk
j )k∈N of elementary

Youngmeasures (associated either to liftings in the caseLY(�×R
m) or elementary

liftings in the caseALY(�×R
m)) satisfying supk ‖δk

j‖Y � 1+‖ν j‖Y � 2+‖ν‖Y.
We can then use a diagonal argument to extract a sequence (δ

k j
j ) j of elementary

Young measures which generates ν. ��

Let ν ∈ LY(� × R
m) and (γ j ) j ⊂ L(� × R

m) be such that γ j
Y→ ν. Testing

with integrands f (x, y, A) = ϕ(x, y)A ∈ E(�×R
m) for ϕ ∈ C0(�×R

m), we see
that (γ j ) j is a weakly* convergent sequence in M(� × R

m;Rm×d), whose limit
we denote by γ . Since

∫
�×Rm

ϕ(x, y) dγ (x, y) = 〈〈
ϕ ⊗ id, ν

〉〉
,

it follows that γ is determined solely by ν independently of the choice of generating
sequence (δ j ) j and that the following definition is coherent:

Definition 4.8. The barycentre of a Young measure ν ∈ Y(�×R
m;Rm×d) is the

measure [ν] ∈ M(� × R
m;Rm×d) defined by

〈ϕ, [ν]〉 = 〈〈
ϕ ⊗ id, ν

〉〉
for all ϕ ∈ C0(� × R

m).

For elements ν ∈ LY(� × R
m), if [ν] = γ and [γ ] = u, we will use the notation

�ν� := u.

Clearly, if δ is the elementary Young measure associated to γ ∈ L(� × R
m)

then [δ] = γ . It is also clear that [ν] ∈ L(� × R
m) whenever ν ∈ LY(� × R

m)

and that [ν] ∈ AL(� × R
m) whenever ν ∈ ALY(� × R

m).

It follows immediately that [ν j ] ∗
⇀ [ν] in L(� × R

m) whenever ν j
∗
⇀ ν

in LY(� × R
m). Note that it need not be the case that ν ∈ ALY(� × R

m) if
[ν] ∈ AL(� × R

m).
The following corollary is now a direct consequence of Corollary 3.4 combined

with the identity 〈〈ϕ ⊗ 1, ν〉〉 = ∫
ϕ(x, y) dιν(x, y) for ϕ ∈ C0(� × R

m).

Corollary 4.9. If ν ∈ LY(� × R
m), then

ιν = gr
�ν�
# (Ld �).

4.2. Duality and Compactness

For f ∈ E(� × R
m) let g f ∈ C(� × σRm × Bm×d) be such that

f (x, y, A) = (1 + |A|)g f

(
x, y,

A

1 + |A|
)
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according to Definition 2.10. Define the linear operator S : E(� ×R
m) → C(� ×

σRm × Bm×d) by

S f = g f ,

and note that S admits an inverse S−1 : C(�×σRm ×Bm×d) → E(�×R
m) given

by

(S−1g)(x, y, A) = (1 + |A|)g
(

x, y,
A

1 + |A|
)

for (x, y, A) ∈ � × R
m × R

m×d . (30)

It follows that S is a linear isomorphism between E(� × R
m) and C(� × σRm ×

Bm×d), and so E(� ×R
m) can be given the structure of a Banach space by setting

‖ f ‖E := ‖S f ‖
C(�×σRm×Bm×d )

.

We therefore have that (S∗)−1 (hereafter denoted by S−∗) is itself an isometric
isomorphism between (E(� × R

m))∗ and M(� × σRm × Bm×d) (via the Riesz
Representation Theorem). In particular, Note that if ν ∈ Y(� × R

m;Rm×d), then

‖ν‖Y = 〈〈
1 ⊗ | � |, ν〉〉 = 〈

S(1 ⊗ | � |), S−∗ν
〉 =

∫
�×σRm×Bm×d

dS−∗ν(x, y, B)

= (S−∗ν)(� × σRm × Bm×d)

(31)

for all ν ∈ Y.
With S and S−∗ so defined, the duality product between Young measures ν ∈

Y(� ×R
m×d;Rm×d) and integrands f ∈ E(� ×R

m) can be understood in terms
of a more familiar integral product between measures and continuous functions:

〈〈
f, ν

〉〉 =
∫

�×σRm×Bm×d
S f (x, y, B) dS−∗ν(x, y, B). (32)

Given f ∈ RL(� ×R
m) or f ∈ Rw∗(� ×R

m), we can define S f : � ×R
m ×

Bm×d → R by analogy via

(S f )(x, y, B) :=
{

(1 − |B|) f
(

x, y, B
1−|B|

)
if (x, y, B) ∈ � × R

m × B
m×d ,

f ∞(x, y, B) if (x, y, B) ∈ � × R
m × ∂Bm×d .

So defined, S f is always Carathéodory on � × R
m × Bm×d and is continuous at

each point (x, y, B) ∈ �×R
m ×∂Bm×d . Moreover, if f is continuous and satisfies

| f (x, y, A)| � C(1 + |A|) then it is clear that S f ∈ Cb(� × R
m × Bm×d).

Proposition 4.10. The set S−∗Y(� ×R
m;Rm×d) consists precisely of those mea-

sures μ ∈ M+(� × σRm × Bm×d) that satisfy the conditions
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μ
(
� × ∞∂Bm × B

m×d) = 0, (33)
(∫

�×Rm×Bm×d
(1 − |B|)|y|d/(d−1) dμ(x, y, B)

)(d−1)/d

� Mdμ(� × σRm × Bm×d) (34)

(where Md is as given in Definition4.1), and for which there exists κ ∈ M+(�×R
m)

with π#κ = Ld � such that
∫

�×σRm×Bm×d
(1 − |B|)ϕ(x, y) dμ(x, y, B) =

∫
�×Rm

ϕ(x, y) dκ(x, y) (35)

for every ϕ ∈ C0(� × R
m).

Proof. First, we will show that for any ν ∈ Y(� ×R
m;Rm×d), S−∗ν satisfies the

given conditions. Since S f � 0 if and only if f � 0, and 〈〈 f, ν〉〉 � 0 for f � 0,
we have that S−∗ν ∈ M+(� × σRm ×Bm×d). To see that S−∗ν satisfies (35) with
κ = ιν , note that, for ϕ ∈ C0(� × R

m), the function ψ(x, y, A) := ϕ(x, y) is
contained in E(� × R

m) with ψ∞ ≡ 0 and that Sψ(x, y, B) = (1 − |B|)ϕ(x, y).
Every νx,y satisfies νx,y(R

m×d) = 1 and so it follows that
∫

�×σRm×Bm×d
(1 − |B|)ϕ(x, y) dS−∗ν(x, y, B)

=
∫

�×Rm

〈
ψ(x, y, � ), νx,y

〉
dιν(x, y)

=
∫

�

ϕ(x, y) dιν . (36)

Since π#ιν = Ld �, this condition is verified. conditions (33) and (34) follow
directly from the definition of ιν , λν , the construction of S, and the Poincaré in-
equality (28).

Now let μ ∈ M+(� × σRm ×Bm×d) satisfy conditions (33), (34), and (35). It
remains to show that S∗μ ∈ Y(�×R

m;Rm×d). By the Disintegration ofMeasures
Theorem, we can write μ = ω ⊗ η where ω ∈ M+(� × σRm) is the pushforward
of μ onto � × σRm and η : � × σRm → M1(Bm×d) is weakly* ω-measurable.
Let ω = pκ + ωs be the Radon–Nikodym decomposition of ω with respect to κ .
Since C0(�×R

m)∗ = M(�×R
m) and (36) is true for arbitrary ϕ ∈ C0(�×R

m),
this implies that

〈
1 − |B|, ηx,y

〉
ωs = [

1 − p(x, y)
〈
1 − |B|, ηx,y

〉]
κ (37)

inM(�×R
m). By construction, however,ωs and κ charge disjoint sets. This implies

that both sides of (37) must be the zero measure. It follows that
〈
1 − |B|, ηx,y

〉 =
0 for ωs-almost every (x, y) ∈ � × σRm , and hence that, for ωs-almost every
(x, y) ∈ � × σRm ,

ηx,y(Bm×d) = ηx,y(∂B
m×d).
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For f ∈ E(� × R
m), we may therefore write

〈
S f (x, y, � ) , ηx,y

〉
ω

= p(x, y)
〈
S f (x, y, � ) , ηx,y

〉
κ + 〈

S f (x, y, � ) , ηx,y
〉
ωs

=
(

p(x, y)

∫
Bm×d

S f (x, y, B) dηx,y(B)

)
κ

+
(

−
∫

∂Bm×d
S f (x, y, B) dηx,y(B)

)
ηx,y(∂B

m×d)p(x, y)κ

+
(∫

∂Bm×d
S f (x, y, B) dηx,y(B)

)
ωs .

The above decomposition combined with the fact that ηx,y(∂B
m×d) = 1 ωs-almost

everywhere suggests that we construct the relevant Young measure by defining
(ιν, ν, λν, ν

∞) as follows:

〈h, νx,y〉 := p(x, y)

∫
Bm×d

Sh(x, y, B) dηx,y(B)

ιν := κ

〈Sh, ν∞
x,y〉 := −

∫
∂Bm×d

h∞(x, y, B) dηx,y(B)

λν := ηx,y(∂B
m×d)ω.

(38)

It is clear that νx,y, ν
∞
x,y and ιν, λν inherit positivity from κ , ηx,y and ω. From (37),

we see that

p(x, y)
〈
(1 − |B|) , ηx,y

〉 = 1 for κ-almost everywhere (x, y) ∈ � × σRm,

and so, since by definition
〈
1, νx,y

〉 = p(x)
〈
(1 − |B|) , ηx,y

〉
, we have that νx,y ∈

M1(Rm×d). Since it is defined as an average, ν∞
x,y is also a probability measure for

λν-almost every (x, y) ∈ � × σRm . That (x, y) → 〈| � |, νx,y
〉 ∈ L1 (� × R

m; ιν)

follows from the definition of S applied to the integrand f (x, y, A) = 1+|A|. The
desired weak* measurability properties for ν and ν∞ follow from the definition of
p and the fact that η is weakly* ω-measurable. Finally, the Poincaré inequality (28)
follows directly from condition (34). ��
Corollary 4.11. The set S−∗Y(� × R

m;Rm×d) is sequentially weakly* closed in
M(� × σRm × Bm×d).

Proof. It suffices to show that conditions (33), and (34), and (35) from Proposi-
tion 4.10 are sequentially weakly* closed. This is immediate for condition (35),
since the functions ψ(x, y, A) := ϕ(x, y) for ϕ ∈ C0(�×R

m) are elements of the
predual of M(� × σRm × Bm×d).

Now let (ν j ) j ⊂ Y(�×R
m;Rm×d) and μ ∈ M+(�×σRm ×Bm×d) be such

that S−∗ν j
∗
⇀ μ inM(�×σRm ×Bm×d). The conditionμ(�×∞∂Bm ×B

m×d) =
0 is satisfied if and only if the sequence

(
S−∗ν j

)
j is tight inM(�×[(Rm ×Bm×d)∪
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(σRm × ∂Bm×d)]). This fails to be the case only if there exists ε > 0, δ ∈ [0, 1),
and a sequence of radii R j ↑ ∞ such that

lim sup
j→∞

S−∗ν j
(
� × {|y| � R j } × δBm×d) � ε.

The Poincaré inequality (34) for ν j implies

Md · S−∗ν j (� × σRm × Bm×d)

�
(∫

�×{|y|�R j }×δBm×d
(1 − |B|)|y|d/(d−1) dS−∗ν j (x, y, B)

)(d−1)/d

.

We would therefore obtain

Md · lim sup
j→∞

S−∗ν j (� × σRm×Bm×d) � lim sup
j→∞

(
ε(1 − δ)Rd/(d−1)

j

)(d−1)/d

= ∞,

contradicting the fact that (S−∗ν j ) j must be a norm-bounded sequence inM(� ×
σRm ×Bm×d) (by the Uniform Boundedness Theorem). Finally, since the function
ψ : � × σRm × Bm×d → [0,∞) given by

ψ(x, y, B) :=
{

(1 − |B|)|y|d/(d−1) if (y, B) ∈ R
m × B

m×d ,

0 otherwise,

is lower semicontinuous, it follows (see for instance Proposition 1.62 in [7]) that

〈ψ,μ〉 � lim inf
j→∞

〈
ψ, S−∗ν j

〉
� lim

j→∞

(
Md · S−∗ν j (� × σRm × Bm×d)

)d/(d−1)

=
(

Md · μ(� × σRm × Bm×d)
)d/(d−1)

and that condition (34) is therefore satisfied. ��
As a consequence of Proposition 4.10 combined with the usual density results

for tensor products of continuous functions over a product domain, the following
lemma is now immediate:

Lemma 4.12. There exists a countable family of products {ϕk ⊗ hk}k∈N ⊂ E(� ×
R

m), where ϕk ∈ C(�×σRm) and hk ∈ C(Rm×d), such that if for a mass-bounded
sequence (ν j ) j ⊂ Y(� × R

m;Rm×d) it holds that

lim
j→∞

〈〈
ϕk ⊗ hk, ν j

〉〉 = 〈〈
ϕk ⊗ hk, ν

〉〉
for each k ∈ N,

then ν j
∗
⇀ ν.

Theorem 4.13. (Sequential Compactness in Y) If a sequence (ν j ) j ⊂ Y(� ×
R

m;Rm×d) satisfies
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sup
j

‖ν j‖Y < ∞,

then there exists a Young measure ν ∈ Y(� × R
m;Rm×d) and a subsequence

(ν jk )k ⊂ (ν j ) j such that ν jk
∗
⇀ ν as k → ∞.

Proof. Note that by (31) for ν ∈ Y(� × R
m;Rm×d) it holds that

‖ν‖Y = (S−∗ν)(� × σRm × Bm×d),

which implies that (ν j ) j ⊂ Y(� × R
m;Rm×d) is uniformly ‖ � ‖Y-bounded if

and only if (S−∗ν j ) j is uniformly norm-bounded in M(� × σRm × Bm×d). The
result now follows from the sequential weak* closure of S−∗Y(�×R

m;Rm×d) in
M(� × σRm × Bm×d) combined with the Banach–Alaoglu Theorem. ��
Corollary 4.14. Let (γ j ) j ⊂ L(� × R

m) satisfy sup j |γ j |(� × R
m) < ∞. Then,

upon passing to a (non-relabelled) subsequence, there exists a Young measure
ν ∈ LY(� × R

m) such that

γ j
Y→ ν and γ j

∗
⇀ [ν].

Proof. Observe that, if δ is the elementary Young measure associated to a lifting
γ ∈ L(� × R

m),

‖δ‖Y =
∫

�×Rm

〈| � |, δx,y
〉
dιδ(x, y) +

∫
�×σRm

〈
| � |, δ∞

x,y

〉
dλδ(x, y)

=
∫

�

|∇[γ ](x)| dx + |γ s |(� × R
m) = |γ |(� × R

m),

where γ s is the Lebesgue singular part of γ introduced in Definition 4.2. It follows
that the sequence of elementary Young measures (δ[γ j ]) j is bounded in Y(� ×
R

m;Rm×d) and so we can combine Theorem 4.13 with Lemma 4.7 to achieve the
desired result. ��

4.3. Manipulating Young Measures

The following theoremwill be of great importance in the computation of tangent
Young measures in Section 5.

Theorem 4.15. (Restriction Theorem for LY) Let ν = (ιν, ν, λν, ν
∞) ∈ LY(� ×

R
m) (or ν ∈ ALY(� × R

m)). Then the restricted Young measure ν (� × R
m)

defined by

ν (� × R
m) := (ιν, ν, λν (� × R

m), ν∞)

is also a member of LY(� × R
m) (or ν (� × R

m) ∈ ALY(� × R
m)).
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Note that the definition of ν (� × R
m) is equivalent to the statement that for

all f ∈ E(� × R
m),

〈〈
f, ν (� × R

m)
〉〉 =

∫
�×Rm

〈
f (x, y, � ), νx,y

〉
dιν(x, y)

+
∫

�×Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉
dλν(x, y).

Proof. Let (γ j ) j ⊂ L(� × R
m) be such that γ j

Y→ ν. For each R ∈ N, let
ηR ∈ C1(Rm;Rm) be an injective function such that ‖ηR‖∞ � 2R, ηR(y) = y
for y ∈ B(0, R), ‖∇ηR‖∞ is bounded independently of R, and |∇ηR(y)| → 0 as
|y| → ∞. It suffices, for example, to take

ηR(y) := fR(|y|) y

|y| , where fR(t) :=
{

t if 0 � t < R,

R
(
2 − exp

( R−t
R

))
if t � R.

For each j, R ∈ N, define

cR
j := −

∫
�

ηR([γ j ](x))[γ j ](x) dx, cR
0 := −

∫
�

ηR(�ν�(x))�ν�(x) dx,

and denote by T R
j : � × R

m → � × R
m the map given by

T R
j (x, y) = (x, ηR(y) − cR

j ).

Now define γ R
j ∈ M(� × R

m;Rm×d) by

γ R
j := (T R

j )#(∇ηR γ j ),

so that
∫

�×Rm
ϕ(x, y) dγ R

j (x, y)

=
∫

�×Rm
(ϕ ◦ T R

j )(x, y)∇ηR(y) dγ j (x, y), ϕ ∈ C0(� × R
m).

In particular, for every ϕ ∈ C0(� × B(0, R)),

∫
�×Rm

ϕ(x, y) dγ R
j (x, y) =

∫
�×Rm

ϕ(x, y − cR
j ) dγ j (x, y).

By the chain rule combined with the fact that ∇y T R
j = ∇ηR , we have

∇y(ϕ ◦ T R
j )(x, y) = (∇yϕ ◦ T R

j )(x, y)∇ηR(y),
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which implies
∫

�×Rm
∇yϕ(x, y) dγ R

j (x, y) =
∫

�×Rm
∇y(ϕ ◦ T R

j )(x, y) dγ j (x, y)

= −
∫

�

∇x (ϕ ◦ T R
j )(x, [γ j ](x)) dx

= −
∫

�

∇xϕ(x, ηR([γ j ](x)) − cR
j ) dx .

We therefore see that γ R
j ∈ L(� × R

m) with [γ R
j ] = ηR([γ j ]) − cR

j = T R
j ◦ [γ j ],

from which we get

gr
[γ R

j ]
# (Ld �) = (T R

j )#

(
gr

[γ j ]
# (Ld �)

)

and hence that

Pγ R
j = (T R

j )#
[
AR Pγ j

]
, where AR(y) :=

(∇ηR(y) 0
0 1

)
.

Since each T R
j : � × R

m → � × R
m is injective (because each ηR is injective),

Lemma 2.1 implies that

dAR Pγ j

d
∣∣AR Pγ j

∣∣ = dPγ R
j

d|Pγ R
j | ◦ T R

j and |Pγ R
j | = (T R

j )#|AR Pγ j |.

For f ∈ E(� × R
m), we can therefore compute

∫
P f (x, y, Pγ R

j )

=
∫

P f

(
x, y,

dPγ R
j

d|Pγ R
j | (x, y)

)
d|Pγ R

j |(x, y)

=
∫

P f

(
T R

j (x, y),
dPγ R

j

d|Pγ R
j | ◦ T R

j (x, y)

)
d|AR Pγ j |(x, y)

=
∫

P f

(
T R

j (x, y),
dAR Pγ j

d
∣∣AR Pγ j

∣∣ (x, y)

)
d|AR Pγ j |
d|Pγ j | (x, y) d|Pγ j |(x, y)

=
∫

P f

(
T R

j (x, y),

(
dAR Pγ j

d
∣∣AR Pγ j

∣∣ · d|AR Pγ j |
d|Pγ j |

)
(x, y)

)
d|Pγ j |(x, y)

=
∫

P f

(
T R

j (x, y),
dAR Pγ j

d
∣∣Pγ j

∣∣ (x, y)

)
d|Pγ j |(x, y)

=
∫

P f

(
T R

j (x, y), AR(y)
dPγ j

d
∣∣Pγ j

∣∣ (x, y)

)
d|Pγ j |(x, y).
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Define fηR ∈ C(� × R
m × R

m×d), R > 0, by

fηR (x, y, A) := f
(

T R
0 (x, y),∇ηR(y)A

)
.

Since T R
0 can be extended continuously to � × σRm by setting T R

0 (x,∞e) :=
(x, 2Re) for (x,∞e) ∈ � × ∞∂Bm and ∇ηR can be continuously extended to
σRm by setting ∇ηR(∞e) = 0 for all ∞e ∈ ∞∂Bm , the fact that f ∈ E(� ×R

m)

implies that fηR ∈ E(� × R
m) for each R > 0 with

σ f ∞
ηR

(x, y, A)

=
{

f ∞(T R
0 (x, y),∇ηR(y)A) if (x, y, A) ∈ � × R

m × R
m×d ,

0 if (x, y, A) ∈ � × ∞∂Bm × R
m×d .

Since T R
j (x, y) = T R

0 (x, y) + (0, cR
j − cR

0 ) and cR
j → cR

0 for each R > 0 as

j → ∞, we can use the fact that γ j
Y→ ν in combination with Lemma 3.18 and

our previous calculation to deduce that

lim
j→∞

∫
P f (x, y, Pγ R

j ) = lim
j→∞

∫
P fηR (x, y + cR

j − cR
0 , Pγ j )

= lim
j→∞

∫
P fηR (x, y, Pγ j )

= 〈〈
fηR , ν

〉〉
.

Since this limit holds for all f ∈ E(�×R
m) it follows from Definition 4.3 and

Theorem 4.13 that each sequence (γ R
j ) j ⊂ L(�×R

m) generates a Young measure

νR ∈ LY(� × R
m) defined via
〈〈

f, νR 〉〉 = 〈〈
fηR , ν

〉〉
for all f ∈ E(� × R

m).

Since (σ f ∞
ηR

) (�×∞∂Bm ×Bm×d) ≡ 0 for every R > 0 and fηR → f , f ∞
ηR

→
f ∞ pointwise in�×R

m×R
m×d as R → ∞, theDominatedConvergenceTheorem

(note that each fηR is dominated by the ιν-integrable function ‖S f ‖∞(1 + |A|))
lets us deduce

lim
R→∞

〈〈
f, νR 〉〉 = lim

R→∞
〈〈

fηR , ν
〉〉

= lim
R→∞

{∫
�×Rm

〈
fηR , νx,y

〉
dιν(x, y)

+
∫

�×Rm

〈
f ∞
ηR

, ν∞
x,y

〉
dλν(x, y)

}

=
∫

�×Rm

〈
f, νx,y

〉
dιν(x, y) +

∫
�×Rm

〈
f ∞, ν∞

x,y

〉
dλν(x, y).

It follows then that the family (νR)R>0 ⊂ LY(� × R
m) converges as R → ∞ to

a Young measure ν0 ∈ LY(� × R
m) satisfying
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〈〈
f, ν0

〉〉 =
∫

�×Rm

〈
f, νx,y

〉
dιν(x, y)

+
∫

�×Rm

〈
f ∞, ν∞

x,y

〉
dλν(x, y) for all f ∈ E(� × R

m),

from which it is apparent that ν0 = ν (� × R
m), as required. That member-

ship of ALY(� × R
m) is preserved follows from the fact that (γ [u])R

j = γ

[ηR(u(x)) − cR
j ]. ��

Lemma 4.16. If ν ∈ ALY(�×R
m), then ν admits a generating sequence (γ [u j ]) j

with (u j ) j ⊂ C∞
# (�;Rm).

Proof. Let (v j ) j ⊂ BV#(�;Rm) be such that γ [v j ] Y→ ν and let H := { fk}k ⊂
E(�×R

m) be a countable collection of functionswhich determinesYoungmeasure
convergence as given in Lemma 4.12. By the area-strict density of C∞(Bd;Rm) in
BV(�;Rm) ensured by Proposition 2.3 combined with Theorem 2.15, we can find
a BV-bounded sequence (u j ) j ⊂ C∞

# (�;Rm) which satisfies

∣∣∣∣
∫

P fk(x, y, Pγ [v j ]) −
∫

P fk(x, y, Pγ [u j ])
∣∣∣∣ � 1

j
for all k � j.

It follows that
∣∣∣∣
〈〈

fk, ν
〉〉 − lim

j→∞

∫
P fk(x, y, Pγ [u j ])

∣∣∣∣ = 0 for each k ∈ N,

which, upon making use of the density property ofH, implies that γ [u j ] generates
ν, as required. ��
Lemma 4.17. Let ν ∈ ALY(�×R

m) satisfy λν(∂�×σRm) = 0. Then there exist

sequences (u j ) j ⊂ C∞
# (�;Rm), (c j ) j ⊂ R

m with γ [u j ] Y→ ν and lim j c j = 0
satisfying

u j |∂� = �ν�|∂� + c j .

Proof. Invoking Lemma 4.16, let (v j ) j ⊂ C∞
# (�;Rm) be such that γ [v j ] Y→ ν.

From Proposition 2.3, we know that there exists a sequence (w j ) j ⊂ C∞
# (�;Rm)

such thatw j |∂� = �ν�|∂� for each j ∈ N andw j → �ν� area-strictly inBV#(�;Rm).
For ε > 0, let ηk ∈ C∞

c (�; [0, 1]) be such that

ηk(x) =
{
1 if dist(x, ∂�) � 2

k ,

0 if dist(x, ∂�) � 1
k ,

and define (uk
j ) j,k ⊂ C∞

# (�;Rm) by

uk
j := (1 − ηk)w j + ηkv j + ck

j
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where ck
j is the constant which ensures that

∫
uk

j (x) dx = 0. For sufficiently large
j we have that

|Duk
j |(�) � |Dw j |(�) + |Dv j |(�) + ‖∇ηk‖∞‖w j − v j‖L1

� 2|D�ν�|(�) + |Dv j |(�) + ‖∇ηk‖∞‖w j − v j‖L1 ,

and ‖w j − v j‖L1 � ‖w j − �ν�‖L1 + ‖v j − �ν�‖L1 → 0 as j → ∞. It follows
that (Duk

j ) j,k is uniformly bounded inM(�×R
m;Rm×d) in k and j subject to the

constraint j � Jk for some increasing sequence (Jk)k ⊂ N. Note that uk
j satisfies

uk
j |∂� = �ν�|∂� + ck

j , and

ck
j = −

∫
�

ηk(x)
[
w j (x) − v j (x)

] − w j (x) dx

= −
∫

�

ηk(x)
[
w j (x) − v j (x)

]
dx,

which implies |ck
j | � [Ld(�)]−1‖w j −v j‖L1 .Hence, ck

j → 0 as j → ∞ uniformly
in k.

For f ∈ E(� × R
m) with ‖S f ‖∞ = 1, we can then compute

∣∣∣∣
∫

P f (x, y, Pγ [uk
j ]) −

∫
P f (x, y, Pγ [v j ])

∣∣∣∣
� 2

(Ld + |Dw j | + |Dv j |
) ({

x ∈ � : dist(x, ∂�) � 2

k

})

for every j, k ∈ N. Taking the limit as j → ∞, we obtain

lim
j→∞

∣∣∣∣
∫

P f (x, y, Pγ [uk
j ]) −

∫
P f (x, y, Pγ [v j ])

∣∣∣∣
� 2

(Ld + |D�ν�| + π#λν

) ({
x ∈ � : dist(x, ∂�) � 2

k

})
.

Since π#λν(∂�) = 0, the right hand side of this expression must converge to 0 as
k → ∞ and we can therefore use a diagonal argument to find a sequence ( jk)k

such that (γ [uk
jk
])k generates ν and ck

jk
→ 0. Since uk

jk
|∂� = �ν�|∂� + ck

jk
, this

suffices to prove the lemma. ��

4.4. Extended Representation

All of the results obtained so far in this section have helped us to understand
lim j→∞

∫
P f (x, y, Pγ j )when f ∈ E(�×R

m). However, the integrands f which
are of interest for the applications that we have in mind are not members of E(� ×
R

m), only ofR(�×R
m). In particular, the requirement that both f and f ∞ extend

continuously to � × σRm × R
m×d is too strong to be satisfied by any integrand

which is unbounded in the middle variable.
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If ν ∈ LY(� × R
m) satisfies λν(� × ∞∂Bm) = 0 and we assume just that

f ∈ Rw∗(� × R
m), then the duality product

〈〈
f, ν

〉〉 =
∫

�×Rm

〈
f (x, y, � ), νx,y

〉
dιν(x, y)

+
∫

�×Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉
dλν(x, y)

is still well-defined in R. For the singular part this follows from the fact that λν is a
positive measure and that f ∞ is positive and continuous. For the regular part this

follows from ιν = gr
�ν�
# (Ld �) and �ν� ∈ BV(�;Rm). Indeed, the fact that f is

Carathéodory and satisfies | f (x, y, A)| � C(1 + |y|d/(d−1) + |A|), the ιν-weak*
measurability of the parametrised measure ν, and the Poincaré Condition (28)
together imply that the map (x, y) �→ 〈

f (x, y, � ), νx,y
〉
is ιν-measurable and ιν-

integrable.
Similarly, if f ∈ Rw∗(� × R

m) is such that σ f ∞ exists, then

〈〈
f, ν

〉〉 =
∫

�×Rm

〈
f (x, y, � ), νx,y

〉
dιν(x, y)

+
∫

�×σRm

〈
σ f ∞(x, y, � ), ν∞

x,y

〉
dλν(x, y)

is also well-defined even if λν(� × ∞∂Bm) > 0.
Proposition 4.18 and Corollary 4.19 below show that knowledge of ν allows us

to say something meaningful about lim j
∫

P f (x, y, Pγ j ) for a very large class of
integrands f and, at the same time, that this limiting behaviour does not change if
f is replaced by a perturbation f ( � , � +c j , � )where (c j ) j ⊂ R

m is a convergent
sequence. As a consequence, the limiting behaviour of (F[u j ]) j for any f and any
weakly* convergent sequence in BV(�;Rm) can be understood in terms of the
Young measures generated by sequences (γ [u j − (u j )]) j ⊂ AL(� × R

m).

Proposition 4.18. (Extended Representation) Let ν ∈ LY(� × R
m), (γ j ) j ⊂

L(� × R
m) be such that γ j

Y→ ν, and let (c j ) j ⊂ R
m be such that c j → 0 ∈ R

m.
Let f ∈ RL(� × R

m). Then

(i) If λν(� × ∞∂Bm) = 0 so that ν ≡ ν (� × R
m) (where ν (� × R

m) is
as described in Theorem 4.15), we have that

lim
j→∞

∫
P f (x, y + c j , Pγ j ) = 〈〈

f, ν
〉〉

=
∫

�×Rm
〈 f, ν〉 dιν(x, y)

+
∫

�×Rm

〈
f ∞, ν∞〉

dλν(x, y); (39)

(ii) If instead λν(� × ∞∂Bm) � 0 and we assume in addition that σ f ∞ exists
according to Definition 2.11, we also have that



Filip Rindler & Giles Shaw

lim
j→∞

∫
P f (x, y + c j , Pγ j ) = 〈〈

f, ν
〉〉

=
∫

�×Rm
〈 f, ν〉 dιν(x, y)

+
∫

�×σRm

〈
σ f ∞, ν∞〉

dλν(x, y). (40)

Proof. We shall prove (39) and (40) simultaneously:

Step 1: Assume first that f : �×σRm ×R
m×d → R is Carathéodory and satisfies

| f (x, y, A)| � C for all (x, y, A) ∈ � × R
m × R

m×d and some fixed C >

0. By the Scorza–Dragoni Theorem, there exists a compact set Kε � � such
that Ld(�\Kε) � ε and f (Kε × σRm × R

m×d ) is continuous. By the Tietze
Extension Theorem, we can find a continuous function g ∈ C(� × σRm ×R

m×d)

which restricts to f on Kε × σRm × R
m×d and such that g is bounded and that

‖g‖∞ = ‖ f ‖∞. Since g ∈ E(� × R
m) with σg∞ = σ f ∞ = 0, Lemma 3.18

together with Corollary 4.9 lets us deduce

lim
j→∞

∫
�×Rm

Pg(x, y + c j , Pγ j ) = 〈〈
g, ν

〉〉 =
∫

�

〈
g(x, �ν�(x), � ), νx,�ν�(x)

〉
dx .

By the construction of g, however, we see that∣∣∣∣
∫

�×Rm
P(g − f )(x, y + c j , Pγ j )

∣∣∣∣ � 2
∫

�\Kε

‖ f ‖∞ dx for all j ∈ N,

and that the same estimate holds for
∣∣ ∫

�×Rm P(g − f )(x, y, Pγ )
∣∣. Letting ε → 0,

we obtain

lim
j→∞

∫
�×Rm

P f (x, y + c j , Pγ j ) = 〈〈
f, ν

〉〉
,

and so both (39) and (40) hold.

Step 2: Now assume that f : � × R
m × R

m×d → R is Carathéodory and satisfies
| f (x, y, A)| � C for all (x, y, A) ∈ � × R

m × R
m×d and some fixed C > 0.

For K > 0, let ϕK ∈ Cc(R
m; [0, 1]) be such that ϕK (y) = 1 for |y| � K . Define

fK : � × σRm × R
m×d → R by

fK (x, y, A) :=
{

ϕK (y) f (x, y, A) if (x, y, A) ∈ � × R
m × R

m×d ,

0 if (x, y, A) ∈ � × ∞∂Bm × R
m×d ,

and note that each fK satisfies the hypotheses of Step 1. Since fK → f pointwise
in � × R

m × R
m×d as K → ∞ and σ f ∞ ≡ 0, the Dominated Convergence

Theorem lets us deduce

lim
K→∞

〈〈
fK , ν

〉〉 = lim
K→∞

∫
�

〈
fK (x, �ν�(x), � ), νx,�ν�(x)

〉
dx

=
∫

�

〈
f (x, �ν�(x), � ), νx,�ν�(x)

〉
dx

= 〈〈
f, ν

〉〉
,
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and, since Step 1 implies

lim
j→∞

∫
P fK (x, y + c j , Pγ j ) = 〈〈

fK , ν
〉〉
,

we therefore deduce∣∣∣∣ limj→∞

∫
P f (x, y + c j , Pγ j ) − 〈〈

f, ν
〉〉∣∣∣∣

= lim
K→∞

∣∣∣∣ limj→∞

∫
P f (x, y + c j , Pγ j ) − 〈〈

fK , ν
〉〉∣∣∣∣

� lim
K→∞

∣∣∣∣ limj→∞

∫
P( f − fK )(x, y + c j , Pγ j )

∣∣∣∣ .
Now fix ε > 0 and let R > 0 be large enough that C/(1 + R) < ε. Recalling the
map

S : E(� × R
m) → C(� × σRm × Bm×d)

introduced in Section 4.2 together with S−∗ := (S∗)−1, the inverse of its adjoint,
we see that Proposition 4.10 implies S−∗ν(� × ∞∂Bm × B

m×d) = 0 and so, by
the outer regularity of Radon measures, there exists K > 0 such that

(S−∗ν)
(
� × [Rm\B(0, K − 1)] × B(0, R/(1 + R))

)
<

ε

2
.

Since S−∗δ[γ j ] ∗
⇀ S−∗ν inM(� × σRm × Bm×d), we must therefore have that

(S−∗δ[γ j ])
(
� × AK ,R

)
< ε, AK ,R := [Rm\B(0, K − 1)] × B(0, R/(1 + R))

for all j ∈ N sufficiently large. Since our choice of R implies C/(1 + R) < ε, we
have that, whenever (x, y, B) ∈ � × R

m × Bm×d and |B| � R/(1 + R) so that
1 − |B| � 1/(1 + R),

|(S f )(x, y, B)| =
∣∣∣∣(1 − |B|) f

(
x, y,

B

1 − |B|
)∣∣∣∣ � C(1 − |B|) < ε.

Abbreviating δ j := δ[γ j ], we can now use the fact that (1−ϕK (y +c j )) = 0 when
|y| � K − 1 and |c j | < 1, to estimate

∣∣∣∣ limj→∞

∫
P( f − fK )(x, y + c j , Pγ j )

∣∣∣∣
=

∣∣∣∣ limj→∞

∫
S( f − fK )(x, y + c j , B) dS−∗δ j (x, y, B)

∣∣∣∣
� lim

j→∞

∫
�×AK ,R

‖S f ‖∞ dS−∗δ j (x, y, B)

+ lim
j→∞

∫
�×{|y|>K−1}×{|B|> R

1+R }
ε dS−∗δ j (x, y, B)
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� ‖S f ‖∞ lim sup
j→∞

(S−∗ν)
(
� × AK ,R

)

+ ε sup
j

〈〈
1 ⊗ | � |, δ j

〉〉

� ε

(
‖S f ‖∞ + sup

j

〈〈
1 ⊗ | � |, δ j

〉〉)
.

Since sup j

〈〈
1 ⊗ | � |, δ j

〉〉
< ∞ and ε > 0 was arbitrary, we therefore deduce

lim
K→∞

∣∣∣∣ limj→∞

∫
P( f − fK )(x, y + c j , Pγ j )

∣∣∣∣ = 0,

and hence that

lim
j→∞

∫
P f (x, y + c j , Pγ j ) = 〈〈

f, ν
〉〉
,

as required.

Step 3: Now assume that f : � × R
m × R

m×d → R is Carathéodory and satisfies
| f (x, y, A)| � C(1 + |A|) for some C > 0 and is such that f ∞ = 0 if λν(� ×
∞∂Bm) = 0 and σ f ∞ exists with σ f ∞ = 0 if λν(� × ∞∂Bm) > 0. Let ϕR ∈
Cc(R

m×d; [0, 1]) be a cut-off function such that ϕR(A) = 1 for |A| � R. Define
fR : � × R

m × R
m×d → R by fR(x, y, A) := ϕR(A) f (x, y, A) and note that

fR satisfies the hypotheses of Step 2. Moreover, since fR → f pointwise in
� × R

m × R
m×d as R → ∞, the Dominated Convergence Theorem implies that

lim
R→∞

〈〈
fR, ν

〉〉 =
∫

�

〈
f (x, �ν�(x), � ), νx,�ν�(x)

〉
dx = 〈〈

f, ν
〉〉
.

Splitting

f = fR + ( f − fR)

and using the fact that Step 2 implies

lim
j→∞

∫
P fR(x, y + c j , Pγ j ) = 〈〈

fR, ν
〉〉
,

we deduce
∣∣∣∣ limj→∞

∫
P f (x, y + c j , Pγ j ) − 〈〈

f, ν
〉〉∣∣∣∣

= lim
R→∞

∣∣∣∣ limj→∞

∫
P f (x, y + c j , Pγ j ) − 〈〈

fR, ν
〉〉∣∣∣∣

� lim
R→∞

∣∣∣∣ limj→∞

∫
P( f − fR)(x, y + c j , Pγ j )

∣∣∣∣ .
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First we assume that λν(� × ∞∂Bm) = 0 and prove (39). Since the condition
λν(� × ∞∂Bm) = 0 is equivalent to S−∗ν(� × ∞∂Bm × ∂Bm×d) = 0 and
Proposition 4.10 also forces S−∗ν(� × ∞∂Bm × B

m×d) = 0 we have that

S−∗ν(� × ∞∂Bm × Bm×d) = 0,

which implies that the sequenceofmeasures (S−∗δ[γ j ]) j ⊂ M+(�×σRm×Bm×d)

is tight in � × R
m × Bm×d . That is, for every ε > 0 there exists K > 0 such that

sup
j∈N

S−∗δ[γ j ]
(
� × {y ∈ R

m : |y| > K } × Bm×d
)

< ε. (41)

For ε > 0 fixed, let K verify (41). By Lemma 2.12, we have that, for all R > 0
sufficiently large, | f (x, y, A)| � ε(1 + |A|) whenever (x, y) ∈ � × B(0, K + 1)
and |A| � R. Since ( f − fR)(x, y, A) = 0 whenever |A| < R, and |y| � K
implies |y + c j | � K + 1 once |c j | � 1, we therefore have that, once R > 0 is
sufficiently large,

∣∣∣∣ limj→∞

∫
P( f − fR)(x, y + c j , Pγ j )

∣∣∣∣
�

∣∣∣∣ limj→∞

∫
�×B(0,K )

P( f − fR)(x, y + c j , Pγ j )

∣∣∣∣
+

∣∣∣∣ limj→∞

∫
�×Rm\B(0,K )

P( f − fR)(x, y + c j , Pγ j )

∣∣∣∣
� εLd(�) + ε lim sup

j→∞
|γ j |(� × R

m)

+ C S−∗δ[γ j ]
(
� × {y ∈ R

m : |y| > K } × Bm×d
)

� ε(Ld(�) + lim sup
j→∞

|γ j |(� × R
m) + 1).

Since (γ j ) j is a norm-bounded sequence in M(� × R
m;Rm×d) and ε > 0 was

arbitrary, we therefore deduce that

lim
R→∞

∣∣∣∣ limj→∞

∫
P( f − fR)(x, y + c j , Pγ j )

∣∣∣∣ = 0

and hence that (39) holds.
Next, we prove that (40) holds under the assumption that σ f ∞ ≡ 0. By Propo-

sition 4.10, we have that

sup
j

∫
�×Rm

|y|d/(d−1) dιδ j (x, y) < ∞, δ j := δ[γ j ].

This is equivalent to the statement

sup
j

∫
�×Rm×Bm×d

|y|d/(d−1)(1 − |B|) dS−∗δ[γ j ](x, y, B) < ∞. (42)
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Now, if there were ε > 0 such that, for all K ∈ N,

ε < lim sup
j→∞

S−∗δ[γ j ]
(
�

×{(y, B) ∈ R
m × Bm×d : |y|d/(d−1)(1 − |B|) > K }

)
, (43)

we would have that

K ε �K lim sup
j→∞

S−∗δ[γ j ]
(
�

×{(y, B) ∈ R
m × Bm×d : |y|d/(d−1)(1 − |B|) > K }

)

� sup
j

∫
�×Rm×Bm×d

|y|d/(d−1)(1 − |B|) dS−∗δ[γ j ](x, y, B).

Letting K → ∞ we would then obtain

lim sup
j→∞

∫
�×Rm×Bm×d

|y|d/(d−1)(1 − |B|) dS−∗δ[γ j ](x, y, B) = ∞,

contradicting (42). Taking the converse of (43), we therefore see that for any ε > 0
it holds that, for all K ∈ N sufficiently large,

lim sup
j→∞

S−∗δ[γ j ]
(
� × {(y, B) ∈ R

m × Bm×d : |y|d/(d−1)(1 − |B|) > K }
)

< ε.

(44)

Fix ε > 0 and let K ∈ N verify (44). By Lemma 2.12 we have that, once R > 0 is
sufficiently large, |A| � R implies that

| f (x, y, A)| � ε(1 + |A|) for all x ∈ � and y ∈ R
m such that |y|d/(d−1)

� (K + 1)(1 + |A|).

Defining AK ⊂ R
m × Bm×d by

AK :=
{
(y, B) ∈ R

m × Bm×d : |y|d/(d−1)(1 − |B|) � K + 1
}

,

we therefore have

lim sup
j→∞

S−∗δ[γ j ]
(
� × [(Rm × Bm×d)\AK ]

)
< ε

and that

|S f (x, y, B)| � ε for (x, y, B) ∈ � × AK whenever |B| � R

1 + R
.

Since S( f − fR)(x, y, B) = 0 whenever |B| � R/(1 + R), we can now
estimate, for R > 0 sufficiently large,
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∣∣∣∣ limj→∞

∫
P( f − fR)(x, y + c j , Pγ j )

∣∣∣∣
=

∣∣∣∣ limj→∞

∫
�×AK

S( f − fR)(x, y + c j , B) dS−∗δ[γ j ](x, y, B)

∣∣∣∣
+

∣∣∣∣ limj→∞

∫
�×[(Rm×Bm×d )\AK ]

S( f − fR)(x, y + c j , B) dS−∗δ[γ j ](x, y, B)

∣∣∣∣
� lim

j→∞

∫
�×AK

ε dS−∗δ[γ j ](x, y, B)

+ ‖S f ‖∞ sup
j

S−∗δ[γ j ](� × [(Rm × B
m×d)\AK ])

� ε

(
sup

j
S−∗δ[γ j ](� × R

m × Bm×d) + ‖S f ‖∞

)
.

Since ε > 0 was arbitrary, we therefore deduce that

lim
R→0

∣∣∣∣ limj→∞

∫
P( f − fR)(x, y + c j , Pγ j )

∣∣∣∣ = 0

and hence that

lim
j→∞

∫
P f (x, y + c j , Pγ j ) = 〈〈

f, ν
〉〉

as required.

Step 4:Assume now that f : �×R
m ×R

m×d → R is Carathéodorywith f ∞ ≡ 0 as
in the previous step, but that f now satisfies the bound | f (x, y, A)| � C(1+|y|p +
|A|) for some p ∈ [1, d/(d − 1)). For k ∈ N, define fk : �×R

m ×R
m×d → R by

fk(x, y, A) :=
{
1{|y|�k}(y) + 1{|y|>k}(y)

1 + k p + |A|
1 + |y|p + |A|

}
f (x, y, A).

Each fk satisfies a bound of the form | fk(x, y, A)| � Ck(1 + |A|) with f ∞
k =

f ∞ ≡ 0 and also satisfies σ f ∞
k = σ f ∞ = 0 if σ f ∞ exists with σ f ∞ = 0. It

follows that fk falls under the hypotheses of Step 2. From the definition of fk , we
can estimate

| fk(x, y, A) − f (x, y, A)| � 1{|y|>k}(y)
|y|p − k p

1 + |y|p + |A| | f (x, y, A)|
� C1{|y|>k}(y)(|y|p − k p),

from which it follows that∣∣∣∣
∫

�×Rm
P( f − fk)(x, y + c j , Pγ j )

∣∣∣∣
� C

∫
{x∈�:|[γ j ](x)+c j |>k}

|[γ j ](x) + c j |p − k p dx
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and that an analogous estimate also holds for ν. Since p < d/(d − 1) and c j → 0,
the sequence ([γ j ] + c j ) j ⊂ BV(�;Rm) is p-uniformly integrable from which it
follows that this estimate is uniform in j . We can therefore let k → ∞ to deduce

lim
j→∞

∫
�×Rm

P f (x, y + c j , Pγ j ) = 〈〈
f, ν

〉〉
.

Step 5: Now assume that f = f ∞. We first prove (39). Since the sequence
(S−∗δ[γ j ]) j is tight in�×R

m ×Bm×d it follows (see for instance Proposition 1.62
in [7]) that

lim
j→∞

∫
g(x, y, B) dS−∗δ[γ j ](x, y, B)

=
∫

g(x, y, B) dS−∗ν(x, y, B) = 〈〈
S−1g, ν

〉〉

for every g ∈ Cb(� × R
m × Bm×d). Setting g = S f ∞, we obtain

lim
j→∞

∫
�×Rm

P f ∞(x, y, Pγ j ) = lim
j→∞

〈
S f ∞, S−∗δ[γ j ]

〉 = 〈〈
f ∞, ν

〉〉
.

Since, for compact K ⊂ � × R
m ,∫

K×Bm×d
|B| dS−∗δ[γ j ](x, y, B) = |γ j |(K ),

we see that the tightness of the sequence (S−∗δ[γ j ]) j implies that (|γ j |) j is also
tight inM+(�×R

m). For ε > 0, let R > 0 be so large that lim sup j |γ j |(�×{|y| >

R}) � ε and let ϕε ∈ C0(R
m; [0, 1]) be such that ϕε(y) = 1 for |y| � R. Since

ϕε f ∈ E(� × R
m) and (1 − ϕε) is supported in {|y| > R}, Lemma 3.18 then

implies

lim
j→∞

∣∣∣∣
∫

�×Rm
P f ∞(x, y + c j , Pγ j ) −

∫
�×Rm

P f ∞(x, y, Pγ j )

∣∣∣∣
� lim

j→∞

∣∣∣∣
∫

�×Rm
P(ϕε f ∞)(x, y + c j , Pγ j ) −

∫
�×Rm

P(ϕε f ∞)(x, y, Pγ j )

∣∣∣∣
+ lim

j→∞

∣∣∣∣
∫

�×Rm
P((1 − ϕε) f ∞)(x, y + c j , Pγ j )

−
∫

�×Rm
P((1 − ϕε) f ∞)(x, y, Pγ j )

∣∣∣∣
� 0 + 2 lim sup

j→∞
|γ j |(� × {|y| > R})

� 2ε.

Thus, since S(ϕε f ) → S f pointwise in � × R
m × Bm×d as ε → 0,

lim
j→∞

∫
�×Rm

P f ∞(x, y + c j , Pγ j ) = 〈〈
f ∞, ν

〉〉

as required.
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To obtain (40), note that since σ f ∞ ∈ C(� × σRm × R
m×d) and is posi-

tively one-homogeneous in the final variable, it follows that f ∞ ∈ E(� × R
m).

Lemma 3.18 then implies that

lim
j→∞

∫
�×Rm

P f ∞(x, y + c j , Pγ j ) = 〈〈
f ∞, ν

〉〉
,

as required.

Step 6: By Step 4 applied to the integrand f − f ∞, we have that

lim
j→∞

∫
�×Rm

P( f − f ∞)(x, y + c j , Pγ j ) = 〈〈
f − f ∞, ν

〉〉
. (45)

By Step 5 applied to f ∞, we also have

lim
j→∞

∫
�×Rm

P f ∞(x, y + c j , Pγ j ) = 〈〈
f ∞, ν

〉〉
, (46)

and so the result follows from adding (45) and (46). ��

Corollary 4.19. Let ν ∈ LY(� ×R
m), (γ j ) j ⊂ L(� ×R

m) be such that γ j
Y→ ν,

(c j ) j ⊂ R
m be such that c j → 0 ∈ R

m and let f ∈ Rw∗(� × R
m). Then it holds

that

lim inf
j→∞

∫
�×Rm

P f (x, y + c j , Pγ j ) �
〈〈

f, ν (� × R
m)

〉〉
. (47)

Proof. First assume that f � 0. For R > 0 let ϕR ∈ Cc(R
m; [0, 1]) be such that

ϕR(y) = 1 if |y| � R and define fR : �×R
m×R

m×d → [0,∞) by fR(x, y, A) :=
ϕR(y) f (x, y, A). It follows that fR ∈ RL(�×R

m) and that fR ↑ f , f ∞
R ↑ f ∞ in

�×R
m ×R

m×d as R → ∞. In addition, σ f ∞
R exists for every R > 0 and satisfies

σ f ∞
R (�×∞∂Bm ×R

m×d) ≡ 0. By Proposition 4.18 (ii) combined with the fact
that σ f ∞

R (� × ∞∂Bm × R
m×d) = 0 implies 〈〈 fR, ν〉〉 = 〈〈

fR, ν (� × R
m)

〉〉
,

we have that

lim
j→∞

∫
P fR(x, y + c j , Pγ j ) = 〈〈

fR, ν
〉〉 = 〈〈

fR, ν (� × R
m)

〉〉
.

The positivity of f and the Monotone Convergence Theorem then imply that

lim inf
j→∞

∫
P f (x, y + c j , Pγ j ) � lim

R→∞ lim
j→∞

∫
P fR(x, y + c j , Pγ j )

= lim
R→∞

〈〈
fR, ν (� × R

m)
〉〉

= 〈〈
f, ν (� × R

m)
〉〉
.

(48)

If we only assume that f ∈ Rw∗(� ×R
m) then, letting h ∈ RL(� ×R

m) with
σh∞ = 0 be such that

f (x, y, A) � −h(x, y, A),
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we can combine the previous step applied to f + h with the fact that Proposi-
tion 4.18 (ii) applies to −h to deduce that

lim inf
j→∞

∫
P f (x, y + c j , Pγ j ) = lim inf

j→∞

∫
P( f + h)(x, y + c j , Pγ j )

− lim
j→∞

∫
Ph(x, y + c j , Pγ j )

�
〈〈

f + h, ν (� × R
m)

〉〉 − 〈〈
h, ν

〉〉
= 〈〈

f + h, ν (� × R
m)

〉〉 − 〈〈
h, ν (� × R

m)
〉〉

= 〈〈
f, ν (� × R

m)
〉〉
,

as required, where we used the fact that σh∞ = 0 implies 〈〈h, ν〉〉 = 〈〈
h, ν (� ×

R
m)

〉〉
to justify the penultimate equality. ��

5. Tangent Young Measures and Jensen Inequalities

By Corollary 4.19 with γ j = γ [u j − (u j )] and c j = (u j ), we know that, if
f ∈ Rw∗(� × R

m) and (u j ) j ⊂ BV(�;Rm), u ∈ BV#(�;Rm) are such that

u j
∗
⇀ u then, by passing to a non-relabelled subsequence so that (γ [u j − (u j )]) j

generates a (lifting) Young measure ν ∈ AL(� × R
m) with �ν� = u, it holds that

lim inf
j→∞ F[u j ] = lim inf

j→∞

∫
�×Rm

P f (x, y + (u j ), Pγ [u − (u j )])
�

〈〈
f, ν (� × R

m)
〉〉
.

Letting λ
gs
ν := λν − dλν

d|γ [u]| |γ [u]| (�\Ju × R
m) denote the graph-singular part

of λν and using Corollary 4.9 together with the fact that f ∞ � 0, we can write

〈〈
f, ν (� × R

m)
〉〉

=
∫

�×Rm

〈
f (x, y, � ), νx,y

〉
dιν(x, y)

+
∫

(�\Ju)×Rm

dλν

d|γ [u]| (x, y)
〈

f ∞(x, y, � ), ν∞
x,y

〉
d|γ [u]|(x, y)

+
∫

�×Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉
dλgsν (x, y)

�
∫

�

〈
f (x, u(x), � ), νx,u(x)

〉
dx

+
∫

�\Ju

dλν

d|γ [u]| (x, u(x))〈 f ∞(x, u(x), � ), ν∞
x,u(x)〉 d|Du|(x)

+
∫
Ju×Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉
dλgsν (x, y).
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Using the equality d|γ [u]|
dιν

(x, u(x)) = d|Du|
dLd (x) = |∇u(x)|, disintegrating

λ
gs
ν = λν = π#λν ⊗ ρ on Ju × R

m

and using again the positivity of f ∞ to neglect the (Hd−1 Ju) ⊗ ρ-singular part
of λgs , we can then deduce

lim inf
j→∞ F[u j ]

�
∫

�

〈
f (x, u(x), � ), νx,u(x)

〉

+ dλν

dιν
(x, u(x))〈 f ∞(x, u(x), � ), ν∞

x,u(x)〉 dx

+
∫

�

dλν

d|γ [u]| (x, u(x))〈 f ∞(x, u(x), � ), ν∞
x,u(x)〉 d|Dcu|(x)

+
∫
Ju

dπ#λν

dHd−1 Ju
(x)

∫
Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉
dρx (y) dHd−1(x).

(49)

The lower semicontinuity component of Theorem A is now reduced to the task of
obtaining the three pointwise inequalities

〈
f (x, u(x), � ), νx,u(x)

〉 + dλν

dιν
(x, u(x))〈 f ∞(x, u(x), � ), ν∞

x,u(x)〉
� f (x, u(x),∇u(x))

for Ld -almost every x ∈ �,

dλν

d|γ [u]| (x, u(x))〈 f ∞(x, u(x), � ), ν∞
x,u(x)〉 � f ∞

(
x, u(x),

dDcu

d|Dcu| (x)

)

for |Dcu|-almost every x ∈ �, and

dπ#λν

dHd−1 Ju
(x)

∫
Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉
dρx (y) � K f [u]

for Hd−1-almost every x ∈ Ju . In Section 5.1, we will show that the left hand
side of each of these inequalities can be computed as a duality product 〈〈h, σ 〉〉with
σ ∈ ALY(� × R

m). In the case of the first two inequalities, h depends only on
the A variable, and only on the y and A variables in the third case. From there, the
theory in Section 5.2 uses the definitions of quasiconvexity and K f [u] to obtain
the desired inequalities.

5.1. Tangent Young Measures

Let ν ∈ LY(�×R
m)with �ν� = u ∈ BV#(�;Rm) and, for x0 ∈ Du ∪Cu ∪Ju ,

let ur be as defined in Theorem 2.4. Let (γ j ) j ⊂ L(� ×R
m) be a sequence which

generates ν. Recalling

cr :=

⎧⎪⎨
⎪⎩
1 if x0 ∈ Du,

r if x0 ∈ Ju,
rd

|Du|(B(x0,r))
if x0 ∈ Cu,
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for each r > 0, let

γ
r,cr
j = cr

rd
(T (x0,r,cr )

γ j
)#γ j ∈ L(Bd × R

m)

be a rescaling of γ j of the form discussed in Lemma 3.16 for each j ∈ N, where

T (x0,r,cr )
γ j : B(x0, r) × R

m → B
d × R

m denotes the homothety

T (x0,r,cr )
γ j

(x, y) =
(

x − x0
r

, cr
y − ([γ j ])x0,r

r

)
.

(Note that, according to the terminology of Lemma 3.16, it is not the case that
γ

r,cr
j = γ r

j here since cr in this context does not represent the volume fraction
associated to D[γ j ] but is fixed as the volume fraction corresponding to Du instead.)
Since Lemma 3.16 states that

gr
[γ r,cr

j ]
# (Ld

B
d) = 1

rd
(T (x0,r,cr )

γ j
)# gr

[γ j ]
# (Ld B(x0, r)),

we can therefore compute

Pγ
r,cr
j =

(
γ

r,cr
j , gr

[γ r,cr
j ]

# (Ld
B

d)

)

=
(

cr

rd
(T (x0,r,cr )

γ j
)#γ j ,

1

rd
(T (x0,r,cr )

γ j
)# gr

[γ j ]
# (Ld B(x0, r))

)

= 1

rd
(T (x0,r,cr )

γ j
)#

(
crγ j , gr

[γ j ]
# (Ld B(x0, r))

)

= 1

rd
(T (x0,r,cr )

γ j
)#

[(
cr 0
0 1

)
Pγ j

]
,

where

(
cr 0
0 1

)
: Rm×d ×R → R

m×d ×R denotes the linearmap (A, t) �→ (cr A, t).

Thanks to the positive one-homogeneity of P f in (A, t) in conjunction with (7)
from Section 2, these observations imply that, for f ∈ E(� × R

m),
∫

P f (z, w, Pγ
(r,cr )
j ) = 1

rd

∫
P f

(
z, w, (T (x0,r,cr )

γ j
)#

[(
cr 0
0 1

)
Pγ j

])

= 1

rd

∫
P f

(
T (x0,r,cr )

γ j
(x, y),

(
cr 0
0 1

)
Pγ j

)
.

Define fcr ∈ E(� × R
m) by

fcr (x, y, A) := f
(

T (x0,r,cr )
[ν] (x, y), cr A

)
= f

(
x − x0

r
, cr

y − (u)x0,r

r
, cr A

)

so that (recall (26))

P fcr (x, y, A) = P f

(
T (x0,r)

[ν] (x, y),

(
cr 0
0 1

)
(A, t)

)
.
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Noting

T (x0,r,cr )
γ j

(x, y) = T (x0,r)
[ν] (x, y) + r−1cr (0, ([γ j ])x0,r − (u)x0,r ),

we can therefore write
∫

P f (z, w, Pγ r
j ) =

∫
P fcr (x, y + r−1cr [([γ j ])x0,r − (u)x0,r )], Pγ j ).

Since

([γ j ])x0,r − (u)x0,r → 0 as j → 0,

Lemma 3.18 implies that

lim
j→∞

∫
P f (z, w, Pγ r

j ) = 1

rd
lim

j→∞

∫
P fcr (x, y + ([γ j ])x0,r − (u)x0,r , Pγ j )

= 1

rd
lim

j→∞

∫
P fcr (x, y, Pγ j )

= 1

rd

〈〈
fcr , ν

〉〉
.

This limit exists for any f ∈ E(Bd × R
m), and so it follows that γ r

j
Y→ σ r as

j → ∞, where, by virtue of the definition of fcr , σ r ∈ LY(Bd × R
m) is defined

by

〈〈
f, σ r

〉〉 = 1

rd

〈〈
f

(
� − x0

r
, cr

(
� − (u)x0,r

r

)
, cr �

)
, ν

〉〉
. (50)

Wewill show that, forLd+|Du|-almost every x0 ∈ Du∪Cu∪Ju , the family (σ r )r>0
(or at least a subsequence) convergesweakly* to a limit as r → 0. The primary tools
in identifying this limit for x0 ∈ Du ∪ Cu are Theorem 3.17 which guarantees the
strict convergence of the rescaled liftings (γ [ur ])r>0 and the graphical Besicovitch
Derivation Theorem, Theorem 5.1 introduced below.We note that the usual version
of the Besicovitch Derivation Theorem and its generalisation, theMorse Derivation
Theorem (see [36] and also Theorems 2.22 and 5.52 in [7]) cannot be used in this
situation, since the aspect ratio (crr−1)/r−1 = cr corresponding to the scaling
present in (50) (which, due to the need to apply Theorem 3.17, cannot be modified)
will converge to 0 for x ∈ Cu .

The following theorem demonstrates that, provided the denominator is a graph-
ical measure, derivatives of measures can be computed using families of sets which
are very different to the usual decreasing cylinders B(x, r) × B(y, r), so long as
the family is sufficiently well behaved according to the differentiating measure:

Theorem 5.1. (Derivation Theorem for graphical measures) For μ ∈ M+(�), let
u : � → R

m be μ-measurable so that η := gru
# μ ∈ M+(� × R

m). For each
x ∈ � and r ∈ (0, 1), let cx

r > satisfy limr↓0 cx
r = 0 and yx

r ∈ R
m satisfy



Filip Rindler & Giles Shaw

limr↓0 yx
r = u(x). Then, if λ is a (possibly vector-valued) measure on � × R

m, it
holds that

dλ

dη
(x, u(x)) = lim

r→0

λ(B(x, r) × B(yx
r , cx

r ))

π#η(B(x, r))
= lim

r→0

λ(B(x, r) × B(yx
r , cx

r ))

μ(B(x, r))

for η-almost every (x, u(x)) ∈ � ×R
m, where π : � ×R

m → � is the projection
map π(x, y) := x. In particular, if λ ⊥ η then the above limit is equal to 0 η-almost
everywhere. In addition, μ-almost every x ∈ � is a cylindrical η-Lebesgue point
in the sense that

lim
r→0

1

μ(B(x0, r))

∫
B(x0,r)×Rm

| f (x, y) − f (x0, u(x0))| dη(x, y) = 0.

Proof. Let

λ = dλ

dη
η + λs, λs ⊥ η,

be the Radon–Nikodym decomposition of λ with respect to η. We see first that, for
f ∈ L1(� × R

m; η), the definition of η = gru
# μ implies

lim
r↓0

1

μ(B(x0, r))

∫
B(x0,r)×B(y

x0
r ,c

x0
r )

| f (x, y) − f (x0, u(x0))| dη(x, y)

� lim
r↓0

1

μ(B(x0, r))

∫
B(x0,r)×Rm

| f (x, y) − f (x0, u(x0))| dη(x, y)

= lim
r↓0

1

μ(B(x0, r))

∫
B(x0,r)

| f (x, u(x)) − f (x0, u(x0))| dμ(x).

It can easily be checked that the conditions f ∈ L1(� × R
m; η) and f ◦ gru ∈

L1(�;μ) are equivalent, and so it follows from f ∈ L1(� ×R
m; η) that μ-almost

every x ∈ � is a μ-Lebesgue point for x �→ f (x, u(x)). We therefore deduce that

lim
r↓0

1

μ(B(x0, r))

∫
B(x0,r)×Rm

| f (x, y) − f (x0, u(x0))| dη(x, y) = 0 (51)

for μ-almost every x0 ∈ �. Letting f := dλ
dη , we obtain

lim
r↓0

λ(B(x0, r) × B(yx0
r , cx0

r ))

μ(B(x0, r))

= dλ

dη
(x0, u(x0)) + lim

r→0

λs(B(x0, r) × B(yx0
r , cx0

r ))

μ(B(x0, r))
.

Now define for x ∈ � such that μ(B(x, r)) > 0 for all r > 0 the function

F(x) := lim sup
r→0

|λs |(B(x, r) × B(yx
r , cx

r ))

μ(B(x, r))
.
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Let Z ⊂ � be such that μ(Z) = μ(�), |λs |(gru(Z)) = 0 and such that at every
x ∈ Z it holds thatμ(B(x, r)) > 0 for all r > 0. Such a set Z exists since η = gru

# μ

is singular to λs and η is carried by the set gru(�).
Let E ⊂ Z be a Borel set such that F(x) > t > 0 for all x ∈ E and for

ε ∈ (0, t) arbitrary let A ⊃ gru(E) be an arbitrary open set so that we can define
the family

F :=
{

B(x, r) × B(yx
r , cx

r ) : x ∈ E, B(x, r) × B(yx
r , cx

r ) ⊂ A and

|λs |(B(x, r) × B(yx
r , cx

r )) � (t − ε)μ(B(x, r))
}

⊂ R
d × R

m .

Since cx
r ↓ 0 and yx

r → u(x) as r ↓ 0 it follows that π#F is a fine cover for E and
so, by the Vitali–Besicovitch Covering Theorem, there exists a countable disjoint
subfamily of π#F (which we can write as π#F ′ for some disjoint F ′ ⊂ F) which
covers μ-almost all of E . We therefore have that

(t − ε)μ(E) � (t − ε)
∑

B∈F ′
μ(π#B) �

∑
B∈F ′

|λs |(B) � |λs |(A).

First letting ε ↓ 0 and then using the outer regularity of |λs | to approximate gru(E)

with a sequence of open sets, we obtain

tμ(E) � |λs |(gru(E)).

Since |λs |(gru(Z)) = 0, also |λs |(gru(E)) = 0 and if E was such that η(gru(E)) =
μ(E) > 0, then t = 0, a contradiction. It follows that F(x) = 0 forμ-almost every
x ∈ � and hence that

lim
r↓0

λ(B(x, r) × B(yx
r , cx

r ))

μ(B(x, r))

= dλ

dη
(x, u(x)) for η-almost everywhere (x, u(x)) ∈ � × R

m

as required. The stated Lebesgue point property follows from (51). ��
Using Theorem 5.1, we can prove that the behaviour of graphical measures

under general homotheties is stable under multiplication by integrable functions:

Lemma 5.2. Let η ∈ M+(� ×R
m) be a u-graphical measure on � ×R

m (that is,
η = gru

# μ for some μ ∈ M+(�) and some μ-measurable function u : � → R
m)

and let x0 ∈ �, rn ↓ 0, cn ↓ 0, an ↓ 0 and (yn)n ⊂ R
m with yn → u(x0) be such

that

anT (x0,rn),(yn ,cn)
# η

∗
⇀ η0 in M(Bd × R

m).

If f ∈ L1(�×R
m, μ) and x0 is an η-cylindrical Lebesgue point for f in the sense

of Theorem 5.1, then

anT (x0,rn),(yn ,cn)
# ( f η)

∗
⇀ f (x0, u(x0))η

0,
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where T (x0,rn),(yn ,cn) : B(x0, rn) × R
m → B

d × R
m denotes the homothety

T (x0,rn),(yn ,cn)(x, y) =
(

x − x0
r

,
y − yn

cn

)
.

Moreover, if anT (x0,rn),(yn ,cn)
# η → η0 strictly, then anT (x0,rn),(yn ,cn)

# f η → f (x0)η0

strictly as well.

Proof. Since the sequence (anT (x0,rn),(yn ,cn)
# η)n is bounded, it must be the case

that

sup
n

anη(B(x0, rn) × R
m) = sup

n
anT (x0,rn),(yn ,cn)

# η(Bd × R
m) < ∞.

The Lebesgue point property of x0 then implies

lim
n→∞ an

∣∣∣T (x0,rn),(yn ,cn)
# ( f η) − T (x0,rn),(yn ,cn)

# ( f (x0, u(x0))η)

∣∣∣ (Bd × R
m)

� sup
n

{anμ(B(x0, rn))}

· lim
n→∞

1

μ(B(x0, rn))

∫
B(x0,rn)×Rm

| f (x, y) − f (x0, u(x0))| dη(x, y)

= 0.

We therefore see that, for any ϕ ∈ C0(B
d × R

m),

lim
n→∞

∣∣∣
〈
ϕ, anT (x0,rn),(yn ,cn)

# ( f η)
〉
−

〈
ϕ, anT (x0,rn),(yn ,cn)

# ( f (x0, u(x0))η)
〉∣∣∣

� lim
n→∞ ‖ϕ‖∞an

∣∣∣T (x0,rn),(yn ,cn)
# ( f η)

− T (x0,rn),(yn ,cn)
# ( f (x0, u(x0))η

∣∣∣ (Bd × R
m)

= 0.

It also holds that

lim
n→∞

∣∣∣∣∣anT (x0,rn),(yn ,cn)
# ( f η)

∣∣(Bd × R
m)

−∣∣arn T (x0,rn),(yn ,cn)
# f (x0, u(x0))η

∣∣(Bd × R
m)

∣∣∣
� lim

n→∞ an

∣∣∣T (x0,rn),(yn ,cn)
# f η − T (x0,rn),(yn ,cn)

# f (x0, u(x0))η
∣∣∣ (Bd × R

m)

= 0.

These estimates prove the claims. ��
Theorem 5.3. Let ν ∈ LY(� × R

m) and define u := �ν�. For Ld -almost every
x0 ∈ �, there exists a regular tangent Youngmeasureσ ∈ LY(Bd ×R

m) satisfying
that

(i) �σ � = u0 where u0(z) := ∇u(x0)z, and ισ = gru0
# (Ld

B
d);

(ii) σz,w = νx0,u(x0) for ισ -almost every (z, w) ∈ B
d × R

m;
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(iii) λσ = dλν

dιν
(x0, u(x0))ισ ;

(iv) σ∞
z,w = ν∞

x0,u(x0)
for λσ -almost every (z, w) ∈ B

d × R
m.

In addition, if ν ∈ ALY(� × R
m) then σ ∈ ALY(Bd × R

m).

Proof. LetH := {ϕk ⊗ hk}k∈N ⊂ E(Bd ×R
m) be a countable collection of tensor

products determiningLY-convergence as discussed inRemark 4.12 and let x0 ∈ Du

be such that

(I) the family ur as defined in Theorem 2.4 converges strongly to u0 in BV#(�;
R

m) as r → 0;
(II) it holds that

lim
r→0

π#λ
s
ν(B(x0, r))

rd
< ∞,

where λs
ν := λν − dλν

dιν
ιν is the singular part of λν with respect to ιν ;

(III) for each hk ∈ H, (x0, u(x0)) is a cylindrical ιν-Lebesgue point for the
function

(x, y) �→ 〈
hk, νx,y

〉 + dλν

dιν
(x, y)

〈
h∞

k , ν∞
x,y

〉

in the sense of Theorem 5.1;
(IV) for each K ∈ N,

lim
r→0

λs
ν(B(x0, r) × B((u)x0,r , Kr))

rd
= lim

r→0

λs
ν(B(x0, r) × B((u)x0,r , Kr))

ω−1
d π#ιν(B(x0, r))

= ωd
dλs

dιν
(x0, u(x0))

= 0.

That (I) and (II) are satisfied forLd -almost every x0 ∈ � follows fromTheorem 2.4
and the Besicovitch Derivation Theorem. Note that, although λs ⊥ ιν and ιν =
gru

#(Ld �), it need not be the case that π#λ
s ⊥ Ld � and so we can only

guarantee that the limit appearing in (II) is finiteLd -almost everywhere, rather than
equal to 0. For fixed k, K ∈ N, (III) and (IV) are satisfied Ld -almost everywhere
by Theorem 5.1.

For x0 ∈ Du , it holds that cr = 1 for all r > 0 and (50) therefore reads as

〈〈
ϕk ⊗ hk, σ r

〉〉 = 1

rd

〈〈
ϕk

(
� − x0

r
,

� − (u)x0,r

r

)
⊗ hk, ν

〉〉

= 1

rd

∫
ϕk

(
x − x0

r
,

y − (u)x0,r

r

)

·
{〈

hk, νx,y
〉 + dλν

dιν
(x, y)

〈
h∞

k , ν∞
x,y

〉}
dιν(x, y)

+ 1

rd

∫
ϕk

(
x − x0

r
,

y − (u)x0,r

r

) 〈
h∞

k , ν∞
x,y

〉
dλs

ν(x, y). (52)
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Since (
1

rd
(T (x0,r)

γ [u] )#ιν

)
(Bd × R

m) = 1

rd
(T (x0,r)

γ [u] )# gr
u
#(Ld B(x0, r))

= grur

# (Ld
B

d)

and the convergence ur → u0 in L1(Bd;Rm) implies that grur

# (Ld
B

d) →
gru0

# (Ld
B

d) strictly inM(Bd × R
m), we have that

1

rd
(T (x0,r)

γ [u] )#ιν → gru0
# (Ld) strictly inM(Bd × R

m).

Using condition (III) and applying Lemma 5.2, we therefore see that for every
k ∈ N the family (μr )r>0 ⊂ M(Bd × R

m) defined by

μr := 1

rd
(T (x0,r)

γ [u] )#

{〈
hk, νx,y

〉 + dλν

dιν
(x, y)

〈
h∞

k , ν∞
x,y

〉}
ιν

converges strictly inM(Bd × R
m) to the limit

{〈
hk, νx0,u(x0)

〉 + dλν

dιν
(x0, u(x0))

〈
h∞

k , ν∞
x0,u(x0)

〉}
gru0

# (Ld
B

d).

It then follows immediately that

lim
r→0

1

rd

∫
ϕk

(
x − x0

r
,

y − (u)x0,r

r

){ 〈
hk, νx,y

〉

+dλν

dιν
(x, y)

〈
h∞

k , ν∞
x,y

〉}
dιν(x, y)

= lim
r→0

∫
ϕk (z, w) dμr (z, w)

〈
h∞

k , ν∞
x,y

〉

=
∫

ϕk (z, w)

{ 〈
hk, νx0,u(x0)

〉

+dλν

dιν
(x0, u(x0))

〈
h∞

k , ν∞
x0,u(x0)

〉}
d
[
gru0

# (Ld
B

d)
]
(z, w). (53)

Taking ϕk = 1, hk = | � | (note that we can always enlarge H by a countable
number of functions), this gives

lim
r→0

1

rd

∫ {
|νx,y |(Rm×d) + dλν

dιν
(x, y)

}
dιν(x, y)

� gru0
# (Ld)(Bd × R

m)

{
|νx0,u(x0)|(Rm×d) + dλν

dιν
(x0, u(x0))

}

< ∞.

(54)

On the other hand, by condition (II) for 1 ⊗ | � | ∈ H, we observe

lim
r→0

1

rd
λs

ν(B(x0, r) × σRm) � lim
r→0

π#λ
s
ν(B(x0, r))

rd
< ∞.
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Combining this with (54), we see that limr ‖σr‖Y < ∞. The sequential weak*
closedness ofLY(Bd ×R

m) inY(�×R
m;Rm×d), see Lemma4.7, togetherwith the

YoungMeasure Compactness Theorem 4.13 then allows us to obtain a subsequence

rn ↓ 0 such that σ rn

Y→ σ for some σ ∈ LY(Bd ×R
m) with �σ � = limn urn = u0.

By assuming that H contains a countable set of functions {ϕk ⊗ hk} with h∞
k = 0

which are dense in C0(B
d × R

m), we see that (52) in conjunction with with (53)
implies that σz,w = νx0,u(x0) for ισ -almost every (z, w) ∈ B

d × R
m .

Next, we claim that λs
σ := λσ − dλσ

dισ
ισ satisfies supp λs

σ ⊂ � × ∞∂Bm . By

considering the integrand 1 ⊗ | � | ∈ E(Bd × R
m), we see that the convergence

〈〈1 ⊗ | � |, σ rn 〉〉 → 〈〈
1 ⊗ | � |, σ 〉〉 implies

1

rd
n

(T (x0,rn)
γ [u] )#

(
|νx,y |(Rm×d)ιν + λν

) ∗
⇀ |σz,w|(Rm×d)ισ + λσ

as n → ∞ inM+(� × σRm). The computation (53) has already shown that

1

rd
n

(T (x0,rn)
γ [u] )#

{
|νx,y |(Rm×d) + dλν

dιν
(x, y)

}
ιν

→
{
|νx0,u(x0)|(Rm×d) + dλν

dιν
(x0, u(x0))

}
ισ

strictly in M+(Bd × R
m) (and hence strictly in M+(Bd × σRm)). Since σz,w =

νx0,u(x0) almost everywhere, we see that

λσ = dλν

dιν
(x0, u(x0))ισ + w*-lim

n→∞
1

rd
n

(T (x0,r)
γ [u] )#λ

s
ν.

By the lower semicontinuity of the total variation,(
λσ − dλν

dιν
(x0, u(x0))ισ

)
(Bd × KB

m) � lim inf
n→∞

1

rd
n

(T (x0,rn)
γ [u] )#λ

s
ν(B

d × KB
m).

However, condition (IV) implies

1

rd
n

(T (x0,rn)
γ [u] )#λ

s
ν(B

d × KBm)

= λs
ν(B(x0, rn) × B((u)x0,rn , Krn))

rd
n

→ 0 as n → ∞,

and so (λs
σ − dλν

dιν
(x0, u(x0))ισ )(Bd × KB

m) = 0 for each K ∈ N. Letting K → ∞,

we see that dλσ

dισ
≡ dλν

dιν
(x0, u(x0)) and λs

σ must be concentrated on Bd × ∞∂Bm .
Applying Theorem4.15, we can therefore find a (not relabelled)Youngmeasure

σ = σ (Bd × R
m) ∈ LY(Bd × R

m) satisfying

〈〈
ϕk ⊗ hk, σ

〉〉 =
∫

ϕk(z,∇u(x0)z)

{ 〈
hk, νx0,u(x0)

〉

+dλν

dιν
(x0, u(x0))

〈
h∞

k , ν∞
x0,u(x0)

〉}
dz
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for every ϕk ⊗ hk ∈ H. Making use of the density property of H in E(Bd × R
m),

we obtain the required result. That σ inherits membership of ALY(Bd × R
m)

from ν follows from the fact that each σ r is a member of ALY(Bd × R
m), that

ALY(Bd × R
m) is closed under weak* convergence in Y(Bd × R

m;Rm×d), and
that Theorem 4.15 preserves membership of ALY(Bd;Rm). ��
Theorem 5.4. Let ν ∈ LY(� × R

m) and define u := �ν� ∈ BV#(�;Rm). Then
for |Dcu|-almost every x0 ∈ �, there exists a Cantor tangent Young measure
σ ∈ LY(Bd × R

m) such that

(i) [σ ] = γ [u0] ∈ BV#(B
d;Rm) for some u0 of the form described in Theo-

rem 2.4;
(ii) σz,w = δ0 for ισ -almost every (z, w) ∈ B

d × R
m;

(iii) σ∞
z,w = ν∞

x0,u(x0)
for λσ -almost every (z, w) ∈ B

d × R
m;

(iv) λσ = dλν

d|γ [u]| (x0, u(x0))|γ [u0]|.
In addition, if ν ∈ ALY(� × R

m) then σ ∈ ALY(Bd × R
m).

Proof. As before, LetH := {ϕk ⊗hk}k∈N ⊂ E(Bd ×R
m) be a countable collection

of tensor products determining LY-convergence as discussed in Remark 4.12 and
let x0 ∈ Cu be such that

(I) there exists a sequence rn ↓ 0 for which urn (as defined in Theorem 2.4)
converges strictly in BV#(B

d;Rm) to a limit u0, γ [urn ] → γ [u0] strictly,
and

lim
n→∞ r1−d

n |Du|(B(x0, rn)) = 0;

(II) for each k ∈ N,

lim
r→0

1

|Du|(B(x0, r))

∣∣∣∣
∫

B(x0,r)

〈
hk, νx,u(x)

〉

+ dλν

dιν
(x, u(x))〈h∞

k , ν∞
x,u(x)〉 dx

∣∣∣∣ = 0;

(III) it holds that

lim
r→0

π#λν(B(x0, r))

|Du|(B(x0, r))
< ∞, lim

r→0

|D j u|(B(x0, r))

|Du|(B(x0, r))
= 0;

(IV) for each k ∈ N and every ϕk ⊗ hk ∈ H, (x0, u(x0)) is a γ [u] ((�\Ju) ×
R

m) cylindrical Lebesgue point for the function

(x, y) �→ dλν

d|γ [u]| (x, y)
〈
h∞

k , ν∞
x,y

〉

in the sense of Theorem 5.1;
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(V) for each K ∈ N,

lim
n→∞

λ
gs
ν (B(x0, rn) × B((u)x0,rn , Krnc−1

rn ))

|Du|(B(x0, rn))

= lim
n→∞

λ
gs
ν (B(x0, rn) × B((u)x0,rn , Krnc−1

rn ))

π#|γ [u]|(B(x0, rn))

= dλgsν
d|γ [u]| (x0, u(x0)) = 0,

where λ
gs
ν := λν − dλν

d|γ [u]| |γ [u]| ((�\Ju)×R
m) is the graph-singular part

of λν .

By Proposition 3.92 in [7], |Dcu|-almost every x0 ∈ � admits a sequence
sn ↓ 0 such that limn s1−d

n |Du|(B(x0, sn)) = 0. By Theorem 3.17, we can (upon
passing to a non-relabelled subsequence) find τ ∈ (0, 1) such that (uτ sn )n and
(γ [uτ sn ])n converge strictly in BV(Bd;Rm) and AL(Bd × R

m) to limits u0 and
γ [u0], respectively. Since

lim
n→∞(τ sn)1−d |Du|(B(x0, τ sn)) � τ 1−d lim

n→∞ s1−d
n |Du|(B(x0, sn)) = 0,

we can take rn := τ sn to see that condition (I) holds for |Dcu|-almost every x0 ∈ Cu .
Condition (II) follows from the Besicovitch Derivation Theorem. For |Du|-almost
every x0 ∈ Cu ,

lim
r→0

|Du|(B(x0, r))

|Dcu|(B(x0, r))
= lim

r→0

|Du|(B(x0, r))

|Dcu|(B(x0, r))
= 1.

Since |Dcu|(∂ B(x0, r)) = 0, this implies that |Dcu|(B(x0, r)) = |Dcu|(B(x0, r))

for every r > 0 and x0. Thus,

lim
r↓0

|Du|(B(x0, r))

|Du|(B(x0, r))
= 1 for |Du|-almost every x0 ∈ Cu .

We see then that (III) also follows from the Besicovitch Derivation Theorem (recall
that |D j u| is concentrated on Ju and that Cu ∩ Ju = ∅). conditions (IV) and (V)
follow from Theorem 5.1 combined with the fact that γ [u] ((�\Ju) × R

m) =
gru

#(∇uLd + Dcu) is a u-graphical measure, that

lim
r↓0

|∇uLd + Dcu|(B(x0, r))

|Du|(B(x0, r))
= 1 for |Du|-almost every x0 ∈ �\Ju ,

that (u)x0,r → u(x0) for |Dcu|-almost every x0 ∈ Cu , and that (by virtue of
condition (I)) Krnc−1

rn
= Kr1−d

n |Du|(B(x0, rn)) → 0 as n → ∞.
Relabelling σ n := σ rn and cn := crn = rd

n /|Du|(B(x0, rn)), from (50) we get,
for positively one-homogeneous hk ,

〈〈
ϕk ⊗ hk, σ n

〉〉 = cn

rd
n

〈〈
ϕk

(
� − x0

r
, cn

(
� − (u)x0,rn

rn

))
⊗ hk, ν

〉〉
. (55)
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Since we can always assume that 1 ⊗ | � | ∈ H, conditions (II) and (III) imply

lim sup
n→∞

‖σ n‖Y = lim sup
n→∞

{
1

|Du|(B(x0, rn))

∫
B(x0,rn)

〈| � |, νx,u(x)

〉
dx

+π#λν(B(x0, rn))

|Du|(B(x0, rn))

}

< ∞.

Passing to a (non-relabelled) subsequence in n, we are therefore guaranteed the

existence of σ ∈ LY(Bd × R
m) such that σ n

∗
⇀ σ as n → ∞.

First, we show that σz,w = δ0 for ισ -almost every (z, w) ∈ B
d × R

m . By
Corollary 4.9 and the fact that �σ n� = urn , we observe first that �σ � = u0 and

hence that ισ = gru0
# (Ld

B
d). Let ϕ ∈ Cc(R

m×d; [0, 1]). Since 1 ⊗ ϕ( � )| � | ∈
E(Bd × R

m) with σ(1 ⊗ ϕ( � )| � |)∞ ≡ 0, we must have that

〈〈
1 ⊗ ϕ( � )| � |, σ 〉〉 =

∫
Bd

〈
ϕ( � )| � |, σz,u0(z)

〉
dz.

On the other hand, by (50) in combination with condition (II),

lim
n→∞

〈〈
1 ⊗ ϕ( � )| � |, σ n

〉〉

= lim
n→∞

1

rd
n

∫
B(x0,rn)

〈
ϕ(crn

� )|crn
� |, νx,u(x)

〉
dx

= lim
n→∞

1

|Du|(B(x0, rn))

∫
B(x0,rn)

〈
ϕ(crn

� )| � |, νx,u(x)

〉
dx

� lim
n→∞

1

|Du|(B(x0, rn))

∫
B(x0,rn)

〈| � |, νx,u(x)

〉
dx

= 0.

It follows that
〈
ϕ( � )| � |, σz,u0(z)

〉 = 0 for Ld -almost every z ∈ B
d for every

ϕ ∈ Cc(R
m×d ; [0, 1]), which is only possible if σz,u0(z) = δ0 for Ld -almost every

z ∈ B
d .

Estimating next the regular part of (55), we see that condition (II) forces
∣∣∣∣ cn

rd
n

∫
ϕk

(
x − x0

rn
, cn

(
y − (u)x0,rn

rn

))

·
{〈

hk, νx,y
〉 + dλν

dιν
(x, y)

〈
h∞

k , ν∞
x,y

〉}
dιν(x, y)

∣∣∣∣
=

∣∣∣∣ cn

rd
n

∫
ϕk

(
x − x0

rn
, cn

(
u(x) − (u)x0,rn

rn

))

·
{〈

hk, νx,u(x)

〉 + dλν

dιν
(x, u(x))〈h∞

k , ν∞
x,u(x)〉

}
dx

∣∣∣∣
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� ‖ϕk‖∞
|Du|(B(x0, rn))

∫
B(x0,rn)

∣∣∣〈hk, νx,u(x)

〉 + dλν

dιν
(x, u(x))〈h∞

k , ν∞
x,u(x)〉

∣∣∣ dx

→ 0 as rn → 0. (56)

Now note that, by condition (III) and the fact that Jur = {z ∈ B
d : x0 + r z ∈

Ju} = T (x0,r)(Ju), it holds that

lim
r→0

|γ [ur ]|(Jur × R
m) = lim

r→0

|D j u|(B(x0, r))

|Du|(B(x0, r))
= 0. (57)

Abbreviating un := urn , we see that (57) combined with condition (I) implies

(γ [un] (Bd\Jun × R
m))n converges strictly to γ [u0] inM(Bd × R

m;Rm×d).

(58)

Recalling the notation of Lemma 3.16 to write

γ [un] (Bd\Jun × R
m) = cn

rd
n

(
T (x0,rn)

γ [u]
)
#

[
γ [u] ((�\Ju) × R

m)
]
,

we therefore deduce from (58) in combination with Lemma 5.2 and condition (IV)
that the family (μk

n)n∈N ⊂ M(Bd × R
m) defined by

μk
n := cn

rd
n

(
T (x0,rn)

γ [u]
)
#

(
dλν

d|γ [u]| (x, y)
〈
h∞

k , ν∞
x,y

〉
|γ [u]| ((�\Ju) × R

m)

)

converges strictly to the limit

(
dλν

d|γ [u]| (x0, u(x0))
〈
h∞

k , ν∞
x0,u(x0)

〉)
|γ [u0]| for each fixed k ∈ N.

Thus, for ϕ ∈ C(Bd × σRm),

lim
n→∞

cn

rd
n

∫
(�\Ju)×Rm

ϕ

(
x − x0

rn
, cn

(
y − (u)x0,rn

rn

))

dλν

d|γ [u]| (x, y)
〈
h∞

k , ν∞
x,y

〉
d|γ [u]|(x, y)

= lim
n→∞

∫
ϕ (z, w) dμk

n(z, w) (59)

=
∫

ϕ(z, w)
dλν

d|γ [u]| (x0, u(x0))〈h∞
k , ν∞

x0,u(x0)〉 d|γ [u0]|(z, w).

Taking hk = | � | in (59) and (56) implies

λσ = dλν

d|γ [u]| (x0, u(x0))|γ [u0]| + w*-lim
n→∞

cn

rd
n

(
T (x0,rn)

γ [u]
)
#
λ
gs
ν ,
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where the weak* limit is to be understood inM+(Bd × σRm) and we recall λgsν =
λν − dλν

d|γ [u]| |γ [u]| ((�\Ju) × R
m). By condition (V), however, we see that for

K ∈ N,

lim
n→∞

cn

rd
n

∣∣∣∣
(

T (x0,rn)
γ [u]

)
#
λ
gs
ν (Bd × KB

m)

∣∣∣∣

= lim
n→∞

λ
gs
ν (B(x0, rn) × B((u)x0,rn , Krnc−1

n ))

|Du|(B(x0, r))

= 0.

Furthermore, by the lower semicontinuity of the total variation,
∣∣∣∣λσ − dλν

d|γ [u]| (x0, u(x0))|γ [u0]|
∣∣∣∣ (Bd × KB

m)

� lim inf
n→∞

cn

rd
n

(
T (x0,rn)

γ [u]
)
#
λ
gs
ν (Bd × KB

m)

= 0 for evey K ∈ N,

which implies simultaneously that dλσ

d|γ [u0]| ≡ const ≡ dλν

d|γ [u]| (x0, u(x0)) and that

λ
gs
σ is concentrated within the set Bd × ∞∂Bm . An application of Theorem 4.15

now lets us replace σ by a (non-relabelled) Young measure σ = σ (Bd ×R
m) in

LY(Bd × R
m) such that

〈〈
ϕk ⊗ hk, σ

〉〉 =
∫
Bd×Rm

ϕk(z, w)
dλν

d|γ [u]| (x0, u(x0))〈h∞
k , ν∞

x0,u(x0)〉 d|γ [u0]|(z, w)

whenever hk is positively one-homogeneous from which the statement of the the-
orem follows. The fact that σ ∈ ALY(Bd × R

m) if ν ∈ ALY(Bd × R
m) follows

for the same reasons as in Theorem 5.3. ��
Theorem 5.5. Let ν ∈ LY(� × R

m) with �ν� = u. Then for Hd−1-almost every
x0 ∈ Ju, there exists a jump tangent Young measure σ ∈ LY(Bd × R

m) with the
following properties:

(i) �σ � = u0, where u0 is as defined in case (ii) of Theorem 2.4;
(ii) σz,w = δ0 for ισ -a.e (z, w) ∈ B

d × R
m;

(iii) σ∞
z,w = ν∞

x0,w+(u±)
for λσ -a.e (z, w) ∈ B

d × R
m, where u± is given in

Definition 2.5 and (u±) = −
∫
Bd u±(z) dz = 1

2 (u
+(x0) + u−(x0));

(iv) λσ ∈ M+(� × R
m) is defined via

∫
Bd×Rm

ϕ(z, w) dλσ (z, w)

= dπ#λν

dHd−1 Ju
(x0)

∫
nu(x0)⊥∩Bd

∫
Rm

ϕ(z, w − (u±)) dρx0(w) dHd−1(z)

for every ϕ ∈ Cb(� ×R
m), where ρ : � → σRm is defined for π#λν-almost

every x0 ∈ � by the disintegration λν = π#λν ⊗ ρ.
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Moreover, if ν ∈ ALY(� × R
m), then σ ∈ ALY(Bd × R

m).

Proof. LetG ⊂ C(Bd) ×C(σRm) ×C(Bm×d) be a countable collection of tensor
products {ϕi ⊗ ψ j ⊗ hk}(i, j,k)∈N3 whose span is dense in C(Bd × σRm × Bm×d),

and which is such that {ϕi }i∈N, {ψ j } j∈N are dense in C(Bd) and C(σRm), respec-
tively, and {hk}k∈N contains a countable collection of positively one-homogeneous
functions whose restriction to ∂Bm×d is dense in C(∂Bm×d).

Let x0 ∈ Ju be such that

(I)
dπ#λν

dHd−1 Ju
Hd−1 Ju admits an approximate tangent plane at x0;

(II) for each k ∈ N,

lim
r→0

1

rd−1

∫
B(x0,r)

∣∣〈hk, νx,u(x)

〉∣∣ dx = 0;

(III) for each ( j, k) ∈ N
2, x0 is a dπ#λν

dHd−1 Ju
Hd−1 Ju-Lebesgue point for the

function

x �→
∫

σRm
ψ j (y)

〈
hk, ν

∞
x,y

〉
dρx (y);

(IV) it holds that

lim
r→0

η∗(B(x0, r))

rd−1 = 0,

where η∗ := π#λν − dπ#λν

dHd−1 Ju
Hd−1 Ju is the singular part of π#λν with

respect toHd−1 Ju .

That these conditions can be satisfied simultaneously for Hd−1-almost every x0 ∈
Ju follows from the existence of tangent planes at Hd−1-almost every point for
rectifiable measures, the Besicovitch Differentiation Theorem, and the Lebesgue
Differentiation Theorem.

As in the proof of Theorem 5.4, conditions (I), (II) and (IV) imply that

lim sup
n→∞

‖σ r‖Y = lim sup
r→0

{
1

rd−1

∫
B(x0,r)

〈| � |, νx,u(x)

〉
dx + π#λν(B(x0, r))

rd−1

}

< ∞,

from which we can deduce that the family (σ r )r>0 is ‖ � ‖Y-bounded.
For exactly the same reasons as in the proof of Theorem 5.4, we obtain that

σz,w = δ0 for ισ , where σ is any limit point of (σ rn )n for any sequence rn ↓ 0.
For x0 ∈ Ju , cr = r for all r > 0 and so, for positively one-homogeneous

hk , (50) reads〈〈
ϕi ⊗ ψ j ⊗ hk, σ r

〉〉

= 1

rd−1

〈〈
ϕi

(
� − x0

r

)
⊗ ψ j

(
� − (u)x0,r

) ⊗ hk, ν
〉〉
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= 1

rd−1

∫
ϕi

(
x − x0

r

)
ψ j

(
y − (u)x0,r

) 〈
hk, νx,y

〉
dιν(x, y)

+ 1

rd−1

∫
ϕi

(
x − x0

r

)
ψ j

(
y − (u)x0,r

) 〈
hk, ν

∞
x,y

〉
dλν(x, y).

First, we observe that condition (II) implies

lim
r→0

∣∣∣∣ 1

rd−1

∫
ϕi

(
x − x0

r

)
ψ j

(
y − (u)x0,r

) 〈
hk, νx,y

〉
dιν(x, y)

∣∣∣∣
� lim

r→0

‖ϕi ⊗ ψ j‖∞
rd−1

∫
B(x0,r)

∣∣〈hk, νx,u(x)

〉∣∣ dx

= 0,

(60)

from which we conclude σz,w = δ0 for ισ -almost every (z, w) ∈ B
d × R

m .
Now, combining conditions (I) and (IV), we see that

r1−d T (x0,r)
# π#λν = r1−d T (x0,r)

#
dπ#λν

dHd−1 Ju
Hd−1 Ju + r1−d T (x0,r)

# η∗

converges weakly* inM+(Bd) as r ↓ 0 to

μ := dπ#λν

dHd−1 Ju
(x0)Hd−1

(
nu(x0)

⊥ ∩ B
d
)

.

By condition (III), we can deduce that the family (β
j,k

r )r>0 ⊂ M+(Bd) defined by

β
j,k

r := r1−d T (x0,r)
#

([∫
σRm

ψ j (y)
〈
hk, ν

∞
x,y

〉
dρ(y)

]
π#λν

)

converges weakly* inM+(Bd) to the measure

β
j,k
0 :=

[∫
σRm

ψ j (y)
〈
hk, ν

∞
x0,y

〉
dρx0(y)

]
μ.

Letting θ : Bd × σRm → M1(∂Bm×d) denote the weakly* (μ ⊗ ρx0)-measurable
parametrised measure defined by θz,w := ν∞

x0,w for (z, w) ∈ B
d × R

m , it then
follows that

lim
r→0

〈
ϕi ⊗ ψ j , r1−d T (x0,r)

#

[〈
hk, ν

∞〉
λν

]〉 = lim
r→0

〈
ϕi , β

j,k
r

〉

=
〈
ϕi , β

j,k
0

〉

= 〈
ϕi ⊗ ψ j , 〈hk, θ〉 μ ⊗ ρx0

〉
.

for each (i, j, k) ∈ N
3. Since the span of {ϕi ⊗ ψ j }(i, j)∈N2 is a countable dense

subset of C(Bd × σRm), we deduce that
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r1−d T (x0,r)
#

[〈
hk, ν

∞〉
λν

] ∗
⇀ 〈hk, θ〉 μ ⊗ ρx0 inM+(Bd × σRm) as r → 0

(61)

for each k ∈ N.
Noting that

lim
r→0

(u)x0,r = u+(x0) + u−(x0)

2
= (u±),

we see that

lim
r→0

sup
(z,w)∈Bd×Rm

|g(z, w − (u)x0,r ) − g(z, w − (u±))| = 0

for all g ∈ C(Bd × σRm).

We can therefore use (61) to compute

lim
r→0

1

rd−1

∫
ϕi

(
x − x0

r

)
ψ j

(
y − (u)x0,r

) 〈
hk, ν

∞
x,y

〉
dλν(x, y)

= lim
r→0

1

rd−1

∫
ϕi

(
x − x0

r

)
ψ j

(
y − (u±)

) 〈
hk, ν

∞
x,y

〉
dλν(x, y)

= lim
r→0

∫
(ϕi ⊗ ψ j )

(
z, w − (u)±

)
d
[
r1−d T (x0,r)

# [〈hk, ν
∞〉

λν]
]
(z, w)

=
∫

(ϕi ⊗ ψ j )(z, w − (u)±) d
[〈hk, θ〉 μ ⊗ ρx0

]
(z, w)

=
∫

(ϕi ⊗ ψ j )(z, w − (u)±)
〈
hk, ν

∞
x0,w

〉
d[μ ⊗ ρx0 ](z, w).

Combining this with (60), we have therefore shown

lim
r→0

〈〈
ϕi ⊗ ψ j ⊗ hk, σ r

〉〉

=
∫

(ϕi ⊗ ψ j )(z, w − (u)±)
〈
hk, ν

∞
x0,w

〉
d
[
μ ⊗ ρx0

]
(z, w) (62)

for every (i, j) ∈ N
2 and k such that hk is positively one-homogeneous.

Since (σr )r>0 is ‖ � ‖Y-bounded,we can invokeTheorem4.13 to find a sequence

(σrn )n such that σn
∗
⇀ σ for some σ ∈ LY(Bd × R

m) as n → ∞. The density
properties of the span of {ϕi ⊗ψ j ⊗ hk}(i, j,k)∈N3 combined with (62) let us deduce
that that

〈〈
f, σ

〉〉 =
∫ 〈

f (z, w − (u)±), � ), ν∞
x0,w

〉
d
[
μ ⊗ ρx0

]
(z, w)

for every f ∈ E(Bd × R
m) which is positively one-homogeneous in the final

variable. Since we have already noted that we must have σz,w = δ0, an application
of Theorem 4.15 to ensure that λσ (Bd × ∞∂Bm) = 0 leaves us with the desired
conclusion. That σ ∈ ALY(Bd × R

m) if ν ∈ ALY(Bd × R
m) follows again from

the closedness ofALY(Bd ×R
m) (recall Lemma 4.7) inLY(Bd ×R

m) under weak*
Young measure convergence. ��
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Remark 5.6. Note that the proofs of Theorems 5.3 and 5.4 imply the following
result: let ν ∈ LY(� × R

m) with �ν� = u. Then, for Ld + |Dcu|-almost every
x ∈ Du ∪ Cu , whenever rn ↓ 0 is a sequence such that

(urn )n converges strictly to u0 in BV(Bd;Rm) and rncrn → 0 as n → ∞
(note that these conditions hold for every sequence rn ↓ 0 if x ∈ Du), the rescaled
sequence (σ rn )n∈N defined by (50) converges in LY(Bd × R

m) to a limit τ ∈
LY(Bd × R

m) satisfying

τ (Bd × R
m) = σ and �τ� = u0.

Here,σ is a tangentYoungmeasure of the formdescribed byTheorem5.3 if x ∈ Du ,
and by Theorem 5.4 if x ∈ Cu , and τ (Bd ×R

m) is the restriction of τ toBd ×R
m

introduced in Theorem 4.15.

5.2. Jensen Inequalities

Let ν ∈ ALY(� × R
m) and x ∈ Du ∪ Cu ∪ Ju be such that ν admits a tangent

Young measure σ ∈ ALY(� × R
m) at (x, u(x)) and let f ∈ R(� × R

m) be
quasiconvex in the final variable. By Lemma 4.17, there exists a sequence (u j ) j ⊂
C∞
# (Bd;Rm) such that γ [u j ] Y→ σ and for which u j |∂Bd − �σ �|∂Bd = c j for some

sequence (c j ) j ⊂ R
m converging to 0. For x ∈ Du ∪ Cu , define

h :=
{

f (x, u(x), � ) if x ∈ Du,

f ∞(x, u(x), � ) if x ∈ Cu,

so that 1 ⊗ h ∈ E(Bd × R
m).

Lemma 5.7. Let ν ∈ ALY(� × R
m), with u = �ν� and let f ∈ R(� × R

m) be
quasiconvex in the final variable. For Ld -almost every x ∈ �, it holds that
〈
f (x, u(x), � ), νx,u(x)

〉 + dλν

dιν
(x, u(x))

〈
f ∞(x, u(x), � ), ν∞

x,u(x)

〉

� f

(
x, u(x),

〈
id, νx,u(x)

〉 + dλν

dιν
(x, u(x))〈id, ν∞

x,u(x)〉
)

= f (x, u(x),∇u(x)).

Proof. ByTheorem5.3, there exists a regular tangentYoungmeasureσ ∈ LY(Bd×
R

m)with �σ �(z) = ∇u(x)z for all z ∈ B
d . The boundary condition satisfied by each

u j then implies that∇u j |∂Bd (z) = ∇u(x)z for all z ∈ ∂Bd and thatwe can therefore
write∇u j = ∇u(x)+∇v j for some BV-bounded sequence (v j ) j ⊂ C∞

0 (Bd;Rm).
Thus, using the quasiconvexity of h,

1

ωd

〈〈
1 ⊗ h, σ

〉〉 = lim
j→∞ −

∫
Bd

h(∇u j (z)) dz

= lim
j→∞ −

∫
Bd

h(∇u(x) + ∇v j (z)) dz

� h(∇u(x))

= f (x, u(x),∇u(x)).
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Since Theorem 5.3 now states that

1

ωd

〈〈
1 ⊗ h, σ

〉〉 = −
∫
Bd

{〈
h, νx,u(x)

〉 + dλν

dιν
(x, u(x))〈h∞, ν∞

x,u(x)〉
}
dz

= 〈
f (x, u(x), � ), νx,u(x)

〉

+ dλν

dιν
(x, u(x))〈 f ∞(x, u(x), � ), ν∞

x,u(x)〉,

we obtain the desired result. ��
Lemma 5.8. Let ν ∈ LY(� × R

m) with u = �ν� and let f ∈ R(� × R
m) be pos-

itively one-homogeneous and quasiconvex in the final variable. For |Dcu|-almost
every x ∈ �, it holds that

dλν

d|γ [u]| (x, u(x))〈 f ∞(x, u(x), � ), ν∞
x,u(x)〉

� f ∞
(

x, u(x),
dλν

d|γ [u]| (x, u(x))〈id, ν∞
x,u(x)〉

)

= f ∞
(

x, u(x),
dDu

d|Du| (x)

)
.

Proof. Employing Theorem 5.4 we see that, for |Dcu|-almost every x ∈ �, there
exists a Cantor Tangent Young measure σ ∈ LY(Bd × R

m) with �σ � = u0 for

some u0 ∈ BV(Bd;Rm) satisfying dDu0

d|Du0| (z) = dDu
d|Du| (x) for all z ∈ B

d , σz,w = δ0

ισ -almost everywhere, λσ = dλν

d|γ [u]| (x, u(x))|γ [u0]|, and σ∞
z,w = ν∞

x,u(x) λσ -almost

everywhere. Letting (γ j ) j ⊂ L(Bm × R
m) be such that γ j

Y→ σ and testing with
the integrand ϕ ⊗ id ∈ E(Bd × R

m) for ϕ ∈ C0(B
d) arbitrary, we can compute

lim
j→∞

∫
Bd

ϕ(z) dD[γ j ](z) = lim
j→∞

〈〈
ϕ ⊗ id, δ[γ j ]

〉〉

= 〈〈
ϕ ⊗ id, σ

〉〉

=
∫
Bd

ϕ(z)
dλν

d|γ [u]| (x, u(x))〈id, ν∞
x,u(x)〉 dπ#|γ [u0]|(z)

=
∫
Bd

ϕ(z)
dλν

d|γ [u]| (x, u(x))〈id, ν∞
x,u(x)〉 d|Du0|(z).

Since ϕ ∈ C0(B
d) was arbitrary and γ j

Y→ σ implies u0 = �σ � = w*-lim j [γ j ] in
BV(Bd;Rm), we see that it must be the case that

dλν

d|γ [u]| (x, u(x))〈id, ν∞
x,u(x)〉|Du0| = Du0 inM(Bd;Rm×d),

and hence that

〈id, ν∞
x,u(x)〉

dλν

d|γ [u]| (x, u(x)) = dDu0

d|Du0| (z) = dDu

d|Du| (x). (63)
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By Alberti’s Rank One Theorem [2], dDu
d|Du| (x) is a rank-one matrix, so we have

obtained that the barycentre 〈id, ν∞
x,u(x)〉 of the probabilitymeasure ν∞

x,u(x) is a rank-
one matrix. As the recession function of a quasiconvex function with linear growth,
h is a quasiconvex (and hence rank-one convex) positively one-homogeneous func-
tion. A result due to Kirchheim and Kristensen [29] states that positively one-
homogeneous and rank-one convex functions are in fact convex at all rank-one
points A ∈ R

m×d . By Jensen’s inequality, the homogeneity of h, and (63), we
therefore deduce

dλν

d|γ [u]| (x, u(x))〈h, ν∞
x,u(x)〉 � dλν

d|γ [u]| (x, u(x))h
(
〈id, ν∞

x,u(x)〉
)

= h

(
dλν

d|γ [u]| (x, u(x))〈id, ν∞
x,u(x)〉

)

= h

(
dDu

d|Du| (x)

)
.

Recalling the definition of h, the desired conclusion follows. ��

It is interesting to note that we need only ν ∈ LY(� × R
m) rather than ν ∈

ALY(� × R
m) for Lemma 5.8 to hold.

Lemma 5.9. Let f ∈ Rw∗(� × R
m), and ν ∈ ALY(� × R

m) with �ν� = u and
disintegrate λν = π#λν ⊗ ρ. For Hd−1-almost every x ∈ Ju, it holds that

dπ#λν

dHd−1 Ju
(x)

∫
Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉
dρx (y) � K f [u](x),

where K f [u] : Ju → R is defined by

K f [u](x) := inf

{
1

ωd−1

∫
Bd

f ∞(x, ϕ(y),∇ϕ(y)) dy : ϕ ∈ Au(x)

}

and we recall that

Au(x) :=
{
ϕ ∈ (

C∞ ∩ L∞)
(Bd;Rm) : ϕ = u±

x on ∂Bd
}

where u± is as given in Definition 2.5.

Proof. Let σ ∈ ALY(Bd ×R
m) be the jump tangent Youngmeasure to ν at x whose

existence is guaranteed forHd−1 Ju-almost every x ∈ � by Theorem 5.5. Apply

Lemma 4.17 to obtain a sequence (u j ) j ⊂ C∞
# (�;Rm) with γ [u j ] Y→ σ and

u j − c j = �σ � = u0 (where u0 is defined in Theorem 2.4) on ∂Bd for some

sequence c j → 0. Since γ [u j ] Y→ σ , it holds that u j
∗
⇀ u0 in BV(Bd;Rm) and

hence that u j + (u±)
∗
⇀ u± in BV(Bd;Rm) with u j − c j + (u±) ∈ Au(x) for j
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large enough. Since f ∞ ∈ RL(�×R
m) and λσ (�×R

m) = 0, Proposition 4.18 (i)
lets us deduce that

〈〈
f ∞(x, � + (u±), � ), σ

〉〉 = lim
j→∞

∫
P f ∞(x, y − c j + (u±), Pγ [u j ])

= lim
j→∞

∫
Bd

f ∞(x, u j (z) − c j + (u±),∇u j (z)) dz

� ωd−1K f [u](x).

Since Theorem 5.5 implies

〈〈
f ∞(x, � + (u±), � ), σ

〉〉

=
∫
Bd×Rm

〈
f ∞(x, y + (u±), � ), σ∞

z,y

〉
dλσ (z, w)

=
∫
Bd

dπ#λν

dHd−1 Ju
(x)

∫
Rm

〈
f ∞(x, w, � ), ν∞

x,w

〉
dρx (w) dHd−1 nu(x0)

⊥(z)

= ωd−1
dπ#λν

dHd−1 Ju
(x)

∫
Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉
dρx (y),

the conclusion follows. ��
Theorem 5.10. Let f ∈ Rw∗(� ×R

m) be such that f (x, y, � ) is quasiconvex for
every (x, y) ∈ � ×R

m. If (u j ) j ⊂ BV(�;Rm) and u ∈ BV(�;Rm) are such that

u j
∗
⇀ u, then

lim inf
j→∞ F[u j ] �

∫
�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

Proof. First, assume that u ∈ BV#(�;Rm). By the discussion at the start of this
section resulting in the inequality (49), we have that

lim inf
j→∞ F[u j ] �

∫
�

〈
f (x, u(x), � ), νx,u(x)

〉

+ dλν

dιν
(x, u(x))〈 f ∞(x, u(x), � ), ν∞

x,u(x)〉 dx

+
∫

�

dλν

d|γ [u]| (x, u(x))〈 f ∞(x, u(x), � ), ν∞
x,u(x)〉 d|Dcu|(x)

+
∫
Ju

dπ#λν

dHd−1 Ju
(x)

∫
Rm

〈
f ∞(x, y, � ), ν∞

x,y

〉

dρx (y) dHd−1(x).
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Applying Lemmas 5.7, 5.8, and 5.9 respectively to each of the three terms featuring
above, we obtain

lim inf
j→∞ F[u j ] �

∫
�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

For the general casewhere (u) �= 0, define fu ∈ Rw∗(�×R
m)by fu(x, y, A) =

f (x, y + (u), A) and let Fu : BV(�;Rm) → [0,∞) be the functional given by

Fu[v] :=
∫

P fu(x, y, Pγ [v − (v)]).

Defining u := u − (u) and noting that Du = Du, Ju = Ju , K fu [u] = K f [u], we
then see that

lim inf
j→∞ F[u j ] = lim inf

j→∞ Fu[u j − (u)]

�
∫

�

fu(x, u(x),∇u(x)) dx

+
∫

�

f ∞
u

(
x, u(x),

dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K fu [u](x) dHd−1(x)

=
∫

�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x)

as required. ��

6. Recovery Sequences and Relaxation

This section is devoted to the construction of weak* approximate recovery
sequences to show that the lower bound obtained in Theorem 5.10 for F∗∗ is
attained. The recovery sequences in this section are constructed globally without
making use of the De Giorgi–Letta Theorem to localise around points x ∈ Du ∪
Cu ∪Ju .We therefore do not require the existence of a finite (|Du|+Ld)-absolutely
continuous measure which dominates F∗∗.

Example 6.1 below demonstrates the existence of a continuous integrand f ∈
Rw∗(� × R

m) which is convex in the final variable and whose associated weak*
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relaxation F∗∗ attains a global minimum at 0, yet which does not possess any
weakly* convergent minimising sequences. In the full vector-valued, u-dependent
casewecan thus only expect tofind recovery sequenceswhich converge in the strong
L1(�;Rm)-topology. We must therefore find a way of constructing approximate

recovery sequences (u j ) j ⊂ C∞(�;Rm) such that u j
∗
⇀ u in BV(�;Rm) and

lim j |F[u j ] − F∗∗[u]| � ε for each ε > 0.

Example 6.1. (Recovery sequences canbebadlybehaved)Letu ∈ BV((−1, 1);R2)

be given by

u(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0

0

)
i f x � 0,

(
0

1

)
i f x > 0,

and, for j � 4, define the sequence u j ∈ W1,1(R;R2) by

u j (x) :=
(

j2x
0

)
1(0,1/j)(x) +

(
j

j (x − 1/j)

)
1[1/j,2/j](x)

+
(

j − j2(x − 2/j)
1

)
1(2/j,3/j)(x)

+
(
0
1

)
1[3/j,∞)(x)

so that |Du j |(−1, 1) = 2 j + 1 and u j → u in L1((−1, 1);R2) as j → ∞. Let
f ∈ Rw∗((−1, 1) × R

2) be given by

f (x, y, A) := �(y)|A|, �

((
y1
y2

))
:= y2(1 − y2)

1 + |y2|2 e−|y1|,

and also define (uk
j )k ⊂ W1,1((−1, 1);R2) by uk

j (x) = u j (kx). We can see that

|Duk
j |(−1, 1) = |Du j |(−1, 1) and w*-lim

k→∞ uk
j = u for each fixed j.

By a change of coordinates, it is also clear that

lim
j→∞ lim

k→∞

∫ 1

−1
f (x, uk

j (x),∇uk
j (x)) dx = lim

j→∞

∫ 1

−1
�(u j (x))|∇u j (x)| dx = 0,

which demonstrates that F∗∗[u] = 0 and that K f [u] ≡ 0.

Now assume that (v j ) j ⊂ W1,1((−1, 1);R2) is such that v j
∗
⇀ u. We will

show that

lim inf
j→∞

∫ 1

−1
f (x, v j (x),∇v j (x)) dx > 0.
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By the Sobolev Embedding Theorem in one dimension it holds that sup j ‖v j‖∞ <

∞, which implies that, for some δ > 0,

lim
j→∞

∫ 1

−1
�(v j (x))|∇v j (x)| dx

� lim
j→∞ e−‖v j ‖∞

∫ 1

−1

(v j (x))2(1 − (v j (x))2)

1 + |(v j (x))2|2 |∇v j (x)| dx

� δ lim
j→∞

∫ 1

−1

(v j (x))2(1 − (v j (x))2)

1 + |(v j (x))2|2 |∇v j (x)| dx

� δ lim
j→∞

∫ 1

−1

(v j (x))2(1 − (v j (x))2)

1 + |(v j (x))2|2 |∇(v j (x))2| dx .

Define the sequence (w j ) j ⊂ W1,1((−1, 1)) by w j (z) = (v j (z))2 so that w j
∗
⇀

w := 1[0,1) in BV((−1, 1)). By Lemma 3.18, we have that

lim
j→∞

∫ 1

−1

w j (x)(1 − w j (x))

1 + |w j (x)|2 |∇w j (x)| dx

= lim
j→∞

∫
(y + (w))(1 − y − (w))

1 + (y + (w))2
d|γ [w j − (w j )]|(x, y).

Since (γ [w j−(w j )]) j is a normbounded sequence inL((−1, 1)×R), Lemma3.3

combined with Corollary 3.12 lets us deduce that γ [w j − (w j )] ∗
⇀ γ [w − (w)].

By Reshetnyak’s Lower Semicontinuity Theorem then, it holds that

lim
j→∞

∫ 1

−1

w j (x)(1 − w j (x))

1 + |w j (x)|2 |∇w j (x)| dx

�
∫

(y + (w))(1 − y − (w))

1 + (y + (w))2
d|γ [w − (w)]|(x, y)

=
∫ 1

0

wθ(0)(1 − wθ(0))

1 + (wθ (0))2
dθ

=
∫

θ(1 − θ)

1 + θ2
dθ.

Thus,

lim
j→∞

∫ 1

−1
�(v j (x))|∇v j (x)| dx � δ lim

j→∞

∫ 1

−1

w j (x)(1 − w j (x))

1 + |w j (x)|2 |∇w j (x)| dx

� δ

∫ 1

0

θ(1 − θ)

1 + θ2
dθ

> 0.

We have therefore shown that

lim inf
j→∞

∫ 1

−1
�(v j (x))|∇v j (x)| dx > 0
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for any sequence (v j ) j ⊂ W1,1((−1, 1);R2) such that v j
∗
⇀ u. It follows that u is

a global minimiser for F∗∗ possessing no weakly* convergent recovery sequences.
This is in stark contrast to the situations where either f is u-independent (see [31]),
where recovery sequences can always be found which converge area-strictly in
BV(�;Rm), or (v j ) j converges weakly in W1,p(�;Rm) for some p > 1, where
recovery sequences can be found which converge strongly in W1,p.

6.1. Surface Energies

In order to construct approximate recovery sequences, we first consider the
crucial surface part.

Lemma 6.2. Let f ∈ Rw∗(� × R
m) and u ∈ BV(�;Rm). Then for Hd−1-almost

every x0 ∈ Ju and every ε > 0, there exists a sequence (u j ) j ⊂ Au(x0) such that

u j
∗
⇀ u±

x0 in BV(Bd;Rm), u j → u±
x0 in Ld/(d−1)(Bd;Rm),

lim
r→0

lim
j→∞

∣∣∣∣
∫
Bd

f ∞(x0 + r z, u j (z),∇u j (z)) dz − K f [u](x0)

∣∣∣∣ < ε,

and

K f [u](x0) = lim
r→0

r1−d 1

ωd−1

∫
Br (x0)

K f [u](x) dHd−1 Ju(x).

Proof. We shall assume that x0 is a point at which K f [u]Hd−1 Ju admits an
approximate tangent plane. Let ε > 0 and v ∈ Au(x0) be such that∣∣∣∣ 1

ωd−1

∫
Bd

f ∞(x0, v(z),∇v(z)) dz − K f [u](x0)

∣∣∣∣ < ε.

Now, let k ∈ N and, using theVitali–BesicovitchCoveringTheorem, let {B(zi , ri )}i∈N
be a countable collection of balls such that each centre zi (i ∈ N) is contained in
the hyperplane

nu(x0)
⊥ = {z : z · nu(x0) = 0},

B(zi , ri ) ⊂ B
d , 0 < ri � 1

k , and

Hd−1(nu(x0)
⊥ ∩

(
B

d\
⋃
i∈N

B(zi , ri ))

)
= 0.

Define vk ∈ W1,1(Bd;Rm) by

vk(z) :=
{

v
(

z−zi
ri

)
if z ∈ B(zi , ri ) (i ∈ N),

u±
x0(z) otherwise.

That vk ∈ W1,1(Bd;Rm) follows from the boundary condition satisfied by v and
the fact that each zi ∈ nu(x0)⊥. It also still clearly holds that vk = u± on ∂Bd . The
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sequence (vk)k is uniformly bounded inL∞(Bd;Rm)by‖v‖∞ and converges point-
wise Ld -almost everywhere to u±

x0 , which implies that vk → u±
x0 in L

q(Bd;Rm) as
k → ∞ for every q ∈ [1,∞). We can also compute that |Dvk |(Bd) = |Dv|(Bd)

from which we deduce vk
∗
⇀ v in BV(Bd;Rm).

We can further observe after changing coordinates that, for any r � 1,∫
Bd

f ∞(x0 + r z, vk(z),∇vk(z)) dz

=
∑
i∈N

rd−1
i

∫
Bd

f ∞(x0 + r(zi + ri z), v(z),∇v(z)) dz.

Since f ∞ is uniformly continuous on the compact set � × (‖v‖L∞Bm) × ∂Bm×d ,
there exists a modulus of continuity m : [0,∞) → [0,∞) such that∣∣∣∣ f ∞

(
x0 + r(zi + ri z), v(z),

∇v(z)

|∇v(z)|
)

− f ∞
(

x0 + r zi , v(z),
∇v(z)

|∇v(z)|
)∣∣∣∣ � m(rri |z|)

� m (r/k) .

Thus, using the one-homogeneity of f ∞,∣∣∣∣
∫
Bd

f ∞(x0 + r(zi + ri z), v(z),∇v(z)) − f ∞(x0 + r zi , v(z),∇v(z)) dz

∣∣∣∣
� m (r/k)

∫
Bd

|∇v(z)| dz

for every i ∈ N. For k large enough such that m(r/k)
∫
Bd |∇v(z)| dz � ε, this

implies, ∫
Bd

f ∞(x0 + r z, vk(z),∇vk(z)) dz

=
∑
i∈N

rd−1
i

∫
Bd

f ∞(x0 + r zi , v(z),∇v(z)) dz + εωd−1.

For z ∈ B(zi , ri ) and z ∈ B
d , we can similarly estimate∣∣∣∣

∫
Bd

f ∞ (x0 + r zi , v(z),∇v(z)) dz −
∫
Bd

f ∞ (x0 + r z, v(z),∇v(z)) dz

∣∣∣∣
� m(r/k)

∫
Bd

|∇v(z)| dz,

from which it follows that∣∣∣∣
∫
Bd

f ∞(x0 + r zi , v(z),∇v(z)) dz

− −
∫

B(zi ,ri )∩nu(x0)⊥

∫
Bd

f ∞ (x0 + r z, v(z),∇v(z)) dz dHd−1(z)

∣∣∣∣
� m(r/k)|Dv|(Bd).
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Hence, for k sufficiently large,

∫
Bd

f ∞(x0 + r z, vk(z),∇vk(z)) dz

=
∑
i∈N

rd−1
i −

∫
B(zi ,ri )∩nu(x0)⊥

∫
Bd

f ∞ (x0 + r z, v(z),∇v(z)) dz dHd−1(z)

+ 2εωd−1

=
∑
i∈N

1

ωd−1

∫
B(zi ,ri )∩nu(x0)⊥

∫
Bd

f ∞ (x0 + r z, v(z),∇v(z)) dz dHd−1(z)

+ 2εωd−1.

Since Hd−1(nu(x0)⊥ ∩ (Bd\⋃i B(zi , ri ))) = 0, this implies

∫
Bd

f ∞(x0 + r z, vk(z),∇vk(z)) dz

= −
∫
Bd∩nu(x0)⊥

∫
Bd

f ∞ (x0 + r z, v(z),∇v(z)) dz dHd−1(z)

+ 2εωd−1.

Finally, noting that

∣∣ f ∞ (x0 + r z, v(z),∇v(z)) − f ∞ (x0, v(z),∇v(z))
∣∣ � m(r)|∇v(z)|

for every z, z ∈ B
d , and integrating first in z with respect to Ld

B
d and then in z

with respect toHd−1 nu(x0)⊥, we deduce

lim
r→0

lim
k→∞

∣∣∣∣
∫
Bd

f ∞(x0 + r z, vk(z),∇vk(z)) dz − K f [u](x0)

∣∣∣∣ � 2ωd−1ε + ε.

(64)

Applying Propositions 2.3 and 2.6 to each vk and using the fact that |Dvk |(�) =
|Dv|(�), we can obtain a sequence (wk)k ⊂ Au(x0) with ‖wk‖L∞ � ‖v‖L∞ ,

wk
∗
⇀ u±

x0 in BV(Bd;Rm), wk → u±
x0 in Ld/(d−1)(Bd;Rm), and which, by the

same reasoning as before, satisfies

lim
r→0

lim
k→∞

∣∣∣∣
∫
Bd

f ∞(x0 + r z, wk(z),∇wk(z)) dz

−
∫
Bd

f ∞(x0, wk(z),∇wk(z)) dz

∣∣∣∣ = 0,

and also
∣∣∣∣
∫
Bd

f ∞(x0, vk(z),∇vk(z)) dz −
∫
Bd

f ∞(x0, wk(z),∇wk(z)) dz

∣∣∣∣ � 1

k
.
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Hence,

lim
r→0

lim
k→∞

∣∣∣∣
∫
Bd

f ∞(x0 + r z, vk(z),∇vk(z)) dz

−
∫
Bd

f ∞(x0 + r z, wk(z),∇wk(z)) dz

∣∣∣∣ = 0

and it follows from (64) that

lim sup
r→0

lim
k→∞

∣∣∣∣ 1

ωd−1

∫
Bd

f ∞(x0 + r z, wk(z),∇wk(z)) dz

−K f [u](x0)
∣∣ < 2ωd−1ε + ε.

Since ε > 0 was arbitrary, we have obtained the desired conclusion.
The final assertion follows from the existence of an approximate tangent plane

to the measure K f [u]Hd−1 Ju at x0. ��

6.2. Primitive Recovery Sequences

In the following proposition, we explicitly construct L1-recovery sequences in
BV(�;Rm) for F∗∗ in the case where f = f ∞.

Proposition 6.3. Let f ∈ C(� × R
m × R

m×d) be a positively one-homogeneous
integrand, let u ∈ BV(�;Rm) and assume that

0 � f (x, y, A) � C |A| for all (x, y, A) ∈ � × R
m × R

m×d

for some C > 0. Then there exists a sequence (u j ) j ⊂ BV(�;Rm) such that
u j → u in L1(�;Rm), u j and ∇u j converge pointwise Ld -almost everywhere to
u and ∇u respectively, u j → u in Ld/(d−1)(Bd;Rm), and

lim
j→∞

(∫
�

f (x, u j (x),∇u j (x)) dx

+
∫

�

∫ 1

0
f

(
x, uθ

j (x),
dDsu j

d|Dsu j | (x)

)
dθ d|Dsu j |(x)

)

=
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f

(
x, u(x),

dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

Proof. For brevity, abbreviate K f [u] := K f [u]Hd−1 Ju so that

∫
A∩Ju

K f [u](x) dHd−1(x) = K f [u](A) for every Borel set A ⊂ �.
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Now let L0 be the set of points x ∈ Ju which are such that

(I) x satisfies the conclusions of Lemma 6.2;
(II) K f [u] and |Du| possess approximate tangent planes at x ;
(III) u(x + r � ) converges strictly in BV(Bd;Rm) to u±

x as r → 0 as discussed
after Definition 2.5.

By Lemma 6.2, the Lebesgue Differentiation Theorem, the definition of Ju , and
the fact that Ju is countably Hd−1-rectifiable, we have that Hd−1(Ju\L0) = 0.

For i = 1, 2, let Fi : L0 × (0, 1] → R be the functions

F1(x, r) := −
∫

B(x,r)

∣∣∣∣u±
x

(
x − x

r

)
− u(x)

∣∣∣∣ +
∣∣∣∣u±

x

(
x − x

r

)
− u(x)

∣∣∣∣
d

d−1

dx,

F2(x, r) := 1

ωd−1
r1−d |Du|(B(x, r))

|u+(x) − u−(x)| .

It follows from (II) and (III) combined with Proposition 2.6 that limr↓0 F1(x, r) =
0 and limr↓0 F2(x, r) = 1 for each x ∈ L0. Since the Fi are (Hd−1 Ju) ×
(L1 (0, 1])-measurable and hence (K f [u]) × (L1 (0, 1])-measurable, we can
thereforewrite L0 as the following countable union of increasingK f [u]-measurable
sets for any ε > 0:

L0 =
⋃
k∈N

{x ∈ L0 : F1(x, r)

� ε
|Du|(B(x, r))

rd−1 , F2(x, r) ∈ (1 − ε, 1 + ε) for all r � 1

k

}
.

Hence, for fixed ε > 0 we can write L0 = Lε
0 ∪ Eε where K f [u](Eε) < ε and, for

some kε ∈ N,

Lε
0 ⊂

{
x ∈ L0 : F1(x, y) � ε

|Du|(B(x, r))

rd−1 ,

F2(x, r) ∈ (1 − ε, 1 + ε) for all r � 1

kε

}
.

By the outer regularity ofRadonmeasures, there exists an open setUε withJu ⊂ Uε

and Ld(Uε) < ε. For a fixed x ∈ L0, the fact that K f [u] possesses an approximate
tangent plane at x implies that

lim
r→0

K f [u] (B(x, r))

rd−1 = ωd−1
dK f [u]

dHd−1 Ju
(x) = ωd−1K f [u](x).

Since |Du| also possesses an approximate tangent plane at x and |u+(x)−u−(x)| >

0 for every x ∈ Ju , we have that

lim
r→0

|Du|(B(x, r))

rd−1 = ωd−1
d|Du|

dHd−1 Ju
(x) = ωd−1|u+(x) − u−(x)| > 0,
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and so we can deduce that, for all r > 0 sufficiently small,
∣∣∣∣K f [u] (B(x, r))

rd−1 − ωd−1K f [u](x)

∣∣∣∣ � ε

2

|Du|(B(x, r))

rd−1 .

On the other hand, Lemma 6.2 implies that, for all r sufficiently small,

inf
v∈Au(x)

‖v‖
L1

∗ �2‖u±
x ‖

L1
∗

∣∣∣∣
∫
Bd

f (x + r z, v (z) ,∇v(z)) dz − ωd−1K f [u](x)

∣∣∣∣

� ε

2

|Du|(B(x, r))

rd−1 ,

where 1∗ := d/(d − 1). It therefore follows that the collection

Gε :=
{

B(x, r) : x ∈ Lε
0, r � 1

kε

, B(x, r) � Uε and

inf
v∈Au(x)

‖v‖
L1

∗ �2‖u±
x ‖

L1
∗

∣∣∣∣
∫
Bd

f (x + r z, v (z) ,∇v(z)) dz − K f [u] (B(x, r))

rd−1

∣∣∣∣

< ε
|Du|((B(x, r))

rd−1

}

is a fine cover for Lε
0 and so, by the Vitali–Besicovitch Covering Theorem, there

exists a countable disjoint set Hε ⊂ Gε whose union covers K f [u]-almost all of
Lε
0.
Let B(x1, r1), B(x2, r2) . . . be a sequence of elements fromHε such that there

exists an increasing sequence N1, N2 . . . in N with

Hd−1

⎛
⎝Lε

0\
N j⋃

i=1

B(xi , ri )

⎞
⎠ � 1

j
.

Let τ ∈ (0, 1) and ητ ∈ C∞
c (Bd; [0, 1]) be such that ητ ≡ 1 on τBd .

Fix j . For i = 1 . . . N j , let vi ∈ Au(xi ) be such that ‖vi‖L1∗ � 2‖u±
xi

‖L1∗ and
∣∣∣∣∣
∫
Bd

f (x + ri z, vi (z) ,∇vi (z)) dz − K f [u] (B(xi , ri ))

rd−1
i

∣∣∣∣∣ < ε
|Du|((B(xi , ri ))

rd−1
i

.

Define (vτ
i )i ⊂ BV(Bd;Rm) by

vτ
i (z) :=

{
vi

( z
τ

)
if |z| < τ,

u±
xi

(z) if τ � |z| < 1.

We can now set

v
ε,τ
j (x) :=

N j∑
i=1

vτ
i

(
x − xi

ri

)
ητ

(
x − xi

ri

)
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and

uε,τ
j (x) := u(x)

⎛
⎝1 −

N j∑
i=1

ητ

(
x − xi

ri

)⎞
⎠ + v

ε,τ
j (x).

Invoking the criterion for membership of Lε
0 involving F1, we have that

‖vε,τ
j ‖1∗

L1∗ �
∞∑

i=1

rd
i ‖vτ

i ‖1∗
L1∗

� (21
∗ + 1)

∞∑
i=1

rd
i ‖u±

xi
‖1∗
L1∗

� (21
∗ + 1)

∞∑
i=1

rd
i

(
εr1−d

i |Du|(B(xi , ri )) + −
∫

B(xi ,ri )

|u(x)|1∗
dx

)

� (21
∗ + 1)

(
ε

kε

|Du|
(⋃

Fε
)

+
∫
⋃Fε

|u(x)|1∗
dx

)

� (21
∗ + 1)

(
ε

kε

|Du|(Uε) +
∫

Uε

|u(x)|1∗
dx

)
,

which implies that v
ε,τ
j → 0 in L1∗

(�;Rm) as ε → 0 independently of τ and j

and hence that uε,τ
j → u in L1∗

(�;Rm) as ε → 0 independently of τ and j .
Now observe

∫
⋃N j

i=1 B(xi ,ri )

∫ 1

0
f

(
x,

(
uε,τ

j

)θ

(x),
dDuε,τ

j

d|Duε,τ
j | (x)

)
dθ d|Duε,τ

j |(x)

=
N j∑

i=1

{∫
B(xi ,τri )

f

(
x, vi

(
x − xi

τri

)
,

1

τri
∇vi

(
x − xi

τri

))
dx

+
∫
{
τ� |x−xi |

ri
<1

}
∫ 1

0
f

(
x,

(
uε,τ

j (x)
)θ

,
dDuε,τ

j

d|Duε,τ
j | (x)

)
dθ d|Duε,τ

j |(x)

}
.

(65)

Changing coordinates, we canmanipulate the first term in this expression as follows

N j∑
i=1

∫
B(xi ,τri )

f

(
x, vi

(
x − xi

τri

)
,

1

τri
∇vi

(
x − xi

τri

))
dx

=
N j∑

i=1

τ d−1rd−1
i

∫
Bd

f (xi + τri z, vi (z) ,∇vi (z)) dz.

(66)
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Since Hε is a fine cover for Lε
0 with respect to K f [u], we can write

lim
j→∞

∣∣∣∣
(

τ d−1
N j∑

i=1

rd−1
i

∫
Bd

f (xi + τri z, vi (z) ,∇vi (z)) dz

)
− K f [u](Ju)

∣∣∣∣

� τ d−1
∑

B(xi ,ri )∈Hε

rd−1
i

∣∣∣∣
∫
Bd

f (xi + τri z, vi (z) ,∇vi (z)) dz

− r1−d
i K f [u](B(xi , ri ))

∣∣∣∣
+ (1 − τ d−1)K f [u](Lε

0) + K f [u](Ju\Lε
0).

By our choice of vi and the fact that K f [u](Ju\Lε
0) < ε, we therefore have that

lim
j→∞

∣∣∣∣
(

τ d−1
N j∑

i=1

rd−1
i

∫
Bd

f (xi + τri z, vi (z) ,∇vi (z)) dz

)
− K f [u](Ju)

∣∣∣∣
� τ d−1

∑
B(xi ,ri )∈Hε

ε|Du|(B(xi , ri )) + (1 − τ d−1)K f [u](Ju) + ε

� ε|Du|(�) + (1 − τ d−1)K f [u](Ju) + ε.

(67)

For each x satisfying τ � |x−xi |
ri

< 1,

uε,τ
j (x) = u(x) + ητ

(
x − xi

ri

)[
u±

xi

(
x − xi

ri

)
− u(x)

]
,

and so we can use the product rule to deduce

|Duε,τ
j |

({
x : τ � |x − xi |

ri
< 1

})

� 1

ri
‖∇ητ‖∞

∫
{
τ� |x−xi |

ri
<1

}
∣∣∣∣u±

xi

(
x − xi

ri

)
− u(x)

∣∣∣∣ dx

+ rd−1
i (1 − τ d−1)ωd−1|u+(xi ) − u−(xi )|

+ |Du|(B(xi , ri )) − |Du|(B(xi , τri )).

Since f satisfies 0 � f (x, y, A) � C |A| for some C > 0, we can therefore
estimate

∫
{
τ� |x−xi |

ri
<1

}
∫ 1

0
f

(
x,

(
uε,τ

j (x)
)θ

,
Duε,τ

j

|Duε,τ
j | (x)

)
dθ d|Duε,τ

j |(x)

� C
∫
{
τ� |x−xi |

ri
<1

} d|Duε,τ
j |(x)

� C

(
rd−1

i ‖∇ητ‖∞−
∫

B(xi ,ri )

∣∣∣∣u±
xi

(
x − xi

ri

)
− u(x)

∣∣∣∣ dx



Liftings, Young Measures, and Lower Semicontinuity

+ rd−1
i (1 − τ d−1)ωd−1|u+(xi ) − u−(xi )|

+ |Du|(B(xi , ri )) − |Du|(B(xi , τri ))

)
.

The membership criterion of for Lε
0 with respect to F2 implies that

|Du|(B(xi , τri )) �(1 − ε)τ d−1ωd−1rd−1
i |u+(xi ) − u−(xi )|

�τ d−1 1 − ε

1 + ε
|Du|(B(xi , ri )),

which gives

|Du|(B(xi , ri )) − |Du|(B(xi , τri )) � |Du|(B(xi , ri ))

(
1 − τ d−1 1 − ε

1 + ε

)
.

From the same criterion, we also deduce

rd−1
i (1 − τ d−1)ωd−1|u+(xi ) − u−(xi )| � 1 − τ d−1

1 − ε
|Du|(B(xi , ri )).

Thus, using also the membership criterion for Lε
0 with respect to F1 to bound

rd−1
i ‖∇ητ‖∞−

∫
B(xi ,ri )

∣∣∣∣u±
xi

(
x − xi

ri

)
− u(x)

∣∣∣∣ dx � ε‖∇ητ‖∞|Du|(B(xi , ri )),

we obtain, for ε < 1/2,

∫
{
τ� |x−xi |

ri
<1

}
∫ 1

0
f

(
x,

(
uε,τ

j (x)
)θ

,
Duε,τ

j

|Duε,τ
j | (x)

)
dθ d|Duε,τ

j |(x)

� C

(
ε‖∇ητ‖∞|Du|(B(xi , ri )) + 1 − τ d−1

1 − ε
|Du|(B(xi , ri ))

+
(
1 − τ d−1 1 − ε

1 + ε

)
|Du|(B(xi , ri ))

)

� C
(
ε‖∇ητ‖∞ + 3(1 − τ d−1) + 2ε

)
|Du|(B(xi , ri )).

Hence, for ε < 1/2,
∣∣∣∣∣∣

N j∑
i=1

∫
{
τ� |x−xi |

ri
<1

}
∫ 1

0
f

(
x,

(
uε,τ

j (x)
)θ

,
Duε,τ

j

|Duε,τ
j | (x)

)
dθ d|Duε,τ

j |(x)

∣∣∣∣∣∣
� C

(
ε‖∇ητ‖∞ + 3(1 − τ d−1) + 2ε

)
|Du|(Uε).

(68)

Combining (65), (66), (67) and (68), we finally deduce

lim
τ→1

lim
ε→0

lim
j→∞

∫
⋃N j

i=1 B(xi ,ri )

∫ 1

0
f

(
x,

(
uε,τ

j

)θ

(x),
dDuε,τ

j

d|Duε,τ
j | (x)

)
dθ d|Duε,τ

j |(x)

= K f [u](Ju).
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Since uε,τ
j ≡ u in �\Uε, we can use a diagonal argument to obtain a sequence

(u j ) j ⊂ BV(�;Rm) satisfying u j → u in L1(�;Rm), u j (x) = u(x), ∇u j (x) =
∇u(x) in � j := �\U1/j and which is such that

lim
j→∞

∫
�

f (x, u j (x),∇u j (x)) dx

+
∫

�

∫ 1

0
f

(
x, uθ

j (x),
dDsu j

d|Dsu j | (x)

)
d|Dsu j |(x)

=
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f

(
x, u(x),

dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+ K f [u](Ju),

as required. ��

6.3. Recovery Sequences

We are now in a position to construct approximate recovery sequences forF∗∗,
finally allowing us to complete the proof of Theorem A.

Theorem 6.4. (Approximate recovery sequences) Let u ∈ BV(�;Rm) and f ∈
Rw∗(� ×R

m) be such that f (x, y, � ) is quasiconvex for every (x, y) ∈ � ×R
m.

For any ε > 0, there exists a sequence (u j ) j ⊂ C∞(�;Rm) such that u j
∗
⇀ u in

BV(�;Rm) and
∣∣∣∣ limj→∞F[u j ] −

( ∫
�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x)
)∣∣∣∣ � ε.

Proof. Step 1: Assume first that f ∈ Rw∗(� × R
m) and that f ∞ satisfies c|A| �

f ∞(x, y, A) � C |A| for some choice of constants C > c > 0. Let (u j ) j ⊂
BV(�;Rm) be the sequence provided by Proposition 6.3, such that

lim
j→∞

∫
�

f ∞(x, u j (x),∇u j (x)) dx

+
∫

�

∫ 1

0
f ∞

(
x, uθ (x),

dDsu j

d|Dsu j | (x)

)
dθd|Dsu j |(x)

=
∫

�

f ∞(x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

(69)
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Since f ∞ is assumed to be coercive, (u j ) j is a bounded sequence in BV(�;Rm)

and so (upon passing to a nonrelabelled subsequence), we can assume that γ [u j −
(u j )�] Y→ ν for some ν ∈ ALY(� × R

m) with �ν� = u − (u)� which, by virtue
of Corollary 4.19 satisfies∫

�

f ∞(x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x)

= lim
j→∞

∫
�

f ∞(x, u j (x),∇u j (x)) dx

+
∫

�

∫ 1

0
f ∞

(
x, uθ

j (x),
dDsu j

d|Dsu j | (x)

)
dθd|Dsu j |(x)

�
〈〈

f ∞( � , � + (u)�, � ), ν (� × R
m)

〉〉
.

Theorem 4.15 implies that ν (�×R
m) ∈ ALY(�×R

m) and so, since �ν (�×
R

m)� = u − (u)�, from Lemma 4.16 we get that there exists a sequence (v j ) j ⊂
(BV# ∩ C∞)(�;Rm) converging weakly* to u − (u)� and which is such that

γ [v j ] Y→ ν (� × R
m). Proposition 4.18 (i) applied to f , ν (� × R

m), and
(γ [v j ]) j together with Theorem 5.10 applied to (v j + (u)�) j therefore yield〈〈

f ∞( � , � + (u)�, � ), ν (� × R
m)

〉〉

= lim
j→∞

∫
�

f ∞(x, v j (x) + (u)�,∇v j (x)) dx

�
∫

�

f ∞(x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

It follows that〈〈
f ∞( � , � + (u)�, � ), ν (� × R

m)
〉〉

=
∫

�

f ∞(x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x)

and so we can assume λν(� × ∞∂Bm) = 0.
By testing with integrands ϕ ⊗ h for ϕ ∈ Cc(� ×R

m) and h ∈ Cc(R
m×d), we

see that the pointwise almost everywhere convergence of ∇u j to ∇u implies that
νx,u(x) = δ∇u(x) for almost every x ∈ �.

Define h := f − f ∞ and, repeating the construction used in Step 4 of the proof
of Proposition 4.18, define hk ∈ RL(� × R

m) by

hk(x, y, A) :=
{
1 + 1{|y|>k}(y)

kd/(d−1) − |y|d/(d−1)

1 + |y|d/(d−1) + |A|

}
h(x, y, A).
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Proposition 4.18 (i) combinedwith the fact that we can assume λν(�×∞∂Bm) = 0
implies that

lim
j→∞

∫
�

hk(x, u j (x),∇u j (x)) dx =
∫

�×Rm

〈
hk(x, y + (u)�, � ), νx,y

〉
dιν(x, y)

=
∫

�

hk(x, u(x),∇u(x)) dx

for every k ∈ N.
Since |h(x, y, A) − hk(x, y, A)| � C1{|y|<k}(y)(|y|d/(d−1) − kd/(d−1)) and

the sequence (u j ) j is d/(d − 1)-uniformly integrable, for any ε > 0 there exists
kε ∈ N such that k � kε implies

∣∣∣∣ limj→∞

∫
�

h(x, u j (x),∇u j (x)) dx − lim
j→∞

∫
�

hk(x, u j (x),∇u j (x)) dx

∣∣∣∣
� lim

j→∞ C
∫

{|u j (x)|�k}
|y|d/(d−1) − kd/(d−1) dx

� ε.

Thus,

lim
j→∞

∫
�

h(x, u j (x),∇u j (x)) dx = lim
k→∞

∫
�

hk(x, u(x),∇u(x)) dx

=
∫

�

h(x, u(x),∇u(x)) dx .

(70)

Adding equations (69) and (70), we obtain

lim
j→∞F[u j ] =

∫
�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

An application of Theorem 2.15 together with the area-strict density of C∞(�;Rm)

in BV(�;Rm) to each F[u j ] combined with a diagonal argument now leaves us
with the desired result in the case where f ∞ is coercive.

Step 2: Now assume just that f ∈ Rw∗(� × R
m) and define fρ ∈ Rw∗(� × R

m)

by

fρ(x, y, A) := f (x, y, A) + ρ|A|.
Clearly, fρ ↓ f pointwise asρ ↓ 0 and so, by theMonotoneConvergenceTheorem,
we have that∫

�

fρ(x, u(x),∇u(x)) dx →
∫

�

f (x, u(x),∇u(x)) dx
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and ∫
�

f ∞
ρ

(
x, u(x),

dDcu

d|Dcu| (x)

)
d|Dcu|(x)

→
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

as ρ ↓ 0. Since fρ � f , we have that K fρ [u] � K f [u], and in fact it holds that
K fρ [u] ↓ K f [u] pointwise as ρ ↓ 0. This follows from the estimate

lim
ρ→0

K fρ [u](x0) � lim
ρ→0

∫
f ∞
ρ (x0, ϕ(y),∇ϕ(y)) dy

=
∫

f ∞(x0, ϕ(y),∇ϕ(y)) dy

�K f [u](x0) + ε

for any ϕ ∈ Au(x0) such that
∫

f ∞(x0, ϕ(y),∇ϕ(y)) dy � K f [u](x0) + ε. Thus,
∫
Ju

K fρ [u](x) dHd−1(x) →
∫
Ju

K f [u](x) dHd−1(x) as ρ → 0.

Defining Fρ : BV(�;Rm) → [0,∞) by

Fρ[u] :=
∫

�

fρ(x, u(x),∇u(x)) dx

+
∫

�

∫ 1

0
f ∞
ρ

(
x, uθ (x),

dDsu

d|Dsu| (x)

)
dθ d|Dsu|(x),

we therefore have that Fρ[u] → F[u] as ρ → 0 for every u ∈ BV(�;Rm).
For each fixed ρ > 0, Step 1 implies that there exists a sequence (uρ

j ) j ⊂
C∞(�;Rm) with uρ

j
∗
⇀ u in BV(�;Rm) and

lim
j→∞Fρ[uρ

j ] =
∫

�

fρ(x, u(x),∇u(x)) dx

+
∫

�

f ∞
ρ

(
x, u(x),

dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K fρ [u](x) dHd−1(x).

Since f is quasiconvex in the final variable, Theorem 5.10 implies that
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x)

� lim inf
j→∞ F[uρ

j ]
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for every ρ > 0. Thus,
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x)

� lim
ρ→0

lim inf
j→∞ F[uρ

j ]
� lim

ρ→0
lim

j→∞Fρ[uρ
j ]

= lim
ρ→0

(∫
�

fρ(x, u(x),∇u(x)) dx

+
∫

�

f ∞
ρ

(
x, u(x),

dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K fρ [u](x) dHd−1(x)

)

=
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x),

which leads us to conclude that

lim
ρ→0

lim inf
j→∞ F[uρ

j ] =
∫

�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

For any ε > 0, we can therefore find a fixed ρε > 0 such that uρε

j
∗
⇀ u in

BV(�;Rm) and

∣∣∣ lim
j→∞F[uρε

j ] −
∫

�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x)

∣∣∣ � ε,

which suffices to prove the claim. ��
Remark 6.5. Interestingly, Theorem5.10 is used in the proof of Theorem6.4which
implies that we are only able to construct approximate recovery sequences for F∗∗
when f is quasiconvex in the final variable.
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As a side remark, the existence of L1-convergent recovery sequences now fol-
lows directly from Theorem 6.4 combined with a diagonal argument.

Corollary 6.6. (L1-RecoverySequences)Let u ∈ BV(�;Rm)and let f ∈ Rw∗(�×
R

m) be such that f (x, y, � ) is quasiconvex for every (x, y) ∈ �×R
m. Then there

exists a sequence (u j ) j ∈ C∞(�;Rm) such that u j → u in L1(�;Rm) and

lim
j→∞F[u j ] =

∫
�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

6.4. Relaxation

Combining the results of Sections 5 and 6, we can finally complete the proof
of Theorem A stated in Section 1.

Theorem 6.7. (Theorem A) Let f ∈ Rw∗(� × R
m) be such that f (x, y, � ) is

quasiconvex for every (x, y) ∈ �×R
m. TheBV-weak* relaxation of the functional

F : BV(�;Rm) → R,

F[u] :=
∫

�

f (x, u(x),∇u(x)) dx

+
∫

�

f ∞
(

x, uθ (x),
dDsu

d|Dsu| (x)

)
dθ d|Dsu|(x)

is given by

F∗∗[u] =
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

Proof. Recalling the definition of F∗∗, we see that Theorem 5.10 implies

F∗∗[u] �
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x).

On the other hand, for ε > 0 arbitrary, Theorem 6.4 guarantees the existence of a

sequence (u j ) j ⊂ BV(�;Rm) such that u j
∗
⇀ u and

F∗∗[u] � lim sup
j→∞

F[u j ]

�
∫

�

f (x, u(x),∇u(x)) dx +
∫

�

f ∞
(

x, u(x),
dDcu

d|Dcu| (x)

)
d|Dcu|(x)

+
∫
Ju

K f [u](x) dHd−1(x) + ε = F∗∗[u] + ε,
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and so the desired conclusion follows. ��
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