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Inferring demographic parameters in
bacterial genomic data using Bayesian and
hybrid phylogenetic methods
Sebastian Duchene1* , David A. Duchene2, Jemma L. Geoghegan3, Zoe A. Dyson1, Jane Hawkey1

and Kathryn E. Holt1

Abstract

Background: Recent developments in sequencing technologies make it possible to obtain genome sequences
from a large number of isolates in a very short time. Bayesian phylogenetic approaches can take advantage of
these data by simultaneously inferring the phylogenetic tree, evolutionary timescale, and demographic parameters
(such as population growth rates), while naturally integrating uncertainty in all parameters. Despite their desirable
properties, Bayesian approaches can be computationally intensive, hindering their use for outbreak investigations
involving genome data for a large numbers of pathogen isolates. An alternative to using full Bayesian inference is
to use a hybrid approach, where the phylogenetic tree and evolutionary timescale are estimated first using
maximum likelihood. Under this hybrid approach, demographic parameters are inferred from estimated trees
instead of the sequence data, using maximum likelihood, Bayesian inference, or approximate Bayesian computation.
This can vastly reduce the computational burden, but has the disadvantage of ignoring the uncertainty in the
phylogenetic tree and evolutionary timescale.

Results: We compared the performance of a fully Bayesian and a hybrid method by analysing six whole-genome
SNP data sets from a range of bacteria and simulations. The estimates from the two methods were very similar,
suggesting that the hybrid method is a valid alternative for very large datasets. However, we also found that
congruence between these methods is contingent on the presence of strong temporal structure in the data
(i.e. clocklike behaviour), which is typically verified using a date-randomisation test in a Bayesian framework.
To reduce the computational burden of this Bayesian test we implemented a date-randomisation test using a
rapid maximum likelihood method, which has similar performance to its Bayesian counterpart.

Conclusions: Hybrid approaches can produce reliable inferences of evolutionary timescales and phylodynamic
parameters in a fraction of the time required for fully Bayesian analyses. As such, they are a valuable
alternative in outbreak studies involving a large number of isolates.

Keywords: Bayesian phylogenetics, Phylodynamics, Molecular clock, Bacterial evolution

Background
Genomic data are increasingly used to investigate infec-
tious disease outbreaks caused by microbial pathogens.
Recent developments in sequencing technologies have
made it possible to obtain data for a very large number of
samples, at low cost and within a very short timeframe.

Phylogenetic methods can make use of these data to infer
their evolutionary dynamics, known as phylodynamic in-
ference. For example, genome data obtained during the
first months of the 2013–2016 Ebola virus epidemic were
used to determine the time of origin of the outbreak and
the basic reproductive number (R0) of the circulating
strains [1, 2]. Some of the key requirements for these in-
ferences are that the data must have sufficient genetic di-
versity and that they should be a representative sample of
the circulating strains.
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Serially sampled data are particularly useful because
their sampling times can be used to calibrate the mo-
lecular clock. This consists of calculating the rate of evo-
lution, which is the amount of genetic change that has
accumulated per unit of time. The rate of evolution is
key to infer an evolutionary timescale, typically represented
by a phylogenetic tree where the branch lengths corres-
pond to time, known as a chronogram. Some methods as-
sume that the rate of evolution is constant over time,
known as a strict molecular clock, but popular Bayesian
implementations, such as that in BEAST [3, 4], include
relaxed-clock models that use a statistical distribution to
describe rate variation across time and lineages (reviewed
in [5]). Phylodynamic models can be used to estimate the
epidemic growth rate (r), R0, and other parameters [6, 7].
Importantly, these models describe the expectation of
the distribution of node times in the chronogram. As
such, inferences drawn from phylodynamic models rely
on accurate estimates of evolutionary rates and time-
scales. A number of statistical methods are available to
assess the robustness of inferences of evolutionary rates
and timescales; those that are most widely used are imple-
mented under a Bayesian framework (reviewed in [8]).
Bayesian phylogenetic approaches allow sophisticated

evolutionary models to be specified. For example, the evo-
lution of a pathogen during an outbreak can be defined as
an exponentially growing population with considerable
evolutionary rate variation among lineages; which can be
modelled by specifying a nucleotide substitution model, a
relaxed-clock model and an exponential-growth tree prior.
The parameters for all these models are obtained simul-
taneously and their estimates correspond to posterior
probability distributions, such that their uncertainty is a
natural by-product of the analysis. Bayesian methods re-
quire specifying a prior distribution for all parameters. Al-
though specifying a prior distribution is not trivial for
some parameters, their influence can be assessed by com-
paring them to the posterior. An advantage of specifying
prior distributions is that it is possible to include previous
knowledge about the data. As a case in point, a known
probability of sampling can be represented with a prior
distribution in birth-death models [9].
Whilst Bayesian phylogenetic methods have many de-

sirable properties, analysing large genomic data sets
under complex models is often computationally prohibi-
tive (e.g. [10, 11]). An alternative to full Bayesian methods
is to conduct the analysis in several steps. In this hybrid
approach the phylogenetic tree, evolutionary rates and
timescales, and demographic parameters are estimated
separately.
Phylogenetic trees can be rapidly estimated using

various maximum likelihood implementations [12–15].
These methods assume a substitution model, but not
a molecular-clock or demographic model, such that

the branch lengths of the trees represent the expected
number of substitutions per site, and are known as
phylograms.
Next, phylograms can be used to estimate evolutionary

rates and chronograms, for example, using a recently de-
veloped molecular clock method based on least-squares
optimisation, called LSD (Least Squares Dating) [16].
LSD is more computationally tractable than Bayesian
molecular-clock methods, such that it is feasible to
analyse genomic data sets with thousands of samples.
Although LSD assumes a strict molecular clock, its
accuracy is frequently similar to that obtained using
more sophisticated Bayesian clock models [17]. Other
non-Bayesian molecular-clock methods have also been
developed recently with the purpose of analysing large
genomic data sets [18–20].
Finally, a range of tools are available to infer phylody-

namic parameters from a chronogram, such as that ob-
tained using LSD. For example: TreePar uses maximum
likelihood to fit birth-death and skyline models [21]; BEAST2
[4] and RevBayes [22] can fit a range of birth-death, coales-
cent, and Skyline models using Bayesian inference [7]; and
approximate Bayesian computation (ABC) approaches that
use tree summary statistics have recently been developed to
fit phylogenetic epidemiological models [23, 24]. The main
disadvantage of these approaches over those that are fully
Bayesian is that the estimates are based on a single tree, such
that uncertainties in tree topology, branch lengths, and evo-
lutionary rates are ignored. A potential solution is to repeat
the analysis using non-parametric bootstrap replicates, but
combining the different sources of uncertainty under this
framework is not trivial.
Here, we compare the following two methods to infer

evolutionary rates and timescales, and demographic
parameters:

(i) The fully Bayesian method, implemented in
BEAST2, to simultaneously infer the phylogenetic
tree, evolutionary timescales and phylodynamic
parameters;

(ii) The hybrid method: phylogram inference using
maximum likelihood in PhyML v3.1 [14],
chronogram inference using LSD v0.3, and
estimation of phylodynamics parameters in BEAST2
using Bayesian inference.

To compare the performance of these two methods,
we analysed previously published whole genome SNP
bacterial data sets of Mycobacterium tuberculosis
Lineage 2 [25], Vibrio cholerae [26], Shigella dysenteriae
type 1 [11], and Staphylococcus aureus ST239 [27]. Because
these data sets have small numbers of samples (n = 63 for
M. tuberculosis, n = 122 for V. cholerae, n = 121 for S. dys-
enteriae, and n = 74 for S. aureus) their analyses are
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computationally tractable using both approaches. We also
demonstrate the unique potential of the hybrid approach
by analysing two genomic data sets with larger numbers of
sequences, which have been difficult to analyse using a fully
Bayesian approach; a global sample of S. dysenteriae type 1
(n = 329) and S. dysenteriae type 1 lineage IV (n = 208) [11].
Finally, we validated the performance of the hybrid ap-
proach using a simulation experiment.

Results
Estimates of evolutionary rates and timescales
We compared estimates of rates and evolutionary time-
scales using the full Bayesian approach in BEAST2 and
LSD. Because our data consist of SNPs, we used ascer-
tainment bias correction by specifying the number of
constant sites from the core genome. In BEAST2 we
used both the strict and the uncorrelated lognormal
(UCLN [28]) clock models. We investigated the degree
of rate variation among lineages by inspecting the coeffi-
cient of rate variation, estimated in the UCLN model.
This parameter is the standard deviation of branch rates
divided by the mean rate. The data are considered to
display clocklike behaviour if the distribution for this
parameter abuts zero. Therefore, we used this parameter
to select the clock model in BEAST2 for each data set, as
suggested in previous studies [29, 30]. The M. tuberculosis
data set was the only data set to support a strict clock over
the UCLN model, whereas the remaining data sets
favoured the UCLN model (Fig. 1). We set uniform prior
distributions for the clock rate, the growth rate (r) and the
scaled population size (Φ). In the context of pathogen
evolution, r determines the speed of spread of the patho-
gen in the host population, while Φ is proportional to the
infected host population size at present.
The estimates of evolutionary rates and timescales

from these different methods were largely congruent
(Fig. 1). In all four cases, the 95% credible intervals for
the evolutionary rate and age of the root node obtained
with BEAST2 overlapped with the 95% confidence inter-
vals obtained for the same parameters with LSD (Fig. 1).
However, we observed some differences in the mean
evolutionary rate estimates, with the estimates from
BEAST2 consistently producing higher values than those
from LSD. The largest difference in mean rate estimates was
observed in M. tuberculosis, with a mean rate of 9.37 × 10− 8

(95% credible interval: 4.25 × 10− 8 – 1.73 × 10− 7) using
BEAST2, and 1.10 × 10− 8 (95% confidence interval:
1.00 × 10− 10 – 2.02 × 10− 7) in LSD (see Fig. 1). In contrast
we found more congruent mean rate estimates in the V.
cholerae data set, with estimates of 7.20 × 10− 7 (95%
credible interval: 5.87 × 10− 7 – 8.65 × 10− 7) for the
BEAST2 and 6.76 × 10− 7 (95% confidence interval:
5.76 × 10− 7 – 8.89 × 10− 7) for LSD. The differences in
estimates of the root-node age were similar, with the

largest difference in the mean root-node age found in
S. aureus ST239 (mean root-node age of 1958 for
BEAST2 and 1949 for LSD) (Fig. 1). In most cases,
the estimates from BEAST2 were more uncertain with
credible intervals that were wider than the confidence
intervals from LSD. We investigated two aspects of
phylogenetic data that can affect estimates of evolu-
tionary rates; the topological uncertainty and the de-
gree of clocklike variation. We found that the
maximum likelihood trees were highly supported, ac-
cording to local likelihood ratio tests (aLRT) [31]
(which ranges from 0 to 1, for low to high branch
support, respectively). The median aLRT values across
nodes were 0.9 for M. tuberculosis, 0.83 for V. cholerae,
0.99 for S. dysenteriae type 1, and 0.92 for S. aureus.

Assessing temporal structure using a date-randomisation test
We assessed the reliability of our estimates of evolutionary
rate and timescales by conducting a date-randomisation
test [32, 33]. The motivation of this test is similar to that
of root-to-tip regressions implemented in TempEst [34].
That is, to determine whether there is sufficient sampling
in the data. However, root-to-tip regressions should
be interpreted for visual inspection, as opposed to
date-randomisations, which are a formal statistical
test. The date randomisation test consists in repeating
the analysis several times after randomising the sam-
pling dates. The resulting rate estimates correspond
to the expected values if there is no association be-
tween sampling times and genetic divergence. The
data are considered to have strong temporal structure
if the rate estimate obtained using the correct sam-
pling times is not contained within the range of
values from the randomisations. In a Bayesian con-
text, 10 to 20 randomisations appear to be sufficient
[33, 35]. We conducted this test in BEAST2 using 20
randomisations and in LSD using 100 randomisations
(Fig. 2). Interestingly, the results from both tests were
congruent, and consistent with visualisations of
clock-like behaviour of the data using root-to-tip regres-
sions (Additional file 1: Figure S1). The M. tuberculosis
data set had no temporal structure with either method
(Fig. 2): the credible interval of the Bayesian estimate with
the correct sampling times overlapped with those from all
of the randomisations; using LSD, the estimate with the
correct sampling times was around the lower threshold
in the program, at 1.00 × 10− 10 subs/site/year, which
also corresponds to the value obtained for most of the
randomisations. The other data sets showed strong
temporal structure with both date-randomisation tests:
the Bayesian credible intervals using the correct sam-
pling times did not overlap with those from any of the
randomisations, and the estimates from LSD using the
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correct sampling times were not contained within the
distributions of the 100 randomisations (Fig. 2).

Inference of phylodynamic parameters
We analysed the data sets using the exponential-growth
coalescent model in BEAST2, which has two parameters,
r and Φ. Because these are compound parameters, they
cannot be interpreted in an absolute scale without add-
itional information about the size of the infected host
population at present [36]. In most cases, the posterior
distributions of both parameters were very similar when

using either BEAST2 or the hybrid approach, with similar
means and uncertainties (Fig. 3). Although the intervals
overlapped in V. cholerae, S. dysenteriae, and S. aureus,
the mode of the posterior distribution of Φ was higher
when using the hybrid approach. The posterior distri-
butions of r were almost identical across methods for
the three data sets with temporal signal (Fig. 3). The
uncertainty in estimates of this parameter did not in-
clude 0, except in the case of V. cholerae, suggesting
that most of these bacterial data sets were undergoing
population growth. Interestingly, the M. tuberculosis

Fig. 1 Estimates of evolutionary rate, time to the most recent common ancestor, and the coefficient of rate variation of the UCLN. The
histograms correspond to the posterior distribution in BEAST2 using the full Bayesian approach. With the exception of the Mycobacterium
tuberculosis data set, we used the UCLN clock model because the coefficient of rate variation was not abutting zero. The red solid line is
the estimate from LSD, and the dashed lines correspond to the 95% confidence interval. Note that the coefficient of rate variation is not
computed for LSD, which assumes a strict molecular clock
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data set, which had no temporal structure, was the
only data set to display large differences in estimates
among the methods (Fig. 3).

Application: analysing large data sets using the hybrid
approach
Having demonstrated good performance of the hybrid
approach on small data sets with strong temporal signal,
we applied it to analyse two published genome-wide
SNP data sets whose sample size was prohibitively large
to analyse under a full Bayesian framework in the ori-
ginal publication. These data sets consisted of: (i) 329
samples of S. dysenteriae type 1 from [11], which in-
cluded BEAST2 analysis of a subset of 125 samples; and
(ii) 208 samples of lineage IV of S. dysenteriae type 1,
which was represented by 61 samples in the BEAST2
analysis in the same study [11]. These three data sets
displayed strong temporal structure according to the
date-randomisation test in LSD, with rate estimates that
were not contained within the range of estimates from
100 date-randomisations (Fig. 4). The evolutionary rate
estimates from LSD were 5.93 × 10− 7 (95% confidence
interval: 3.65 × 10− 7 - 1.65 × 10− 6) subs/site/year for S.
dysenteriae type 1, and 7.04 × 10− 7 (95% confidence inter-
val: 3.92 × 10− 7 - 1.54 × 10− 6) subs/site/year for S. dysen-
teriae type 1 Lineage IV (Fig. 4). Interestingly, the estimate
of r for S. dysenteriae type 1 lineage IV was over an order

of magnitude higher than that for the global data set
of this bacterium, with a mean of 2.00 × 10− 2 for
lineage IV compared with 3.40 × 10− 3 for the global
data set. Importantly, the posterior distributions of r
for these three data sets did not include zero, indicat-
ing epidemic growth (Fig. 4).

Validation using simulations
Although our empirical analyses suggest that the hybrid
and the full Bayesian method can produce largely con-
gruent results, it is unclear whether the methods are ac-
curate. That is, whether they can recover the true
parameter estimates. To investigate this, we conducted a
simulation experiment. We simulated 100 whole genome
data sets using similar parameters to those we inferred
for our S. dysenteriae data set. We extracted the SNPs
from the synthetic genomes and analysed them using
the hybrid and full Bayesian methods, with the same
settings that we used for the empirical data. Our
date-randomisations in LSD indicated that all of these
data sets had temporal structure, with p-values of
0.00. The estimates for the age of the root-node from
both methods were very similar. However, it is im-
portant to note that our hybrid method uses a single
tree, such that the age of the root-node is a point
value, whereas the full Bayesian analyses include un-
certainty in this parameter. Accordingly, the estimates

Fig. 2 Date randomisation test using LSD and BEAST2. The left column shows histograms of the rate estimates with randomised sampling times
in LSD (grey). The red line corresponds to the estimate using the correct sampling times. The right column shows the date randomisation test in
BEAST2. The grey bars denote the 95% credible intervals of substitution rate estimates from the randomisations. The red lines correspond to the
95% credible interval of the rate estimates using the correct sampling times. The circles denote the mean value. The x-axis in the left column and
the y-axis in the right column are in logarithmic scale
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from LSD were very close to those used to generate
the data (within 5 years of the true value), and those
from the full Bayesian method always included the
true value within their credible interval. The estimates
for the demographic parameters, r and Φ, had cred-
ible intervals that always included the true value for
both methods, with mean values that often matched
those used to generate the data (Fig. 5a). Interestingly,
in 10 randomly selected simulation replicates, we
found that the credible intervals for the demographic
parameters were very similar for both methods, with
the hybrid approach sometimes producing more pre-
cise estimates. We found no estimation biases in any
of the methods (Fig. 5a).
We conducted a second set of simulations of data with

no temporal structure. To do this, we generated similar
sequence alignments as described above, but we assigned

random sampling times in our analyses in LSD and in
BEAST2. This means that the molecular clock calibration
is effectively uninformative. The age of the root-node was
over estimated by both methods. In LSD this bias was of
over three orders of magnitude, whereas in BEAST2 it
ranged between half and three orders of magnitude. The
value of Φ was similarly overestimated in both methods.
The growth rate, r, was underestimated by several orders
of magnitude with the hybrid approach, but it tended to
be overestimated with the full Bayesian method (Fig. 5b).
A key result about the simulations with no temporal
structure is that Φ was always incorrectly estimated, and
the true value of r was only contained within the 95%
credible interval in about 14% of the analyses using the
full Bayesian method. Moreover, the estimates with the
hybrid approach often displayed larger discrepancies with
the correct values.

Fig. 3 Posterior estimates of demographic parameters, Φ and r using the full Bayesian and hybrid approaches. The red histograms correspond to
the estimates from the hybrid approach, where the coalescent likelihood is calculated on a fixed tree. The grey histograms correspond to the
posterior estimates using the full Bayesian method
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Computational demands of the Bayesian and the hybrid
methods
The hybrid approach was several times faster than the
full Bayesian approach. For example, the computation
time for each randomisation of the V. cholerae data set
each was about 2 h using BEAST2, where as those in
LSD took 1.23 s (sec). However, a key aspect of the
date-randomisation test in LSD is that the tree topology
and branch lengths are fixed for all randomisations,
where as they are re-estimated for each randomisation
in BEAST2. For the V. cholerae data set, a complete ana-
lysis using the hybrid approach took: 10.06 min (min) to
infer a maximum likelihood tree in PhyML, 1.23 s to es-
timate the evolutionary rate and timescale in LSD, and
5 min to infer r and Φ in BEAST2 to obtain effective
sample sizes (ESS) of over 200 for all parameters (draw-
ing 1 × 107 steps, with 1 min per 106 steps), for a total of
about 15 min, and 1/12th of the time required in
BEAST2. Analysis of the full S. dysenteriae dataset from
[11], the largest data set in our study, took 10.6 s to analyse
in LSD and 1 h infer r and Φ BEAST2 (drawing 5 × 107

steps, with 1.2 min per 106 steps), for the 329 sampled
sequences.

Discussion
Our results demonstrate that, as long as a strong temporal
signal is present, the hybrid and fully Bayesian methods can

produce congruent estimates of evolutionary parameters,
even in cases where the data display substantial rate vari-
ation among lineages. These methods also yielded similar
estimates of demographic parameters in data sets with
strong temporal signal, indicating the hybrid approach is a
reliable alternative to full Bayesian analyses. However, r ap-
pears to be more robust than Φ to mild differences in esti-
mates of the rate and timescale. This probably occurs
because the age of the root-node plays an important role in
the population size under the coalescent. In particular, the
effective population size, and therefore Φ, are known to
scale positively with the age of the root-node [37].
Obtaining congruent estimates between the two

methods depends on whether the data meet certain cri-
teria. In practice, it is important to verify that the trees
have high branch support and that the data have strong
temporal structure. The trees inferred here were highly
supported, but it is likely that the hybrid approach will
produce misleadingly precise estimates (i.e. with narrow
confidence intervals) if branch support is low, because
the demographic parameters will still be conditioned on
a single, and possibly incorrect, tree obtained in step 1
that does not capture uncertainty in the topology. In
contrast, in such circumstances the Bayesian method
will simply integrate over phylogenetic uncertainty and
yield wider credible intervals. Our simulations illustrate
ideal conditions, in which the data evolve under the

Fig. 4 Date randomisation test in LSD and estimates of demographic parameters for large data sets using the hybrid approach. The grey
histograms correspond to rate estimates from the randomisations, while the red lines correspond to the estimates using the correct sampling
times. The red histograms correspond to the posterior distribution of parameters Φ and r
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correct model and have strong temporal structure. In
this case, we find that both methods produce accurate
estimates with similar precision.
Our simulations of data with no temporal structure dem-

onstrate, not only that the hybrid and full Bayesian
methods will produce different estimates, but that they
both tend to be inaccurate. In the absence of temporal
structure, LSD often produces rate estimates at the lower
threshold of the program, which was 10− 10 here. This
means that the timescale of the chronogram is overesti-
mated. The value of Φ is also overestimated, which occurs
because this parameter scales positively with the age of the
root-node [37]. Although, we found that r was also overes-
timated, this parameter is determined by the distribution
of branches in the tree, such that its error is less predict-
able. The full Bayesian method produced estimates with

smaller bias. We used uniform priors for Φ and r, and the
prior for the age of the root was determined by the coales-
cent prior. It is likely that these parameters, especially Φ,
will be affected by different choice of priors. For empirical
data with low temporal structure, the hybrid approach will
likely be misleading because it is conditioned on a single
tree which is probably incorrect. In such cases, it may be
necessary to use the full Bayesian method approach be-
cause it is possible to include sources of molecular clock
calibration via prior parametric distributions, at the ex-
pense of much higher computational demands. For in-
stance, a reasonable calibration on the age of the
root-node might be sufficient to overcome low temporal
structure and to obtain reliable estimates for Φ and r. To
investigate this, it is important to verify that there exists a
difference between the prior and posterior for parameters

a

b

Fig. 5 Parameter estimates for 10 randomly selected simulations (from a total of 100). Simulations with strong temporal structure (a) had a p-value for
the date randomisations test of 0.00, where as those with no temporal structure (b) had a p-value of 1. Each row within each panel is for a simulated
genome analysis. Estimates in red were obtained using the hybrid method, while those in grey are for the full Bayesian approach. The circles correspond
to the mean value, except for the age of the root-node for the hybrid approach (LSD), where it is the point estimate. The bars denote the 95% credible
interval. The dashed lines are the value used to generate the data. Note that the x-axes in (b) are in log10 scale
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of interest (see Boskova et al. [38] for an investigation of
the prior and posterior in Bayesian phylodynamics).
Our results show that the date-randomisation test in

LSD appears to be as effective as it is in BEAST2, with
the advantage of being much less computationally de-
manding. As a result, it is possible to use a larger number
of replicates, which can improve the power of the test.
Moreover, the sampling times under a Bayesian analysis of
sequentially sampled data are informative about the tree
topology. That is, they impose a high prior probability on
trees that cluster sequences with similar sampling times,
which can render the date-randomisation test unreliable,
with an increase in type I error [39]. Moreover, in some
phylodynamic models, the estimate of the age of the
root-node and the evolutionary rate are determined by a
combination of the sequence data and their sampling times
[38], such that assessing temporal structure via the date
randomisation test is not trivial. The date-randomisation
test in LSD does not suffer from these problems because
sequence data alone, not tip dates, are used to infer the tree
topology in maximum likelihood.
Critically, the rates estimated using the

date-randomisation in test in LSD are not necessarily
unimodal in their distribution. This occurs because a
lack of temporal structure usually leads to very low
rate estimates, which affects randomisations in LSD
and in BEAST2. In the case of LSD, very low values
for the rate will correspond to the lower threshold set
in the program [17], which we arbitrarily set at 10− 10

subs/site/year, such that most randomisations will have
this value. As such, a reasonable approach to interpret the
date-randomisation test in LSD is to ensure that the rate
estimate with the correct sampling times is higher than
those from at least 95% of the randomisations, following
the frequentist one-tailed p-value of α = 0.05.

Conclusions
As shown here, hybrid methods offer an attractive alter-
native to full Bayesian approaches for genome-scale data
sets with very large numbers of samples. The accuracy
and precision of both methods are comparable, but hybrid
methods can perform an analysis in a about an eighth of
the time required for full Bayesian analyses. Nevertheless,
some steps of the hybrid method used here require over-
simplifications of the evolutionary process. For example,
LSD always assumes a strict molecular clock, such that it
is impossible to assess among-lineage rate variation or to
pinpoint potential biological causes for why lineages have
different rates. The choice of whether to use a hybrid
method should be made based on what parameters a user
wishes to interrogate. In the context of molecular epidemi-
ology, demographic parameters (r and Φ) and divergence
time information are of primary interest, all of which ap-
pear robust to some among-lineage rate variation.

In this study, we used a simple demographic model,
the exponential-growth coalescent. This model appears
to be well suited when outbreak data are sampled at an
early stage, but it makes several assumptions, including
that the population of susceptible hosts is constant and
that there is no population structure [6]. A better under-
standing of the data used here requires more sophisti-
cated phylodynamic models, such as those that include
changes in diversification parameters over time [40], and
migration [41]. To this end, our results suggest that har-
nessing the power of such models and large-scale genome
sequencing can be done through hybrid approaches.

Methods
Data collection
Our bacterial data sets consisted of publically available
genome data. We obtained all of our genome-wide SNP
alignments from a previous studies [11, 25, 27, 35].
These data sets are freely available online (github.com/
sebastianduchene/bacteria_genomic_rates_data). These
data have had regions with evidence of recombination
removed using Gubbins v2 [42].

Phylogenetic analyses under the fully Bayesian approach
We analysed the sequence alignments in BEAST v2.4
using the sampling times for calibration, the GTR + Γ
substitution model, the exponential-growth coalescent
tree prior, and two clock models; the strict and the
UCLN. We used the default priors for all parameters.
Our Markov chain Monte Carlo (MCMC) sampling
scheme consisted of a chain length of 5 × 108 steps, sam-
pling every 104 steps. We verified that the ESS for all param-
eters was at least 200. To determine whether the data had
temporal structure, we conducted a date-randomisation test
by randomising the sampling dates 20 times and repeating
the analyses [33].

Phylogenetic analyses using the hybrid approach
We inferred phylogenetic trees using maximum likelihood
in PhyML v3.1. We used the GTR + Γ substitution model,
and a search strategy that combines the nearest-neighbour
interchange and subtree prune and regraft algorithms. To
assess branch support, we calculated the aLRT score for
each branch. To visually assess temporal structure, we
conducted a regression of the root-to-tip distances as a
function of the sampling times using TempEst v1.5 [34].
To determine the optimal root in this program we se-
lected the position that maximised R2.
We analysed the maximum likelihood trees (i.e. phylo-

grams) in LSD v0.3 to infer the evolutionary rate and
timescale. We set the sampling times as calibrations and
allowed the program to determine the optimal position
of the root. We constrained the branching times of the
estimated chronograms such that daughter nodes must
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be younger than their parent nodes. To obtain an uncer-
tainty around estimates of times and rates, we conducted
100 parametric bootstrap replicates of the branch
lengths, as implemented in the program. Therefore, the
uncertainty corresponds to the 95% confidence interval
of the parametric bootstrap values. We conducted a
date-randomisation test 100 times by randomising the
sampling times in the ‘date’ file and running LSD each
time. In this version of the test, the phylogenetic tree
topology and branch lengths are fixed.
We used the chronograms estimated in LSD to infer

demographic parameters in BEAST2. This consists in set-
ting the input file to calculate the posterior as the likelihood
of the tree given the model parameters multiplied by the
priors on the parameters. In the exponential growth coales-
cent there are two parameters;Φ and r. We used an MCMC
chain length of 1 × 107 sampling every 104 steps, and we
verified that all parameters had ESS values of at least 200.

Simulations
We simulated whole genome sequence alignments using
the parameters from our S. dysenteriae data set. To do
this, we took the highest clade credibility tree from this
data set inferred in BEAST2 and simulated the evolu-
tionary rate using NELSI [29], according to an UCLN
clock model. We used a mean rate of 10− 6 subs/site/year
and a standard deviation of 10− 7. We used Seq-Gen v1.3
[43] to simulate genome sequence alignments of
3,750,125 nucleotides using the GTR + Γ substitution
model with the mean parameter estimates for the empir-
ical S. dysenteriae data. Finally, we extracted the SNPs
from these alignments and analysed using the same
method as for our empirical data. For our simulations
with no temporal structure we set random sampling
times for our analyses in LSD and BEAST2. In all cases,
we conducted a date-randomisation test in LSD, as used
in our empirical data analysis.

Availability of supporting data
The datasets generated and/or analysed during the current
study are available in the github repository, github.com/
sebastianduchene/bacteria_genomic_rates_data

Additional file

Additional file 1: Figure S1. Root-to-tip regression for all data sets. The
blue points correspond to tips in the tree. The black line represents the
linear regression of root-to-tip distance as a function of the sampling
time. The root-to-tip distance is measured by fitting the root of the tree
that maximises R2. (PDF 81 kb)
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