
Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Col-
ijn, Caroline (2017) treespace: Statistical exploration of landscapes of
phylogenetic trees. MOLECULAR ECOLOGY RESOURCES, 17 (6).
pp. 1385-1392. ISSN 1755-098X DOI: https://doi.org/10.1111/1755-
0998.12676

Downloaded from: http://researchonline.lshtm.ac.uk/4650560/

DOI: 10.1111/1755-0998.12676

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna-
tively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/163077196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/4650560/
http://dx.doi.org/10.1111/1755-0998.12676
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk


R E SOU R C E A R T I C L E

TREESPACE: Statistical exploration of landscapes of phylogenetic
trees

Thibaut Jombart1,* | Michelle Kendall2,* | Jacob Almagro-Garcia3 | Caroline Colijn2

1Department of Infectious Disease

Epidemiology, MRC Centre for Outbreak

Analysis and Modelling, School of Public

Health, Imperial College London, London,

UK

2Department of Mathematics, Imperial

College London, London,UK

3Wellcome Trust Centre for Human

Genetics, University of Oxford, Oxford, UK

Correspondence

Thibaut Jombart, Department of Infectious

Disease Epidemiology, MRC Centre for

Outbreak Analysis and Modelling, School of

Public Health, Imperial College, London, UK.

Email: t.jombart@imperial.ac.uk

and

Michelle Kendall, Department of

Mathematics, Imperial College London,

London, UK

Email: m.kendall@imperial.ac.uk

Funding information

Medical Research Council Centre for

Outbreak Analysis and Modelling, Grant/

Award Number: MR/K010174/1; National

Institute for Health Research—Health

Protection Research Unit for Modelling

Methodology, Grant/Award Number: HPRU-

2012-10080; Engineering and Physical

Sciences Research Council (EPSRC), Grant/

Award Number: EP/K026003/1.

Abstract

The increasing availability of large genomic data sets as well as the advent of Baye-

sian phylogenetics facilitates the investigation of phylogenetic incongruence, which

can result in the impossibility of representing phylogenetic relationships using a sin-

gle tree. While sometimes considered as a nuisance, phylogenetic incongruence can

also reflect meaningful biological processes as well as relevant statistical uncertainty,

both of which can yield valuable insights in evolutionary studies. We introduce a

new tool for investigating phylogenetic incongruence through the exploration of

phylogenetic tree landscapes. Our approach, implemented in the R package TREE-

SPACE, combines tree metrics and multivariate analysis to provide low-dimensional

representations of the topological variability in a set of trees, which can be used for

identifying clusters of similar trees and group-specific consensus phylogenies. TREE-

SPACE also provides a user-friendly web interface for interactive data analysis and is

integrated alongside existing standards for phylogenetics. It fills a gap in the current

phylogenetics toolbox in R and will facilitate the investigation of phylogenetic

results.
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1 | INTRODUCTION

Genetic sequence data are becoming an increasingly common and

informative resource in a variety of fields including evolutionary

biology (Wolfe & Li, 2003), ecology (Hudson, 2008), medicine

(Weinshilboum, 2002) and infectious disease epidemiology (Holden

et al., 2013; Pybus & Rambaut, 2009). Although specific methods

emerge to tackle particular problems in different fields, many analy-

ses of homoplasy, selection and population structure begin with a

reconstructed tree. Indeed, phylogenetic reconstruction remains the

gold standard for assessing the evolutionary relationships amongst a

set of taxa or sampled isolates (Bouckaert et al., 2014; Popescu,

Huber, & Paradis, 2012; Ronquist & Huelsenbeck, 2003; Schliep,

2011) in the absence of horizontal gene transfers and recombination

events (McInerney, Cotton, & Pisani, 2008).

Ideally, a single phylogenetic tree could be used to visualize the

evolutionary history of a set of sequences. In practice, however, a

number of biological and statistical factors may lead to phylogenetic

uncertainty and incongruence (Jeffroy, Brinkmann, Delsuc, &

Philippe, 2006; Kumar, Filipski, Battistuzzi, Kosakovsky Pond, &
*These authors contributed equally to the work.
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Tamura, 2012; Som, 2015). In such cases, several phylogenies may

be equally supported by the data and need to be examined. Besides

horizontal gene transfers (Delsuc, Brinkmann, & Philippe, 2005;

McInerney et al., 2008), genomic reassortments (Nelson et al., 2008)

and gene loss and acquisition (Page & Charleston, 1997), incomplete

lineage sorting can lead different genes to exhibit distinct genealo-

gies (Jeffroy et al., 2006; Pollard, Iyer, Moses, & Eisen, 2006; Som,

2015) and invalidate the idea of a “single evolutionary history”

(Jeffroy et al., 2006; McInerney et al., 2008). Statistical uncertainty

in tree topology can also arise when using bootstraps (Efron 1992;

Felsenstein, 1985, Newton, 1996; Soltis & Soltis, 2003) or when

considering samples of trees in Bayesian approaches (Drummond &

Rambaut, 2007; Huelsenbeck, Rannala, & Masly, 2000; Ronquist &

Huelsenbeck, 2003).

Because examining multiple phylogenies quickly becomes imprac-

tical, this problem is classically addressed by choosing a single refer-

ence phylogeny and indicating support for individual nodes in the

other trees (Drummond & Rambaut, 2007; Felsenstein, 1985; Par-

adis, Claude, & Strimmer, 2004; Soltis & Soltis, 2003). Unfortunately,

bootstrap or posterior support values can only be easily interpreted

when they show high congruence, and considerable effort has been

devoted to quantifying the credibility or probability of clades in

reconstructed phylogenies (Anisimova, Gil, Dufayard, Dessimoz, &

Gascuel, 2011; Drummond, Ho, Phillips, & Rambaut, 2006; Holmes,

2003b; Lemey, Rambaut, Drummond, & Suchard, 2009; Newton,

1996; Wr�obel, 2008). Statistically significant results derived from dif-

ferent data sources can differ (Kumar et al., 2012), and while this

would usually result in low bootstrap values, anomalously high boot-

strap values can result from concatenation of gene sequences

(Gadagkar, Rosenberg, & Kumar, 2005; Kumar et al., 2012). While

several different phylogenies can be nearly equally supported by the

data (Wr�obel, 2008), in practice these alternative often remain unex-

plored (Felsenstein, 1985; Holmes, 2003a; Newton, 1996). A more

satisfying alternative would consist of extracting the essential differ-

ences and similarities amongst a set of trees, visualizing these rela-

tionships and identifying one or more representative trees (Amenta

& Klingner, 2002; Chakerian & Holmes, 2012; Hillis, Heath, &

St John, 2005; Holmes, 2003b; Nye, 2014).

Several metrics and measures of dissimilarity between trees have

been developed (Table 1), each of which directly compares trees to

each other according to certain biological or mathematical properties

(Critchlow, Pearl, & Qian, 1996; Estabrook, McMorris, & Meacham,

1985; Hein, Jiang, Wang, & Zhang, 1996; Kendall & Colijn, 2015;

Pavoine, Ollier, Pontier, & Chessel, 2008; Robinson & Foulds, 1979,

1981; Williams & Clifford, 1971). Interestingly, these methods of

pairwise tree comparison can form the basis of further analyses aim-

ing to visualize and characterize relationships in a whole set of phy-

logenies. Several studies have also focussed on providing Euclidean

visualizations of tree spaces, but typically relied on a single tree met-

ric (Amenta & Klingner, 2002; Chakerian & Holmes, 2012; Hillis

et al., 2005; Kendall & Colijn, 2016; Wilgenbusch, Huang, & Gallivan,

2017).

We introduce TREESPACE, an R package providing a comprehensive

toolkit for the analysis of phylogenetic incongruence. We generalize

a previous approach (Amenta & Klingner, 2002; Hillis et al., 2005) for

visualizing relationships between trees in a continuous, low-dimen-

sional Euclidean space to any tree metric, and implement the most

common ones (Table 1). In addition, we provide a range of clustering

methods permitting the identification of groups of similar trees com-

monly known as “tree islands” (Maddison, 1991) and implement a

new method for defining summary trees (Kendall & Colijn, 2016). Our

R package also implements a user-friendly web interface giving

access to all of the package’s features and permitting the interactive

visualization and analysis of sets of phylogenetic trees. To maximize

data interoperability, it is fully integrated alongside existing standards

for phylogenetics (Jombart, Balloux, & Dray, 2010; Popescu et al.,

2012; Schliep, 2011) in the R software (R Core Team 2016).

2 | IMPLEMENTED METHODS

TREESPACE generalizes an approach used by Amenta and Klingner

(Amenta & Klingner, 2002) and later by Hillis et al. (2005), imple-

mented as the TREESETVIZ module for MESQUITE (Maddison & Maddison,

2003). This method used the Robinson–Foulds metric (Robinson &

Foulds, 1979, 1981) to visualize relationships between labelled trees

TABLE 1 Methods available in TREESPACE for defining distances between trees

Metric/tree summary References R function (package)

Robinson–Foulds metric (Robinson & Foulds, 1979, 1981) RF.dist (PHANGORN) (Schliep, 2011) dist.
topo (APE) (Paradis et al., 2004)

Branch score distance (Kuhner & Felsenstein, 1994) KF.dist (PHANGORN) (Schliep, 2011)

Billera–Holmes–Vogtmann metric (BHV) (Billera et al., 2001) dist.multiPhylo (DISTORY)

(Chakerian & Holmes, 2013)

Path difference metric (a.k.a. patristic distance/

node distance/tip distance/dissimilarity measure)

(Steel & Penny, 1993), (note also the l1-norm

version by [Williams & Clifford, 1971; ])

path.dist (PHANGORN)

(Schliep, 2011) distTips (ADEPHYLO)

(Jombart et al., 2010a)

Kendall–Colijn metric (Kendall & Colijn, 2015) treeDist (TREESPACE)

Abouheif’s dissimilarity (Pavoine et al., 2008) distTips (ADEPHYLO) (Jombart et al., 2010a)

Sum of direct descendents (Pavoine et al., 2008) distTips (ADEPHYLO) (Jombart et al., 2010a)
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with identical tips in a Euclidean space. Here, we generalize this

approach to any tree metric, and add the use of multiple clustering

approaches to formally identify “tree islands”.

The core idea underlying tree space exploration is to map vari-

ability in tree topology or branch length onto a low-dimensional,

Euclidean space, which can then be used for visualizing relationships

between the phylogenies and, potentially, to define clusters of simi-

lar trees (Figure 1). First, pairwise distances between all pairs of

trees in the sample are computed (Figure 1a,b). Typically, measures

of distances between trees rely on mapping each phylogeny to a

vector of labelled numbers corresponding to pairwise comparisons of

tips or internal nodes and then computing the Euclidean distance

between the resulting vectors (Figure S1). TREESPACE implements an

extensive selection of distances relying on this principle (Kendall &

Colijn, 2015; Pavoine et al., 2008; Robinson & Foulds, 1979, 1981;

Steel & Penny, 1993; Williams & Clifford, 1971), as well as the BHV

metric (Billera, Holmes, & Vogtmann, 2001), which directly computes

distances between trees without intermediate feature extraction

(Table 1).

Once pairwise distances between trees are computed, they are

decomposed into a low-dimensional space using metric multidimen-

sional scaling (MDS), also known as principal coordinate analysis

(PCoA, Gower, 1966; Dray & Dufour, 2007; Legendre & Legendre,

2012). This method finds independent (uncorrelated) synthetic

F IGURE 1 Rationale of the approach used in TREESPACE. This diagram illustrates the four-step approach for exploring phylogenetic tree spaces
in TREESPACE. (a). The input is a set of rooted, labelled trees describing the same taxa. Colours are used here to represent variability amongst trees.
(b). Pairwise Euclidean distances between trees are computed, using various tree “summaries” or metrics. (c). These distances are represented in a
space of lower dimension using multidimensional scaling (MDS), and potential groups of similar trees can be identified using various clustering
methods. (d). Representative trees are derived from each group [Colour figure can be viewed at wileyonlinelibrary.com]
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variables, the “principal components” (PCs), which represent as well

as possible the original distances inside a lower-dimensional space

(Figure 1c). By inspecting the proportion of the total distances

between trees represented by specific axes (the “eigenvalues” of the

different PCs), one can assess the number of relevant PCs to exam-

ine and, ideally, separate structured phylogenetic variation from ran-

dom noise (Legendre & Legendre, 2012). Importantly, MDS can only

be applied to Euclidean distances (Legendre & Legendre, 2012). In

the case of non-Euclidean tree distances (Billera et al., 2001; Robin-

son & Foulds, 1981), we use Cailliez’s transformation (Cailliez, 1983)

to render these distances Euclidean before MDS.

Exploring tree spaces using MDS allows the main features of a

given phylogenetic landscape to be explored and evaluated. In par-

ticular, the resulting typology may exhibit discrete clusters of related

trees (the “phylogenetic islands”), indicating that several distinct phy-

logenies may actually be supported by the data (Figure 1c). To iden-

tify such clusters formally, we implemented various hierarchical

clustering methods based on the projected distances, including the

single linkage, complete linkage, Unweighted Pair Group Method

with Arithmetic Mean (UPGMA) and Ward’s method (Legendre &

Legendre, 2012).

This approach allows the user to seek representative trees for

each cluster separately (Figure 1d). A method for selecting such rep-

resentative trees is given in Kendall and Colijn (2015) and imple-

mented in TREESPACE as the function “medTree.” This function

identifies the geometric median tree(s), which are the tree(s) closest

to the mean of the Kendall–Colijn tree vectors for a given cluster.

Such trees serve as alternatives to other summary tree approaches

such as the consensus tree (Felsenstein, 1985) or the maximum clade

credibility (MCC) tree (Drummond & Rambaut, 2007; Ronquist &

Huelsenbeck, 2003), with the key advantage that they correspond to

specific trees in the sample, thus avoiding implausible negative branch

lengths (Heled & Bouckaert, 2013). However, given a collection of

trees in a cluster, any summary approach such as MCC could be used.

All the functionalities described above are implemented in TREE-

SPACE as standard R functions, fully documented in a vignette tutorial,

as well as in a user-friendly web interface for interactive data analysis.

This interface can be started locally (i.e. without Internet connection)

from R using a simple instruction (treespaceServer()) and,

therefore, demands virtually no knowledge of the R language. Alterna-

tively, we also provide an online instance of the application at http://

shiny.imperial-stats-experimental.co.uk/users/mlkendal/treespace

3 | WORKED EXAMPLE

As an illustration, we used TREESPACE to analyse 17 publicly available

sequences of dengue virus (Drummond & Rambaut, 2007; Lanciotti,

Gubler, & Trent, 1997). This analysis is reproduced in a vignette dis-

tributed with the package which can be loaded using the instruction

vignette(DengueVignette). Three types of phyloge-

netic trees were obtained: (a) a neighbour-joining (NJ) tree (Figure 2a)

created using the R package APE (Paradis et al., 2004); (b) a maximum-

likelihood (ML) tree (Figure 2b) obtained using PHANGORN (Schliep,

2011); and (c) Bayesian trees using BEAST v1.8 with the codon-posi-

tion-specific substitution model and relaxed clock priors, as specified

in xml file S2 in (Drummond & Rambaut, 2007). 100 bootstrap trees

were obtained for the NJ and ML phylogenies (Holmes, 2003a). For

BEAST, 200 trees were randomly sampled from the posterior distribu-

tion after visually assessing the convergence of the MCMC chain

with 10,000,000 iterations. Results were qualitatively unchanged

using larger samples. The NJ and ML trees were rooted using the

“D4Thai63” sequence, seen as the most basal in the BEAST MCC tree.

Trees inferred using the three methods were different (Figure 2)

in the position of the “Philippines clade” (dashed box in Figure 2)

and in whether the Tahiti84 tip was sister to PRico86. Bootstrap sup-

port values for the NJ tree show considerable phylogenetic incon-

gruence, both near the tips and deep in the tree (Figure 2a). In

contrast, the ML tree has high bootstrap support for most nodes

(Figure 2b). Interestingly, the ML and NJ trees themselves were

quite different (Figure 2a,b), notably with the “Philippines” clade

clustered with isolates from Thailand and Sri Lanka (“D4Thai” and

“D4SLanka” isolates) in the ML tree and not in the NJ phylogeny.

Examination of bootstrap values alone does not indicate whether

the NJ and ML bootstrap trees exhibit any common topologies. BEAST

trees visualized using DENSITREE (Bouckaert, 2010) and the BEAST MCC

tree (Figure 2c,d) seemed more similar to the ML phylogeny in the

position of the “Philippines” clade, but also showed uncertainty in

tree topologies in multiple places. While DENSITREE plots provide

intuition about the extent of incongruence amongst these trees,

Figure 2c does not reveal whether the topologies of BEAST phyloge-

nies coincide with any of the other trees.

We used TREESPACE to investigate potential discrepancies in more

detail. A three-dimensional MDS based on the Kendall–Colijn metric

(Kendall & Colijn, 2015) revealed differences between the different

methods (Figure 3a; see vignette for an interactive version). This

analysis revealed that topologies of NJ and ML bootstrap trees were

broadly similar, overlapping in three distinct and similar-sized clus-

ters. However, the NJ trees exhibited slightly more variation, includ-

ing a few outlying topologies (top right, Figure 3a), which is

consistent with the overall lower bootstrap support values than in

the ML tree (Figure 2).

BEAST trees formed a group of their own, with no overlap

between their topologies and those of the NJ or ML trees

(Figure 3a). A separate analysis of the BEAST trees revealed four dis-

tinct clusters of topologies (function “findGroves,” Figure 3b).

Closer examination of the phylogenies revealed that topologies of

these sets of trees were indeed all different; no single topology

was shared between BEAST trees and NJ/ML trees. The median trees

(function “medTree”) obtained for each cluster (Figure 3c–f)

revealed that Bayesian trees largely supported the positioning of

the “Philippines” clade of the ML tree (Figure 3d,f), with alternative

placements mostly due to a few outlying topologies more akin to

the NJ tree (Figure 3c,e). These results also suggested that the

position of root may be disputed, as every phylogenetic islands

exhibited a different rooting.
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4 | DISCUSSION

TREESPACE provides a simple framework for exploring landscapes of

phylogenetic trees and investigating phylogenetic incongruence using

tree–tree distances. Of the various methods for measuring distances

between trees, some may be better than others at capturing meaning-

ful topological differences, as is the case when testing phylogenetic

signal (Jombart, Pavoine, Devillard, & Pontier, 2010; M€unkem€uller

et al., 2012; Pavoine et al., 2008). There are currently no theoretical

descriptions that can determine a priori which tree comparison

method will be most revealing for which kind of data. Recognizing

this, we have incorporated considerable flexibility into TREESPACE in

terms of how trees are compared, by providing a framework which

can incorporate any tree-to-tree distance, and implementing seven

different ones by default. This feature distinguishes TREESPACE from

other similar software, like the R package RWTY which re-implements

F IGURE 2 Dengue virus phylogenies obtained by various inference methods, demonstrating the variety of results. (a) neighbour-joining
(NJ), (b) maximum-likelihood (ML), (c,d) BEAST, where (c) is a DENSITREE plot of 200 trees randomly sampled from the converged BEAST posterior,
and (d) is the MCC tree from this sample. Bootstrap support values for NJ and ML trees and posterior support values for the BEAST MCC tree
were calculated; values below 100% are shown. The dashed lines delineate the Philippines clade, referred to in the text [Colour figure can be
viewed at wileyonlinelibrary.com]
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MESQUITE’s TREESETVIZ module (Robinson–Foulds metric) as part of an

excellent toolkit for assessing mixing in Bayesian phylogenetics (War-

ren, Geneva, & Lanfear, 2017), or TREESCAPER, which puts stronger

emphasis on reduced space optimization methods and community

detection algorithms (Huang et al., 2016; Wilgenbusch et al., 2017).

TREESPACE combines a fast dimension reduction technique (MDS)

with various hierarchical clustering approaches (Legendre & Legendre,

2012) to reveal phylogenetic tree islands. While this approach is very

computer-efficient, it may sometimes struggle to delineate tree islands

in the presence of distortions of the tree space observed in some

specific metrics (Hillis et al., 2005). For instance, recent work suggests

that the Robinson–Foulds metric is best combined with nonlinear

dimension reduction techniques for identifying clusters of similar trees

(Wilgenbusch et al., 2017). Further efforts should be devoted to

investigating alternative dimension reduction approaches such as the

t-SNE implemented with a Barnes–Hut approximation (van der Maa-

ten & Hinton, 2008), and nonlinear classifiers such as support vector

machines (Sch€olkopf & Smola, 2002) or community detection methods

(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; Huang et al., 2016).

Our approach is very different from the “principal component

analysis” (PCA) for trees introduced by Aydin, Pataki, Wang, Bullitt,

and Marron (2009) and extended to phylogenetic trees by Nye

(2011). These methods proceed by analogy to classical PCA

(Hotelling, 1933; Pearson, 1901), but do not actually map trees into

vector spaces, and are therefore unable to use classical dimension

reduction techniques and the corresponding visualizations (Legendre

& Legendre, 2012). They produce optimal “tree lines” (Aydin et al.,

2009), which are collections of nested trees meant to be representa-

tive of the entire tree set. While this concept is undoubtedly interest-

ing, it does not provide a direct geometric representation for the

trees, so that it cannot be used to assess relationships between the

different phylogenies or identify phylogenetic islands (Maddison,

1991). In fact, while conceptually different, the identification of clus-

ters of trees implemented in TREESPACE is related to the idea of bound-

aries between tree topologies (Holmes, 2003b), and to the notion of

“terraces” in the phylogenetic tree space (Sanderson, McMahon, &

Steel, 2011). Both “boundaries” and “terraces” define regions of the

tree space inside which trees are closely related through their topol-

ogy (Holmes, 2003b; Sanderson et al., 2011) and their log-likelihood

under a specific evolutionary model (Sanderson et al., 2011). While

we do not currently include the latter, it would be interesting to

incorporate information on tree log-likelihood as weights in the

analysis.

Lastly, one of the key advantages of developing TREESPACE within

the R software (R Core Team 2016) is the resulting interoperability

with other tools. Indeed, R is becoming a standard for phylogenetic

F IGURE 3 An analysis of the dengue virus phylogenies from figure 2 using TREESPACE. (a) Three-dimensional MDS plot demonstrating the
variety between phylogenies inferred by different methods. The NJ and ML trees are indicated by larger spheres, with their corresponding
bootstrap trees marked as smaller spheres of the same colour. (b) Two-dimensional MDS plot of the BEAST trees alone, coloured by cluster
obtained using the function findGroves. Scree plots are given as insets. (c–f) From each cluster in (b), a median tree was selected using
medTree. These are highlighted in (b) by crosses. The MCC tree (Figure 2d) is indicated by a star in (b), and sits close to the green median
tree (d). Indeed, these two trees differ only in their topologies amongst the tips “D4Brazil82,” “D4NewCal81,” “D4Mexico84” and “D4ElSal83”
[Colour figure can be viewed at wileyonlinelibrary.com]
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analyses (Jombart et al., 2010, 2017; Kembel et al., 2010; Paradis

et al., 2004; Revell, 2012; Schliep, 2011; Warren et al., 2017) and

therefore represents an ideal environment for TREESPACE to become a

useful tool for the exploration of phylogenetic results. Its develop-

ment within an open-source, community-based platform together

with its availability as user-friendly web interface will hopefully facili-

tate its adoption by a wide range of scientists and encourage further

methodological developments.
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