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Cross-validation to select Bayesian
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Abstract

Background: Recent developments in Bayesian phylogenetic models have increased the range of inferences that
can be drawn from molecular sequence data. Accordingly, model selection has become an important component
of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model
in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the
marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the
prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an
alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing
models according to their predictive performance.

Results: We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach
to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be
effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that
allow growth in population size over time. In most of our empirical data analyses, the model selected using
cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of
cross-validation appears to improve with longer sequence data, particularly when distinguishing between
relaxed-clock models.

Conclusions: Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be
readily implemented even when considering complex models where selecting an appropriate prior for all
parameters may be difficult.

Keywords: Model selection, Cross-validation, Bayesian phylogenetics, Molecular clock, Demographic models,
Marginal likelihood

Background
Evolutionary analyses of gene sequence data are increas-
ingly reliant on model-based phylogenetic approaches. In
recent years, this has been given substantial impetus by the
surge in genome-scale data, improvements in computa-
tional power, and the application of Bayesian statistical
methods to phylogenetics [1]. Statistical models are typic-
ally used to describe the substitution process in nucleotide

or amino acid sequences [2], diversification and demo-
graphic processes [3, 4], and patterns of evolutionary rate
variation among lineages [5]. In a Bayesian framework, the
various components describing different aspects of the evo-
lutionary process collectively form the hierarchical model.
The accuracy of phylogenetic inference depends on

the fit of the Bayesian hierarchical model to the data set
being analysed. This includes the extent to which the as-
sumptions of the model are met, and whether the model
reasonably describes the data [6]. For example, if a data
set sampled from an exponentially growing population is
analysed using a model that assumes a constant popula-
tion size, the estimate of the population size will be
highly misleading. Model misspecification can also result
in errors in the estimates of other parameters, including
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the phylogenetic tree and branch lengths [7]. For this
reason, model selection forms a critical component of
phylogenetic analyses [2].
Likelihood methods for model selection include

likelihood-ratio tests and information criteria. The
likelihood-ratio test has been widely used in phylogenetics
to select substitution models and to test for the strict mo-
lecular clock [2]. This method uses the difference in log-
likelihoods between two competing models multiplied by 2
as a test statistic. The test statistic follows a χ2 distribution
with degrees of freedom equal to the difference in number
of parameters between the two models. A limitation of this
approach is that only nested models can be compared. The
Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) are also popular methods in phyloge-
netics. Their advantage over the likelihood-ratio test is that
it is possible to compare non-nested models. Both of these
methods use the maximum likelihood of competing models
and penalise the number of parameters to obtain a score.
To select a model, the AIC or BIC score is calculated for all
the models considered and that with the lowest score is se-
lected [8]. In the case of substitution model selection, the
BIC appears to have a better performance than the AIC [9].
Bayesian model selection is usually based on compari-

son of the marginal likelihoods using Bayes factors [10].
Calculating the marginal likelihood involves integrating
the likelihood across parameter values of the model, and
weighting by the prior. In phylogenetics, an analytical
solution to calculate the marginal likelihood is intract-
able. Consequently, it is common to use approximate
methods of estimating marginal likelihoods, such as im-
portance sampling, path sampling, and generalised
stepping-stone sampling [11, 12]. Estimators based on
importance sampling, including the harmonic mean and
the AICM (a Bayesian analogue to the Akaike Informa-
tion Criterion), are computationally efficient but unreli-
able because they have an unacceptably high variance
[13–15]. Path-sampling approaches include thermo-
dynamic integration [16] and stepping-stone sampling
[17]. Although these estimators are more accurate, they
require additional calculations beyond those used to esti-
mate the parameters in the model. To estimate the mar-
ginal likelihood, these approaches draw samples from a
series of distributions between the posterior and the
prior, such that the prior should be carefully selected. In
particular, the prior distributions for all parameters
should integrate to 1, known as ‘proper priors’ [18].
Conceivably, even when the priors are proper, their

arbitrary choice can lead to different models being selected.
Although this is well documented in the statistical litera-
ture, the effect of the prior in clock model choice remains
largely unexplored. A recently developed path-sampling
method, known as generalised stepping-stone sampling
[11, 12], involves drawing samples from distributions

between the posterior and a working distribution, instead
of the prior. However, the prior still affects the model se-
lected because it is part of the calculation of the posterior.
Importantly, the working distribution for continuous
parameters can take a Gaussian shape, but for discrete
parameters, such as the genealogy, there are several strat-
egies available to select the working distribution [12].
Lartillot et al. [19] first proposed the use of a cross-

validation approach for selecting amino acid substitution
models. Its performance was found to be similar to that
of Bayes factors using marginal likelihoods. The motiv-
ation behind this method is to select models according
to their predictive power by splitting the data into ‘train-
ing’ and ‘test’ sets. For sequence data, these sets are gen-
erated by randomly sampling sites without replacement
from the alignment. The training set is used to estimate
the parameters of the models being compared. The like-
lihood of the test set is calculated for each model using
the parameter estimates from the training set. The
model with the highest likelihood for the test set is
regarded as the best-fitting.
In a Bayesian framework, the parameter values are

sampled from the posterior distribution obtained from
the training set and are used to estimate their likelihood
for the test set. The resulting likelihoods are effectively
the probability of the test data given the model and par-
ameter estimates under the training set. The model that
has the highest mean likelihood for the test set is then
regarded as providing the best fit. Because the likelihood
of the models is evaluated using a data set that has not
been observed (i.e., the test set), artefacts due to over-
parameterization are alleviated [19]. Thus, it is not neces-
sary to penalize explicitly for excessive parameters, as in
the case of information criteria [8]. To reduce sampling
error, the cross-validation procedure can be repeated a
number of times, with the likelihood for each model aver-
aged over replicates.
We extend the cross-validation method proposed by

Lartillot et al. [19] for substitution models to other com-
ponents of the Bayesian hierarchical model: the molecu-
lar clock model and the demographic model. We also
test whether the performance of the method depends on
the length of the sequence alignment, because the prob-
ability of identifying the optimal model should improve
with the amount of data (i.e., statistical consistency).

Methods
Cross-validation implementation
In our implementation of cross-validation, we randomly
sample half of the sequence alignment without replace-
ment. One half is the training set and the other is the
test set, such that the two sets have no overlapping sites.
We then analyse the training set using the Bayesian
Markov chain Monte Carlo method in BEAST v2.3 [20].
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This program requires the specification of a clock model
as well as a demographic or speciation model. It esti-
mates the posterior distribution of parameters in the
model, including rooted phylogenetic trees with branch
lengths in units of time (known as chronograms). We
draw samples from the posterior and use P4 v1.1 [21] to
calculate the phylogenetic likelihood of the test set given
these samples. However, to calculate the phylogenetic
likelihood it is necessary to use phylograms (i.e., phylo-
genetic trees with branch lengths in substitutions per
site). We convert the chronograms into phylograms by
multiplying branch lengths (in time units) and substitu-
tion rates. We draw 1,000 samples from the posterior es-
timates of the training set, then use each set of sampled
parameters to calculate the mean phylogenetic likelihood
for the test set. The mean likelihood is compared for dif-
ferent models, and we consider the best model to be that
with the highest mean likelihood for the test set. The
computer code to conduct our analyses is available on-
line (github.com/sebastianduchene/cv_model_selection).

Simulations
We used a simulation approach to test the accuracy of
cross-validation in selecting clock and demographic
models. We considered three molecular clock models;
the strict clock (SC), the relaxed uncorrelated lognormal
(UCLN) clock, and the relaxed uncorrelated exponential
(UCED) clock. First, we sampled from the prior within
the BEAST framework to generate ten phylogenetic
trees, each with 50 taxa and a root node age of 100 years.
The tree topology and relative ages of internal nodes
were based on a constant-size demographic model. We
simulated branch rates according to the three clock
models using NELSI v1.0 [22]. For the SC model, we
used a rate of 10−3 substitutions/site/year, which broadly
reflects the substitution rates that have been estimated
in a range of RNA viruses, such as HIV [23] and Dengue
virus [24]. For the UCLN and UCED models, we used a
mean of 10−3 substitutions/site/year and a standard devi-
ation of 10 % of the mean for the UCLN (note that in
the UCED, the mean equals the standard deviation). We
then used Pyvolve [25] to simulate the evolution of se-
quences of length 5,000, 10,000, and 15,000 nt under the
Jukes-Cantor substitution model.
We compared all three clock models using the cross-

validation method described above, with test and training

sets of 50 % of the alignment length. For the BEAST ana-
lysis, we used a chain length of 107 steps, with samples
drawn every 5,000 steps, and discarding 10 % of the chain
as burn-in. Whenever the effective sample size for any of
the parameters was below 200, we doubled the chain
length and halved the sampling frequency.
We also conducted simulations using two different

demographic models: the constant-size coalescent (CSC)
and the exponential-growth coalescent (EGC). We ob-
tained trees in BEAST by sampling chronograms from the
prior under the two demographic models. For the EGC
model, we set the growth rate to 0.25, which is similar to
that observed in some viruses [26]. We used the strict-
clock model with a rate of 10−3 substitutions/site/year and
simulated sequence evolution as described above.

Analyses of empirical data
We analysed four nucleotide sequence data sets to illustrate
the performance of cross-validation (i) Enterovirus A71
(EV-A71), with 34 partial polyprotein sequences of 858 nt
sampled between 2011 and 2013 (including the day and
month) [27]; (ii) West Nile Virus (WNV), with 68 complete
sequences of 10,299 nt sampled between 1999 and 2003
[28]; (iii) Rabbit Hemorrhagic Disease Virus (RHDV), with
72 capsid gene sequences of 1,726 nt sampled between
1995 and 2014 [26]; and (iv) whole-genome single-
nucleotide polymorphisms of the bacterium Shigella sonnei,
with a total of 161 sequences of 1,626 nt sampled between
1995 and 2010 [29] (Table 1). The alignments are available
online (github.com/sebastianduchene/cv_model_selection).
We used the cross-validation method to compare four

combinations of clock model and demographic model: SC
+CSC, SC + EGC, UCLN+CSC, and UCLN+EGC. These
analyses were conducted in BEAST using the same settings
as in our analyses of simulated data. We used the GTR + Γ
substitution model, accounting for rate heterogeneity
among sites which is expected in the empirical data. The
sampling times of the sequences were used to calibrate the
clock; the four data sets have previously been found to have
sufficient temporal structure according to the date-
randomization test [30, 31]. For each analysis, we per-
formed ten replicates of the cross-validation procedure,
which appears to be sufficient in empirical studies [32]. We
conducted two sets of analyses, in which we specified the
training set as either 50 or 80 % of the alignment length.
We used the mean likelihood across the ten replicates to

Table 1 Details of four viral and bacterial data sets analysed in this study

Data set Number of sequences Alignment length (bp) Variable sites Sampling time span Reference

EV-A71 34 859 101 2011– 2013 [27]

WNV 68 10299 366 1999 – 2013 [28]

RHDV 72 1737 571 1995 – 2014 [26]

Shigella sonnei 161 1626 1626 1995 – 2014 [29]
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select the optimal hierarchical model. For comparison, we
estimated marginal likelihoods for these model combina-
tions using stepping-stone sampling in BEAST [17].
To investigate potential differences between the models

selected using marginal likelihoods and cross-validation,
we analysed the complete data sets using UCLN + EGC.
Under this model combination, it is possible to obtain a
measure of clock-like behavior (the coefficient of variation
of branch rates) [33] and the population growth rate. The
data display clock-like behavior if the mode of the poster-
ior is close to zero, and a constant population size if the
95 % credible interval of the growth rate includes zero.

Results
Simulations
The cross-validation methods yielded mixed results
when attempting to distinguish between data generated
under the strict- and the relaxed-clock models. In all
simulations under the SC model, cross-validation cor-
rectly identified the model used to generate the data
(Table 2). Similarly, the SC model had no support when
the data were generated under either of the relaxed-
clock models. This result did not depend on sequence
length, suggesting that even the smaller data sets, of
5,000 nt and a training set of 2,500 nt, were sufficiently
informative. In contrast, distinguishing between the
UCLN and the UCED models was more difficult. The
UCLN model had the strongest support for most of the
data sets, even for those generated under the UCED
model. Interestingly, an increase in sequence length led
to a greater frequency of the UCED model being cor-
rectly chosen for data generated under the same model.
For the simulations performed using the UCED model
and with an alignment length of 5,000, 10,000, and
15,000 nt, the UCED model was selected with a fre-
quency of 0.1, 0.4, and 0.6, respectively. Notably, in a
previous study using marginal likelihood, an alignment
of 2,500 nt from 32 taxa was sufficient to distinguish be-
tween relaxed-clock models [18].
For the simulations under different demographic

models, the cross-validation method incorrectly sup-
ported the EGC model for the data generated under the

CSC, with a frequency of 0.3 for alignments of 5,000 nt,
and 0.4 for those of 10,000 and 15,000 nt. The method
was much better at identifying the EGC model, which
was supported with a frequency of 0.9 for all sequence
lengths (Table 3). This result indicates that under these
simulation conditions, cross-validation is more efficient
at detecting under- than over-parameterization for
demographic models. Similar results have been reported
in the context of clock-model adequacy [34].

Empirical data
In our analyses of empirical data, we found that the SC +
EGC model was supported for EV-A71 and WNV, using ei-
ther 50 or 80 % of the data for the training set (Table 4).
This result is consistent with the findings of the studies that
originally analysed these data sets using marginal likeli-
hoods [27, 28]. For EV-A71, the model selected using
cross-validation matched that chosen by comparison of
marginal likelihoods. For WNV, however, UCLN+ EGC
had the highest marginal likelihood. The UCLN+ EGC
model had the highest support for the RHDV data set ac-
cording to both cross-validation and marginal likelihoods,
which is again consistent with the findings of the original
study [26]. For Shigella sonnei, cross-validation supported
the SC +CSC model, whereas marginal likelihoods sup-
ported the UCLN+ EGC model. There was some overlap
in the standard errors of the mean likelihoods in some of
the model comparisons, suggesting relatively weak sup-
port for the model with the greatest statistical fit. For ex-
ample, in WNV using a training set of 80 % of the sites,
the two models with highest statistical fit, SC + CSC and
SC + EGC, had likelihoods of −7698.8 and −7699.5, with
standard errors of 0.4 and 0.3, respectively (Table 4). This
result underscores the importance of conducting a large
number of cross-validation replicates, particularly when
assessing demographic models.
Our analyses under the UCLN + ECG demonstrated

that EV-A71 and WNV display clock-like behavior,
whereas RHDV and Shigella sonnei have substantial rate
variation among lineages. All of the virus data sets dis-
played evidence of population growth, whereas Shigella
sonnei appeared to have had a constant population size
(Fig. 1). This indicates that neither model-selection

Table 2 Molecular-clock models selected for data sets simulated with three different sequence lengths (nt) and using three different
clock models: the strict clock (SC), uncorrelated lognormal relaxed clock (UCLN), uncorrelated exponential relaxed clock (UCED)

Clock model
used for
simulation

Clock model used for analysis

5,000 nt 10,000 nt 15,000 nt

SC UCLN UCED SC UCLN UCED SC UCLN UCED

SC 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

UCLN 0.00 0.80 0.20 0.00 0.60 0.40 0.00 0.80 0.20

UCED 0.00 0.90 0.10 0.00 0.60 0.40 0.00 0.40 0.60

The numbers indicate the frequency with which each model was selected, out of ten simulation replicates
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method has a specific bias towards or against parameter-
rich models, at least in these data sets.

Discussion
The cross-validation method was effective in detecting
rate variation among lineages. However, distinguishing
between different relaxed-clock models was more diffi-
cult. Out of the two relaxed-clock models being com-
pared, the UCLN was selected in most cases. For the
data simulated under the UCED model, increasing se-
quence length appeared to increase the frequency with
which the UCED was selected. However, our longest se-
quence alignments contained 15,000 nt, such that even
large amounts of data might be insufficient to distin-
guish between the UCLN and UCED models. Although
previous studies have also described the difficulties in dis-
tinguishing between relaxed-clock models [22, 35], in
most cases marginal-likelihood estimation using stepping-
stone sampling and Bayesian model averaging proved

accurate [13, 18]. In practice, however, the UCED has a
mode at zero, such that it may be unsuitable for most data
sets. An additional factor that might warrant further study
is whether using data sets with many taxa improves clock
model selection [13].
Our simulations demonstrated that cross-validation

could detect population size growth over time. However,
for data generated under a constant population size, it
often selected an exponential growth model, a problem
that was not alleviated by using longer sequence data. In
contrast, previous studies suggest that using marginal
likelihoods is more efficient at detecting both constant
and growing population sizes [12, 18]. One potential rea-
son for this result is that marginal-likelihood methods
are more effective than cross-validation at penalising ex-
cessive parameters. However, the EGC model has one
parameter more (the growth rate) than the CSC. If the
estimate for this parameter has a mode at, or near, zero,
then the inferences from the EGC model might be indis-
tinguishable from those using CSC. Under these circum-
stances, cross-validation selects these models with
similar frequency.
Marginal likelihoods and cross-validation selected the

same models for two of our four empirical data sets. How-
ever, for WNV and for Shigella sonnei the two methods
selected different models. In both of these data sets, we
found very large differences in mean likelihoods using
cross-validation for the different models, especially when
comparing the UCLN+CSC and the UCLN+ EGC with
either SC + SCS or SC + EGC (Table 3). Importantly, these
differences in likelihoods depended on the size of the
training set. As an example, for Shigella sonnei, the mean

Table 3 Demographic models selected for replicate data sets
simulated with three different sequence lengths (nt) and using two
different demographic models: the constant-size coalescent (CSC)
and exponential-growth coalescent (EGC), with a growth rate of 0.25

Demographic
model used
for simulation

Demographic model used for analysis

5,000 nt 10,000 nt 15,000 nt

CSC EGC CSC EGC CSC EGC

CSC 0.70 0.30 0.40 0.60 0.40 0.60

EGC 0.10 0.90 0.10 0.90 0.10 0.90

Each row corresponds to simulations performed using one of the two
demographic models

Table 4 Comparison of molecular clock and demographic models for four empirical data sets: Enterovirus A71 (EV-A71), West Nile
Virus (WNV), Rabbit Hemorrhagic Disease Virus (RHDV), and Shigella sonnei

Method Data set SC + CSC SC + EGC UCLN + CSC UCLN + EGC

Cross validation (50 % training; 50 % test) EV-A71 −1129.4(±3.1) −1122.3(±2.0) −1921.9(±9.8) −1396.1(±12.0)

WNV −8216.7(±1.3) −8213.1(±2.5) −8648.9(±5.3) −8691.3(±5.0)

RHDV −6456.1(±0.6) −6908.8(±0.3) −6102.8(±1.3) −6101.9(±1.6)

Shigella sonnei −7698.8(±0.4) −7699.5(±0.3) −25997.4(±7.9) −25630.9(±6.3)

Cross validation (80 % training; 20 % test) EV-A71 −443.0(±1.8) −440.8(±1.0) −1246.5(±4.7) −1286.7(±14.8)

WNV −3615.2(±2.6) −3614.9(±2.5) −3900.0(±19.9) −3857.1(±19.2)

RHDV −2394.7(±0.6) −2393.5(±0.7) −2336.7(±1.0) −2279.2(±0.8)

Shigella sonnei −2978.2(±1.9) −2979.8(±2.0) −3172.3(±11.6) −3032.5(±10.0)

Marginal likelihoods using stepping stone EV-A71 −2017.0 −2014.7 −2017.9 −2078.6

WNV −18012.7 −17998.2 −18009.2 −17991.4

RHDV −11323.8 −11292.6 −11271.5 −11245.8

Shigella sonnei −14739.6 −14746.5 −14717.8 −14717.8

The models correspond to four combinations of clock and demographic models: strict clock (SC), uncorrelated lognormal clock (UCLN), constant-size coalescent
(CSC), and exponential-growth coalescent (EGC). Mean log likelihoods across ten replicates are given for the test set from each data set, using training sets of 50
and 80 % of the total alignment length. Marginal log likelihoods using stepping-stone sampling are also shown for comparison. Values in bold correspond to the
highest log likelihood in each case. Values in parentheses indicate the standard error around the mean likelihood for ten cross-validation replicates
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log-likelihoods for SC + SCS and SC + EGC with a training
set of 50 % were thousands of log-likelihood units higher
than those for UCLN+ SCS and UCLN+ EGC. In contrast,
using a training set size of 80 % resulted in log-likelihood
differences of 100 log-likelihood units or less between these
models. This might occur because a training set of 50 % in
these data is not sufficiently informative to estimate the pa-
rameters in the more complex models. For this reason, the
size of the training set should be selected according to the
complexity of the model. If the training set is very small, it
will be difficult to estimate a large number of parameters,
leading to excessive penalisation for parameter-rich models.
In empirical studies it might be helpful to explore different
sizes for the test and training sets to ensure that the results
are statistically consistent. For example, if the size of the
training set is very small, the likelihood of the test set will
be extremely low for complex models and with very high
variation among replicates. In such a case, increasing the
size of the training set might be beneficial. Finally, an

important consideration of marginal likelihood methods is
the additional computational time required. In our empir-
ical data analyses we found that most marginal likelihood
estimates required only ten more hours of computational
time than our cross-validation replicates with 80 % of the
sites (Additional file 1: Table: S1). However, the recently de-
veloped generalized stepping-stone method has been
shown to yield accurate marginal likelihood estimates in a
more timely fashion [11, 12].

Conclusions
Our analyses of simulated and empirical data show that
cross-validation provides a useful model-selection method
for Bayesian phylogenetics. Although marginal-likelihood
methods are more effective in many cases, one potential ad-
vantage of cross-validation is that as long as the data are
sufficiently informative model choice is not affected by the
prior, such that it might be more readily applied than

Fig. 1 Posterior distributions of the coefficient of variation of branch rates and the population growth rate for four empirical data sets:
Enterovirus A71 (EV-A71), West Nile Virus (WNV), Rabbit Hemorrhagic Disease Virus (RHDV), and Shigella sonnei. Estimates were made using the
uncorrelated lognormal clock (UCLN) and the exponential-growth coalescent (EGC). A coefficient of variation of branch rates that approaches zero
indicates that evolution has been clock-like. A growth rate including zero indicates that population size has been constant
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complex hierarchical Bayesian models where selecting ap-
propriate priors for all parameters is difficult. Further re-
search into cross-validation methods has the potential to
improve the reliability of model selection in Bayesian
phylogenetics.

Additional files

Additional files 1: Table S1. Spreadsheet with computation times in
hours for all analyses. For cross-validation analyses we report the mean value
over ten cross-validation replicates. For marginal-likelihood calculations we
report the computation time of a single analysis. (XLSX 37 kb)
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coalescent; AIC, Akaike information criterion; BIC, Bayesian information criterion
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