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Abstract 
 

This paper presents a detailed study of the impact of manufacturing residual riblets at the 

rotor hub surface of a radial inflow turbine on the flow within the rotor passages and their 

contribution to drag reduction. Numerical analysis has been used to study the effects of those 

features at design point conditions. Riblets with different height and spacing have been 

examined to determine the riblet geometry where the maximum drag reduction is achieved. 

The relative height of the riblets to rotor inlet blade height was introduced to generalise the 

results. At the end of this study the results were compared with the available data in literature. 

It was found that the introduction of riblets could reduce the wall shear stress at the hub 

surface, while they contribute to increasing the streamwise vorticity within the rotor passage. 

For the geometries tested, the minimum drag was achieved using riblets with relative height 

hrel = 2.5% equivalent to 19.3 wall units. The results revealed that the spacing between riblets 

have a minor effect on their performance, this is due to the size of the streamwise vortex 

above the hub surface which will be discussed in this work.  

1.1 Introduction   

Flow within the radial turbine rotors is highly three-dimensional and is combined with strong 

secondary flows, which become more complicated near the passages walls. The interaction 

between the turbulent boundary layer and the solid surfaces affects the boundary layer 

development and causes energy losses due to skin friction drag. Surface roughness is one of 

the important factors that affect the flow within the boundary layer. Therefore it is necessary 

to study the effects of the manufacturing residual riblets on the losses within the turbine rotor. 

The improved understanding could lead to the introduction of intentional riblets that are 

increasingly becoming feasible with the fast development of three dimensional printing 

technology of components. Different studies have proved that smooth surfaces do not 

necessarily have less drag than rough surfaces [1, 2, 3, 4]. Riblets are surface structures 

arranged in the streamwise direction to help in reducing wall shear stresses. They can have 

different shapes and arrangements as shown in figure 1. Walsh [3] studied the effect of 



different riblet shapes on drag reduction over flat plate surface, where 8% drag reduction was 

achieved using V-shaped riblets. By adding V-shaped riblets to the blades of axial 

compressor cascade, Oehlert et al. [5] achieved 3.6% reduction in total pressure loss. Feng et 

al. [6] conducted an experiment to test the effectiveness of riblets in drag reduction where 

they achieved 10% drag reduction by adding the riblets to the pressure surface of an axial 

compressor cascade. 

 

 

Figure (1): (a) Different riblet configurations (b) Turbine rotor with three different hub surface finish 

They also noticed that this reduction in drag is insensitive to the flow incidence angle.  On the 

contrast, Bushan et al. [7] found that adding riblets to a straight rectangular duct has a 

negative impact on drag. In their experiment, blade shape riblets with different heights and 

spacing were attached to the duct wall, and the pressure drop was measured across the duct 

for range of flow velocities. For all riblets arrangements and along the speed range the 

pressure drop was higher compared to the surface without riblets. Zhang et al. [8] explored 

the effects of adding riblets to an axial turbine hub cascade experimentally. The grooves of 

the Riblets were machined in the streamwise direction. The study revealed that riblets can 

reduce pressure side of the horse-shoe vortex, and alleviate the growth of the passage vortex. 

Kim et al. [9] introduced a single rectangular fence in a 90º turning to mimic the effect of 

riblets on turbine passage. The mass-weighted average total pressure loss in the duct with 

fence was reduced by 8.6% relative to the duct without the fence. Miao et al. [10] found that 

introducing riblets with different shapes and density to a 90º duct alleviates the stream wise 

vorticity compared to smooth walls duct. Riblets concept has been also applied to radial 

turbomachines. Where Lei et al. [1] tested a centrifugal compressor with different machining 

residual riblets heights on the impeller hub. They found that using riblets decreases wall shear 



stress which reaches its minimum value for riblets of height 0.58 relative to impeller exit 

blade width. 

Walsh [3] investigated the effectiveness of several riblet geometries on drag reduction where 

he found that the highest drag reduction could be achieved using riblets with cusp shape. In a 

different study, Oehlert et al. [5] found that riblets with blade shape has greater effect on drag 

reduction over the cusp shaped riblets. Nonetheless, blade riblets can neither be machined nor 

they would withstand high stresses. Moreover, the residual surfaces resulted from the actual 

machining process of the turbine rotor are very similar to cusp riblets. Figure 1b shows rotor 

sample machined using ball end cutter milling with different surface finish, where cusp 

riblets are clear in the magnified surfaces.  So, for practical reasons, the present work focused 

on studying the effect of cusp shape riblets.   

To the knowledge of the authors, the effects of the residual surface structures on the radial 

turbines performance were not addressed before, therefore it was important to include riblets 

with different geometry in the study. It is understood from the literature that the main 

geometrical parameters that affect the riblets performance are the height of the riblets and the 

spacing between them. Therefore, riblets with different heights (h) and spacing (s) were 

introduced to the hub surface of a turbine rotor designed for 6 kWe micro gas turbine. The 

turbine stage was then analysed numerically at design point. Table 1 lists the turbine 

operational conditions and figure 2 shows the main geometrical parameters for the rotor.  

Table 1: Turbine specifications 

Parameter Value 

Total Pressure Ratio (bar) 3 

Turbine inlet total temperature (K) 1073 

Turbine mass flow rate (kg/s) 0.09 

Power generated by turbine (kW) 21 

Rotational speed (rpm) 130,000 



 
Figure (2): rotor dimensions [mm] 

To generalise the results of the study, the dimensionless parameter hrel was introduced to 

characterise the size of the riblets. hrel is defined as the percentage ratio of the cusp height h to 

the rotor inlet blade height b (figure 3). The space between riblets was defined using the polar 

angle (∅) between the adjacent riblets as the area of the passage is changing along the 

streamwise direction. Thus, the distance s can be calculated at certain radius of the hub as: 

𝑠 = 𝑟ℎ𝑢𝑏∅       (1) 

The detailed dimensions for the riblets used in this study are summarised in Table 2. 

The computational domain included a single rotor passage and single Nozzle Guide Vanes 

(NGVs) passage. The commercial tool ANSYS TurboGrid was used to generate hexahedral 

structured mesh for the stator vane, where ANSYS Workbench was used to generate 

unstructured mesh for the rotor. 

 

Figure (3): Riblets terminology 

CFD computations were performed using ANSYS CFX 15.0. CFX is Reynolds Averaged 

Navier Stokes (RANS) based solver which solve the flow equations using finite volume 



formulation. The flow was assumed to be fully turbulent due to high Reynolds number in the 

rotor passage. The Reynolds number was calculated assuming a rectangular duct, therefore 

using the passage hydraulic diameter, the Reynolds number at the design point was 27000. 

Dai et al. [11], found that turbulence intensity along the rotor passage does not exceed 7%, so 

5% has been used in this work.  The Shear Stress Transport (SST) turbulence model was used 

as it showed a good agreement with the experimental data for radial turbines in previous 

studies [12, 13]. 

Non-slip boundary condition was set for the passage surfaces. To solve the boundary layer 

accurately, the near wall mesh was refined to achieve first node non-dimensional 

distance 𝒴+ = 1 . Stage connection (mixing plane) was used between the rotor and stator, 

where all fluxes are averaged through the interfaces surfaces. Uniform total pressure and 

temperature were set at the domain inlet and uniform static pressure at the domain outlet. As 

one vane and one rotor blade passage were used, rotational periodicity was imposed on the 

periodic boundaries.  Using this setup, CFX was run for a steady state solution. 
 

Table 1: riblets dimensions 

h [mm] hrel [mm] R [mm] 
s [3 riblets]  

∅ = 𝟒. 𝟒𝟓° 

s [5 riblets] 

∅ = 𝟐. 𝟐° 

s [10 

riblets] 

∅ = 𝟏. 𝟏° 

0.06 1.5% 0.8 0.078rhub 0.039rhub 0.019rhub 

0.1 2.5% 0.6 0.078rhub 0.039rhub 0.019rhub 

0.2 5% 0.6 0.078rhub 0.039rhub 0.019rhub 

Grid independence check was performed for both numerical domains (smooth and ribbed 

rotors). For the rotor with riblets, the grid independence study was performed on the rotor 

with the highest cusp and smallest space as it requires the highest quantity of grid nodes to 

model those features. Using five grids of increasing refinement, the absolute vorticity, mass 

flow rate, flow velocities and angels at rotor inlet and outlet were calculated and compared. 

The For the domain with riblets, the girds density varied between 400,000 and 2 million 

nodes, and for the rotor without riblets, the this was between 0.4-1.7 million nodes. Figure 4 

shows the error percentage in calculating the vorticity referring to the value generated using 

the finest grid. Vorticity showed the highest sensitivity to grid refinement, this is due to the 

small turbulent structures that needed fine mesh to be captured. For the domain with riblets 

the error is reduced to less than 1% with the mesh of 1.2 million nodes, and for the domain 

without riblets the error is reduced to less than 0.9% using the grid with 900k nodes. The 

final mesh for both rotors is shown in figure 5.  



 

Figure (4): Grid independence study for computational domain with riblets 

1.2 Validation of the CFD methodology  

To verify the accuracy of the numerical method used, flow solutions were compared with 

experimental data. Experimental studies describing the flow within the turbine rotor are 

scarce. One of the main reasons for that, is difficulty to insert measuring instruments and the 

lack of the optical access to the rotor passage. Also, the high operating temperatures is 

another obstacle in front of using different flow visualisation techniques. Moreover, most of 

the published experiments does not have an adequate information to regenerate the geometry. 

Jones [14] provided the experimental data and the geometry description for the turbine used 

in Sundstrand Power Systems T-100 Multipurpose Power Unit. The turbine generates 50 hp 

at pressure ratio 5.5 and a turbine inlet temperature 1056 k while running at 105,600 rpm 

which is very close to the turbine used in this study.  

 
(a) 

 
(b) 

Figure (5): Computational grid (a) rotor passage with riblets (b) rotor passage without riblets 
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The absolute flow angles at the rotor exit are compared in figure 6a, where CFD results show 

a good agreement with the experimental results. However, CFD predictions deviate from the 

experimental near the tip region. This difference could be due to the rotor back-face clearance 

flow which was not included in the numerical domain. Sun et al. [15] noticed similar 

deviation in the flow angle predicted using CFD when they studied the effects of back-face 

clearance gap on the flow in the turbine passage.  Figure 6b shows a comparison between 

CFD and test rig results for the span-wise distribution of meridional velocity at the rotor exit. 

It can be noticed that the difference between the values is almost constant, which means that 

this deviation is related to the over estimation of the mass flow in the CFD analysis. 

       
(a)                                                                                 (b) 

Figure (6): Spanwise distribution of (a) flow angle (b) meridional velocity at rotor discharge 
 

This could be because of the assumption of smooth profile of the turbine components, which 

will reduce the boundary layer blockage allowing more flow to pass. Moreover, during the 

test, the flow is expected to leak through the back-face seal of the turbine which could reach 

up to 1% of mass flow.  Generally, the simulation results agree with the experimental data. 

Therefore, the present CFD methodology was considered to be suitable to study the flow 

behaviour through the turbine rotor, and is capable to demonstrate the effect of adding riblets 

on the turbine performance.  

1.3 Results and Discussion  

This section presents a description for the secondary flow motion in radial turbine passage, 

operating mechanism of riblets and comparison of different riblets geometries on drag 

reduction. 
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1.3.1 Secondary Flow in the Radial Turbine Rotor   

 In the literature; authors divided secondary flow characteristics in a turbine rotor into three 

categories based on their location along the passage. At the inlet section where the flow is 

purely radial, Coriolis acceleration has a very large effect on the low momentum fluid at the 

hub and shroud; therefore it acts to move flow from the Pressure Surface (PS) to the Suction 

Surface (SS) where the reduced static pressure (𝑃𝑟 = 𝑃𝑠 −
1

2
𝜌𝜔2𝑟2) is minimum. Along the 

rotor bend, where the flow starts to change its direction from radial to axial, secondary flows 

are generated because of both passage rotation and curvature. Coriolis acceleration is 

responsible for the movement of the low energy fluid from PS to the SS at the hub and shroud 

surfaces. Also, the passage curvature acts to move the low energy fluid at the pressure and 

suction surfaces from hub to shroud. For a fluid particle that is moving along the bend with a 

particular velocity there is a pressure gradient acting normal to its direction of motion to 

balance the centrifugal force on it. This pressure gradient is constant along the spanwise 

direction while the near wall fluid particles have a lower velocity than particles in the free 

stream. This difference in velocity causes the near wall particles to move toward the inner 

curve to reduce the radius of curvature [16]. Towards the end of this section, the secondary 

vortices at the hub start to move towards the top middle of the passage.  

At the exducer section, the rotor passage is curved in the tangential direction. This curvature 

causes the low momentum fluid at the hub and shroud to swipe towards the SS where the 

curvature radius is minimum. Also, the radial component of the Coriolis acceleration causes a 

movement of the low energy fluids at the PS and SS from hub to shroud. In this section the 

secondary vortices accumulate in middle and top parts of the passage close to the suction 

surface. Figure 7 illustrates the motion of the low momentum flows at the different sections 

of the rotor passage [17].  

 
Figure (7): Secondary flow motion along turbine rotor passage  



 

1.3.2 Riblets Operating Mechanism   

To understand the operating mechanism of riblets, the flow structure is compared 

between ribbed and smooth hub rotor passage. In this section the smooth hub surface was 

compared with surface with 5 riblets of hrel 2.5%. Figure 10 shows the cross-flow motion at 

the hub surface at 40% cross plane. It can be noticed that the cross-stream flow interacts with 

the riblets at the hub surface impeding it movement and generating secondary vortices that 

prevent the streamwise vortex from moving inside riblets valley. This will retain the slow 

fluids inside riblets valley thus the momentum exchange in the boundary layer is reduced. 

The interaction between the stream wise vortex and the low momentum fluid close to the hub 

causes high local shear at the rotor hub surface. By introducing riblets to the wall, this vortex 

is shifted from the wall to interact with the riblets tips. 

 

Figure (10): effect of riblets on cross stream motion of the low energy fluids near the hub surface   

This interaction generates secondary vortices which weaken the streamwise vortex by 

interfering with the cross-stream motion of the low momentum fluids at the hub surface and 

keeps the streamwise vortex away from the wall. This reduction of the cross-flow fluctuation 

and shifting the streamwise vortex away from the wall reduces the turbulent momentum 

transfer which results in reducing skin friction. The limiting streamlines (velocity streamlines 

at a distance normal to the wall approaching zero) at the hub surface in figure 11a shows the 

strong relative motion of the low energy fluids at the hub surface. Introducing riblets to the 

hub surface (figure 11b) form an obstacle which retards the cross-stream motion and tries to 

align them in the streamwise direction.  



 

Figure (11): Limiting streamlines at the rotor hub 

In figure 12, the Q-criterion method was used to visualise the streamwise vortex over smooth 

and ribbed hub surfaces at 40% cross plane. As it can be seen; the interaction between the 

cross flows and the riblet tips generates secondary vortices that weaken the streamwise vortex 

and form a barrier that lifts it from the hub surface.  

 

Figure (12): Stream-wise vortex structure over hub surface 

The mass averaged vorticity normalised by multiplying by (Inlet blade height (b)/ Inlet flow 

velocity) is presented in figure 13. The vorticity value shows a noticeable reduction inside the 

riblets valley compared to the smooth surface which confirms that riblets weaken the 

streamwise vortex close to hub surface. However, the vorticity at the outer region of the 

riblets valley is slightly higher because of the secondary vortices generated at the riblets tip. 

At the tip region, the vorticity reaches its maximum value in the region where the secondary 

vortices are located. Nonetheless the secondary vortex close to riblet tip does not have a 

significant effect on increasing skin friction as the vortex size is relatively small and it 

interacts with very small area at the peak of the riblet.  



 

Figure (13): mass averaged streamwise vorticity at 40% stream-wise location 

To evaluate the effect of increasing the vorticity at riblets tips on skin friction, the wall shear 

was calculated along the hub surface at the 40% plane. Figure 14 reveals that increasing the 

vorticity at riblets tips increases the wall shear at small areas around the tips, while the wall 

shear inside the riblets valley is reduced keeping the average shear below that for the smooth 

surface.  

 

Figure (14): wall shear at the hub surface calculated at 40% stream-wise location 

The turbulent kinetic energy profiles over smooth hub, riblets valley and riblet tip are plotted 

in figure 15. It is obvious that introducing the riblets to the hub surface damps the velocity 

components fluctuations leading to reduction in turbulent kinetic energy. Chun et al. [4], Lee 

et al. [18] and Duan [19] have spotted similar drop in turbulent kinetic energy when riblets 

were introduced to flat plate surfaces. 
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Figure (15): comparison of turbulent kinetic energy for both smooth rotor and rotor with 

riblets 

1.3.3 Riblets Geometry Effect  

In this section the effect of different riblets geometries (refer to table 2) on drag reduction 

is examined and compared with the smooth wall results. Figure 16 compares the area 

averaged shear at the hub surface for the riblets with different height and spacing. The results 

reveal that the spacing between riblets has a minor effect on the wall shear stress reduction 

and the key parameter that affects the riblets performance is their height. The highest drag 

reduction was achieved using riblet with relative height 2.5%, whilst increasing riblet height 

to 5% has a negative impact, where drag increases at the hub surface.  

 

Figure (16): Wall shear stress comparison between different riblets geometries 

Most of the research studies performed on the riblets set geometrical conditions on riblets 

performance. According to those studies; riblets reduces drag for normalised spacing s+< 30 

and normalised height h+< 25 wall units. Figure 17 presents the change in drag ( ∆𝜏 defined 

in eq. 2) for riblets with different spacing s+ and constant height (hrel = 2.5, h+ =19.3). 
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∆𝜏 = (𝜏𝑟 − 𝜏𝑠) 𝜏𝑠⁄  (2) 

Where, 𝜏𝑠 and 𝜏𝑟 are the wall shear stresses at the smooth and ribbed hub surfaces 

respectively. The graph shows that the spacing s+ has a negligible effect on riblets 

performance, it shows also that riblets can reduce drag for high values up to 300 wall units. 

This conflicts with the values in literature and the value presented here is mainly due to the 

type of the flow. Most of the available experimental data that limits riblet spacing to 30 wall 

unit are done for external flows. This is directly related to the streamwise vorticity at body 

surface, where size of the streamwise vortices for external flows is about 30 wall units in 

diameter. Therefore, increasing the space between riblets to more than that will provide the 

freedom for the streamwise vortex to move freely in the area between them. This will cause 

increment in area exposed to high speed cross flow which in turn increases skin friction [18]. 

On the other hand, the streamwise vortex at the turbine hub occupies almost the whole 

passage width, therefore increasing the spacing s+ didn’t change the performance of the 

riblets (see figure 13). 

 

Figure (17): drag reduction for different riblets spacing 

 

Figure 18 presents the change in drag for different riblets height h+ at constant rib spacing     

(s = 0.039rhub , s+ =158). Wall shear using riblets is reduced until reaching the rib height      

(h+ = 19.3) where the wall shear is minimum, while increasing riblets height further leads to 

increase the wall shear. A similar trend for riblets performance within internal flows was 

spotted by Lei et al. [1], where the drag reduction was found to be related to riblet height. 

Increasing riblets height increases the generation of secondary vortices which increases the 

down washing motion of the high-speed fluids around riblet tip causing more drag.  
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Figure (18): drag reduction for different riblets spacing 

Figure 19 shows the mass averaged streamwise vorticity along the turbine passage. The graph 

shows that increasing the height of the riblets increases the streamwise vorticity along the 

passage. This explains the performance results in figure 20 where the turbine with riblets of 

height hrel =1.5% has a higher efficiency than hrel = 2.5% even the latest shows better 

performance in reducing drag.    

 

Figure (19): Mass averaged streamwise vorticity along rotor passage 
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Figure (20): Turbine performance for different riblets geometry 

Conclusion  

In this work the effects of residual riblets on radial turbine performance were analysed 

numerically. It was found that residual riblets reduce the cross-stream motion of the low 

momentum fluids leading it to move from pressure to suction side of the rotor passage and 

separate the streamwise vortex from interaction with hub surface. This entrains low speed 

fluid in the riblets valley which in turn reduces the momentum transfer in the boundary layer 

causing reduction in wall shear stress.  

The spacing between riblets was found to be of secondary effect on their performance in drag 

reduction as the streamwise vortex occupies most of the passage length. Riblets height was 

found to be the main parameter affecting drag reduction, where the maximum drag reduction 

found to occur with riblets with hrel = 2.5%. Introducing riblets to hub surface is beneficial for 

drag reduction while it increases the streamwise vorticity in the rotor passage and the 

maximum performance was achieved for the turbine with the shortest riblets (hrel = 1.5%). 

Future work will focus on studying the effect of riblets on the turbine performance at off-

design conditions.  

 

Nomenclature 

Y+  Non-dimensional wall distance:  𝑌+ =
𝑌𝑢𝜏𝜌

𝜇
 

s+  Non-dimensional spacing between riblets: 𝑠+ =
𝑠𝑢𝜏𝜌

𝜇
   

h+  Non-dimensional riblets height: ℎ+ =
ℎ𝑢𝜏𝜌

𝜇
 

𝑢𝜏  Friction velocity: √
𝜏𝑜

𝜌⁄  

𝜏𝑜  Wall Shear 

𝜌  Density 

𝜔  Rotational speed  

r  radius  

Ps  static pressure 

Pr  reduced static pressure 
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