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Abstract 12 

A numerical framework has been developed to simulate supercritical Diesel injection using a 13 

compressible density-based solver of the Navier-Stokes equations along with the conservative 14 

formulation of the energy equation. Multi-component fuel-air mixing is simulated by 15 

considering a diffused interface approximation. The thermodynamic properties are predicted 16 

using the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) real-fluid equation 17 

of state (EoS). This molecular-based EoS requires three empirically determined but well-18 

known parameters to model the properties of a specific component, and thus, there is no need 19 

for extensive model calibration, as is typically the case when the NIST library is utilised. 20 

Moreover, PC-SAFT can handle flexibly the thermodynamic properties of multi-component 21 

mixtures, which is an advantage compared to the NIST library, where only limited component 22 

combinations are supported. This has allowed for the properties of Diesel fuel to be modelled 23 

as surrogates comprising four, five, eight and nine components. The proposed numerical 24 

approach improves the overall computational time and overcomes the previously observed 25 

spurious pressure oscillations associated with the utilization of conservative schemes. In the 26 

absence of experimental data, advection test cases and shock tube problems are included to 27 

validate the developed framework. Finally, two-dimensional simulations of planar jets of n-28 

dodecane and a four component Diesel surrogate are included to demonstrate the capability of 29 

the developed methodology to predict supercritical Diesel fuel mixing into air. 30 

 31 

Keywords: Supercritical, PC-SAFT EoS, Diesel Fuel Injection  32 

 33 

Nomenclature 34 

List of abbreviations  35 

CFD  Computational Fluid Dynamics 36 

CFL  Courant–Friedrichs–Lewy  37 

ENO  Essentially Non-Oscillatory 38 

EoS  Equation of State 39 

FC  Fully Conservative 40 

HLLC  Harten-Lax-van Leer-Contact 41 

LES  Large Eddy Simulation  42 

N-S  Navier-Stokes 43 

PR  Peng-Robinson 44 

PC-SAFT  Perturbed Chain Statistical Associating Fluid Theory 45 

QC  Quasi-Conservative  46 
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RK2  Second-order Runge–Kutta 47 

SRK  Soave-Redlich-Kwong 48 

SSP-RK3 Third-order strong-stability-preserving Runge–Kutta 49 

TVD   Total Variation Diminishing 50 

VLE  Vapor-Liquid Equilibrium 51 

WENO  Weighted Essentially Non-Oscillatory 52 

 53 

List of Symbols 54 
resa  Reduced Helmholtz free energy [-] 55 

a  Speed of sound [m s
-1

]  56 

d  Temperature-dependent segment diameter [Å] 57 

g  Radial distribution function [-] 58 

I  Integrals of the perturbation theory [-] 59 

k  Boltzmann constant [J/K] 60 

m  Number of segments per chain [-] 61 

m  Mean segment number in the system [-] 62 

p  Pressure [Pa] 63 

R  Gas constant [J mol
-1

 K
-1

] 64 

T  Temperature [K] 65 

ix  Mole fraction of component i [-] 66 

Z  Compressibility factor [-] 67 

U  Conservative variable vector 68 

F  x-convective flux vector 69 

G  y-convective flux vector 70 

VF  x-diffusive flux vector 71 

V
G  y-diffusive flux vector 72 

 73 

1. Introduction 74 

Diesel fuel injection at supercritical state in the combustion chamber is known to 75 

improve fuel-air mixing as the fluid diffusivity is much higher than that of molecules in  76 

liquid phase [1]. Moreover, the studies of [1]–[4] have shown how injection at these 77 

conditions can reduce the emissions of particulate matter and nitrogen oxides. Building upon 78 

these findings, the aim of the present research is to develop a numerical framework to 79 

simulate supercritical Diesel-air mixing processes where the liquid evaporation step is 80 

circumvented. A mixture or a single-component reaches a supercritical state when both 81 

pressure and temperature surpass its critical properties. In the critical region, repulsive 82 

interactions overcome the surface tension resulting in the existence of a single-phase that 83 

exhibits properties of both gases and liquids. To simulate such cases of supercritical and 84 

transcritical jets, commonly diffuse interface methods are employed [5]–[7]. Three main 85 

difficulties are associated with the numerical simulation of such cases: (i)  the treatment of 86 

large density gradients, (ii) the need of using a real-fluid EoS and (iii) the elimination of 87 

spurious pressure oscillations, typically occurring in simulations when fully conservative (FC) 88 

schemes are employed along with real-fluid EoS [8].  89 
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With regards to large density gradients, high order reconstruction methods can be 90 

used to describe sharp changes. In [9] the authors performed a two-dimensional large-eddy 91 

simulation (LES) of supercritical mixing and combustion employing a fourth-order flux-92 

differencing scheme and a total-variation-diminishing (TVD) scheme in the spatial 93 

discretization. Similarly, in [10] a fourth-order central differencing scheme was applied 94 

together with a fourth-order scalar dissipation; this was found to stabilize the simulation of a 95 

cryogenic fluid injection and mixing under supercritical conditions. Moreover, in the work of 96 

[11] an eighth-order finite differencing scheme was employed in order to simulate 97 

homogeneous isotropic turbulence under supercritical pressure conditions. Furthermore, in 98 

[12] a density-based sensor was employed, which switches between a second-order ENO 99 

(Essentially non- oscillatory) and first-order scheme to suppress the oscillations. In the 100 

present study a fifth-order WENO (Weighted Essentially Non-Oscillatory) scheme is applied 101 

in the 2D (two-dimensional) simulations due to its high order accuracy and non-oscillatory 102 

behaviour. 103 

Moving to the second issue, typically cubic EoS models like the Peng-Robinson (PR) 104 

[13] and Soave-Redlich-Kwong (SRK) [14] are used in supercritical and transcritical 105 

simulations. For example, in [7], [15]–[17] the SRK EoS was employed to close the N-S 106 

equations and compute the fluid properties under supercritical and transcritical conditions. 107 

Similarly, in [6], [8], [12], [18] the non-ideal fluid behavior was modelled by applying the PR 108 

EoS. Nevertheless, cubic models commonly present low accuracy for computing the 109 

thermodynamic properties of hydrocarbons at high density ranges and temperatures that are 110 

typical for today’s high pressure fuel injection systems [5]. To overcome these difficulties, the 111 

Statistical Association Fluid Theory Equation of State (SAFT EoS) can be employed. Several 112 

papers have been published pointing out the advantages of the SAFT models with respect to 113 

cubic EoS. For example, [19] describes how the PC-SAFT model is better than cubic EoS for 114 

predicting gas phase compressibility factors and oil phase compressibilities. In [20] the 115 

superiority of the PC-SAFT performance is demonstrated relative to the Cubic Plus 116 

Association (CPA) EoS in correlating second order derivative properties, like speed of sound, 117 

dP/dV and dP/dT derivatives, heat capacities and the Joule–Thomson coefficient in the 118 

alkanes investigated. Similarly, [21] points out the superiority of the SAFT-BACK EoS over 119 

the PR EoS, particularly at high-density conditions, for computing second order derivative 120 

properties such as sound velocity and isobaric and isochoric properties. The study of [22] 121 

states that cubic EoS predict a linear increase of the Z factor (compressibility factor) with 122 

pressure, while the PC-SAFT EoS shows a better pressure dependence. Finally, [23] shows 123 

how the sPC-SAFT (simplified PC-SAFT) is more precise than SRK and CPA to compute the 124 

speed of sound of normal alkanes and methanol. The SAFT EoS is based on the perturbation 125 

theory, as extensively studied in [24]–[27] by Wertheim. The authors of [28], [29] developed 126 

this EoS by applying Wertheim’s theory and extending it to mixtures. In this method, each 127 

molecule is decomposed into spherical segments of equal size to form a repulsive, hard sphere 128 

reference fluid. Next, the attractive interactions between segments are added to the model. 129 

Finally, the segment-segment energy needed to form a chain between the hard-sphere fluid 130 

segments is added to the model; if the segments exhibit associative interactions such as 131 

hydrogen bonding, a term for this interaction is also included. Among the different variants of 132 

the SAFT model, the PC-SAFT is the one implemented here. In this model, hard chains are 133 

used as the reference fluid instead of hard spheres. While the SAFT EoS computes segment-134 

segment attractive interactions, the PC-SAFT EoS computes chain-chain interactions, which 135 

improves the thermodynamic description of chain-like, fluid mixtures [30]. The main issues 136 

of using a complex EoS are the difficult implementation and the high computational cost [6]. 137 
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Some tabulation methods have been developed for single-species cases [31] but these 138 

approaches cannot be utilized with mixtures of more than two components. In this research, 139 

the Diesel properties are modelled using surrogates of four, five, eight and nine components 140 

so employing tables is not an option. The use of the double-flux model of  [6], [8], [32] can 141 

significantly reduce the required computational time as the complex EoS is employed only 142 

once in the hyperbolic operator of the numerical model per time step [33]. However, recently 143 

it has been reported that the large energy conservation error in quasi-conservative (QC) 144 

schemes produces an unphysical quick heat-up of the jet [5] and thus, making these schemes 145 

inadequate for Diesel injection simulations where the temperature plays a significant role on 146 

determining the ignition time. The FC formulation proposed in this paper reduces the number 147 

of times the EoS is employed, making possible to use complex EoS in affordable CPU time. 148 

 Finally, referring to the third issue of the spurious pressure oscillations, several 149 

papers have tried to address this problem. The work of [7] utilized a QC formulation, which 150 

solves a pressure evolution equation instead of the energy conservation equation. In [34] the 151 

authors applied a QC framework where the artificial dissipation terms in the mass, 152 

momentum and energy equations are related and the pressure differential is zero. The authors 153 

of [35] developed the double flux model to avoid spurious pressure oscillations in 154 

compressible multicomponent simulations where the perfect gas EoS is applied. In [36] they 155 

extended it to reactive flows while in [6], [8], [32] it was extended to real fluids and 156 

transcritical conditions. The current paper proposes a modification to the calculation of the 157 

pressure and sonic fluid velocity at the cell faces in FC formulations; this is found to smooth-158 

out the spurious pressure oscillations observed with previous methods. Additionally, it 159 

reduces the overall computational time allowing simulations of multicomponent Diesel 160 

surrogate fuels to be performed. The composition of the Diesel surrogates employed here has 161 

been proposed by [37]; they are divided into two types, depending on how closely match the 162 

composition of real Diesel.  163 

To the best of the author’s knowledge, this is the first time that the PC-SAFT EoS is 164 

used to simulate supercritical injections of Diesel modeled as a multi-component surrogate. 165 

The structure of the paper is as follows. Initially, the numerical method is presented, followed 166 

by 1D (one-dimensional) verification test cases. Advection test cases and shock tube 167 

problems are included to show the overall performance of the developed framework and 168 

evaluate how the number of compounds of the Diesel surrogate employed affects the accuracy 169 

of the results. Then, two-dimensional simulations of planar jets of n-dodecane and a four 170 

component Diesel surrogate are included to demonstrate the capability of the scheme to 171 

predict supercritical Diesel fuel mixing into air. 172 

 173 

2. Numerical Method 174 

The Navier-Stokes equations for a non-reacting multi-component mixture containing N 175 

species in a x-y 2D Cartesian system are given by: 176 

 177 

v v

t x y x y

   
   

    

F GU F G
            (1)  178 

 179 

The vectors of eq. 1 are:  180 



  

5 
 

x,11

x,NN

xx

2

xy

xx xy x

JY

JY
, , ,

v v

u v q( ) ( )

1 1

N N

2

uY vY

uY vY

u u p vu

uv p

E E p u E p v

  

  

  

  

   

      
      
      
      

          
       

      
      

                

v
U F G , F        (2) 181 

y,1

y,N

yx

yy

yx yy y

J

J

u v q





 

 
 
 
 

  
 
 
 

   

vG  182 

where ρ is the fluid density, u and v are the velocity components, p is the pressure, E is the 183 

total energy, Ji is the mass diffusion flux of species i, σ is the deviatoric stress tensor and q is 184 

the diffusion heat flux vector. The finite volume method has been utilized for solving the 185 

above equations on a Cartesian numerical grid. As mentioned, the PC-SAFT EoS is utilised to 186 

approximate thermo-physical properties. Moreover, operator splitting as described in [38] is 187 

employed to separate the hyperbolic and parabolic operators. The global time step is 188 

computed using the CFL (Courant-Friedrichs-Lewy) criterion of the hyperbolic part. The 189 

developed numerical framework considers a condition of thermodynamic equilibrium in each 190 

cell. The way the PC-SAFT EoS has been coupled with the Navier-Stokes equations is 191 

described in [33]. Phase separations or metastable thermodynamic states are beyond the scope 192 

of this research and are not considered. 193 

 194 

2.a. CFD Code 195 

 2.a.a Hyperbolic sub-step 196 

The HLLC (Harten-Lax-van Leer-Contact) solver is applied to solve the Riemann 197 

problem. In density based codes, once the spatial reconstruction scheme has been used to 198 

compute the left and right states of the Riemann problem, the EoS is applied to compute the 199 

pressure and sonic fluid velocity at both sides (considering that the conservative variables 200 

have been reconstructed). Eq.3 shows the pressure expressed in a form equivalent to a general 201 

EoS [7]:  202 

 203 

i i ip( ,e,Y ) F( ,Y ) e G( ,Y )              (3) 204 

 205 

However, the computed pressure may present a large error if the functions F or G 206 

depend on the interpolated conservative variables. Even in single-species cases, if these 207 

functions are density-dependent and consist of high-order density terms, a small change in the 208 

interpolated density can produce large variations in the calculated pressure. The incorrect 209 

pressure introduces an error in the computation of the fluxes, which finally generate spurious 210 

oscillations during the numerical solution. In the present study, this is avoided by 211 

reconstructing the primitive variables (or only the pressure) and the conservative variables at 212 
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the cell faces at the same time. This simple modification has been found to smooth-out the 213 

spurious pressure oscillations generated by the high-nonlinearity of the EoS. 214 

By reconstructing the pressure, the only variable left to compute the fluxes at the cell 215 

faces is the speed of sound. Instead of using the EoS to calculate this variable, the sonic fluid 216 

velocity is interpolated using cell centre values as well. Therefore, the PC-SAFT EoS is used 217 

only once per cell in each RK sub-time step, thus reducing significantly the computational 218 

time. A detailed description of the spatial reconstruction methods employed can be found in 219 

the Appendix.  220 

 221 

2.a.b Parabolic sub-step 222 

The method of [39] is used to calculate the dynamic viscosity and the thermal conductivity. 223 

The diffusion coefficient is calculated employing the model developed by [40]. Linear 224 

interpolation is performed for computing the conservative variables, temperature and enthalpy 225 

on faces from cell centres. The viscous stress tensor is calculated as: 226 

xx

yy

xy yx

u 2 u v
2

x 3 x y

v 2 u v
2

y 3 x y

u v

y x

  

  

  
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   

   

   
   

   

  
   

  

          (4) 227 

where   is the shear viscosity. Effects of bulk viscosity are not considered as, to the best of 228 

the author’s knowledge, accurate models are not available. 229 

 230 

The species mass diffusion flux of species i is calculated as: 231 

i i iD Y J             (5) 232 

where D  is the diffusion coefficient. 233 

 234 

The heat flux vector is calculated as: 235 
N

i i i

i

T h D Y     q           (6) 236 

where   is the thermal conductivity and h is the enthalpy. 237 

 238 

2.b. Diesel surrogates 239 

Table 1 shows a comparison between the experimentally measured surrogate 240 

densities computed at 293.15K and 0.1MPa with the densities calculated employing the EoS-241 

based method developed at NIST [41] and the PC-SAFT EoS. The composition of the Diesel 242 

surrogates was proposed by [37]. They are divided into two accuracy types depending on how 243 

close is their composition to real Diesel. More specifically, V0a and V0b are two low-244 

accuracy surrogates and V1 and V2 are the two high-accuracy surrogates. Their molar 245 

composition is summarized in Table 6 . The results obtained by the PC-SAFT EoS shows the 246 

highest degree of agreement with the experimental values [42] in comparison with the results 247 

obtained by [37] applying the method developed at NIST. 248 

 249 

 250 

 251 
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2.c. Phase diagrams 252 

The number of phases is solved by an isothermal flash calculation after a stability 253 

analysis using the Tangent Plane Criterion Method proposed by [43] and applied to the PC-254 

SAFT EoS by [44] using the code developed by [42]. This methodology has not been 255 

implemented in the CFD code. It is used to obtain the phase diagrams employed to check that 256 

the vapor-liquid equilibrium (VLE) state is not present in the solution of the performed 257 

simulations.  258 

 259 

Surrogate Experiment NIST PC-SAFT 

V0a 818 809.1 814.9 

V0b 837.5 821.6 833.2 

V1 828.4 814.1 825.2 

V2 853 839.9 861.8 

Table 1. Comparison between experimentally measured surrogate densities (kg/m3) at 293.15 K 260 
and 0.1MPa with the NIST and PC-SAFT predictions [42]. 261 

 262 

 263 
Figure 1. Experimental [45]  and calculated pressure-composition phase diagram for the N2 (1) + 264 

C12H26 (2) system. Solid lines: PC-SAFT EoS with kij = 0.1446 [33]. 265 

3. Results 266 

Firstly, a comparison of the temperature, sonic fluid velocity and internal energy of n-267 

dodecane, V0a, V0B, V1 and V2 Diesel surrogates is presented to point out the importance of 268 

an accurate fuel properties modelling. Then, several advection test cases and shock tube 269 

problems are solved to validate the hyperbolic part of the numerical framework and show 270 

how the reconstruction technique explained in Section 2.a smooths-out the spurious pressure 271 

oscillations. Finally, two-dimensional simulations at high-load Diesel operation conditions of 272 

supercritical n-dodecane and Diesel surrogate V0A are presented to demonstrate the 273 

multicomponent and multidimensional capability of the developed numerical solver. 274 
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 275 

3.a. Dodecane and Diesel comparison 276 

 Figure 2 shows a comparison of the thermodynamic properties of n-dodecane and the 277 

Diesel surrogates V0A, V0B, V1 and V2 at 6MPa, as calculated using the PC-SAFT EoS. The 278 

main differences between dodecane and the Diesels can be found in the temperature and sonic 279 

fluid velocity at high densities. The temperature is an important thermodynamic property in 280 

transcritical simulations because it determines the transition to a supercritical state. The sonic 281 

fluid velocity plays a key role in the computation of the hyperbolic fluxes and in the time step 282 

calculation. The effects that these variables have in the CFD results can be seen later on in the 283 

paper, in Figure 12.  284 

  

 
Figure 2. Comparison of thermodynamic properties of n-dodecane and Diesel surrogates at 285 

6MPa: (a) density, (b) sonic fluid velocity, (c) internal energy 286 
 287 

 288 

3.b Advection test cases 289 

Single-species advection test case 290 

Table 2 summarises the advection test cases simulated. Figure 3 shows the results of 291 

the Advection Test Case 1, where Nitrogen is used. The initial conditions are the same as the 292 

ones used by [15] in the interface advection problem. The computational domain is x ϵ [0, 1] 293 

m. In 0.0< x < 0.3m, the initial conditions
 
are ρ=450kg/m

3
, p=4MPa, and u=10.0m/s; in the 294 

rest of the domain they are ρ=45.0kg/m
3
, p=4MPa, and u=10.0m/s.  A uniform grid spacing of 295 

0.01m is employed; the simulated time is t=0.04s; the CFL is set to be 0.5. Wave transmissive 296 

boundary conditions are implemented in the left and right sides of the computational domain. 297 

The spatial reconstruction has been performed in two different ways. In the first one, the PC-298 

SAFT EoS is used to compute the sonic fluid velocity and the pressure using the 299 

reconstructed conservative variables. In the second one, the pressure and sonic fluid velocity 300 

are interpolated onto the cell faces, as described in Section 2.a.  301 

Large wiggles appear in the velocity and pressure fields at 0.04s using the classic 302 

spatial reconstruction method, as can be seen in Figure 3. The start-up error is present for a 303 

(a) 
(b) 

(c) 
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long period of time in the simulation and contaminate the solution. This can be observed in 304 

the Figure 4 and 5, which both reveal the maximum wiggles amplitude (calculated as the 305 

maximum difference between the analytical solution and the computed profile [15]) along 306 

time in the pressure and velocity fields. More specifically, Figure 4 presents the results 307 

obtained using the second-order MUSCL-Hancock scheme while in Figure 5 the fifth-order 308 

WENO scheme has been utilised. By applying the schemes proposed in Section 2.a. and 309 

explained in the Appendix, once the oscillations generated by the start-up error have travelled 310 

upstream and downstream with their characteristic speeds and reach the boundaries of the 311 

computational domain, the solution shows no wiggles. A smooth initial interface can be used 312 

for avoiding the initial start-up error [46]. By employing a diffuse interface method, the 313 

interfaces are not sharp one-point jumps but smooth as they are resolved. Then, a smooth 314 

initial profile is a realistic initial condition. To initialize the simulation using a smooth 315 

interface the primitive variables are calculated employing the following formula [46]:  316 

(1 )L sm R smq q f q f              (7) 317 

(1 [ / ])

2
sm

erf R
f

 
           (8) 318 

where L and R refers to the left and right interface conditions and R  is the distance from 319 

the initial interface. C x   , where x  is the grid spacing and C  is a free parameter to 320 

determine the interface smoothness. Employing this formula, the number of grid points used 321 

in the initial interface does not depend on the grid resolution. The interface will be sharpened 322 

in space if the number of cells utilized is increased but the number of points across of the 323 

interface does not change. Figure 4-5 shows that for the spatial reconstruction methods 324 

proposed the start-up error is not present in the obtained solution for values of C  bigger than 325 

2.  326 

 327 

 328 

  

  

(a) (b) 

(e) (f) 

(c) (d) 
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Figure 3. Advection Test Case 1 (N2), CFL = 0.5, u = 10 m/s, 100 cells, t=0.04 s. 329 
Comparison of the (a-b) density, (c-d) pressure and (e-f) x-velocity between the 330 

analytical and the numerical solutions. Numerical solution 1: Pressure and sonic fluid 331 
velocity computed at the faces using the EoS. Numerical solution 2: Pressure and sonic 332 

fluid velocity interpolated at the faces. 333 

 334 

  

  
Figure 4. Advection Test Case 1 (N2), CFL = 0.5, u = 10 m/s, 100 cells. Maximum wiggles 335 

amplitude in the velocity and pressure fields. Analysis of smooth and sharp initial interfaces 336 
using the second-order MUSCL-Hancock scheme. 337 

 338 

Multi-component advection test case 339 

Figure 7 shows the results of the advection of the Diesel surrogate V0A in nitrogen 340 

(Table 2). The computational domain is x ϵ [0, 1]m; the initial conditions in 0.25m < x < 341 

0.75m  are ρV0A =450.0 kg/m
3
, pV0A = 11.1 MPa, and TV0A = 782.2K; in the rest of the domain 342 

ρN2 =37.0kg/m
3
, pN2 =11.1 MPa, and TN2 = 972.9K. The advection velocity utilized is 10 m/s; 343 

periodic boundary conditions are used; 500 cells are employed; the simulated time is t=0.1 s; 344 

the fifth-order WENO discretization scheme presented is used; and the CFL is set to be 0.5. A 345 

smooth interface is applied  2C  .The oscillations in the velocity and pressure field are 346 

lower than 1.0% and 0.3% respectively of the initial values. The vapor-liquid equilibrium 347 

(a) (b) 

(c) (d) 
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(VLE) state is not present in the solution, as can be seen in Figure 6 where the maximum 348 

temperature encountered by the Diesel surrogate V0A - nitrogen phase boundary at 7 MPa is 349 

705K (this value is lower at higher pressures). The minimum temperature reached in the 350 

simulation is 782k. 351 

 352 

  

  
Figure 5. Advection Test Case 1 (N2), CFL = 0.5, u = 10 m/s, 100 cells. Maximum wiggles 353 

amplitude in the velocity and pressure fields. Analysis of smooth and sharp initial interfaces 354 
using the fifth-order WENO scheme. 355 

 356 

 357 

Figure 6. Diesel surrogate V0A - nitrogen phase boundary from VLE at different 358 
pressures. 359 

 360 

(a) (b) 

(d) (c) 
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Table 2. ADVECTION TEST CASES 361 

ADVECTION TEST CASES 

CASE 1  Pressure [MPa] Density [kg/m3] Temperature [K] 

0.25 m < x  N2, 4.0 N2, 450.0 N2, 126.6 

0.25 m > x N2, 4.0 N2, 45.0 N2, 302.0 

CASE 2     

0.25 m < x  Diesel V0A, 11.1 Diesel V0A, 450.0 Diesel V0A, 782.2 

0.25 m > x N2, 11.1 N2, 37.0 N2, 972.9 

 362 

  

  

Figure 7. Advection Test Case 2 (Diesel surrogate V0A – N2), CFL=0.5 u = 10 m/s, 500 363 
cells, t=0.1s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-velocity 364 
between the analytical and the numerical solution. 365 

 366 

3.c. Shock tube problems 367 

The Euler equations are solved in this exercise, so direct comparison with the exact 368 

solver can be performed in order to validate the hyperbolic part of the developed numerical 369 

framework. The exact solution has been computed using the methodology described in [47].  370 

 371 

Shock Tube Problem 1, 2, 3 372 

Figure 8-11 displays the results of three shock tube problems which employs 373 

dodecane as working fluid. The domain is x ϵ [-0.5, 0.5] m; 1000 equally spaced cells were 374 

used. Wave transmissive boundary conditions are implemented in the left and right sides. The 375 

initial conditions are summarized in Table 3. The simulated time is 5 10
-4

s in the Shock Tube 376 

Problem 1 and 2, and 2.5 10
-4

s in the Shock Tube Problem 3. The CFL is set to 0.3 to stabilize 377 

the cases with large spurious pressure oscillations. The reconstruction step has been 378 

performed in two different ways. In the first one, the PC-SAFT EoS is used to compute the 379 

sonic fluid velocity and the pressure using the reconstructed conservative variables. In the 380 

(a) (b) 

(c) (d) 
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second one, the pressure and sonic fluid velocity are interpolated onto the cell faces, as 381 

described in Section 2.a.    382 

In the Shock Tube Problem 1 (Figure 8-9), the variation of the thermodynamic 383 

properties between the right and left states is not large enough to generate spurious pressure 384 

oscillations. However, spurious pressure oscillations appear in the Shock Tube Problem 2 385 

(Figure 10) because of the sharper jump in the thermodynamic conditions. Employing the 386 

modified reconstruction, the spurious oscillations are significantly reduced. In the Shock Tube 387 

Problem 3 the larger variation in the thermodynamic properties between the left and right 388 

states provoke the formation of large spurious pressure oscillations. Using the modified 389 

reconstruction, the oscillations can be significantly reduced (specially is the MUSCL- 390 

Hancock scheme is employed) like in the Shock Tube Problem 2. 391 

 392 
Table 3. SHOCK TUBE PROBLEMS 393 

CASE 1 Pressure [MPa] Density [kg/m3] Velocity [m/s] 

x < 0.5 m   30.0 438.0 0.0 

x > 0.5 m   10.0 100.0 0.0 

CASE 2    

x < 0.5 m   30.0 620.0  0.0 

x > 0.5 m   10.0 100.0  0.0 

CASE 3    

x < 0.5 m   30.0 710.0  0.0 

x > 0.5 m   10.0 100.0  0.0 

CASE 4    

x < 0.5 m   30.0 620.0  0.0 

x > 0.5 m   10.0 100.0  0.0 

 394 

Shock Tube Problem 4  395 

Figure 12 displays the density, temperature, pressure, velocity, sonic fluid velocity 396 

and internal energy results of a transcritical shock tube problem, which employs dodecane 397 

and the V0A, V0B, V1 and V2 Diesel surrogates as working fluids. The composition of the 398 

Diesel surrogates is summarized in Table 4. The domain is x ϵ [0, 1]m. 800 equally spaced 399 

cells were used. Wave transmissive boundary conditions are implemented in the left and right 400 

sides. The initial conditions in the left state are ρL=620kg/m
3
, pL= 30MPa, uL=0m/s; and in 401 

the right state are ρR=100kg/m
3
, pR=10MPa, uR=0m/s. The fifth-order WENO discretization 402 

scheme presented in Section 2.a. is used. The CFL is set to 0.8. The simulated time is 5 10
-4

s. 403 

The obtained results suggest that there is a significant difference between dodecane 404 

and the Diesel surrogates. The temperatures computed using Diesel surrogates are higher than 405 

those obtained for dodecane throughout the whole computational domain. The different sonic 406 

fluid velocities in the high-density region forces the expansion wave to move with different 407 

velocities. The larger variations in the Diesel internal energy may be related to the different 408 

velocity profiles computed. There is not a significant difference in the results obtained using 409 

the different Diesels.  410 



  

14 
 

  

  
Figure 8. Shock Tube Problem 1 (MUSCL-Hancock scheme, Dodecane). CFL = 0.5, u = 10 m/s, 411 
1000 cells, t=5 10

-4
 s. Comparisons of (a) density, (b) temperature, (c) velocity and (d) pressure 412 

profiles: exact solution and numerical solutions. Numerical solution 1: Pressure and sonic fluid 413 
velocity computed at the faces using the EoS. Numerical solution 2: Pressure and sonic fluid 414 

velocity interpolated at the faces. 415 

  

  
Figure 9. Shock Tube Problem 1 (Fifth-order WENO, Dodecane). CFL = 0.3, 1000 cells, t=5 10

-4
 416 

s. Comparisons of (a) density, (b) temperature, (c) velocity and (d) pressure profiles: exact 417 
solution and numerical solutions. Numerical solution 1: Pressure and sonic fluid velocity 418 

computed at the faces using the EoS. Numerical solution 2: Pressure and sonic fluid velocity 419 
interpolated at the faces. 420 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 10. Shock Tube Problem 2 (Dodecane). CFL = 0.3, 1000 cells, t=5 10
-4

 s. 421 
Comparison of pressure profiles: exact solution and numerical solutions.  Numerical solution 1: 422 

Pressure and sonic fluid velocity computed at the faces using the EoS. Numerical solution 2: 423 
Pressure and sonic fluid velocity interpolated at the faces. of (a) MUSCL- Hancock scheme, (b) 424 

Fifth-order WENO. 425 
 426 

  

Figure 11. Shock Tube Problem 3 (Dodecane). CFL = 0.3, 1000 cells, t=2.5 10
-4

 s. 427 
Comparison of pressure profiles: exact solution and numerical solutions.  Numerical solution 1: 428 

Pressure and sonic fluid velocity computed at the faces using the EoS. Numerical solution 2: 429 
Pressure and sonic fluid velocity interpolated at the faces. of (a) MUSCL- Hancock scheme, (b) 430 

Fifth-order WENO. 431 
 432 

 433 

The PC-SAFT EoS is implemented using loops that depend on the number of 434 

components solved, which means that it takes more time to compute the properties of 435 

mixtures.  This is the reason why the Diesel surrogate V0A will be used in the 2D simulation, 436 

as the results obtained using the two low accuracy surrogates (V0a and V0b) and the two 437 

high-accuracy surrogates (V1 and V2) are practically the same. The Diesel surrogate V0A is 438 

the one with less compounds.  439 

 440 
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Figure 12. Shock Tube Problem 4. CFL = 0.8, 800 cells, t=2.5 10

-4
 s. Comparison of the (a) 441 

density, (b) temperature, (c) pressure, (d) x-velocity, (e) sonic fluid velocity, (f) internal using as 442 
working fluids dodecane and the surrogate Diesels (Table 6). 443 

 444 

Table 4. 2D Test Cases 445 

CASE A  Pressure [MPa] Density [kg/m3] Temperature [K] 

JET (n-dodecane)  n-dodecane, 11.1 n-dodecane, 400.0 n-dodecane, 736.8 

CHAMBER (N2) N2, 11.1 N2, 37.0 N2, 972.9 

CASE B     

JET (V0A)  V0A, 11.1 V0A, 490.0 V0A, 742.2 

CHAMBER (N2) N2, 11.1 N2, 37.0 N2, 972.9 

 446 

 447 

 448 

(a) (b) 

(c) 

(d) 

(e) (f) 
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Table 5. PC-SAFT pure component parameters [48] 449 

Compound m  Å      / k K  

n-hexadecane   6.669 3.944 253.59 

n-octadecane 7.438 3.948 254.90 

n-eicosane 8.207 3.952 255.96 

heptamethylnonane 5.603 4.164 266.46 

2-methylheptadecane 7.374 3.959 254.83 

n-butylcyclohexane 3.682 4.036 282.41 

1,3,5-triisopropylcyclohexane 4.959 4.177 297.48 

trans-decalin 3.291 4.067 307.98 

perhydrophenanthrene 4.211 3.851 337.52 

1,2,4-trimethylbenzene 3.610 3.749 284.25 

1,3,5-triisopropylbenzene 5.178 4.029 296.68 

tetralin 3.088 3.996 337.46 

1-methylnaphthalene 3.422 3.901 337.14 

nitrogen 1.2053 3.3130 90.96 

dodecane 5.3060 3.8959 249.21 

 450 

 451 

3.b Two-dimensional cases 452 

The results of planar two-dimensional injections are presented in this section. As 453 

mentioned earlier, the fuels employed are n-dodecane and the Diesel surrogate V0A. A 454 

structured mesh is applied with a uniform cell distribution. The cell size is 5.5µm × 5.5µm. 455 

The domain used is 5mm × 2.5mm. The parabolic sub-step is included into these simulations, 456 

without sub-grid scale modelling for turbulence or heat/species diffusion. The CFL number is 457 

set at 0.5. The fifth-order WENO discretization scheme presented in Section 2.a. is used. 458 

Transmissive boundary conditions are applied at the top, bottom and right boundaries while a 459 

wall condition is employed at the left boundary. A flat velocity profile is imposed at the inlet. 460 

The velocity of the jet is 200 m/s and the diameter of the exit nozzle is 0.1mm. 405,000 cells 461 

are employed. 462 

 463 

Dodecane jet 464 

A multicomponent simulation has been included to prove the multi-species capability of the 465 

developed framework. According to the classification of [49], all binary N2+ hydrocarbon 466 

fluid mixtures are Type III except for methane. Starting at the critical point of n-dodecane, the 467 

critical pressure of a N2 + n-dodecane mixture grows by increasing the nitrogen concentration 468 

[50]. It reaches higher pressures than the ones observed in Diesel engine combustion 469 
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chambers (Figure 1). Thus, to avoid the VLE state the dodecane is injected at a temperature 470 

higher than its critical value in the performed simulation. 471 

The case is initialized using a pressure in the chamber of 11.1 MPa; the density and the 472 

temperature of the nitrogen in the chamber are 37.0 kg/m
3
 and 973 K (high-load Diesel 473 

operation conditions [51]), respectively. The density and temperature of the jet are 400.0 474 

kg/m
3
 and 736.8 K, see Table 4.   475 

The Kelvin Helmholtz instability is developing in the shear layer, as it can be seen in 476 

Figure 13. No pressure oscillations appear in the results. The jet is quickly heated-up from a 477 

liquid-like supercritical state to a gas-like supercritical state. A comparison of averaged 478 

scattered data of composition and temperature and an isobaric-adiabatic mixing process can 479 

be seen in Figure 14. As [52] stated, fully conservative schemes describe an isobaric-adiabatic 480 

mixing process. The isobaric-adiabatic line was computed using eq.9-10 and the initial 481 

conditions of this case: 482 

 483 

3 1 2m m m 
            (9) 484 

3 3 1 1 2 2m h m h m h 
         (10) 485 

 486 
Table 6. Molar composition for the four Diesel fuel surrogates (V0a, V0b, V1, V2) [37] 487 

Compound V0a V0b V1 V2 

n-hexadecane   27.8  - 2.70 - 

n-octadecane - 23.5 20.2 10.8 

n-eicosane - - - 0.80 

heptamethylnonane 36.3 27.0 29.2 - 

2-methylheptadecane - - - 7.3 

n-butylcyclohexane - - 5.10 19.1 

triisopropylcyclohexane - - - 11.0 

trans-decalin 14.8 - 5.50 - 

perhydrophenanthrene - - - 6.00 

1,2,4-trimethylbenzene - 12.5 7.5 - 

1,3,5-

triisopropylbenzene 
- - - 14.7 

tetralin - 20.9 15.4 16.4 

1-methylnaphthalene 21.1 16.1 14.4 13.9 
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Figure 13. CFL = 0.5, 405000 cells. Results of the simulation of the supercritical dodecane jet at t 489 
= 3.4 x 10

-5 
s: (a) density, (b) temperature, (c) pressure. 490 

The number of times the PC-SAFT model is solved in the hyperbolic operator per 491 

time step is lower than 20% the times it is employed using a classic FC implementation. As 492 

already mentioned, by interpolating the pressure and sonic fluid velocity at the cell faces, the 493 

EoS has to be solved once per cell in each RK sub-time step instead of once per cell face in 494 

the hyperbolic operator. Additionally, in many cells the EoS is not used to update the 495 

temperature, pressure, sonic fluid velocity and enthalpy values as the sum of the fluxes is 496 

approximately 0 (Section 2.a). This can be clearly observed in Figure 16. The significant 497 

reduction on the number of times the PC-SAFT model has to be solved allows to carry out 498 

simulations at affordable CPU times using a FC formulation. In the cases presented here, the 499 

time taken to solve 3.5×10
-5

s were 93.8 hours on a single CPU. 500 

 501 

(a) 

(b) 

(c) 
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 502 
Figure 14. Scattered data of composition and temperature of the planar dodecane jet, dodecane-503 

nitrogen phase boundary from VLE at 4.5 MPa and isobaric-adiabatic mixing line. 504 
 505 

 506 

 507 
Figure 15. Percentage number of times the PC-SAFT model is solved in the hyperbolic 508 

operator respect a classic implementation of a FC formulation. 509 
 510 

Diesel surrogate V0A jet 511 

This case is initialized using a pressure in the chamber of 11.1 MPa; the density and 512 

the temperature of the nitrogen in the chamber are 37.0 kg/m
3
 and 973 K (high-load Diesel 513 

operation conditions [51]), respectively. The density and temperature of the jet are 490.0 514 

kg/m
3
 and 742 K (Table 4). The temperatures encountered along the simulation are higher 515 

than the temperatures at which VLE exists, as can be seen in the previous Figure 6. The 516 

binary interaction parameter used between the nitrogen and the Diesel compounds is the same 517 

one used in the nitrogen-dodecane mixture (kij = 0.1446). 518 

Figure 13 shows the density, temperature and pressure at 3.4 × 10
-5

 s. For this multi-519 

component fuel simulations, the time taken to solve 3.5×10
-5

 s were 165 hours on the same 520 

CPU utilised for the dodecane simulation (~75% longer). By knowing the mass fractions in 521 

each cell, it is possible to determine how many components are present in a cell a priori. The 522 

PC-SAFT is then only solved for that specific number of components. Most cells along the 523 
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simulation in the combustion chamber contain only nitrogen. For this reason, this strategy 524 

significantly reduces the computational time. Like in the dodecane injection case, no pressure 525 

oscillations appear in the solution.   526 

 527 

 

  

  

  

Figure 16. Number of times the PC-SAFT is solved per cell in the first RK sub-time-step (RK1), 528 
the second RK sub-time-step (RK2), and the parabolic operator at 1.24×10

-5
s and 3.43×10

-5
s.  529 

3. Conclusions 530 

A numerical framework was developed to simulate supercritical Diesel fuel injection by 531 

solving the compressible formulation of the Navier-Stokes equations with a diffused interface 532 

density-based solver. Four different Diesel surrogates have been tested and the 533 

thermodynamic properties have been modelled using the PC-SAFT EoS. This molecular-534 

based EoS shows an accuracy similar to NIST, but without the need of an extensive model 535 

calibration; this is because only three parameters are needed to model a specific component. 536 

Moreover, it can easily compute the thermodynamic properties of multi-component mixtures, 537 

which is an additional advantage compared to NIST that supports only limited mixture 538 

combination. The Diesel surrogates utilised can be divided into two types, depending on how 539 

closely match the composition of Diesel fuel. All the multi-component surrogates tested show 540 

different properties than dodecane. Simulations at affordable CPU times can be carried out by 541 

reducing the number of times the PC-SAFT EoS is solved, by computing the pressure and 542 

sonic fluid velocity in the cell centers and performing a reconstruction of these variables at 543 
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each cell face. This technique has been found to smooth-out the spurious pressure oscillations 544 

associated with conservative schemes when used along with real-fluid EoS. Additionally, if 545 

the updated conservative variables do not change with respect to the values obtained in the 546 

previous sub-time step, there is no need to use the EoS in order to update the values of the 547 

temperature, sonic fluid velocity, pressure and enthalpy stored at the cell centres. This 548 

strategy further reduces the overall simulation time. Advection test cases and shock tube 549 

problems have demonstrated the validity of the hyperbolic operator of the developed 550 

framework. Moreover, two-dimensional simulations of planar jets of dodecane and a four 551 

component Diesel surrogate (V0A) are included to demonstrate the capability of the scheme 552 

to predict supercritical Diesel fuel injection and mixing into air. 553 

 554 

 

 

 

Figure 17. CFL = 0.5, 405000 cells. Results of the simulation of the supercritical Diesel surrogate 555 
V0A jet at t = 3.4 x 10

-5 
s: (a) density, (b) temperature, (c) pressure. 556 

 557 

(a) 

(b) 

(c) 
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Appendix  Spatial reconstruction methods and Riemann solver 564 

Second-order spatial reconstruction and Riemann solver  565 

A variation of the MUSCL-Hancock scheme [53] is applied. The fluxes are computed in the 566 

following way: 567 

 568 

Step 1: Data reconstruction. 569 

The one-dimensional vector of conservative variables stored in each cell centre is: 570 

 571 

i ( ,u , E)  U
 572 

 573 

Data cell averages of the conservative variables are replaced by piece-wise linear functions in 574 

each cell:  575 

 n Ci
i i i

(x x )
(x) , x 0, x

x


   


U U Δ   i 1 1/2 1 1/2I [x ,x ]     (11) 576 

where 
C

iΔ  is the slope vector of the conservative variables. The Minmod slope limiter is 577 

applied: 578 

 579 

 C

i i i 1 i 1 imin mod q q ,q q   Δ  580 

 581 

a a b & ab 0

min mod(a,b) b if a b & ab 0

0 ab 0

   
 

   
  

      (12) 582 

 583 

The boundary extrapolated values of the conservative variables in global coordinates are 584 

computed using eq.13: 585 

 586 

L n C

i i i

R n C

i i i

1
(x)

2

1
(x)

2

 

 

U U Δ

U U Δ

         (13) 587 

Once the conservative variables are updated after each Runge-Kutta sub-time step, the 588 

primitive variables and the sonic fluid velocity are computed and stored at the cell centres. 589 

The one-dimensional vector of primitive variables stored in each cell centre is: 590 

 591 

i ( ,u,p)W
 592 
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 593 

Data cell averages of the primitive variables are replaced by piece-wise linear functions in 594 

each cell:  595 

 n Pi
i i i

(x x )
(x) , x 0, x

x


   


W W Δ   i 1 1/2 1 1/2I [x ,x ]                   (14)  596 

Where 
P

iΔ  is the slope vector of the primitive variables; the Minmod slope limiter is 597 

employed again. 598 

 599 

The boundary extrapolated values of the primitive variables in global coordinates are 600 

computed using eq.15: 601 

 602 

L n P

i i i

R n P

i i i

1
(x)

2

1
(x)

2

 

 

W W Δ

W W Δ

         (15) 603 

 604 

The boundary extrapolated values of the sonic fluid velocity are computed as well: 605 

L n a

i i i

R n a

i i i

1
a (x) a

2

1
a (x) a

2

  

  

         (16) 606 

where 
a

i  is the slope scalar of the speed of sound. The Minmod slope limiter is applied as 607 

well. 608 

 609 

Step 2: Evolution.  610 

The boundary extrapolated values of the primitive variables are evolved by a time 611 

1/ 2 t using eq.17 [53]: 612 

 613 

L,R
L,R n L R

i i i i i

1 t
( )[ ]

2 x


  


W W A W W W       (17) 614 

where A  is computed using the data cell average n

iW . 615 

2

u 0

1
0 u

0 a u







 
 
 
 
 
 

A  616 

The boundary extrapolated values of the conservative variables are evolved by a time 617 

1/ 2 t using eq.18: 618 

 619 

L
L L R

i i i i

R R L R
i i i i

1 t
[ ( ) ( )]

2 x

1 t
[ ( ) ( )]

2 x


  




  



U U F U F U

U U F U F U

         (18) 620 

 621 
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The fluxes 
L,R

i( )F U are computed as: 622 

( )

2

u

u p

E p u







 
 

 
 
  

F  623 

were ,u  and E are obtained from the evolved conservative variables i( )U  and p is 624 

obtained from the evolved primitive variables i( )W .  625 

 626 

Step 3: The Riemann Problem. 627 

The Riemann problem is solved to compute the intercell flux using the evolved conservative 628 

variables, the evolved primitive variables and the interpolated speed of sound. 629 

 630 
R L

i i 1L R

R L

i i 1L R

L R

;

;

a ,a





 

 

U U U U

W W W W

 631 
 632 

Within the variables needed to solve the Riemann problem, ,u ,E  are obtained from the 633 

reconstructed conservative variables, p is obtained from the evolved primitive variables and 634 

a  is the interpolated speed of sound. There is no need of using the EoS at the cell faces as the 635 

speed of sound and the pressure are already known from the previous operation. The HLLC 636 

solver is employed to solve the Riemann problem. The HLLC flux are given by: 637 

 638 

L L

*L L L *L L L *HLLC

*R R R *R R * *R

R *R

0 S ,if

S ( ) S 0 S ,if

S ( ) S 0 S ,if

0 S ,if




    
 

    
 

F

F F U U
F

F F U U

F

                  (19) 639 

 640 

The star states are computed as: 641 

K K
*K K *

K *

K K
* K *

K K K K

1
S u

S
S S

E p
(S u ) S

(S u )



 

 
 
 

     
  

  
    

  

U     (20) 642 

where K = R,L 643 

 644 

The speed in the middle wave is: 645 

 646 

R L L L L L R R R R
*

L L L R R R

p p u (S u ) u (S u )
S

(S u ) (S u )

 

 

    


  
      (21) 647 

 648 

The left and right wave speeds are computed as: 649 
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 650 

L L L R R

R L L R R

S min(u a ,u a ),

S max(u a ,u a )

  

  
        (22) 651 

 652 

Fifth-order WENO spatial reconstruction and Riemann solver  653 

The conservative variables, primitive variables and speed of sound are reconstructed at the 654 

cell faces using a fifth-order WENO scheme [54]. The interpolation of the variable Q to the 655 

cell edge i + 1/2 from the left is: 656 

1
2

r
r r

1 k k,ii
k 02

Q Q




          (23) 657 

where r is the number of points used in each stencil, k is the individual stencil number and 658 
r

k is the weighting factor of the k
th
 stencil. The interpolation on each candidate stencil is: 659 

1
2

r 1
r r

kj i r k j 1k;i
j 0

Q a Q


   


          (24) 660 

 661 

The candidate stencil weights are calculated as: 662 
r

r k
k r 1

r

j

j 0












                      (25) 663 

where: 664 
r

r k
k p

k

C

(IS )






                                 (26) 665 

 is a parameter used to avoid division by 0. 666 

 667 

The smoothness coefficients are given by: 668 

 669 
r 1 r 1

r

k klj i r k l 1 i r k j 1

l 0 j 0

IS d Q Q
 

       

 

           (27) 670 

The coefficients
r

kja ,
r

kC ,
r

kljd  can be obtained from [54]. 671 

 672 

Following the work of [38], the limiter developed by [55] is employed. Defining the slope 673 

limited interpolation as: 674 

 675 

1 i i i 1 TVD
i

2

Q Q 0.5(Q Q )

                      (28) 676 

where   is the TVD slope limiter: 677 

 678 

i 1/2 ii 1 i
TVD

i i 1 i i 1

Q̂ QQ Q
max 0,min , ,2

Q Q Q Q
   

 

  
        

     (29) 679 

 680 
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being 
i 1/2Q̂ 

 the interpolated variable using the WENO scheme and   a constant set to two 681 

[38]. Once the primitive variables, the conservative variables and the speed of sound have 682 

been interpolated at the cell faces, the HLLC solver is employed to compute the fluxes in the 683 

same way as in the second-order reconstruction scheme. 684 

 685 

Temporal integration 686 

The system of ordinary differential equations (ODEs) obtained from the spatial discretization 687 

of the operator xyH by applying the method of lines is:  688 

xyH
t x y

  
   

  

U F G
         (30) 689 

 690 

The temporal integration is performed either using a second-order Runge–Kutta (RK2):  691 
(1) n n

xy

n 1 n (1) (1)

xy

tH ( ),

1 1
tH ( )

2 2



 

     

U U U

U U U U
                      (31) 692 

 693 

or a third order strong-stability-preserving Runge–Kutta  (SSP-RK3) [56]: 694 
(1) n n

xy

(2) n (1) (1)

xy

n 1 n (2) (2)

xy

tH ( ),

3 1
tH ( ) ,

4 4

1 2
tH ( )

3 3



  

     

     

U U U

U U U U

U U U U

       (32) 695 

 696 

In many cells the sum of the fluxes is practically 0. Applying a SSP-RK3 scheme, this means 697 

that in these cells: 698 

 
(1) n

i iU U ,
(2) (1)

i iU U or 
(n 1) (2)

i i

 U U ,  699 

which can be translated into: 700 
(1) n

i iW W ,
(2) (1)

i iW W  or 
(n 1) (2)

i i

 W W   701 

and 702 
(1) n

i ia a  , 
(2) (1)

i ia a or 
(2) (1)

i ia a .  703 

 704 

Therefore, there is no need to employ the EoS is all these cases to update the pressure, speed 705 

of sound, temperature and enthalpy, which values are all stored at the cell centres.  706 

 707 
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