
HAL Id: hal-01668246
https://hal.inria.fr/hal-01668246

Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interoperability between arithmetic proofs using
Dedukti

Gilles Dowek, Stéphane Graham-Lengrand, François Thiré

To cite this version:
Gilles Dowek, Stéphane Graham-Lengrand, François Thiré. Interoperability between arithmetic proofs
using Dedukti. International School On Rewriting 2017, Jul 2017, Eindhoven, Netherlands. �hal-
01668246�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163076545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01668246
https://hal.archives-ouvertes.fr

Interoperabilitybetweenarithmeticproofs
usingDedukti

François Thiré
DEDUC`EAM (INRIA)
francois.thire@inria.fr

•There exist many logics and many proof checkers for these logics
•Some logics are more powerful than others (e.g. quantify over proofs)
•Theorems and proofs are not shared between different proof checkers : Well-known theorems and proofs are proved manually for each new proof

checker/logic
•There is no standard for these logics
•Our objective is to translate automatically a small library of arithmetic proofs from an expressive logic called The Calculus of Inductive Constructions

(CiC), to a less expressive logic, The Higher Order Logic (HOL).

Motivations & objectives

•Dedukti implements the λΠ-calcul modulo theory. It is a logical fra-
mework
•Logical frameworks are a kind of proof checker that allows to embed several

logics
•Logical framework are good systems to make interoperability easier
•λΠ-calcul modulo theory is a simple logic that combines dependent types

and rewrite rules
•The substantial advantage of dedukti for interoperability is that the enco-

ding of a logical system L to dedukti is shallow :
–Use of Higher-order Abstract syntax
–Type preservation : Γ `L t : T ⇒ |Γ| `λΠ ||t|| : |T |
–Computation preservation : t1→L t2⇒ ||t1|| →λΠ ||t2||

HOL4

HOL-light

HOL Zero

Dedukti

Coq

CoqInE

Open Theory

Holide

Matita

Krajono

Zenon
modulo

Focalize

Focalide

universo
dkmeta,...

ediloh

Arithmetic library

Dedukti is handy for interoperability

•This translation is not always possible : In CiC, it is possible to quantify
over proofs, not in HOL or in CiC, there is an infinite hierarchy of universes
that does not exist in HOL
•But there should be a translation for arithmetic proofs : one does not need

universes nor to quantify over proofs
Features to remove :
•Universes
•Dependent types
• Inductive definitions and recursive definitions (encoded in λΠ-calcul modulo

theory by rewrite rules)

nat : Type.

0 : nat.

S : nat -> nat.

[] one --> S 0.

odd : nat -> Prop.

pi : odd (S 0).

def pi1 : (odd one) := pi.

With rewrite rules

[...]

def eq : nat -> nat -> Prop.

[x,y] eq x y -->

forall (P:(nat -> Prop) =>

impl (P x) (P y)).

eq_one : eq (S 0) one.

def pi1 : (odd one) :=

eq_one (ctx => odd ctx) pi.

Without rewrite rules

Dedukti[CiC] to Dedukti[HOL]

• Implements tactic in Dedukti (R. Cauderlier)
•Use external provers to prove intermediate results (A. Defourné)
•Prove that the convertibility test is decidable by proving the termination

(G. Genestier)
• Implicits, Elaboration and Unification in Dedukti (R. Bocquet)

Dedukti as a proof assistant

•Open Theory (OT) is already a tool for interoperability between HOL family
provers.
•∀ and ⇒ are primitives in Dedukti[HOL] but not in OT. This extends to

logical rules like the Modus Ponens
•Terms in Dedukti[HOL] are modulo β but not in OT where this conversion

is explicit.
•Other technical problems arise such as that Dedukti uses De Bruijn indices

but OT does not, polymorphism in Dedukti[HOL] does not work the same
way as in OT...

Dedukti[HOL] to OpenTheory

• Implementation in OCaml (5000 lines)
•Compilation time with Ediloh (Fermat little theorem) : 20s
•Several independent tools :
–Universo (remove universes)
–Deduktipli (remove dependent types)
–Ediloh (the compiler from Dedukti[HOL] to OpenTheory)

Implementation

•Automatize the translation
•Extend that arithmetic library to other provers such as Coq, Matita, PVS...
•Create the W3P (W3C of proofs) in order to create the first standards for

proofs
•OCaml is not really handy to write such compilers especially for binders. A

joint work with Prof. Brigitte Pientka is to look at a new logical/program-
ming system that would be handy to express proof transformations

•Embed other logical systems like CubicalTT (C. Leena Subramaniam)
•Extend Dedukti to rewrite modulo a congruence (G. Ferey)

Future Work

