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Abstract

We analyze mathematically the problem of determining refractive index pro-
�les from some desired/measured guided waves propagating in optical �bers.
We establish the uniqueness of the solution of this inverse spectral problem
assuming that only one guided mode is known. We then propose an iterative
computational procedure for solving numerically the considered inverse spec-
tral problem. Numerical results are presented to illustrate the potential of
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the proposed regularized Newton algorithm to e�ciently and accurately re-
trieve the refractive index pro�les even when the guided mode measurements
are highly noisy.

1 Introduction

Inverse spectral problems (ISP) are a class of problems that is relevant to a
wide range of applications in science and technology. Examples of such appli-
cations include large static structures such as buildings and bridges, as well
as smaller dynamic structures such as automobiles and helicopters. These
structures require extensive vibration testing and analysis during the design
and the development stages. The determination of the structural parameters
is one of the most important stages in the analysis. This is accomplished by
solving ISPs to calculate coe�cients of the di�erential systems corresponding
to the considered mathematical models. The determination of the variations
of the density of the earth from its eigenfrequencies is another example of
an ISP arising in the geophysical science �eld. All these important appli-
cations require at some point of their studies the solution of ISPs. For this
reason, ISPs received during the past three decades a great deal of attention
by applied mathematicians and engineers, as demonstrated by the proli�c-
ness of literature and conferences dedicated to this topic.
Inverse spectral problems can be broadly divided into two categories: in-
verse spectral domain problems (ISDP) and inverse spectral parameter prob-
lems (ISPP). In the �rst category, i.e., the inverse spectral domain problems
(ISDP), the goal is to �nd the shape of a region from the partial or total
knowledge of the spectrum of an elliptic operator, such as Laplace operator.
Although the �rst ISDP was formulated in 1882 by Sir A. Shuster, who intro-
duced spectroscopy as a way to �nd a shape of a bell by means of the sounds
which it is capable of sending out, no signi�cant progress was accomplished
in this area until the mid 1960's. Indeed, the publication of the fundamental
paper by Kac in 1966 set the stage for the subsequent mathematical and
numerical investigations of this category of problems (see, for example, the
short review by Protter [1] and the book of Bérard [2]). Despite the publica-
tion of several works on the mathematical and numerical analysis of ISDP's
(see [3]�[5], among others), there are still many open questions [6].
In the second category, the inverse spectral parameter problems (ISPP), the
aim is to recover material properties from the a priori knowledge of the nat-
ural frequencies or mode shape measurements. Hence, this class of problems
consists in identifying parameters of di�erential operators from their corre-
sponding spectrum. One of the fundamental papers addressing the mathe-

2



matical aspects of ISPPs was authored by Borg, who analyzed the particular
case of the Sturm-Liouville operator [7], which is primarily a one-dimensional
model problem. It amounts to determining the density of a vibrating string
from its fundamental tone and overtone. Since then, this model problem
has been extensively studied. Indeed, various proofs on the uniqueness have
been given in [8]�[11] and constructive methods have been suggested in [12]�
[18]. Nowadays, an ISPP for the Sturm-Liouville operator is considered to
be relatively well understood [19]�[20] and some of the results pertaining
to the construction of the solution, as well as its uniqueness, have been ex-
tended to more general one-dimensional operators [21]�[22]. For multidimen-
sional ISPPs, the situation is more complicated despite the important e�orts
made and documented in literature (see [23]�[29], among others). Specif-
ically, for two-dimensional ISPPs, the most signi�cant results have been
established when the spectrum data are given for rectangular-shaped and
bounded membranes [30]�[33]. ISPP for the linear Schrödinger operator in
the case of unbounded domains was �rst analyzed in [34]. However, this
study is restricted to the case where the sought-after potentials are periodic.
We must point out that most of the recent studies provide only theoretical
results via di�erent mathematical approaches (see, e. g., [35]�[43]).
The main goal of this paper is to study from both mathematical and numeri-
cal viewpoints the problem of determining refractive index pro�les from some
measured or desired guided waves propagating in optical �bers. This ISPP
occurs in network communications when developing optical waveguides that
achieve a desired lightwave transmission. Extensive e�ort has been deployed
in the last two decades to solve numerically this class of inverse spectral prob-
lems, as attested by the numerous publications (see, e.g., [44]�[54]). Prior to
that, an interesting attempt was made in the mid 70′s [55]. The proposed ap-
proach for computing the refractive index pro�le uses the measurements col-
lected from the near �eld intensity distribution. This method seems to su�er
from the presence of spurious modes. The more recent work presented in [53]
proposes a computational procedure to retrieve the refractive index pro�le
of multi-layered circular optical �bers from the knowledge of the propaga-
tion constants and their corresponding eigenwaves under the weak guidance
propagation assumption. This work extends the ideas and techniques devel-
oped in [47] and [51] in the case of a one-layered optical �ber. The proposed
numerical method employs a functional cost built from the characteristic
equation that connects the refractive indices of the waveguide's layers to the
propagation constants of its eigenwaves. It is de�ned as the determinant of
the matrix giving the coe�cients of the wave�eld decomposed over a basis
of Hankel functions. This approach seems to be limited to circular-shaped
waveguides due to the choice of the basis functions. For planar multi-layered
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waveguides, the waveguide spectroscopy method is used in [44]. This method
consists of minimizing the distance between the computed and the measured
propagation constants vectors. The computed ones are obtained as the roots
of well-known characteristic equations. The application of this method has
been extended to waveguides with piecewise constant refractive index pro�les
and arbitrary cross-sectional boundaries [48], [50], [52], [53]. The authors pro-
pose a strategy that is based on the solution of a nonlinear nonself-adjoint
eigenvalue problem corresponding to a system of weakly singular integral
equations. The numerical approach introduced in [46] reconstructs the re-
fractive index pro�le of a cylindrical waveguide from the knowledge of the
corresponding near �eld in the case of Maxwell system. The main idea of
this technique is to reformulate the problem into a set of one-dimensional
problems after dividing the optical waveguide into homogeneous cylindri-
cal layers of a prescribed thickness. The accuracy and e�ectiveness of the
method are highly dependent on the thickness parameter values. The work
presented in [54] seems very close to ours. However, the approach adopted
in [54] di�ers from our solution methodology by several aspects, chief among
them: (a) the ISPP is formulated in [54] as an optimization problem under
constraints and is solved via the use of Lagrange multipliers, and (b) the
Fréchét derivatives with respect to the refractive index pro�le are computed
using a �nite di�erence (FD) approximation of order 1. Due to the con-
straints considered in [54], the method is limited to continuous pro�les at
the interface core-cladding and its e�ciency (accuracy and convergence) is
sensitive to the FD step size value when approximating the derivatives.
In the present work, we investigate the question of the uniqueness of the
solution for the considered ISPP and characterize its Fréchet derivative with
respect to the refractive index pro�le. At the numerical level, we propose
a solution methodology that falls in the category of regularized iterative
methods. The proposed computational procedure possesses the following
four main features: (a) a computationally e�cient usage of the exact sen-
sitivities of the guided modes to the speci�ed refractive index parameters,
(b) the solution of only one eigenvalue problem at each Newton iteration, (c)
a Tikhonov-like regularization to restore the stability, and (d) an e�cient
computational method coupling a local boundary condition to a �nite ele-
ment formulation for solving the direct eigenvalue problem. Note that the
mathematical di�culties, computational issues, and solution approaches ad-
dressed in this paper are relevant to many ISPs arising in other applications.
The remainder of this paper is organized as follows. In Section 2, we recall
the forward eigenvalue problem that characterizes the propagation of guided
modes in a homogeneous optical �ber. We assume the propagation to be un-
der the weak guidance conditions [56]�[58]. In Section 3, we state the ISPP
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of interest and establish mathematical results pertaining to (a) the unique-
ness of the solution, and (b) the Fréchet derivative of the eigenmodes with
respect to the refractive index pro�le. Section 4 is devoted to the descrip-
tion of the proposed solution methodology for solving the considered ISPP.
We present in Section 5 various illustrative numerical results to highlight the
performance e�ciency of the proposed computational procedure. Concluding
remarks are included in Section 6.

2 The Direct Problem

2.1 Nomenclature and assumptions

An optical �ber can be viewed as a cylindrical dielectric structure that is
extended along its propagation axis, denoted here by Ox3 (see Figure 1(a)).
In its transverse directions, Ox1 and Ox2, an optical �ber is constituted
of two open subsets of R2 : a core region denoted by Ω and a cladding
region Ωe = R2 \Ω (see Figure 1(b)). The core Ω is assumed to be Lipschitz
continuous. The cladding Ωe is assumed to be in�nitely extended since guided
waves decrease exponentially to zero out of the core region and the radius
of the cladding is in practice very large compared to the radius of �ber
core [56]�[59]. The core and the cladding regions are fully determined once
the refractive index pro�le n of the considered �ber is known. The proposed
study is limited to optical �bers with homogeneous cladding. Therefore, the
class of refractive index pro�les n we consider here are positive real-valued
functions depending on x = (x1, x2) such that n ∈ L∞(R2; R?

+), and:

∃ n∞ ∈ R?
+ such that n(x) = n∞ a.e. x ∈ Ωe. (1)

Furthermore, to ensure the guided waves propagation in the considered �ber,
the refractive index pro�le must attain its maximum inside the core of the
�ber [56]�[59], that is:

∃ n+ ∈ R?
+ such that ess sup

x∈R2

n = n+ > n∞, (2)

where ess sup denotes the essential supremium [59].
We consider the following class of refractive index pro�les:

N = {n ∈ L∞(R2; R?
+); ∃ n∞ > 0;

n(x) = n∞ a.e. in Ωe and ess sup
x∈R2

n = n+ > n∞}, (3)
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(a) (b)

Figure 1: (a) An optical �ber, (b) a transverse section of a homogeneous
optical �ber.

and the set of admissible refractive index pro�les considered in this study,
denoted by N1, is de�ned by:

N1 = {n ∈ N ; n being piecewise continuous} (4)

Note that the set N1 encompasses all refractive index pro�les encountered in
practical applications [57]�[58], [60].

2.2 Problem statement

We consider the propagation of guided modes under the weak guidance condi-
tions. Hence, we assume the refractive-index variations to be small compared
to the wavenumber k. In this situation, the propagation of guided waves in
homogeneous optical �bers can be formulated as the following scalar eigen-
value problem EVP [56]�[59]:

(EVP)


Find β ∈ ]kn∞, kn+[ and u ∈ L2(R2); u 6= 0 such that:

∆u+ k2n2u = β2u in R2 (5)

[u] =

[
∂u

∂ν

]
= 0 on Γ = ∂Ω, (6)

where:

• β is the propagation constant. It represents the speed of the electro-
magnetic �eld along its propagation axis Ox3 (see Figure 1(a)).

• u is the associated eigenfunction of β. It represents any transverse com-
ponent of the electromagnetic �eld that propagates in the �ber. The
couple (β, u) is called a guided mode.
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• n is an admissible refractive index, that is, n ∈ N1.

• The brackets [ . ] in equation (6) represent the jump across the core-
cladding interface Γ and ν is the unit normal vector on Γ oriented to-
wards the cladding Ωe. The transmission conditions given by (6) express
the continuity of the tangential components of the electromagnetic �eld
over the core-cladding interface Γ (see Figure 1(b)).

EVP has been analyzed extensively, both mathematically and numerically.
Results pertaining to the existence of guided modes, their number, as well
as their sensitivities to the opto-geometrical parameters k and n of the con-
sidered waveguide can be found in [56]�[59], among other references.

3 The Inverse Spectral Problem

3.1 Problem statement

As stated earlier in the introduction section, our aim is to propose a solu-
tion methodology that e�ciently retrieves the refractive index pro�le from
the knowledge of some guided modes (β, u) propagating, at a �xed fre-
quency, in a given optical �ber. To formulate mathematically this inverse
problem, we �rst recall that for a prescribed frequency, characterized by
the wavenumber k, and a given refractive index n ∈ N1, EVP admits a �-
nite number S of propagation constants, counted with their multiplicities,
denoted by βS = (β1, · · · , βS)T and their corresponding eigenfunctions de-
noted by uS = (u1, · · · , uS)T [59]. Therefore, EVP de�nes a vector-valued
mapping FS = (F1, F2, · · · , FS)T , such that:

FS : n −→ FS(n) = βS. (7)

Note that the lth coordinate Fl(n) = βl is the propagation constant corre-
sponding to the lth guided mode, counted with its multiplicity. This means
that the βls are not necessarily distinct. The considered inverse spectral
problem can be then formulated as follows:

(ISPP)


Given the �rst I guided modes (β1, u1), (β2, u2), · · · , (βI , uI)
(1 ≤ I ≤ S) propagating at a �xed frequency k, �nd the refrac-
tive index n ∈ N1 such that:

FI(n) = βI = (β1, β2, · · · , βI)T . (8)
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Remark. Note that the considered ISPP can also be extended to the case
where the guided modes are measured for multiple frequencies correspond-
ing to NF wavenumbers k1, k2, · · · , kNF

. For each considered wavenum-
ber kl (1 ≤ l ≤ NF ), its corresponding �rst Il propagation constants βIl =
(β1l , β2l , · · · , βIl)T and their associated eigenfunctions uIl = (u1l , u2l , · · · , uIl)T
are given respectively in ISPP. Therefore, the number of eigenmodes I in ISPP

becomes I =

NF∑
l=1

Il.

3.2 Mathematical results

The �rst result establishes the uniqueness of the solution of ISPP.

Proposition 3.1. The refractive index n, solution of ISPP, can be uniquely
determined in N1 from only the knowledge of the fundamental mode (β1, u1).

Proof. Consider ISPP with I = 1, that is the fundamental eigenmode pair
(β1, u1) is given. Let n1 and n2 be two solutions of ISPP. Then, equation (5)
implies:

∆u1 + k2n2
l u1 = β2

1u1 in R2 with nl = nl,∞ > 0 in Ωe; l = 1, 2. (9)

It follows from the di�erence between the two equations given by (9) that:

(n2
1 − n2

2) u1 = 0 a.e. in R2 (10)

In particular, we have:

(n1,∞ − n2,∞) u1 = 0 a.e. in Ωe, (11)

Hence, either u1 = 0 a.e. in Ωe or n1,∞ = n2,∞.

Case1: Assume that u1 = 0 a.e. in Ωe.
Since u1 ∈ H2(R2) [59], then we have:

u1 =
∂u1

∂ν
= 0 a.e. on ∂Ωe (12)

and the standard trace theorems can be applied to u1 on the boundary for
both Dirichlet and Neumann traces. It follows that u1 satis�es the following
homogeneous boundary value problem:{

∆u1 + (k2n2
1 − β2

1)u1 = 0 in Ω

u1 =
∂u1

∂ν
= 0 on ∂Ω
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Hence, using the unique continuation principle (see, e.g., [61]�[62]), we deduce
that:

u1 = 0 a.e. in Ω,

and therefore
u1 = 0 a.e. in R2,

which contradicts u1 being an eigenfunction, i.e., ‖u1‖2 6= 0.

Case2: Assume that n1,∞ = n2,∞.
If n1 6= n2, then, since the refractive index is a positive valued function, there
must be an open subset D ⊆ Ω, such that:

n2
1 − n2

2 6= 0 a.e. in D. (13)

It follows from the restriction of equation (10) to D that:∫
D

(n2
1 − n2

2)2 u2
1 dx = 0, (14)

Consequently, we deduce from equations (13)-(14) that:

u1 = 0 a.e. in D. (15)

Using the same argument as in Case 1, we deduce that u1 = 0 a.e. in Dc =
R2 \D and therefore u1 = 0 a.e. in R2, which contradicts u1 being an eigen-
function (i.e., ‖u1‖2 6= 0).

Remark. The above proof suggests that the conclusion of Proposition 3.1
is still valid when the considered fundamental mode (β1, u1) is replaced by
any other pair of guided modes. The multiplicity of the propagation constant
does not matter in the proof of the proposition.

The next result states that the previous uniqueness result is no longer valid
if the propagation constant value is given without the knowledge of the order
of the corresponding guided mode.

Proposition 3.2. The refractive index n, solution of ISPP, cannot be uniquely
determined in N1 if the propagation constant β is given without its associated
eigen�eld u.

Proof. In this situation, it is possible to prove the existence of a sequence
of refractive indices (nl)l ∈ N1, for which the considered β is the propa-
gation constant of the corresponding lth mode. Indeed, observe that the
mapping F1 : n 7−→ β1(n) is an increasing function in the following sense:
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for n, n′ ∈ N1, such that n ≥ n′, then F1(n) = β1(n) ≥ β1(n′) = F1(n′) [59].
In addition, F1 is locally lipschitzian, and therefore continuous from N1

to R?
+ [59]. Consequently, F1 de�nes a bijection from N1 to R?

+. This implies
the existence of a unique refractive index n1 ∈ N1, solution of ISPP, such
that β is the corresponding fundamental mode propagation constant.
Similarly, since the mapping Fl, l ≥ 2, is also a bijection fromN1 into R?

+ [59],
then we also prove the existence of a sequence of refractive indices (nl)l≥2

in N1 such that the considered β is also associated to their respective lth

guided mode.

We conclude this section by providing a characterization of the Fréchet
derivative of the propagation constants with respect to the refractive index n.
This result is relevant to the implementation of any Newton-type method for
solving ISPP. Indeed, it is well known that the accuracy and the e�ciency
of Newton-type methods strongly depend on the accuracy level in the com-
putation of the jacobian matrix that occurs at each iteration.

Theorem 3.3. For a given wavenumber k, the Fréchet derivative of the map-
ping Fl (1 ≤ l ≤ S), given by equation (7), with respect to the refractive index
pro�le n in the direction h ∈ L∞(R2; R?

+), when it exists, satis�es:

∂Fl
∂n

(n)h =

k2

∫
R2

nhu2
l dx

βl

∫
R2

u2
l dx

. (16)

Proof. Since the guided mode pair (βl, ul) satis�es (5), then we apply the
chain rule and obtain:

∆

(
∂ul
∂n

h

)
+
(
k2n2 − β2

l

) ∂ul
∂n

h+ 2

(
k2nh− βl

∂βl
∂n

h

)
ul = 0 (17)

Next, we multiply equation (17) by ul and integrate over R2.We then obtain:∫
R2

[
∆

(
∂ul
∂n

h

)
+
(
k2n2 − β2

l

) ∂ul
∂n

h

]
uldx+ 2

∫
R2

(
k2nh− βl

∂βl
∂n

h

)
u2
l = 0

(18)
Furthermore, we integrate equation (18) by parts and obtain:∫

R2

[
∆ul +

(
k2n2 − β2

l

)
ul
] ∂ul
∂n

hdx+ 2

∫
R2

(
k2nh− βl

∂βl
∂n

h

)
u2
l = 0 (19)

Note that, similarly to the derivation of the variational formulations in [63]�
[64], equation (19) is obtained from (18) in two steps. We �rst perform
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the integration in the distribution sense. We then use the standard density
argument of D(R2) into H2(R2).
Finally, it follows from equations (5) and (19) that∫

R2

(
k2nh− βl

∂βl
∂n

h

)
u2
l = 0, (20)

which concludes the proof of Theorem 3.3.

4 Solution Methodology

We propose a Tikhonov-regularized Newton procedure for solving ISPP [65]�
[66], since regularized iterative methods appear to be the primary candidates
for solving nonlinear and ill-posed problems (see, e.g., [67], and the references
therein). The Newton algorithm addresses the nonlinear aspect of ISPP,
whereas the Tikhonov regularization procedure is incorporated to address its
ill-posed nature [68]�[69].

4.1 Parametrization

We assume that the sought-after refractive index pro�le n is in N1 and can be
approximated by a set of trial solutions given by the following parametriza-
tion:

n(x) ≈
NP∑
m=1

αm gm(|x|) ; ∀x ∈ R2, (21)

where:

• the parameter NP is a positive integer representing the number of pa-
rameters. NP is typically between 2 and 4, for most refractive index
pro�les of practical interest [60], [56]�[58]. Note that the numerical
results reported in [54] were obtained with NP = 2 and 3 only.

• the parameters α1, α2, · · · , αNP
are real numbers. They represent the

unknown coe�cients to be determined.

• (gm)1≤m≤NP
is a selected set of real-valued polynomial functions such

that:

i. For 1 ≤ m ≤ NP − 1, gm is a piecewise polynomial function of
degree (m − 1), whose support is contained in the core Ω of the
�ber.
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ii. gNP
is the characteristic function of the �ber cladding, i.e., gNP

(x) =
0 if x ∈ Ω and gNP

(x) = 1 elsewhere.

Basis functions for parametrizing respectively a refractive step-index pro�le
and a refractive graded-index pro�le of a circular-shaped optical �ber are
depicted in Figures 2 and 3, for illustrative purposes. Observe that it is
possible to employ other basis functions such as trigonometric or B-spline
functions that are often encountered when solving inverse problems (see,
e.g., [67]). This type of bases is more appropriate for refractive index pro�les
that are not function of the radial direction r, but depend on x = (x1, x2),
particularly for optical �bers with arbitrary cross-sectional boundaries. We
have adopted here these polynomial-type functions for mainly two reasons:

(a) The class of refractive index pro�les that we consider (see (3)-(4)) is
always piecewise continuous in Ω and constant in Ωc. Hence, these
functions appear to form an appropriate basis for approximating this
class of pro�les.

(b) Since the proposed solution methodology employs a �nite element method
for solving the direct eigenvalue problem (see Section 4.3), the use of
polynomial functions in the parametrization can be easily "blended" in
the �nite element approximation without signi�cantly increasing the
computational complexity of the method.

g (r)

raO

1

1

(a)

raO

g (r)
2

1

(b)

Figure 2: Basis functions for parametrizing refractive step-index pro�les in
the case of a circular-shaped optical �ber. NP = 2.

4.2 Newton iteration equation

Assume n(j) =

NP∑
m=1

α(j)
m gm to be the computed refractive index pro�le at

iteration j that approximates the solution n? of ISPP. Then, equation (8) is
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g (r)

raO

1

1

(a)

g (r)

raO

1

2

(b)

raO

1

g (r)
3

(c)

raO

1

g (r)
4

(d)

Figure 3: Basis functions for parametrizing refractive graded-index pro�les
in the case of a circular-shaped optical �ber. NP = 4.

replaced by the Newton iteration equation:

J
(j)
F δn(j) = βI − FI(n

(j)) (22)

where δn(j) is the update vector given by:

δn(j) =

NP∑
m=1

δα(j)
m gm (23)

and the updated index pro�le n(j+1) is given by:

n(j+1) = n(j) + δn(j), (24)

where J
(j)
F is the jacobian matrix of the operator FI = (F1, · · · , FI)T , eval-

uated at n(j), i.e.

J
(j)
F =

(
∂β

(j)
l

∂n

(
n(j)
)
gm

)
1 ≤ l ≤ I
1 ≤ m ≤ NP

. (25)

β
(j)
l = Fl(n

(j)) (1 ≤ l ≤ I) designates the propagation constant of the lth

guided mode, solution of EVP, for the refractive index pro�le n(j), and
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(gm)1≤m≤NP
is the considered basis of functions. The entries of the jaco-

bian matrix J
(j)
F are given, as stated in Theorem 3.3, by equation (16) in

which h is replaced by the basis functions gm, introduced in Paragraph 4.1
(see Figures 2-3).
Note that, at the algebraic level, if the number of parameters NP is equal
to the number of the measurements I, then equation (22) is a square linear
system. However, if NP is larger than I, the linear system (22) is rectan-
gular. In this case, we solve this system in the least-squares sense, that is,
equation (22) is replaced by:

JTF
(j)

J
(j)
F δn(j) = JTF

(j) (
βI − FI(n

(j))
)
, (26)

where T stands for the transpose of a matrix. Last, since ISPP is an ill-posed
problem, we employ the standard Tikhonov regularized procedure to restore
the stability [68]�[69]. Therefore, we replace equation (22) or equation (26)
by the following compact regularized Newton-type equation:(

E(j) J
(j)
F + µINP

)
δn(j) = E(j)

(
βI − FI(n

(j))
)
, (27)

where E(j) is a NP × I matrix given by:

E(j) =


INP

if NP = I

JTF
(j)

if NP > I,

(28)

and µ is a positive number called the regularized parameter. There are
various strategies for selecting the "optimal" value of µ (see, e. g. [70]�[73]).
Due to the small size of the resulting linear system, we propose a trial and
error strategy for �nding the optimal value of µ. This consists in sweeping µ
over a large interval of positive real numbers and evaluating the residual for
each value of µ, and we then select the value of µ that leads to the minimum
residual (up to the noise level).

4.3 E�cient solver for the direct eigenvalue problem EVP

The proposed regularized Newton algorithm calls for the solution of the for-
ward eigenvalue problem EVP. To this end, we employ the direct solver devel-
oped in references [74]�[75]. This solver requires to �rst reformulating EVP
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in a bounded domain (see Figure 4(a)) as follows:

(EVP)



Find β ∈ ]kn∞, kn+[ and u ∈ L2(ΩΣ); u 6= 0 such that:
∆u+ k2n2u = β2u in ΩΣ (29)

[u] =

[
∂u

∂ν

]
= 0 on Γ = ∂Ω (30)

∂u

∂ν
+

(√
β2 − k2n2

∞ +
K
2

)
u = 0 on Σ = ∂ΩΣ , (31)

where K denotes the curvature of the employed arti�cial boundary Σ. In the
particular case of Σ being a circular-shaped boundary of radius R, K = 1/R.
Then, we apply a linear �nite element approximation [76]�[77] to calculate
the solutions of the truncated eigenvalue problem EVP . This leads to the
solution of the following quadratic eigenvalue problem:

A x+ λ B x+
√
λ C x = 0 (32)

where:

• λ = β2 − k2n2
∞ is the eigenvalue.

• x is the corresponding eigenvector. x ∈ RN with N being the number
of degrees of freedom of the FEM approximation.

• A, B, and C are symmetric matrices. A is the sum of a sti�ness ma-
trix, a mass-like matrice, and a mass-like matrix on Σ that results from
the term containing the curvature K in equation (31). B is a mass
matrix and therefore B is positive de�nite. C is a mass-type matrix
de�ned on Σ. C is a quasi-tridiagonal matrix.

To solve numerically the quadratic eigenvalue problem given by (32), we
transform it into a generalized eigenvalue problem of the form [74]�[75]:

Ã z =
√
λ B̃ z (33)

where

Ã =

[
−C −B
A 0

]
and

B̃ =

[
B 0
0 B

]
We compute the pairs of eigensolutions

(√
λ, z

)
by employing the Implicitly

Restarted Arnoldi Method IRAM [78], which is an iterative algorithm of QR-
type [79]�[80].
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Figure 4: (a) The computational domain for a circular-shaped optical �ber
and (b) an illustrative �nite element mesh using triangular-shaped elements.

4.4 Algorithm summary

The proposed algorithm can be summarized as follows:

Step 0. Initialization. The proposed algorithm requires the following
initial data:

• A prescribed shape of the core-cladding interface Γ = ∂Ω of the con-
sidered optical �ber.

• A set of NF wavenumbers k1, · · · , kNF
de�ning the frequency regime

of the guided wave propagation.

• A set of the desired/measured guided modes that propagate in the
considered �ber for the respective prescribed wavenumbers kl, 1 ≤ l ≤
NF . For each kl, its corresponding desired/measured guided modes are
characterized by a set of pairs consisting of the propagation constants
and their corresponding guided �elds, i.e., for each wavenumber kl, we
have the set of desired/measured pairs:(

β̃?1l , ũ
?
1l

)
,
(
β̃?2l , ũ

?
2l

)
, · · · ,

(
β̃?Il , ũ

?
Il

)
, 1 ≤ l ≤ NF .

Note that these modes are listed with their multiplicities, i.e.

β̃?1l < β̃?2l ≤ β̃?3l ≤ · · · ≤ β̃?Il , 1 ≤ l ≤ NF .

The tilde indicates that the data (when measured) are possibly tainted
with errors.
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• An initial parameter vector (n
(0)
1 , · · · , n(0)

NP
) representing the initial

refractive index pro�le:

n(0) =

NP∑
m=1

n(0)
m gm

The admissible values of these parameters are arbitrarily selected, i.e.,
they are "blind" guessed values.

Step 1. Apply Newton Iteration. This requires the accomplishment of
the following three tasks, at the algorithm jth iteration (j = 0, 1, 2, · · · ):

i. Solve EVP with the refractive index n(j) and for each wavenumber
kl, 1 ≤ l ≤ NF , to obtain a set of eigenpairs((

β
(j)
1l
, u

(j)
1l

)
, · · · ,

(
β

(j)
Il
, u

(j)
Il

))
1≤l≤NF

.

ii. Evaluate the jacobian entries given by equation (25) using equation (16),
the refractive index n(j), and the computed eigenpairs:((

β
(j)
1l
, u

(j)
1l

)
, · · · ,

(
β

(j)
Il
, u

(j)
Il

))
1≤l≤NF

.

iii. Solve the regularized Newton iteration equation given by (27) to eval-
uate δn(j) :(

E(j) J
(j)
F + µINP

)
δn(j) = E(j)

(
β̃?I − FI(n

(j))
)
, (34)

where E(j) is given by (28).

Step 2. Stopping criteria. We monitor the convergence of the algorithm
at iteration j (j = 0, 1, 2, · · · ) by evaluating both the relative residual on
the propagation constants:

Error1(j) =

(
NF∑
l=1

∣∣∣β̃?1l − β(j)
1l

∣∣∣2 + · · ·+
∣∣∣β̃?Il − β(j)

Il

∣∣∣2)1/2

(
NF∑
l=1

∣∣∣β̃?1l∣∣∣2 + · · ·+
∣∣∣β̃?Il∣∣∣2

)1/2
(35)

and the magnitude of the refractive index pro�le update:

max
1≤m≤Np

∣∣δn(j)
m

∣∣ (36)
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We stop the algorithm at iteration j when one of these two values attains
a prescribed tolerance level ε. Note that we also evaluate, at each itera-
tion j (j = 0, 1, 2, · · · ), the relative residual on the �elds, i.e:

Error2(j) =

(
NF∑
l=1

∥∥∥ũ?1l − u(j)
1l

∥∥∥2

2
+ · · ·+

∥∥∥ũ?Il − u(j)
Il

∥∥∥2

2

)1/2

(
NF∑
l=1

∥∥∥ũ?1l∥∥∥2

2
+ · · ·+

∥∥∥ũ?Il∥∥∥2

2

)1/2
(37)

This quantity is however used as a "discrimination" tool, i.e., to identify the
order of the computed modes as well as their corresponding polarization [56]�
[58].

4.5 Computational complexity

The proposed solution methodology summarized in Paragraph 4.4 requires,
at each Newton iteration, the following:

• The computation, for each considered wavenumber kl ( 1 ≤ l ≤ NF ),
of the �rst Il eigenpairs (β1l , u1l) , · · · , (βIl , uIl) . This is performed
by applying IRAM algorithm (which is a QR-type method) [78] to a
generalized eigenvalue system whose size is 2N × 2N, where N is the
number of degrees of freedom of the FEM approximation. Note that
the application of IRAM calls for solving non-symmetric linear systems,
which is accomplished using GMRES procedure [79].

• The computation of the jacobian entries, for each considered wavenum-
ber kl ( 1 ≤ l ≤ NF ), by evaluating NP × Il integrals. This can be
performed using a Gauss-type quadrature [81]�[82]. However, since
we have employed an "overkill" mesh for solving the direct eigenvalue
problem EVP, the size of the triangles is very small compared to the
variations of the integrands. Hence, it appears reasonable to assume
the integrand over each FEM triangle to be constant and equal to the
average of its values on the nodes of the considered triangle. The ob-
tained results indicate that this simple procedure is very accurate and
cost-e�ective.

• The determination of the pro�le update δn by solving a small NP ×NP

linear system that can be executed analytically by simply applying a
direct method [83]. However, in this work, we inverted this system
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analytically when the order of parameter NP is either 2 or 3 (see Sec-
tions 5.1 and 5.2). Consequently, we have observed that µ = 0 is the
optimal value of the regularization parameter, i.e., there is no need to
regularize since the inversion is analytically performed and therefore
is "exact" when the number of the sought-after parameters is less or
equal to 3. On the other hand, when NP = 5 or 6 (see Section 5.3),
the algorithm does not converge without regularization.

5 Illustrative Numerical Results

We present numerical results to illustrate the potential of the proposed New-
ton algorithm for e�ciently determining the refractive index pro�le from the
knowledge of some guided modes. These results were obtained in the case of
an optical �ber whose core-cladding interface Γ is a circular-shaped boundary
(see Figure 4(a)). In all of the numerical experiments, we set the radius a
of Γ to be a = 0.4µm and we use only one frequency whose wavenumber
is k = 5 × 106 m−1. Note that we have �xed the values of these two opto-
geometric parameters so that we can use the same �nite element resolution
in all experiments, i.e., there is no need to generate a new mesh. On the
other hand, the refractive index pro�le parameters n+ and n∞ will have
their values changed to ensure that the value of the normalized frequency
V = ka

√
n2

+ − n2
∞ is su�ciently large to allow the needed number of guided

modes to propagate in the �ber [84]�[85]. Furthermore, we use the following
discretization parameters:

• The exterior arti�cial boundary Σ is circular-shaped of radius R and is
located at one wavelength from the core-cladding interface Γ (see Fig-
ure 4(a)). This distance is considered to be far enough to prevent any
re�ections, as demonstrated in references [74]�[75].

• We use a linear �nite element approximation with 50 elements per
wavelength. This discretization appears to be �ne enough to ensure
the computation of the guided modes with a high accuracy level [74]�
[75].

In what follows, we present results for determining three major classes of
refractive index pro�les that are of practical interest: step-index, graded-
index, and W-refractive index pro�les [56]�[58], [60], [84].
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5.1 Retrieving refractive step-index pro�les

The goal of this section is to determine the parameters corresponding to a
refractive step-index pro�le. To this end, we consider the class of refractive
index pro�les of the form:

n(x) =

{
n+ ; x ∈ Ω
n∞ ; x ∈ Ωe.

(38)

We present the results of two numerical experiments. In the �rst one, the
goal is to determine the refractive index of the core of the �ber only, whereas
in the second one, we recover both indices. We must point out that the
measured guided modes are synthetic data obtained by solving the following
dispersion equation (see equation (A9), page 1574, in reference [74]):

λ1
Jν+1(λ1)

Jν(λ1)
= λ2

Kν+1(λ2)

Kν(λ2)
; ν = 0, 1, 2, · · · (39)

where λ1 = a
√
k2n2

+ − β2 and λ2 = a
√
β2 − k2n2

∞. Jν (resp. Kν) is the
Bessel function (resp. the modi�ed Bessel function) of the �rst kind [81].

5.1.1 Experiment 1: Partial parameters recovery

The goal of this experiment is to retrieve one refractive index parameter
from the knowledge of one pair of guided modes. We choose the unknown
refractive index pro�le parameter to be n+, the refractive index of the core
of the �ber, and we assume that:

n+ − n∞ = 0.01. (40)

This means that we consider here a one-parameter inverse problem. The
target refractive index pro�le value is n?+ = 50.005 whereas the initial value

is n
(0)
+ = 200.005. The measured guided mode corresponding to the target

pro�le n?+ is the fundamental mode LP01 [56]�[58] whose propagation con-
stant, computed from equation (39), is:

β?1 = 249.996 (41)

The initial propagation constant value corresponding to the initial refractive
index pro�le n(0) is:

β
(0)
1 = 1000.014. (42)

We also assess the sensitivity of the performance e�ciency of the proposed
algorithm to the noise level in the data. To this end, the propagation con-
stant β?1 was respectively tainted with three di�erent levels of white noise:

20



5%, 10% and 20%. Note that the noisy values are denoted by β̃?1 . The re-
sults are reported in Table 1 and Figures 5-6. The following observations are
noteworthy:

• The initial value of the refractive index parameter is selected outside
the pre-asymptotic convergence region. Indeed, the relative error on
the refractive index pro�le is about 300%. In addition, equations (41)-
(42) show that the use of this initial guess leads to the computation
of a propagation constant with relative residuals ranging from 200%
to 300%, depending on the noise level. Furthermore, as indicated in Fig-
ures 6(a) and 6(b), the isovalues of the exact �eld vary between 0.0002
and 0.037, whereas the ones corresponding to the initial guess range
between 1.06× 10−7 and 0.05. Clearly, Experiment 1 is performed with
a "blind" initial guess value n?+.

• Figure 5 illustrates the fast convergence and the robustness to the noise
e�ect of the proposed solution methodology. More speci�cally, one
can observe that the relative residual drops from the initial value of
over 200% to about the noise level in -at most- 3 iterations, for all con-
sidered noise levels. In addition, Figure 5 reveals that the convergence
is monotone with almost no oscillations. This unusual behavior when
solving inverse-type problems is most likely due to the fact that the
algorithm is applied to a one-parameter inverse problem and therefore
the instability e�ects, if any, seem to be barely noticeable.

• At convergence, the refractive index parameter n+ is delivered with an
accuracy up to the noise level (see Table 1). On the other hand, Ta-
ble 1 indicates that the proposed algorithm delivers the guided �eld u1

with an excellent accuracy level even when the noise level is 20% (see
Figure 6).
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Initial Relative Relative Relative Relative
noise level residual (%) error error error
on β?1(%) on n? (%) on β?1 (%) on u?1 (%)

0 0.852 0.852 0.852 0.308
5 3.042 8.193 8.194 3.063
10 2.734 13.005 13.007 4.701
20 2.229 22.671 22.675 7.667

Table 1: Sensitivity of the relative residual and the relative error, at conver-
gence, to the noise level for Experiment 1.
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(b) Noise level 5%.
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(c) Noise level 10%.
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(d) Noise level 20%.

Figure 5: Convergence history. Sensitivity of the relative residual given by
equation (35) to the noise level on the propagation constant β̃?1 .
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(a) Analytical (b) Initial

(c) Computed with noise free (d) Computed with 5% noise level

(e) Computed with 10% noise level (f) Computed with 20% noise level

Figure 6: Isovalues corresponding to the fundamental mode LP01. Analytic
vs. computed �elds for various noise levels on β̃?1 .
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5.1.2 Experiment 2: Full parameters recovery

The goal here is to retrieve the two refractive index parameters when two
measured/desired eigenmodes are given. The unknown refractive index pa-
rameters are n+ and n∞ (see equation (38) and Figure 2). The values of the
target and initial refractive index pro�les, n? and n(0), are reported in Ta-
ble 2. The measured guided modes corresponding to the target pro�le n?

are the fundamental mode LP01 and the second mode LP11 [56]�[58]. The
propagation constants corresponding to these two modes are obtained from
equation (39), and their values are:

β?2 = (β1
?, β2

?)T = (1000.014, 999.997)T . (43)

For the initial refractive index pro�le n(0) (see Table 2), its propagation
constants corresponding respectively to modes LP01 and LP11 [56], are:

β
(0)
2 =

(
β1

(0), β2
(0)
)T

= (2000.018, 2000.007)T . (44)

Similarly to Experiment 1, we assess the sensitivity of the proposed algorithm
to the noise level in the data by respectively adding to β?2 three levels of white

noise: 5%, 10% and 20%, and thereafter denoted by β̃?2.
The obtained results are reported in Table 3 and Figures 7-9. The following
observations are noteworthy:

Refractive index n+ n∞
pro�le parameters

Target 200.005 199.995
Initial 400.005 399.980

Table 2: Target vs. initial refractive index pro�le parameters for Experi-
ment 2.
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Initial Relative Relative Relative Relative Relative
noise level residual (%) error error error error
on β?2(%) on n? (%) on β?2 (%) on u?1(%) on u?2(%)

0 0.0 4.349× 10−5 0.0 0.18468 1.26672
5 2.926× 10−5 4.999 5.0 5.19346 7.83993
10 8.864× 10−5 9.999 10.0 9.21879 13.35070
20 6.732× 10−5 19.989 20.0 22.15990 28.71202

Table 3: Sensitivity of the relative residual and the relative error, at conver-
gence, to the noise level for Experiment 2.
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(b) Noise level 5%.
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(c) Noise level 10%.
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(d) Noise level 20%.

Figure 7: Convergence history. Sensitivity of the relative residual given by
equation (35) to the noise level on the propagation constants β̃?2 for Experi-
ment 2.
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(a) Analytical (b) Initial

(c) Computed with 0% noise level (d) Computed with 5% noise level

(e) Computed with 10% noise level (f) Computed with 20% noise level

Figure 8: Isovalues corresponding to the guided mode LP x1
11 . Analytic vs.

computed �elds for various noise levels on β̃?2 for Experiment 2.
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(a) Analytical (b) Initial

(c) Computed with 0% noise level (d) Computed with 5% noise level

(e) Computed with 10% noise level (f) Computed with 20% noise level

Figure 9: Isovalues corresponding to the guided mode LP x2
11 . Analytic vs.

computed �elds for various noise levels on β̃?2 for Experiment 2.

• Similarly to Experiment 1, the initial values of the refractive index pa-
rameters are selected outside the pre-asymptotic convergence region,
since the relative error on the refractive index pro�le is 100% (see Ta-
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ble 2). Moreover, this initial guess leads to the computation of prop-
agation constants with relative residuals ranging from 67% to 100%,
depending on the level of noise (see equations (43)-(44)). This is also
illustrated by the important di�erence in the values of the correspond-
ing eigenmodes. Indeed, for example, the isovalues for the exact LP11

�eld vary between −0.049 and 0.049, whereas the ones corresponding
to the initial guess range between −0.058 and 0.058, as indicated in
Figures 8(a)�8(b) and Figures 9(a)�9(b). Hence, this experiment is
clearly performed with a "blind" initial guess value.

• Figure 7 illustrates the fast convergence and the robustness to the
noise e�ect of the proposed solution methodology. More speci�cally,
one can observe that the relative residual drops from the initial value
of over 67%, to below the noise level after one iteration only, for all
considered noise levels. Furthermore, Figure 7 clearly shows that the
convergence is almost monotone with almost no oscillations. This be-
havior is most likely due to the fact that the algorithm is applied to
a two-parameter problem, and therefore, the instability e�ects seem to
be negligible.

• At convergence, the refractive index parameters (n+, n∞) are delivered
with an accuracy up to the noise level (see Table 3). The corresponding
guided �elds (u1, u2) are also computed with a satisfactory accuracy
level (see Table 3 and Figures 8-9).

5.2 Retrieving a refractive graded-index pro�le

The goal of this section is to determine the parameters corresponding to a
refractive graded-index pro�le. To this end, we consider the class of refractive
index pro�les of the form:

n(x) =

{
n+ + α.|x|2 ; x ∈ Ω
n∞ ; x ∈ Ωe,

(45)

and satisfying:
0 < n+ − n∞ ≤ 0.01. (46)

Hence, the propagation of the modes is under the weak guidance condi-
tions [56]�[59]. In what follows, we present the results of two numerical
experiments. In the �rst experiment, the goal is to determine the value of
the refractive index at the center of the �ber core n+, as well as in the
cladding n∞. In the second experiment, we recover the indices of both the
core (n+, α) and the cladding n∞.
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5.2.1 Experiment 3: Partial parameters recovery

The goal here is to retrieve two refractive index parameters, given two mea-
sured/desired eigenmodes. The unknown refractive index parameters are n+

and n∞ (see equation (45) and Figure 2). Moreover, the value of the pa-
rameter α ∈ R in equation (45) is chosen to ensure the continuity of the
refractive graded-index pro�le across the interface core-cladding. Therefore,
α is a parameter that depends on n+ and n∞. Consequently, we consider
here a two-parameter inverse problem. The values of the target and initial
refractive index pro�les, n? = (n?+, n

?
∞) and n(0) = (n

(0)
+ , n

(0)
∞ ), are reported

in Table 4 as well as the resulting values of α for both pro�les. The measured
guided modes corresponding to this pro�le are the fundamental mode LP01

and the second mode LP11 [56]�[58]. The values of propagation constants
obtained with the �nite element solver [74]�[75] are given by:

β?2 = (β1
?, β2

?)T = (2250.008, 2249.992)T . (47)

For the initial refractive index pro�le n(0) (see Table 4), its propagation
constants corresponding respectively to modes LP01 and LP11, obtained from
the dispersion equation (39), are:

β
(0)
2 =

(
β1

(0), β2
(0)
)T

= (4000.005, 3999.985)T . (48)

We assess the sensitivity of the proposed algorithm to the noise level in β?2,
by respectively adding to it three levels of white noise: 5%, 10% and 20%,
and thereafter denote the noisy β?2 by β̃?2.
The results are reported in Table 5 and Figures 10-??. The following obser-
vations are noteworthy:

Refractive index n+ n∞ α
pro�le parameters

Target 450.005 449.995 -0.06250
Initial 800.005 799.980 -0.15625

Table 4: Target vs. initial refractive index pro�le parameters for Experi-
ment 3.
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Initial Relative Relative Relative Relative Relative
noise level residual (%) error error error error
on β?2(%) on n? (%) on β?2 (%) on u?1(%) on u?2(%)

0 1.284× 10−3 2.874× 10−3 1.284× 10−3 0.46894 1.68805
5 1.124× 10−3 4.998 4.999 4.91770 6.81393
10 9.397× 10−4 9.998 9.999 9.93758 12.49697
20 6.587× 10−4 19.998 19.999 18.29067 22.12093

Table 5: Sensitivity of the relative residual and the relative error, at conver-
gence, to the noise level for Experiment 3.
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(a) Noise level on β̃ = (β̃1, β̃2) : 0%.
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(b) Noise level on β̃ = (β̃1, β̃2) : 5%.
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(c) Noise level on β̃ = (β̃1, β̃2) : 10%.
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(d) Noise level on β̃ = (β̃1, β̃2) : 20%.

Figure 10: Convergence history. Sensitivity of the relative residual given by
equation (35) to the noise level on the propagation constants β̃?2 for Experi-
ment 3.

• The initial values of the refractive index parameters are chosen out-
side the pre-asymptotic convergence region. Indeed, the initial relative
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error on the refractive index pro�le is 80% (see Table 4). Moreover,
equations (47)-(48) indicate that this initial guess on the propagation
constants results in initial relative residuals ranging from 53% to 78%,
depending on the level of noise. Furthermore, the isovalues of the
exact LP01 �eld vary between 0.0 and 0.0778, whereas the ones corre-
sponding to the initial guess range between 0.0 and 0.1129. Similarly,
isovalues of the exact LP11 �eld vary between −0.0651 and 0.0651,
whereas the ones corresponding to the initial guess range between−0.0954
and 0.0954. Hence, this numerical experiment is performed with a
"blind" initial guess value.

• Figure 10 illustrates the fast convergence and the robustness to the
noise e�ect of the proposed solution methodology. More speci�cally,
one can observe that the relative residual drops from the initial value of
over 52%, to below the noise level in one iteration only, for all considered
noise levels. Furthermore, Figure 10 clearly shows that the convergence
is almost monotone with virtually no oscillations.

• At convergence, the refractive index parameters (n+, n∞) are delivered
with an accuracy up to the noise level (see Table 5). Similarly, the
guided �elds (u1, u2) are delivered with an accuracy almost equal to the
noise level. Clearly, the proposed method is e�ective in recovering the
index pro�le and the corresponding guided modes with a satisfactory
accuracy level.

5.2.2 Experiment 4: Full parameters recovery

The goal here is to retrieve the three refractive index parameters of the
graded-index pro�le given by equation (45) from the knowledge of three
measured/desired eigenmodes. Hence, unlike in Experiment 3, the parame-
ter α ∈ R is assumed here to be unknown and independent of n+ and n∞.
Consequently, we apply the proposed regularized Newton algorithm to a three
parameter inverse problem. The values of the target and initial refractive in-
dex pro�les n? = (n?+, n

?
∞, α

?) and n(0) = (n
(0)
+ , n

(0)
∞ , α(0)) are reported

in Table 6. The measured guided modes corresponding to the target index
pro�le are the �rst three modes LP01, LP11, and LP02 [56]�[58]. The val-
ues of the corresponding propagation constants were obtained with the �nite
element solver [74]�[75], and are given by:

β?3 = (β1
?, β2

?, β3
?)T = (3000.01050, 2999.99609, 2999.98242)T . (49)

For the initial refractive index pro�le n(0) (see Table 6), the values of the cor-
responding propagation constants, obtained with the �nite element solver [74]�
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[75], are:

β
(0)
3 =

(
β1

(0), β2
(0), β3

(0)
)T

= (5000.0068, 4999.989, 4999.971)T . (50)

We assess the sensitivity of the proposed algorithm to the noise level in β?3,
by adding to it three levels of white noise: 5%, 10% and 20%, and thereafter
denote the noisy β?3 by β̃?3.
The obtained results are reported in Table 7 and Figures 11-12. The following
observations are noteworthy:

Refractive index n+ n∞ α
pro�le parameters

Target 600.005 599.995 -0.06250
Initial 1000.005 999.980 -0.15625

Table 6: Target vs. initial refractive index pro�le parameters for Experi-
ment 4.

Ini. noise Relative Relative Relative Relative Relative Relative
level on residual error on error on error on error on error on
β?3(%) (%) n? (%) β?3 (%) u?1(%) u?2(%) u?3(%)

0 4.70E−6 1.02E−5 4.70E−6 0.383 1.624 0.723
5 3.52E−5 5.0 5.0 2.448 3.211 3.064
10 3.63E−5 10.0 10.0 9.223 9.422 9.695
20 0.0 20.0 20.0 17.983 19.016 51.547

Table 7: Sensitivity of the relative residual and the relative error, at conver-
gence, to the noise level for Experiment 4.
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Figure 11: Convergence history. Sensitivity of the relative residual given by
equation (35) to the noise level on the propagation constants β̃?3 for Experi-
ment 4.

• Similarly to the previous experiments, the initial values of the refractive
index parameters are selected outside the pre-asymptotic convergence
region. Indeed, the initial relative error on the refractive index pro�le
parameters (see Table 6) is about 66.7%. This initial guess leads to the
computation of propagation constants with relative residuals ranging
from 39% to 67%, depending on the noise level (see equations (49)-
(50)). Moreover, the isovalues of the exact modes are signi�cantly dif-
ferent from the initial ones. For example, the isovalues of the exact LP02

�eld vary between −0.035 and 0.077, whereas the ones corresponding
to the initial guess range between −0.066 and 0.116, as indicated in
Figures 12(a)�12(b). Hence, this experiment is clearly performed with
a "blind" initial guess value.

• Figure 11 illustrates the fast convergence and the robustness to the
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(a) Analytical (b) Initial

(c) Computed with 0% noise level (d) Computed with 5% noise level

(e) Computed with 10% noise level (f) Computed with 20% noise level

Figure 12: Isovalues corresponding to the guided mode LP02. Analytic vs.
computed �elds for various noise levels on β̃?3 for Experiment 4.

noise e�ect of the proposed solution methodology. More speci�cally,
one can observe that the algorithm converges after only one iteration,
for all considered noise levels (see the second column in Table 7). Fur-
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thermore, Figure 11 clearly shows that the convergence is almost mono-
tone with almost no oscillations.

• At convergence, the relative error on refractive index parameters n? =
(n?+, n

?
∞, α

?) is comparable to the noise level. Table 7 indicates the
corresponding propagation constants β?3 as well as the associated eigen-
functions u?1 and u

?
2 are obtained with relative errors comparable to the

noise levels. This remark is also valid for the associated eigenfunc-
tion u?3, except when the noise level in the data is 20%. This might be
due to the fact that the eigenmode LP02 is very close to the cut-o�
frequency [56]�[58], and therefore very sensitive to a relatively large
perturbation on the value of the propagation constant β?3 .

5.3 Retrieving W-shaped refractive index pro�les

Next, we consider a third class of refractive index pro�les, namely the W-
refractive index pro�les, that is important to many applications [56]�[58], [60].
This class of pro�les is very e�ective for reducing the modal dispersion e�ect
and for enhancing the bandwidth performance of the optical �bers [60]. This
class of pro�les is given by the following power law [60]:

n(x) =

 n+

√
1− 2ρ∆

(
|x|
a

)g
; 0 ≤ |x| ≤ a

n∞ ; |x| ≥ a

(51)

where

• ∆ is a positive number representing the refractive index di�erence. ∆
is given by:

∆ =
n2

+ − n2
∞

2n2
+

(52)

• g is a positive number, called the index component. It determines the
refractive index pro�les.

• ρ is a positive number representing the depth of the index valley, as
shown in Figure 13(a), Figure 17(a), and Figure 20(a). Observe that
when ρ = 1, the pro�le index given by (51) falls in the category of the
graded refractive index pro�les similar to the one considered in Sec-
tion 5.2.

The goal here is to use the index pro�le parametrization given by (21) and
apply the proposed algorithm to retrieve pro�les given by (51) in the case
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where ρ = 1.7 and g = 2. The practical performance of this set of pro�les
has been analyzed in [60]. We investigate the sensitivity of the reconstruc-
tion to the number of parameters NP in (21). We present results obtained
for NP = 4 and NP = 5. We also present reconstruction results with NP = 3
to demonstrate that when some a priori knowledge about the target pro�le
is available, one can use fewer parameters.

5.3.1 Experiment 5: Retrieving a W-refractive index pro�le with

four parameters

The goal here is to determine the pro�le depicted in Figure 13(a) from the
knowledge of its �rst four guided modes LP01, LP11, LP02, and LP21. These
synthetic four guided modes were delivered by the �nite element solver in-
troduced in Section 4.3. The corresponding propagation constants values
obtained with the �nite element solver [74]�[75] are:

β?4 = (7562.51270, 7562.50098, 7562.48877, 7562.48877)T . (53)

We use the parametrization given by (21) with NP = 4 and the basis func-
tions {gl}1≤l≤4 , depicted in Figure 3. Hence, we consider a four-parameter
inverse problem whose unknowns are α1, α2, α3 and α4. Similarly to the pre-
vious experiments, we taint the propagation constants vector β?4 with 3 noise
levels: 5%, 10% and 20%. The initial index pro�le n(0) is a step-index pro�le
depicted in Figure 13(b), whose parameters are: α

(0)
1 = 2512.505, α

(0)
2 =

α
(0)
3 = 0, and α

(0)
4 = 2512.495. The �rst four propagation constants corre-
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(b) Initial pro�le: step-index

Figure 13: Refractive index pro�le in Experiment 5: Target vs. initial.

sponding to n(0) are:

β
(0)
4 = (12562.5234, 12562.5215, 12562.5186, 12562.5176)T , (54)
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For each noise level in the measured propagation constants vector β̃?4, we
apply the proposed inversion algorithm from the initial step index pro�le n(0)

to determine the W-refractive index depicted in Figure 13(a). The results
are reported in Figures 14�16. The following observations are noteworthy:

• The algorithm is initiated outside the pre-asymptotic convergence re-
gion. Indeed, the initial refractive index pro�le is a step-index pro�le
that signi�cantly di�ers from the target pro�le which is a W-shape
pro�le (see Figure 13). The relative error between the two pro�les
is over 66%. Moreover, the initial relative residual on the propagation
constants vector is about 67%. The corresponding initial eigen�elds are
also very di�erent from the ones corresponding to the W-shape pro�le,
as illustrated in Figures 16(a)�16(b) for the mode LP x2

21 .

• Similarly to the previous experiments, the convergence of the proposed
algorithm is relatively very fast, as demonstrated in Figure 14. We must
point out that in this case the regularization was critical to ensure the
convergence of the algorithm.

• Figure 15 shows that, at convergence, the sought-after refractive index
pro�le is delivered with an accuracy ranging from 10−5% (in the absence
of noise) to about 20% when the noise level is 20%. The recovery of
the W-shape pro�le appears to be quite satisfactory, as illustrated in
Figure 16 in which the mode LP x2

21 is depicted. The relative error varies
from 4% to 18%, depending on the noise level.
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Figure 14: Convergence history. Sensitivity of the relative residual given by
equation (35) to the noise level on the propagation constants β̃?4 for Experi-
ment 5.
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Figure 15: Sensitivity of computed refractive index pro�le at convergence to
the noise level on the propagation constants β̃?4 in Experiment 5.
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(a) Target (b) Initial

(c) Computed with 0% noise level (d) Computed with 5% noise level

(e) Computed with 10% noise level (f) Computed with 20% noise level

Figure 16: Isovalues corresponding to the guided mode LP x2
21 . Target vs.

computed �elds for various noise levels on β̃?4 for Experiment 5.

5.3.2 Experiment 6: Retrieving a W-refractive index pro�le with

�ve parameters

The main objective in this experiment is to investigate the e�ect of increasing
the number of parameters in the approximation given by (21) on the per-
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formance (convergence and accuracy) of the proposed inversion algorithm.
To this end, we consider a vector of �ve measured propagation constants
corresponding to the modes LP01, LP11, LP02, LP21, LP12. The synthetic
vector β?5 computed with the �nite element solver [74]�[75], is given by:

β?5 = (9000.01367, 9000.00293, 8999.99219, 8999.99219, 8999.98145)T

(55)
and corresponding to the sought-after W-refractive index pro�le depicted in
Figure 17(a). We use the parametrization given by (21) with NP = 5. Note
that we also employ the basis functions depicted in Figure 3, but with g4 being
the polynomial function of degree 3 extended by 0 for r ≥ a, and g5 being the
function depicted in Figure 3(d). We thus consider a �ve-parameter inverse
problem whose unknowns are αj, j = 1, · · · , 5. Similarly to Experiment 5,
measurements are contaminated with the same noise levels. The initial index
pro�le n(0) is also a step-index pro�le (see Figure 17(b)) whose �rst �ve
propagation constants, obtained with the �nite element solver [74]�[75], are:

β
(0)
5 = (14250.0234, 14250.0215, 14250.0195, 14250.0186, 14250.0166)T (56)

For each noise level in the measured propagation constants vector β̃?5, we
apply the proposed algorithm from the initial step-index pro�le n(0) to deter-
mine the W-refractive index pro�le in Figure 17(a). The results are reported
in Figures 18�??. These results reveal the following:

• Similarly to Experiment 5, the algorithm is initiated from a refractive
index pro�le (a step index) that signi�cantly di�ers from the target
pro�le (W-shape), as indicated in Figure 17. The initial relative error
is about 60%, resulting in an initial relative residual of also about 60%.
Clearly, the inversion algorithm is initiated outside the pre-asymptotic
region.

• Figure 18 shows that the convergence of the algorithm is comparable
to the one observed in Experiment 5 when using only 4 parameters. In
addition, the algorithm does not converge without incorporating the
regularization procedure.

• The sought-after refractive index pro�le is determined with an accuracy
level comparable to the case of 4 parameters. Indeed, at convergence,
the relative error on the refractive index pro�le ranges from 10−5%
(in the absence of noise) to about 20% when the noise level is 20%.
On the other hand, we observed an improvement in the accuracy of
the corresponding eigenmodes. For example, the highest mode LP12 is
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Figure 17: Refractive index pro�le in Experiment 6: Target vs. initial.

computed with a relative error ranging from 8.5% to 11% depending
on the noise level.
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Figure 18: Convergence history. Sensitivity of the relative residual given by
equation (35) to the noise level on the propagation constants β̃?5 for Experi-
ment 6.

5.3.3 Experiment 7: Retrieving a W-refractive index pro�le with

three parameters

The goal of this experiment is to demonstrate that when some a priori knowl-
edge on the sought-after pro�le is available, it is possible to successfully
recover the pro�le using fewer parameters in (21). For this numerical ex-
periment, The target pro�le (W-refractive) is depicted in Figure 20(a). We
employ the parametrization given by (21) with NP = 3. Note that the g1 is
the constant depicted in Figure 3(a), g2 is the quadratic polynomial func-
tion depicted in Figure 3(c), and g3 is the constant function depicted in
Figure 3(d). Hence, we assume a priori that this set of trial solutions can de-
scribe the sought-after W-pro�le. The synthetic measurements are the �rst
guided modes LP01, LP11, and LP02 whose propagation constants are:

β?3 = (5062.51025, 5062.49561, 5062.48145)T . (57)
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Figure 19: Sensitivity of computed refractive index pro�le at convergence to
the noise level on the propagation constants β̃?5.

The initial index pro�le n(0) is this time chosen to be a guided-index pro�le
depicted in Figure 20(b), whose �rst three propagation constants are:

β
(0)
3 = (10062.5176, 10062.5107, 10062.5039)T . (58)

Similarly to all previous experiments, the synthetic propagation constants
are tainted with white noise of the same three levels. For each noise level, we
apply the proposed inversion algorithm from the initial pro�le n(0) to deter-
mine the W-refractive index pro�le in Figure 20(a). The results are reported
in Figures 21�22. The results of this experiment suggest the following:

• Even though the algorithm is starting from an "educated" guess n(0),
the initial relative error on the refractive index pro�le is about 100%
and the initial relative residual is also about 100%. This means that the
inversion algorithm is still initiated outside the pre-asymptotic conver-
gence region.
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Figure 20: Refractive index pro�le in Experiment 7: Target vs. initial.

• Figure 21 indicates that the inversion algorithm converges in less than
three iterations, regardless of the noise level. At convergence, the al-
gorithm delivers refractive index pro�les with a high accuracy level as
depicted in Figure 22. Indeed, the relative error ranges from 10−5%
(for 0% noise level) to 20% (for 20% noise level).

Remark. It is worth mentioning that the proposed solution methodology
fails to retrieve the target refractive index pro�le in the following two situa-
tions:

• when the number of measured/desired guided modes is smaller than the
number of the target refractive index pro�le parameters. These cases
require solving at each Newton iteration under-determined parameters
problems. We have observed that the proposed computational proce-
dure does not converge even for simple situations such as refractive
step-index pro�les with initial guess values very close to the target
values.

• when the target refractive index pro�le cannot be described by the
shape parametrization adopted for representing the trial solutions, i.e.,
the selected parametrization is incomplete. This has been observed
when the target pro�le is a W-refractive index pro�le and the selected
parametrization employs basis functions g1 and g2 depicted in Figure 2.

6 Summary and Conclusion

We have investigated mathematically and numerically the important problem
of determining refractive index pro�les that accommodate a measured/desired
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Figure 21: Convergence history. Sensitivity of the relative residual given by
equation (35) to the noise level on the propagation constants β̃?3 for Experi-
ment 7.

guided mode propagation in homogeneous optical �bers under the weak guid-
ance conditions. This nonlinear and ill-posed inverse problem falls in the
category of inverse spectral problems that consists of �nding the potential of
a scalar elliptic operator from the partial knowledge of its discrete spectrum.
From a mathematical view point, we have established the uniqueness of the
refractive index pro�le from the knowledge of only one guided mode, i.e., the
knowledge of one eigenvalue and its corresponding eigenfunction is enough
to uniquely determine the refractive index pro�le. We have also provided a
characterization of the derivative of the guided modes with respect to the
refractive index pro�le. This result is crucial for an accurate computation of
the Jacobians occuring at the Newton iteration equations.
From a numerical point of view, we have proposed a regularized iterative
method to compute the refractive index pro�le parameters when some guided
modes are given. Numerical experiments were performed to retrieve three
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Figure 22: Sensitivity of computed refractive index pro�le at convergence to
the noise level on the propagation constants β̃?3.

classes of refractive index pro�les: the step-index, the graded-index, and the
W-shape. The obtained results demonstrate that the proposed computa-
tional procedure is accurate, e�ective, and robust to the noise. Indeed, in all
numerical experiments, the refractive index pro�les are accurately retrieved
up to the noise level after few iterations.
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