
HAL Id: hal-01807780
https://hal.archives-ouvertes.fr/hal-01807780

Submitted on 5 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Shot Single Sensor Light Field Camera Using a
Color Coded Mask

Ehsan Miandji, Jonas Unger, Christine Guillemot

To cite this version:
Ehsan Miandji, Jonas Unger, Christine Guillemot. Multi-Shot Single Sensor Light Field Camera Using
a Color Coded Mask. EUSIPCO 2018 - 26th European Signal Processing Conference, Sep 2018, Roma,
Italy. pp.1-5. �hal-01807780�

https://hal.archives-ouvertes.fr/hal-01807780
https://hal.archives-ouvertes.fr


Multi-Shot Single Sensor Light Field Camera
Using a Color Coded Mask

Ehsan Miandji
dept. of Science and Technology
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Abstract—We present a compressed sensing framework for
reconstructing the full light field of a scene captured using a
single-sensor consumer camera. To achieve this, we use a color
coded mask in front of the camera sensor. To further enhance
the reconstruction quality, we propose to utilize multiple shots by
moving the mask or the sensor randomly. The compressed sensing
framework relies on a training based dictionary over a light field
data set. Numerical simulations show significant improvements
in reconstruction quality over a similar coded aperture system
for light field capture.

Index Terms—light field camera, coded aperture

I. INTRODUCTION

Light field imaging has emerged as a promising technology
for a variety of applications including photorealistic render-
ing, computational photography and computer vision.Many
acquisition devices have been designed to capture light fields,
ranging from camera arrays, [1], to single cameras mounted on
moving gantries, [2], and plenoptic cameras [3], [4]. Plenoptic
cameras rely on multiplexing and use an array of micro-
lenses placed in front of the sensor to capture multiple low
resolution views in one 2D sensor image [4], [5]. This is an
efficient and easy to implement way of capturing multiple
view-points, but reduces the spatial resolution by orders of
magnitude compared to the a raw sensor image.

Recent research efforts have been directed towards overcom-
ing the spatio-angular trade-off inherent to plenoptic cameras.
In [6], Liang et al. used a programmable non-refractive mask
placed at the aperture to sequentially capture the light field as
a linear combination subsets of light rays. This series of 2D
measurements, however, usually requires a large number of
captured images and a long exposure times. Two architectures
are instead described in [7] for compressive acquisition of light
fields, one exploiting correlations along the spatial dimensions
and the other one along the angular dimensions, allowing for
capture using short exposure times.

In [8], an architecture is proposed to compute optically
coded projections on a fixed 2D sensor using two attenuation
masks separately placed at the aperture plane and in front of
the sensor. Given the measurements recorded on the sensor,
the light field is then reconstructed using a least square
minimization with a total variation regularization constraint.
Similarly, the authors in [9] place a randomly coded mask
in front of the aperture to obtain incoherent measurements of
the light field. Multiple shots are captured as random linear

combinations of angular images by separately opening one
region of the aperture and blocking light in the others.

A camera architecture is also proposed in [10] based on
optically coded projections on a single image sensor. The light
field is reconstructed using a compressive sensing framework,
assuming that the light field is sparse in a domain defined
by an overcomplete dictionary. In [11], incoherent spatio-
angular measurements are extracted using a random binary
mask and the light field is reconstructed using an ensemble
of 2D separable dictionaries. While the results significantly
outperform [10] for general purpose light field sensing, the
special structure of the sensing matrix required for a single
sensor light field camera is not considered.

In this paper, we propose a camera architecture which
captures incoherent measurements of the light field via a
controllable color mask placed in front of the sensor. In
order to increase the incoherence, we take multiple shots,
where for each shot the mask configuration is changed to
create a new random pattern. To reduce computations and
increase the incoherence, we optionally also perform a random
sampling of the spatial domain. The reconstruction algorithm
is computationally efficient and existing `1 or `0 solvers [12]–
[16] can be used. In the analysis and evaluation we use RGB
color filters, but the theory also applies to multi-spectral filters.

Throughout the paper we use the following notation. Vectors
and matrices are denoted by boldface lower-case (a) and bold-
face upper-case (A) letters, respectively. Elements of a vector
or matrix is denoted using subscripts, e.g. ai or Ai,j . The jth
column of a matrix is denoted Aj . Finally, we denote a set of
algebraic objects by superscripts; e.g. Φi,j , i ∈ {1, . . . ,m},
i ∈ {1, . . . , n}, denotes a set of mn matrices.

II. LIGHT FIELD COMPRESSIVE ACQUISITION

A popular approach for light field photography is coded
aperture [6], [17]. By employing a geometric optics per-
spective, this method constructs several views of a scene
using different regions of the aperture [9]. Let the function
l(ri, tj ,uα,vβ) describe the two plane light field parametriza-
tion [18] defined by a pair of (discrete) locations on the sensor
plane (ri, tj) and the aperture plane (uα,vβ). The resolution
of the sensor and the aperture plane are |r|× |t| and |u|× |v|,
respectively. The coding of the aperture is achieved by using a
mask of resolution |u|×|v| on the aperture plane. Each region
of this mask produces an angular image on the sensor, which
we denote by yi, where i ∈ {1, . . . , ν}, and ν = |u||v|. If
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the mask is fully transparent, then the image formed on the
sensor is the integrated radiance from all aperture regions, i.e.
y =

∑ν
i=1 yi. Assuming the mask has values ai, the sensing

model for a coded aperture can be formulated as follows

y =
[
a1I a2I . . . aνI

]

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 , (2)

where xi ∈ Rω , with ω = |r||t|, is the incoming radiance
corresponding to the aperture region i, and I ∈ Rω×ω is
the identity matrix. To maximize incoherence of the sensing
matrix and a deterministic basis function, we would like the
elements of Φ to be independent and identically distributed
random variables [19]–[21]. Unfortunately, the sensing matrix[
a1I . . . aνI

]
in (2) is highly structured, and hence leads

to coherent measurements. To alleviate this problem, Babacan
et al. [9] propose to use multiple shots, where for each shot
a different set of mask values is used. Assuming s shots are
taken, equation (2) becomes
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To further improve the incoherence, Marwah et al. [10]
propose to place the mask at a small distance dm from the
sensor, such that dm < da, where da is the distance of the
aperture plane from the sensor. In this setup, the pixel value at
location (ri, tj) over the sensor is calculated by integrating the
incoming radiance from different directions while modulating
them by the mask:

y(ri, tj) =

|u|∑
α=1

|v|∑
β=1

f (ri + γ(uα − ri), tj + γ(vβ − tj))

l(ri, tj ,uα,vβ), (4)

where γ = dm/da. The function f(.) describes the mask
value given a spatial location. Indeed there is a one to one

correspondence between the pixels on the sensor and on the
mask. The sensing model according to (4) is

y =
[
Φ1 Φ2 . . . Φν

]


x1

x2

...
xν

 , (5)

where Φi ∈ Rω×ω are diagonal matrices, each containing
sheared mask values obtained by evaluating the function f(.)
in (4) for the corresponding view direction (uα,vβ) and all the
spatial locations over the sensor. The nonzero elements of the
mask are typically drawn from an appropriate distribution (e.g.
a nonzero Gaussian) or optimized for maximal incoherence
with the sparsifying dictionary [10].

In all the aforementioned acquisition frameworks, a
monochrome mask is used. As a result, the same sensing
matrix Φ is applied to all the color channels. This indeed
leads to coherent measurements. In the following section, a
new acquisition framework will be described that increases
the measurement incoherence by randomizing the sensing of
different spectral bands of the light field.

III. MULTI-SHOT COLOR CODED ACQUISITION

Unlike [10] that uses a monochrome mask, we utilize a ran-
dom color mask. Recent advances in micro-lithography tech-
niques [22]–[24] has enabled the utilization of colored micro-
filters in many imaging applications such as multi-spectral
imaging [25], depth extraction [26], and image enhancement
[27]. To further increase the measurement matrix incoherence,
we use multiple shots, each with a different random colored
mask. To achieve this, similar to [28], we propose to use a
piezo system for rapid mask movement. Depending on the
spatial patch size (see Section IV) a movement of few pixels
is enough for a new random mask pattern in each shot. Such
systems are capable of capturing more than 60 frames per
second, hence moving objects can be faithfully reconstructed.

The new light field sensing model incorporating per-shot
colored mask patterns is formulated in (1). Without loss of
generality, and to simplify our notation, we consider three
color channels (RGB). The entries 0 denote zero-valued ma-
trices of appropriate size. Additionally, the sensing matrix Φ
takes into account all the shots. Hence, the reconstruction



TABLE I: Effect of sub-sampling on reconstruction quality.
The angular resolution of the light field is 5× 5 and we have
created 9×9 non-overlapping patches over the spatial domain.
The data set used here is described in section V.

ν ω λ s r total # samples PSNR (dB) Time
25 81 3 1 1 243 27.52 6
25 81 3 2 0.5 243 27.76 6

method, see (7), can recover the light field x in a single
pass. Alternatively, one can recover each shot individually and
compute the final result as the average of all the recovered
shots (see section V for a comparison of these approaches).

As it can be seen in (1), the total number of samples, i.e.
the number of rows in Φ, is ωλs, where λ is the number of
color channels. Since ω and λ are determined by the hardware
implementation, the number of samples is mainly determined
by s, which in turn affects the computational complexity
of the reconstruction algorithm (see section IV). To provide
flexibility over the trade off between computational complexity
and reconstruction quality, we use spatial subsampling in the
measurement model (1). This can be done by a sampling
matrix P ∈ Rrωλs×ωλs as follows

y = PΦx, (6)

where r ∈ (0, 1] is the sampling ratio. The matrix P can
be constructed by sampling rωλs rows from I ∈ Rωλν×ωλν
uniformly at random without replacement. Using (6), the total
number of samples is proportional to sr. When s is fixed,
e.g. due to hardware limitations, one can use r to reduce the
reconstruction time (see Table II). On the other hand, spatial
sub-sampling can be used to increase the reconstruction quality
when the total number of samples, or the reconstruction time,
is constant. To illustrate this, we consider two cases: 1. We
take one shot without sub-sampling 2. We take two shots and
set r = 0.5 so that the total number of samples is equal to the
previous case. Results of this experiment are summarized in
Table I. Using this simple approach we gain 0.24dB in Peak
Signal to Noise Ratio (PSNR) without a significant increase
in reconstruction time.

The nonzero values of the matrix Φ in (1) can be drawn
from various distributions. A common approach is to use a
nonzero centered Gaussian distribution |N (0, σ)|. Subgaussian
distributions, e.g. Bernoulli distribution with probability 0.5,
can also be used. We will compare the reconstruction quality
for different distributions in section V.

IV. RECONSTRUCTION ALGORITHM

The reconstruction algorithm takes as input the measured
light field (y) and the sensing matrix (PΦ) in order to obtain
the original light field x, see (6). Since in practice ν � s, the
sensing matrix is wide and there exists infinitely many solution
to (1). Using compressed sensing [29], the measurement model
in (1) becomes x = PΦDα, where D ∈ Rωνλ×ρωνλ is an
overcomplete dictionary with ρ as the overcompleteness factor,

(a) Dictionary training set (b) Testing set

Fig. 1: Data sets used in our experiments: (a) Four light fields
used for training an overcomplete dictionary, and (b) the light
field we used in our simulations.

and α defines the sparse coefficients. By solving the following
optimization problem

ĉ = min
b
‖b‖1 s.t. p̂ = ΦDb, (7)

we can recover or estimate the original light field as x̂ = Dĉ.
Equation (7) is known as Basis Pursuit Denoising (BPDN)
and there exists several approaches for solving this problem
[12], [15], [16]. In this paper we use the SL0 algorithm [16]
since we observed superior reconstruction quality. Moreover,
similar to [10], we use a training based method [30] to obtain
an overcomplete dictionary.

Due to the large size of the vectorized light field, x, it is
a common practice to divide the light field over the spatial
domain [10], [11], while including all the angular and spectral
information. As a result, the dimensionality of each vectorized
light field patch will be ω̂νλ, where ω̂ is the spatial patch size
over the sensor. In addition, one can create overlapping patches
[31] from the light field. After the reconstruction, the final light
field elements are calculated by averaging the corresponding
values in overlapped patches.

V. EXPERIMENTAL RESULTS

In this section we will report simulation results for our
light field capture method. For the purpose of comparison,
the synthetic light field data set of [10] is used. This data
set consists of five light fields, which we have divided into
training and testing sets as shown in Fig. 1. The angular
resolution of each light field is 5 × 5, covering a field of
view of 20 degrees; i.e. the angle separation is 4 degrees.
The training set is used to learn a 1.5 times overcomplete, 10-
sparse dictionary. The spatial patch size is set to 9× 9. Hence
the signal dimensionality is 9× 9× 5× 5× 3 = 6075, where
the last component is for color.

Figure 2 compares our method with that of Marwah et al.
[10]. Parameter values, along with PSNR and timing results,
are summarized in Table II. We trained one dictionary for
both methods. It should be noted that in [10], a dictionary of
size ων × ρων is trained and used for all the color channels
independently. In our implementation of their method, we
trained a dictionary of size ωνλ × ρωνλ. This dictionary
improves the results of [10] by about 3dB. We compared
our results with the improved implementation of [10]. Our
method achieves about 3.6dB to 4dB improvement over [10],



(a) (b) (c) (d) (e) (f) Reference

Fig. 2: Visual quality comparison: (a) and (b) are obtained by the method of Marwah et al. [10] using non-overlapping and
overlapping patches, respectively. And (c)-(f) show the results of our method using the parameters listed in Table II.

TABLE II: Reconstruction quality (PSNR) for various compressive coded aperture methods. For these results we used uniform
distribution for nonzero values of (1).

Mask Method s r overlap PSNR (dB) Time (min.) Figure

Marwah et al. [10] Grayscale Simultaneous 5 1 no 27.91 43 2a
Grayscale Simultaneous 5 1 yes 33.59 380 2b

Our method

RGB Independent 5 1 no 29.23 30 2c
RGB Simultaneous 5 1 no 31.50 43 2d
RGB Simultaneous 5 0.5 no 30.14 24 2e
RGB Simultaneous 5 1 yes 37.63 381 2f

(a) reference (b) 1 shot (c) 3 shots (d) 5 shots (e) 9 shots (f) 15 shots

Fig. 3: Visual quality comparison for the number of shots (s). See Fig. 4 for the corresponding PSNR values.
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Fig. 4: The Effect of number of shots (s) on PSNR. See Fig.
3 for a visual comparison. Non-overlapping patches are used.

using non-overlapping and overlapping patches, respectively.
Comparing figures 2b and 2f, we see that the grayscale
mask leads to noise-like artifacts in the reconstruction. In
contrast, our color coded mask produces results that are almost
indistinguishable from the original light field.

When spatial sub-sampling is used, while keeping the
number of shots fixed, we observe a drop of 1.5dB in PSNR.

However, the computation time is reduced almost in half.
Given the small reduction in visual quality (compare 2d and
2e), sub-sampling can be used to accelerate the reconstruction
process. On the other hand, increasing the number of shots
and decreasing the sub-sampling ratio while keeping the total
number of samples constant will lead to a slight increase in
reconstruction quality (see Table I). Moreover, we observed
that independent reconstruction of shots followed by linear
interpolation (Fig. 2c), performs inferior to simultaneous re-
construction (Fig. 2d) as described in section III.

The effect of the number of shots (s) on reconstruction
quality is plotted in Fig. 4, along with a visual quality
comparison in Fig. 3. It can be seen that when the number
of shots is more than three, the PSNR grows linearly; note
that a linear growth in PSNR implies exponential reduction in
error. As a result, it is beneficial to increase s as far as the
camera’s ability to handle fast moving objects is not hindered.
Results in figures 3 and 4 were obtained using non-overlapping
patches and a Gaussian color mask.

Finally, we compare the reconstruction quality for different
mask distributions in Table III. The following distributions
are considered: uniform in the interval [0, 1], Gaussian and
nonnegative Gaussian, Bernoulli distribution with probability



TABLE III: Reconstruction quality (PSNR) for various dis-
tributions used for non-zero values of (1). The zero-mean
Gaussian distribution with variance σ is denoted N (0, σ).

Uniform N (0, 1) |N (0, 1)| Bernoulli Rademacher Halton
30.72 31.50 30.80 30.87 31.50 27.70

0.5, Rademacher distribution, and a quasi random sequence,
specifically the Halton sequence [32]. Note that the distribu-
tions that take negative values like the Gaussian cannot be
implemented as a mask. However, we include these results
for comparison since they are commonly used in compressed
sensing. Indeed the Halton sequence is inferior to random
masks. Moreover, nonnegative distributions are performing
very similarly. Here we used non-overlapping patches.

VI. CONCLUSIONS

We introduced a compressive light field camera using a
color coded mask. Moreover, a multi-shot capture by micro
movements of the mask shows significant improvements in
reconstruction quality. For future work, we are interested in
determining the conditions for exact recovery that take into
account the sparsity of the light field and the number of shots.
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