

Going further in cluster analysis and classification: Bi-clustering and co-clustering

C Biernacki

▶ To cite this version:

C Biernacki. Going further in cluster analysis and classification: Bi-clustering and co-clustering. Summer School on Clustering, Data Analysis and Visualization of Complex Data, May 2018, Catania, Italy. hal-01810380

HAL Id: hal-01810380 https://hal.inria.fr/hal-01810380

Submitted on 7 Jun2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further

Going further in cluster analysis and classification: **Bi-clustering and co-clustering**

C. Biernacki

Summer School on Clustering, Data Analysis and Visualization of Complex Data May 21-25 2018, University of Catania, Italy

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
			Outline		
1 HD	clustering				
2 Mo					
3 Est	mating				
4 Sele	ecting				
5 Blo	ckCluster in MAS				
бТо	go further				

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further		
Motivation							
High dimensional (HD) data sets are now frequent: • Marketing: $d \sim 10^2$							

- microarray gene expression: $d \sim 10^2 10^4$
- SNP data: $d \sim 10^6$
- Curves: depends on discretization but can be very high
- Text mining
- • •

Clustering has to be applied for HD datasets for the same reasons as the lower dimensional datasets:

- Data summary
- Data exploratory
- Preprocessing for more flexibility of a forthcoming prediction step

But clustering is even more important since visualization in the HD setting can be hazardous. . .

HD clustering	
---------------	--

Today': exponential growing of dimension¹

¹S. Alelyani, J. Tang and H. Liu (2013). Feature Selection for Clustering: A Review. Data Clustering: Algorithms and Applications, **29**

4/66

(-/

An attempt in the non-parametric case

Dataset $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, \mathbf{x}_j described by *d* variables, where $n = o(e^d)$

Justifications:

- To approximate within error ϵ a (Lipschitz) function of d variables, about $(1/\epsilon)^d$ evaluations on a grid are required [Bellman, 61]
- Approximate a Gaussian distribution with fixed Gaussian kernels and with approximate error of about 10% [Silverman, 86]

 $\log_{10} n(d) \approx 0.6(d - 0.25)$

For instance, $n(10) \approx 7.10^5$

An attempt in the parametric case

Dataset $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, \mathbf{x}_j described by *d* variables and a model **m** with ν parameters, where $n = o(g(\nu))$, with *g* a given function

Justification:

• We consider the heteroscedastic Gaussian mixture with of true parameter θ^* with K^* components. We note $\hat{\theta}$ the Gaussian MLE with K^* components. We have g linear from the following result [Michel, 08]: it exists constants κ , A and C such that

$$\mathsf{E}_{\mathsf{x}}[\mathsf{Hellinger}^2(\mathsf{p}_{\boldsymbol{\theta}^*},\mathsf{p}_{\hat{\boldsymbol{\theta}}_{\hat{K}}})] \leq C\left[\kappa \frac{\nu}{n}\left\{2A\ln d + 1 - \ln\left(1 \wedge \left[\frac{\nu}{n}A\ln d\right]\right)\right\} + \frac{1}{n}\right].$$

But ν can be high since $\nu \sim d^2/2$, combined with potentially large constants.

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further

HD density estimation: curse

A two-component *d*-variate Gaussian mixture:

$$\pi_1 = \pi_2 = rac{1}{2}, \quad {f X}_1 | z_{11} = 1 \sim {f N}_d({f 0},{f I}), \quad {f X}_1 | z_{12} = 1 \sim {f N}_d({f 1},{f I})$$

Components are more and more separated when d grows: $\|\mu_2 - \mu_1\|_{l} = \sqrt{d}$...

 \dots but density estimation quality decreases with d

HD clustering: blessing (1/2)

A two-component *d*-variate Gaussian mixture:

$$\pi_1 = \pi_2 = rac{1}{2}, \quad \mathbf{X}_1 | z_{11} = 1 \sim \mathsf{N}_d(\mathbf{0}, \mathbf{I}), \quad \mathbf{X}_1 | z_{12} = 1 \sim \mathsf{N}_d(\mathbf{1}, \mathbf{I})$$

Each variable provides equal and own separation information

Theoretical error decreases when d grows: $err_{theo} = \Phi(-\sqrt{d}/2)...$

 \ldots and empirical error rate decreases also with d!

8/66

110				
HI)	Cli	IST	eri	no
			<u> </u>	···6

HD clustering: blessing (2/2)

FDA

eling

stimating

Selecting

HD clustering: curse (1/2)

Many variables provide no separation information

Same parameter setting except:

$$X_1|z_{12} = 1 \sim N_d((1 \ 0 \ \dots \ 0)', I)$$

Groups are not separated more when d grows: $\| \mu_2 - \mu_1 \|_{\mathsf{I}} = 1 \dots$

... thus theoretical error is constant $(= \Phi(-\frac{1}{2}))$ and empirical error increases with d

ling

stimating

Selecting

HD clustering: curse (2/2)

Many variables provide redundant separation information

Same parameter setting except:

$$\mathbf{X}_{1}^{j} = \mathbf{X}_{1}^{1} + N_{1}(0, 1) \quad (j = 2, \dots, d)$$

Groups are not separated more when d grows: $\| \mu_2 - \mu_1 \|_{\mathbf{\Sigma}} = 1...$

... thus $\operatorname{err}_{theo}$ is constant $(= \Phi(-\frac{1}{2}))$ and empirical error increases (less) with d

The fundamental statistical principle

Always minimize an error err between truth (z) and estimate (\hat{z})

- Gap between true (z) and model-based (\mathcal{Z}_p) partitions: $z^* = \arg \min_{\tilde{z} \in \mathcal{Z}_p} \Delta(z, \tilde{z})$
- \blacksquare Estimation \hat{z} of z^* in $\mathcal{Z}_p:$ any relevant method (bias, consistency, efficiency. . .)
- Fundamental decomposition of the observed error $err(z, \hat{z})$:

$$\begin{split} \mathsf{err}(\mathsf{z}, \hat{\mathsf{z}}) &= \left\{ \mathsf{err}(\mathsf{z}, \mathsf{z}^*) - \mathsf{err}(\mathsf{z}, \mathsf{z}) \right\} + \left\{ \mathsf{err}(\mathsf{z}, \hat{\mathsf{z}}) - \mathsf{err}(\mathsf{z}, \mathsf{z}^*) \right\} \\ &= \left\{ \mathsf{bias} \right\} + \left\{ \mathsf{variance} \right\} \\ &= \left\{ \mathsf{error of approximation} \right\} + \left\{ \mathsf{error of estimation} \right\} \end{split}$$

ıg

imating

Bias/variance in HD: reduce variance, accept bias

A two-component *d*-variate Gaussian mixture with intra-dependency:

$$\pi_1 = \pi_2 = rac{1}{2}, \quad {f X}_1 | z_{11} = 1 \sim {\sf N}_d({f 0}, {f \Sigma}), \quad {f X}_1 | z_{12} = 1 \sim {\sf N}_d({f 1}, {f \Sigma})$$

- Each variable provides equal and own separation information
- Theoretical error decreases when d grows: $err_{theo} = \Phi(-\|\mu_2 \mu_1\|_{\Sigma^{-1}}/2)$
- Empirical error rate with the (true) intra-correlated model worse with d
- Empirical error rate with the (false) intra-independent model better with d!

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
	Some	alternatives	for reducing	variance	

- Dimension reduction in non-canonical space (PCA-like typically)
- Dimension reduction in the canonical space (variable selection)
- Model parsimony in the initial HD space (constraints on model parameters)

But which kind of parsimony?

- \blacksquare Remember that clustering is a way for dealing with large n
- Why not reusing this idea for large d?

Co-clustering

It performs parsimony of row clustering through variable clustering

Aodeling

Estimating

Selecting

To go further

From clustering to co-clustering

[Govaert, 2011]

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		Bi-cl	ustering		

- A generalization of co-clustering
- Look for submatrices of x which are homogeneous
- We do not consider bi-clustering here

biclustering

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
			Outline		
1 HD	clustering				
2 Moo	leling				
3 Esti	mating				
4 Sele	cting				
5 Bloc	kCluster in MAS				
б То g	go further				

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		٦	Notations		

- **z**_{*i*}: the cluster of the row *i*
- w_j: the cluster of the column j
- **(** z_i , w_j): the block of the element x_{ij} (row *i*, column *j*)
- **z** = (z_1, \ldots, z_n) : partition of individuals in K custers of rows
- $\mathbf{w} = (\mathbf{w}_1, \dots, \mathbf{w}_d)$: partition of variables in L clusters of columns
- **(**z, **w**): bi-partition of the whole data set x
- \blacksquare Both space partitions are respectively denoted by $\mathcal Z$ and $\mathcal W$

Restriction

All variables are of the same kind (see discussion at the end)

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further

A geometric approach

- **Example** in the continuous case: $\mathbf{x} \in \mathbb{R}^{n \times d}$
- It could be possible to define a within-block inertia criterion

$$W(z, w) = \sum_{k=1}^{K} \sum_{l=1}^{L} \sum_{i=1}^{n} \sum_{j=1}^{d} z_{ik} w_{jl} ||x_{ij} - \mu_{kl}||^2$$

with μ_{kl} the center of the block (k, l)

$$\mu_{kl} = \frac{1}{n_{kl}} \sum_{i,j} z_{ik} w_{jl} x_{ij}$$

where $n_{kl} = \sum_{ij} z_{ik} w_{jl}$ is the sample size of the block (k, l)

But we know now that it hides some model-based assumptions...

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		The latent l	olock model	(LBM)	

- Generalization of some existing non-probabilistic methods
- Extend the latent class principle of local (or conditional) independence
- Thus x_{ij} is assumed to be independent once z_i and w_j are fixed $(\alpha = (\alpha_{kl}))$:

$$p(\mathbf{x}|\mathbf{z},\mathbf{w};\boldsymbol{\alpha}) = \prod_{i,j} p(x_{ij};\boldsymbol{\alpha}_{z_iw_j})$$

• $\pi = (\pi_k)$: vectors of proba. π_k that a row belongs to the *k*th row cluster • $\rho = (\rho_k)$: vectors of proba. ρ_k that a row belongs to the *l*th column cluster • Independence between all z_i and w_j

Extension of the traditional mixture model-based clustering ($\alpha = (\alpha_{kl})$):

$$\mathsf{p}(\mathsf{x}; \boldsymbol{\theta}) = \sum_{(\mathsf{z}, \mathsf{w}) \in \mathcal{Z} \times \mathcal{W}} \prod_{i, j} \pi_{z_i} \rho_{w_j} \mathsf{p}(\mathsf{x}_{ij}; \boldsymbol{\alpha}_{z_i w_j})$$

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
	Dis	tribution for	different ki	inds of data	

[Govaert and Nadif, 2014] The pdf $p(\cdot; \alpha_{z_iw_i})$ depends on the kind of data x_{ij} :

- Binary data: $x_{ij} \in \{0, 1\}, p(\cdot; \alpha_{kl}) = \mathcal{B}(\alpha_{kl})$
- Categorical data with *m* levels: $\mathbf{x}_{ij} = \{x_{ijh}\} \in \{0, 1\}^m$ with $\sum_{h=1}^m x_{ijh} = 1$ and $p(\cdot; \boldsymbol{\alpha}_{kl}) = \mathcal{M}(\boldsymbol{\alpha}_{kl})$ with $\boldsymbol{\alpha}_{kl} = \{\alpha_{kjh}\}$
- Count data: $x_i^j \in \mathbb{N}$, $p(\cdot; \alpha_{kl}) = \mathcal{P}(\mu_k \nu_l \gamma_{kl})^2$
- Continuous data: $x_i^j \in \mathbb{R}$, $p(\cdot; \alpha_{kl}) = \mathcal{N}(\mu_{kl}, \sigma_{kl}^2)$

²The Poisson parameter is here split into μ_k and ν_l the effects of the row k and the column l respectively and γ_{kl} the effect of the block kl. Unfortunately, this parameterization is not identifiable. It is therefore not possible to estimate simultaneously μ_k , ν_l and γ_{kl} without imposing further constraints. Constraints $\sum_k \pi_k \gamma_k n_k = \sum_l \rho_l \gamma_{kl} = 1$ and $\sum_k \mu_k = 1$, $\sum_l \nu_l = 1$ are a possibility.

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go furthe
		Extreme	parsimonv a	ability	

Model	Number of parameters
Binary	$dim(oldsymbol{\pi}) + dim(oldsymbol{ ho}) + \mathit{KL}$
Categorical	$\dim(\pi) + \dim(\rho) + \mathit{KL}(m-1)$
Contingency	$dim(\pi) + dim(ho) + \mathit{KL}$
Continuous	$\dim(\pi) + \dim(\rho) + 2KL$

Very parsimonious so well suitable for the (ultra) HD setting
nb. param._{HD} = nb. param._{classic}
$$\times \frac{L}{d}$$

Other advantage: stay in the canonical space thus meaningful for the end-user

	1112

Modeling

timating

Selecting

Binary illustration: easy interpretation

[Govaert, 2011]

	abcdefghij
У1	1010001101
У2	0101110011
У3	1000001100
<i>Y</i> 4	1010001100
У 5	0111001100
<i>Y</i> 6	0101110101
<i>Y</i> 7	0111110111
У8	1100111011
У9	0100110000
Y10	1010101101
Y11	1010001100
Y12	1010000100
Y13	1010001101
Y14	0010011100
Y15	0010010100
Y16	1111001100
Y17	0101110011
Y18	1010011101
Y19	1010001000
Y20	1100101100

Raw data

D clustering

Modeling

Estimating

Selecting

Binary illustration: user-friendly visualization

[Govaert, 2011]

Modeling

Estimating

Selecting

Other kind of data: ordinal

[Jacques and Biernacki, 2018]

Figure 11: Top 100 Amazone Fine Food Review data (left) and co-clustering result (right).

Modeling

Estimating

Selecting

To go further

Other kind of data: functional

[Jacques, 2016]

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		Other kind	l of data: im	lage	
	Original Data			Co-Clustered Data	
	ž	×.	22		8 - 8 - 70 - 70 - 70 - 70 - 70 - 70 - 70

Stochastic Block Model (SBM): adjacency matrix with n = d and K = L

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
			Outline		
1 -	ID clustering				
2	Aodeling				
3	stimating				
A	Selecting				
5 E	BlockCluster in MASS				
6	To go further				

|--|--|--|

deling

Estimating

Selecting

MLE estimation: log-likelihood(s)

- Remember Lesson 3: first estimate θ , then deduce estimate of (z, w)
- Observed log-likelihood: $\ell(\theta; x) = \ln p(x; \theta)$
- MLE:

$$\hat{oldsymbol{ heta}} = rg\max_{oldsymbol{ heta}} \ell(oldsymbol{ heta}; oldsymbol{x})$$

Complete log-likelihood:

$$\ell_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{z}, \mathbf{w}) = \ln p(\mathbf{x}, \mathbf{z}, \mathbf{w}; \boldsymbol{\theta})$$

=
$$\sum_{i,k} z_{ik} \log \pi_k + \sum_{k,l} w_{jl} \log \rho_l + \sum_{i,j,k,l} z_{ik} w_{jl} \log p(x_i^j; \boldsymbol{\alpha}_{kl})$$

Be careful with asymptotics...

If $\ln(d)/n \to 0$, $\ln(n)/d \to 0$ when $n \to \infty$ and $d \to \infty$, then the MLE is consistent [Brault *et al.*, 2017]

MLE estimation: EM algorithm

E-step of EM (iteration *q*):

$$Q(\theta, \theta^{(q)}) = E[\ell_c(\theta; \mathbf{x}, \mathbf{z}, \mathbf{w}) | \mathbf{x}; \theta^{(q)}]$$

=
$$\sum_{i,k} \underbrace{p(z_i = k | \mathbf{x}; \theta^{(q)})}_{t_{ik}^{(q)}} \ln \pi_k + \sum_{j,l} \underbrace{p(w_i = l | \mathbf{x}; \theta^{(q)})}_{\mathbf{s}_{jl}^{(q)}} \ln \rho_l$$

+
$$\sum_{i,j,k,l} \underbrace{p(z_i = k, w_j = l | \mathbf{x}; \theta^{(q)})}_{e_{ijkl}^{(q)}} \ln p(x_{ij}; \alpha_{kl})$$

• M-step of EM (iteration q): classical. For instance, for the Bernoulli case, it gives

$$\pi_k^{(q+1)} = \frac{\sum_i t_{ik}^{(q)}}{n}, \quad \rho_l^{(q+1)} = \frac{\sum_j s_{jl}^{(q)}}{d}, \quad \alpha_{kl}^{(q+1)} = \frac{\sum_{i,j} e_{ijkl}^{(q)} x_{ij}}{\sum_{i,j} e_{ijkl}^{(q)}}$$

HD clustering	iviodeling	Estimating	Selecting	BIOCKCIUSTER IN MASSICCC	To go turtner
		MLE: in	itractable E	step	
$e_{iikl}^{(q)}$ is	usually intract	able			
e _{ijkl} is	usually intract	able			

- Consequence of dependency between x_{ij} s (link between rows and columns)
- Involve KⁿL^d calculus (number of possible blocks)
- Example: if n = d = 20 and K = L = 2 then 10^{12} blocks
- Example (cont'd): 33 years with a computer calculating 100,000 blocks/second

Alternatives to EM

■ Variational EM (numerical approx.): conditional independence assumption

$$p(\mathbf{z}, \mathbf{w} | \mathbf{x}; \boldsymbol{\theta}) \approx p(\mathbf{z} | \mathbf{x}; \boldsymbol{\theta}) p(\mathbf{w} | \mathbf{x}; \boldsymbol{\theta})$$

SEM-Gibbs (stochastic approx.): replace E-step by a S-step approx. by Gibbs

 $\mathbf{z}|\mathbf{x}, \mathbf{w}; \boldsymbol{\theta}$ and $\mathbf{w}|\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}$

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		MLE: vari	iational FM	(1/2)	

- Use a general variational result from [Hathaway, 1985]
- Maximizing $\ell(\theta; \mathbf{x})$ on θ is equivalent to maximize $\tilde{\ell}_c(\theta; \mathbf{x}, \mathbf{e})$ on (θ, \mathbf{e})

$$\tilde{\ell}_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{e}) = \sum_{i,k} t_{ik} \ln \pi_k + \sum_{j,l} s_{jl} \ln \rho_l + \sum_{i,j,k,l} e_{ijkl} \ln p(x_{ij}; \boldsymbol{\alpha}_{kl})$$

where $\mathbf{e} = (e_{ijkl})$, $e_{ijkl} \in \{0, 1\}$, $\sum_{k,l} e_{ijkl} = 1$, $t_{ik} = \sum_{j,l} e_{ijkl}$, $s_{jl} = \sum_{i,k} e_{ijkl}$

- Of course maximizing $\ell(\theta; \mathbf{x})$ or $\tilde{\ell}_c(\theta; \mathbf{x}, \mathbf{e})$ are both intractable
- ldea: restriction on **e** to obtain tractability $\mathbf{e}_{ijkl} = t_{ik}s_{jl}$
- New variables are thus now $\mathbf{t} = (t_{ik})$ and $\mathbf{s} = (s_{jl})$
- As a consequence, it is a maximization of a lower bound of the max. likelihood

 $\max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \boldsymbol{x}) \geq \max_{\boldsymbol{\theta}, \mathbf{t}, \mathbf{s}} \tilde{\ell}_{c}(\boldsymbol{\theta}; \boldsymbol{x}, \mathbf{e})$

Approximated E-step

$$Q(\theta, \theta^{(q)}) \approx \sum_{i,k} t_{ik}^{(q)} \ln \pi_k + \sum_{j,l} s_{jl}^{(q)} \ln \rho_l + \sum_{i,j,k,l} t_{ik}^{(q)} s_{jl}^{(q)} \ln p(x_{ij}; \alpha_{kl})$$

- We called it now VEM
- Also known as mean field approximation
- Consistency of the variational estimate [Brault et al., 2017]

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		MLE:	local maxir	na	

- More local maxima than in classical mixture models
- It is a consequence of many more latent variables (blocks)
- Thus: either many VEM runs, or use the SEM-Gibbs algorithm

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		MLE:	SEM-Gibb	05	

- We have already seen the SEM algorithm in Lesson 3 (thus we do not detail more)
- It limits dependency to starting point, so it limits local maxima
- The S-step: a draw $(\boldsymbol{z}^{(q)}, \boldsymbol{w}^{(q)}) \sim \mathsf{p}(\boldsymbol{z}, \boldsymbol{w} | \boldsymbol{x}; \boldsymbol{\theta}^{(q)})$ instead an expectation
- But it is still intractable, thus use a Gibbs algorithm to approx. this draw

Approximated S-step

Two easy draws

$$\mathbf{z}^{(q)} \sim \mathsf{p}(\mathbf{z} | \mathbf{w}^{(q-1)}, \mathbf{x}; \mathbf{\theta}^{(q)})$$

and

$$\boldsymbol{w}^{(q)} \sim p(\boldsymbol{w}|\boldsymbol{z}^{(q)}, \boldsymbol{x}; \boldsymbol{\theta}^{(q)})$$

- Rigorously speaking, many draws within the S-step should be performed
- Indeed, Gibbs has to reach a stochastic convergence
- In practice it works well while saving computation time

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further				
MLE: degeneracy									

- More degenerate situations than in classical mixture models
- It is again a consequence of many more latent variables (blocks)
- The Bayesian regularization (instead MLE) can be an answer

Illustration of a degenerate situation

 \blacksquare Everything passes by the posterior distribution of $\pmb{\theta}$

$$\mathsf{p}(\boldsymbol{ heta}|\boldsymbol{x}) \propto \underbrace{\mathsf{p}(\boldsymbol{x}|\boldsymbol{ heta})}_{\mathsf{log-likelihood}} \underbrace{\mathsf{p}(\boldsymbol{ heta})}_{\mathsf{prior}}$$

• Then, take (for instance) the MAP as a θ estimate (use a VEM like algo...)

$$\hat{\theta} = rg\max_{oldsymbol{ heta}} \mathsf{p}(oldsymbol{ heta} | oldsymbol{x})$$

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
	Baye	esian estimat	ion: limiting	g degeneracy	

- Interest for avoiding degeneracy is the prior: it acts as a penalization term
- Typical choices are Dirichlet for π and ρ (with independence between π , ρ , α)

$$\mathsf{p}(\boldsymbol{\theta}) = \underbrace{\mathsf{p}(\boldsymbol{\pi})}_{D_{K}(a,\ldots,a)} \times \underbrace{\mathsf{p}(\boldsymbol{\rho})}_{D_{L}(a,\ldots,a)} \times \underbrace{\mathsf{p}(\boldsymbol{\alpha})}_{\text{model dependent}}$$

- The Dirichlet distribution is conjugate, thus easy calculus
- Control degeneracy frequency with the *a* value:
 - **a** = 1: uniform prior, so $\hat{\theta}$ is strictly the MLE (no regularisation)
 - a = 1/2: Jeffreys prior, classical (no informative prior) but may favor degeneracy
 - **a** = 4: a rule of thumb working well for limiting degeneracy frequency

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		Block est	imation: est	imate	

Once we have a parameter estimate θ̂, we need to have an block estimate (ẑ, ŵ)
 But MAP not directly available because of the following maximization difficulty

$$(\hat{z}, \hat{w}) = \arg \max_{(z,w)} \underbrace{p(z,w|x; \hat{\theta})}_{intractable}$$

Instead the following (easily, as classical mixtures) estimates are usually retained

$$\hat{z} = \arg \max_{z} p(z|x; \hat{\theta})$$
 and $\hat{w} = \arg \max_{w} p(w|x; \hat{\theta})$

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		Block estir	mation: eva	luation	

Empirical error rate between blocks:

$$\operatorname{err}_{\operatorname{blocks}}(\underbrace{(\boldsymbol{z}, \boldsymbol{w})}_{\text{"True" blocks}}, \underbrace{(\hat{\boldsymbol{z}}, \hat{\boldsymbol{w}})}_{\text{stimated blocks}}) = \operatorname{err}(\boldsymbol{z}, \hat{\boldsymbol{z}}) + \operatorname{err}(\boldsymbol{w}, \hat{\boldsymbol{w}}) - \operatorname{err}(\boldsymbol{z}, \hat{\boldsymbol{z}}) \times \operatorname{err}(\boldsymbol{w}, \hat{\boldsymbol{w}})$$

Rand index between blocks: it exists also a recent definition...

Block estimation: consistency

[Mariadassou and Matias, 12]

$$\underbrace{\hat{\theta}}^{n,d\to\infty} \underbrace{\theta^*}_{\text{we have seen that...}} \Rightarrow \underbrace{p(\hat{\mathbf{z}} = \mathbf{z}^*, \hat{\mathbf{w}} = \mathbf{w}^* | \mathbf{x}; \hat{\theta})}_{\text{evact bi-partition retrievall}} \underline{1}$$

exact bi-partition retrieval!

Thus we retrieve the HD clustering blessing...

Block estimation: non asymptotic properties (1/2)

Binary case: marginals seems so simple mixtures! [Brault, 14]

Block estimation: non asymptotic properties (2/2)

[Brault, 14]

Probability of x_{ij} with no regard to the column membership is Bernoulli

$$\mathsf{p}(\mathsf{x}_{ij}=1|\mathsf{z}_{ik}=1) = \tau_k = \sum_{l=1}^{L} \alpha_{kl} \rho_l$$

Thus marginal distribution of x_{ij} is a mixture (indep. of x_{ij} cond. $z_{ik} = 1$)

$$\left(\sum_{j} x_{ij}\right) | z_{ik} = 1 \sim \mathsf{B}(d, \tau_k)$$

Control of error on this partition mixture estimate \hat{z}^{mix} of binomial distributions

$$\mathsf{p}(\hat{\mathbf{z}}^{mix} \neq \mathbf{z}^*) \leq 2n \exp\left\{-\frac{1}{8}d\left[\min_{\substack{k \neq k'}} |\tau_k - \tau_{k'}|\right]\right\} + \mathcal{K}(1 - \min_k \pi_k)^n$$

We retrieve also consistency for very high dimension with constraint

$$\ln(n) = o(d)$$

HD	clustering	Mod

....

Illustration: document clustering (1/2)

- Mixture of 1033 medical summaries and 1398 aeronautics summaries
- Lines: 2431 documents
- Columns: present words (except stop), thus 9275 unique words
- Data matrix: cross counting document×words

....

Poisson model

			-11-11-11	6F 85	dia terre	11910				181
										C-L
		100					1.1.5		的時間。	1
			세탁							1
									副囊節	
1. 1						1.1				ł
			14.					1		ľ,

clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go fur
	Illu	stration: doo	ument clus	stering (2/2)	
	Documents	Unique Words			
Resul	ts with 2×2	blocks			
		Medline Cranfield	Medline C 1033 0	ranfield 0 1398	

Experiment illustrates previous theory: HD clustering is blessing

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
			Outline		
1 HD (clustering				
2 Mod					
3 Estir	nating				
4 Selec	cting				
5 Bloc	kCluster in MAS				
6 To g	o further				

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		Models in	competition	ı	

 $\mathbf{m} = (K, L)$ typically, but not restricted to

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		BIC criterion:	two difficu	ulties	

Difficult 1: which BIC definition because of the double asymptotic on n and d?
Difficult 2: the observed log-likelihood value is intractable

$$\ell(\boldsymbol{\theta}; \boldsymbol{x}) = \sum_{(\boldsymbol{z}, \boldsymbol{w}) \in \mathcal{Z} \times \mathcal{W}} p(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}; \boldsymbol{\theta})$$

Could be estimated by harmonic mean but time consuming and high variance

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
	ICL cr	iterion: over	come both (difficulties	

ICL uses complete likelihood thus no intractability

$$\mathsf{ICL} = \ln \mathsf{p}(x, \hat{\mathsf{z}}, \hat{\mathsf{w}}) = \ln \mathsf{p}(\mathsf{x}|\hat{\mathsf{z}}, \hat{\mathsf{w}}) + \ln \mathsf{p}(\hat{\mathsf{z}}) + \ln \mathsf{p}(\hat{\mathsf{w}})$$

- Multinomial case (r levels): [Keribin et al., 2014]
 - Derive an exact (non-asymptotic) ICL version
 - Deduce an asymptotic approximation of ICL

$$\mathsf{ICLbic} = \ell_c(\hat{\theta}; \mathbf{x}, \hat{\mathbf{z}}, \hat{\mathbf{w}}) - \frac{K-1}{2} \ln(n) - \frac{L-1}{2} \ln(d) - \frac{KL(r-1)}{2} \ln(nd)$$

We can make a conjecture for the general case

$$\mathsf{ICLbic} = \ell_c(\hat{\theta}; \mathbf{x}, \hat{\mathbf{z}}, \hat{\mathbf{w}}) - \frac{K-1}{2} \ln(n) - \frac{L-1}{2} \ln(d) - \frac{KL\nu_{\alpha_{kl}}}{2} \ln(nd)$$

We can obtain a BIC expression from ICLbic

BIC = ICLbic - In p(
$$\hat{z}, \hat{w} | \mathbf{x}; \hat{\theta}$$
)
= $\underbrace{\ell(\hat{\theta}; \mathbf{x})}_{\text{difficult}} - \frac{K-1}{2} \ln(n) - \frac{L-1}{2} \ln(d) - \frac{KL(m-1)}{2} \ln(nd)$

Brault *et al.*, 2017] establish that asymptotically on n and d

$${}^{\prime\prime}\ell(\hat{ heta};\mathbf{x}) = \ell_c(\hat{ heta};\mathbf{x},\hat{z},\hat{w})^{\prime\prime}$$

Thus, since BIC is consistent, ICL is also consistent

Again the HD clustering blessing is here!

[Robert, 2017] Algorithm Bi-KM1

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
	Illustra	tion: discuss	the dimen	sion (1/2)	

- SPAM E-mail Database³
- n = 4601 e-mails composed by 1813 "spams" and 2788 "good e-mails"
- d = 48 + 6 = 54 continuous descriptors⁴
 - 48 percentages that a given word appears in an e-mail ("make", "you'...)
 6 percentages that a given char appears in an e-mail (";", "\$"...)
- Transformation of continuous descriptors into binary descriptors

$$x_{ij} = \begin{cases} 1 & \text{if word/char } j \text{ appears in e-mail } i \\ 0 & \text{otherwise} \end{cases}$$

³https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/

⁴There are 3 other continuous descriptors we do not use

HD clustering	Modeling	E

stimating

Selecting

Illustration: discuss the dimension (2/2)

Perform co-clustering with K = 2 and L = 5: ICL=-92,682, err=0.1984

Perform clustering⁵ with K = 2: ICL=-89,433, err=0.1837

Thus use preferably co-clustering in the HD setting

⁵Equivalent to co-clustering with L = 54

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
			Outline		
1 HD d	clustering				
2 Mod					
_					
3 Estin					
4 Selec	rting				
5 Bloc	kCluster in MA	SSICCC			
6 To g	o further				

g

imating

Selecting

To go further

MASSICCC platform for the BLOCKCLUSTER software

https://massiccc.lille.inria.fr/

BlockCluster

BlockCluster can estimate the parameters of coclustering models for binary, contingency and continuous data. Simply put, when considering a set of data as rows and columns, BlockCluster will make simultaneous permutations of rows and columns in order to organise the data into homogenous blocks.

Read more about BlockCluster

eling

Estimating

Selecting

BlockCluster in MASSICCC

To go further

MASSICCC?

A high quality and easy to use web platform where are transfered mature research clustering (and more) software towards (non academic) professionals

Modeling

Estimating

Selecting

BlockCluster in MASSICCC

To go further

Here is the computer you need!

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
		Running	BlockCluste	r	

Configuration

If you change the configuration of your job and save it, it will start a new process with the updated parameters. This will erase previous results.

Parameters		
Title	Trial BlockCluster	
Data File	Blockcluster-Example.csv	
Data Type	Categorical •	0
Rows Cluster Groups	1:5	θ
Column Cluster Groups	1:5	θ
	Update	

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further	
Running BlockCluster						

MASSICCC Dashboard	Help		Profile Logout
RESULTS	ESULTS		
DATA FILES	Select a job execution	from the list below	
CREATE JOB	69	Trial BlockCluster Blockcluster-Example.csv	23 Msy 20:47
	68 🚯	Genes K1-12 log.cpm.txt	23 May 08:12 🖌
	67 🚯	Genes log.cpm.txt	22 May 15:38
	65 💩	Genes K1-10 log.cpm.bt	22 May 15:27 💉

Running BlockCluster

Model	Criterion	Nb Clusters	Error	
pik_rhal_multi	ICL (-45557.1)	[2,3]	No error	
pik_rhol_multi	ICL (-45563.3)	[3,3]	No error	
pik_rhol_multi	(CL (-45566.6)	[2,4]	No error	
pik_rhol_multi	ICL (-45573.9)	[4,3]	No error	
pik_rhol_multi	(CL (-45574.6)	[5,3]	No error	
pik_rhol_multi	ICL (-45577.7)	[3,4]	No error	
pik_rhol_multi	(CL (-45578.8)	[2,5]	No error	-

Cluster Plot Criterion Plot

Model Criterion

This chart represents the criterion value for each model that was built. The higher the value (close to 0) the better the model.

ling

Estimating

Selecting

BlockCluster in MASSICCC

To go further

Running BlockCluster

HD clustering	Modeling	Estimating	Selecting	BlockCluster in MASSICCC	To go further
			Outline		
1 HD	clustering				
2 Mod					
3 Estir	nating				
4 Selec	cting				
5 Bloc	kCluster in MAS				
6 To g	o further				

Poisson

