Bispindles in strongly connected digraphs with large chromatic number

Nathann Cohen, Frédéric Havet, William Lochet, Raul Lopes

To cite this version:

Nathann Cohen, Frédéric Havet, William Lochet, Raul Lopes. Bispindles in strongly connected digraphs with large chromatic number. The Electronic Journal of Combinatorics, Open Journal Systems, 2018. hal-01810706

HAL Id: hal-01810706
 https://hal.inria.fr/hal-01810706

Submitted on 8 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bispindles in strongly connected digraphs with large chromatic number

Nathann Cohen Frédéric Havet William Lochet
Université Côte d'Azur, CNRS, I3S, INRIA
Sophia Antipolis, France
william.lochet@gmail.com

Raul Lopes
Departamento de Computaçao
Universidade Federal do Ceará
Fortaleza, Brazil

Submitted: Mar 25, 2017; Accepted: May 10, 2018; Published: Jun 8, 2018
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A $\left(k_{1}+k_{2}\right)$-bispindle is the union of $k_{1}(x, y)$-dipaths and $k_{2}(y, x)$-dipaths, all these dipaths being pairwise internally disjoint. Recently, Cohen et al. showed that for every $(1,1)$ - bispindle B, there exists an integer k such that every strongly connected digraph with chromatic number greater than k contains a subdivision of B. We investigate generalizations of this result by first showing constructions of strongly connected digraphs with large chromatic number without any $(3,0)$ bispindle or $(2,2)$-bispindle. We then consider (2,1)-bispindles. Let $B\left(k_{1}, k_{2} ; k_{3}\right)$ denote the (2,1)-bispindle formed by three internally disjoint dipaths between two vertices x, y, two (x, y)-dipaths, one of length k_{1} and the other of length k_{2}, and one (y, x)-dipath of length k_{3}. We conjecture that for any positive integers k_{1}, k_{2}, k_{3}, there is an integer $g\left(k_{1}, k_{2}, k_{3}\right)$ such that every strongly connected digraph with chromatic number greater than $g\left(k_{1}, k_{2}, k_{3}\right)$ contains a subdivision of $B\left(k_{1}, k_{2} ; k_{3}\right)$. As evidence, we prove this conjecture for $k_{2}=1$ (and k_{1}, k_{3} arbitrary).

Mathematics Subject Classifications: 05C15, 05C20

1 Introduction

Throughout this paper, a proper colouring of a digraph is a proper colouring of its underlying graph. Similarly, the chromatic number of a digraph D, denoted by $\chi(D)$, is the chromatic number of its underlying graph. In a digraph D, a dipath is an oriented path
where all the arcs are oriented in the same direction, from the initial vertex towards the terminal vertex.

A classical result due to Gallai, Hasse, Roy and Vitaver is the following.
Theorem 1 (Gallai [10], Hasse [11], Roy [13], Vitaver [14]). If $\chi(D) \geqslant k$, then D contains a dipath of order k.

This raises the following question.
Question 2. Which digraphs are subdigraphs of all digraphs with large chromatic number?

A famous theorem by Erdős [9] states that there exist graphs with arbitrarily high girth and arbitrarily large chromatic number. This means that if H is a digraph containing an oriented (non necessarily directed) cycle, there exist digraphs with arbitrarily high chromatic number with no subdigraph isomorphic to H. Thus the only possible candidates to generalize Theorem 1 are the oriented trees that are orientations of trees. Burr [6] proved that every $(k-1)^{2}$-chromatic digraph contains every oriented tree of order k and made the following conjecture.

Conjecture 3 (Burr [6]). For a digraph D, if $\chi(D) \geqslant(2 k-2)$, then D contains a copy of any oriented tree T of order k.

The best known upper bound, due to Addario-Berry et al. [2], is in $(k / 2)^{2}$. However, for oriented paths with two blocks (blocks are maximal directed subpaths), the best possible upper bound is known.

Theorem 4 (Addario-Berry et al. [1]). Let P be an oriented path with two blocks on $n>3$ vertices, then every digraph with chromatic number (at least) n contains P.

The following celebrated theorem of Bondy shows that the story does not stop here.
Theorem 5 (Bondy [4]). Every strongly connected digraph of chromatic number at least k contains a directed cycle of length at least k.

The strong connectivity assumption is indeed necessary, as transitive tournaments contain no directed cycle but can have arbitrarily high chromatic number.

Observe that a directed cycle of length at least k can be seen as a subdivision of \vec{C}_{k}, the directed cycle of length k. Recall that a subdivision of a digraph F is a digraph that can be obtained from F by replacing each arc (u, v) by a dipath from u to v. Cohen et al. [8] conjecture that Bondy's theorem can be extended to all oriented cycles.

Conjecture 6 (Cohen et al. [8]). For every oriented cycle C, there exists a constant $f(C)$ such that every strong digraph with chromatic number at least $f(C)$ contains a subdivision of C.

The strongly connected connectivity assumption is also necessary in Conjecture 6 as shown by Cohen et al. [8]. This follows from the following result.

Theorem 7 (Cohen et al. [8]). For any positive integers b and k, there exists an acyclic digraph $D_{k, b}$ such that any cycle in $D_{k, b}$ has at least blocks and $\chi\left(D_{k, b}\right)>k$.

On the other hand, Cohen et al. [8] proved Conjecture 6 for cycles with two blocks and the antidirected cycle of length 4 . More precisely, denoting by $C(k, \ell)$ the cycle with two blocks, one of length k and the other of length ℓ, they proved the following result.

Theorem 8 (Cohen et al. [8]). For every two positive integers k and ℓ, every strongly connected digraph with chromatic number at least $O\left((k+\ell)^{4}\right)$ contains a subdivision of $C(k, \ell)$.

The bound has recently been improved to $O\left((k+\ell)^{2}\right)$ by Kim et al. [12].
A p-spindle is the union of p internally disjoint (x, y)-dipaths for some vertices x and y. Vertex x is said to be the tail of the spindle and y its head. A $(p+q)$-bispindle is the internally disjoint union of a p-spindle with tail x and head y and a q-spindle with tail y and head x. In other words, it is the union of $p(x, y)$-dipaths and $q(y, x)$-dipaths, all of these dipaths being pairwise internally disjoint. Note that 2 -spindles are the cycles with two blocks and the $(1+1)$-bispindles are the directed cycles.

In this paper, we study the existence of spindles and bispindles in strongly connected digraphs with large chromatic number. First, let us give a construction of digraphs with arbitrarily large chromatic number that contain no 3 -spindle and no $(2+2)$-bispindle.

Theorem 9. For every positive integer k, there exists a strongly connected digraph D with $\chi(D)>k$ that contains no 3 -spindle and no $(2+2)$-bispindle.

Proof. Let $D_{k, 4}$ be an acyclic digraph with chromatic number greater than k in which every cycle has at least four blocks. The existence of such a digraph is given by Theorem 7. Let $S=\left\{s_{1}, \ldots, s_{l}\right\}$ be the set of vertices of $D_{k, 4}$ with out-degree 0 and $T=\left\{t_{1}, \ldots, t_{m}\right\}$ the set of vertices with in-degree 0 .

Consider the digraph D obtained from $D_{k, 4}$ as follows. Add to $D_{k, 4}$ a dipath $P=$ $\left(x_{1}, x_{2}, \ldots, x_{l}, z, y_{1}, y_{2}, \ldots, y_{m}\right)$ and the $\operatorname{arcs}\left(s_{i}, x_{i}\right)$ for all $i \in[l]$ and $\left(y_{j}, t_{j}\right)$ for all $j \in[m]$. It is easy to see that D is strongly connected. Moreover, in D, every directed cycle uses the arc $\left(x_{l}, z\right)$. Therefore D does not contain a (2+2)-bispindle, which has two arc-disjoint directed cycles.

Suppose now that D has a 3 -spindle with tail u and head v, and let Q_{1}, Q_{2}, Q_{3} be its three (u, v)-dipaths. Observe that u and v are not vertices of P, because all vertices of this dipath have either in-degree at most 2 or out-degree at most 2 . In D, each oriented cycle with two blocks between vertices outside P must use the arc $\left(x_{l}, z\right)$. The union of Q_{1} and Q_{2} form a cycle on two blocks, which means that one of the two paths, say Q_{1}, contains $\left(x_{l}, z\right)$. But Q_{2} and Q_{3} also form a cycle on two blocks, but they cannot contain $\left(x_{l}, z\right)$, a contradiction.

By Theorem 9, the most we can expect in all strongly connected digraphs with large chromatic number are $(2+1)$-bispindles. Let $B\left(k_{1}, k_{2} ; k_{3}\right)$ denote the $(2+1)$-bispindle
formed by three internally disjoint paths between two vertices x, y, two (x, y)-dipaths, one of length k_{1} and the other of length k_{2}, and one (y, x)-dipath of length k_{3}.

One can easily prove that every strongly connected digraph with chromatic number at least 4 contains a subdivision of $B(2,1 ; 1)$.

Proposition 10. Let D be a strongly connected digraph. If $\chi(D) \geqslant 4$, then D contains a subdivision of $B(2,1 ; 1)$.

Proof. Assume $\chi(D) \geqslant 4$. Since every strongly connected digraph contains a 2-connected strongly connected subdigraph with the same chromatic number, we may assume that D is 2 -connected. Let C be a shortest directed cycle in D. It must be induced, so $\chi(D[C])=\chi(C) \leqslant 3$. In particular, $V(D) \backslash V(C)$ is not empty.

Thus, by Proposition 5.11 in [5], there is a dipath P in D whose ends lie in C but whose internal vertices do not. Necessarily, P has length at least 2 since C is induced. Thus the union of P and C is a subdivision of $B(2,1 ; 1)$.

The bound 4 in Proposition 10 is best possible because a directed odd cycle has chromatic number 3 and contains no $B(2,1 ; 1)$-subdivision.

We conjecture that Proposition 10 can be extended to any $(2+1)$-bispindle.
Conjecture 11. There is a function $g: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that every strongly connected digraph with chromatic number at least $g\left(k_{1}, k_{2}, k_{3}\right)$ contains a subdivision of $B\left(k_{1}, k_{2} ; k_{3}\right)$.

As an evidence, we prove this conjecture for $k_{2}=1$ and arbitrary k_{1} and k_{3}. In Section 3, in order to present our method, we first investigate the case $k_{2}=k_{3}=1$ and prove the following.

Theorem 12. Let $k \geqslant 3$ be an integer and let D be a strongly connected digraph. If $\chi(D)>(2 k-2)(2 k-3)$, then D contains a subdivision of $B(k, 1 ; 1)$.

In Section 4, using the same approach but in a more complicated way, we prove our main result:

Theorem 13. For every positive integer k, there is a constant γ_{k} such that if D is a strongly connected digraph with $\chi(D)>\gamma_{k}$, then D contains a subdvision of $B(k, 1 ; k)$.

We prove the above theorem for a huge constant γ_{k}. It can easily be lowered. However, we made no attempt to it here for two reasons: firstly, we would like to keep the proof as simple as possible; secondly using our method, there is no hope to get an optimal or near optimal value for γ_{k}.

Similar questions with χ replaced by another graph parameter can be studied. We refer the reader to [3] and [8] for more exhaustive discussions on such questions. Let us just give one result proved by Aboulker et al. [3] which can be seen as an analogue to Conjecture 11.

Theorem 14 (Theorem 28 in [3]). Let k_{1}, k_{2}, k_{3} be positive integers with $k_{1} \geqslant k_{2}$. Let D be a digraph with $\delta^{+}(D) \geqslant 3 k_{1}+2 k_{2}+k_{3}-5$. Then D contains a subdivision of $B\left(k_{1}, k_{2} ; k_{3}\right)$.

2 Definitions and preliminaries

We follow standard terminology as used in [5]. We denote by $[k]$ the set of integers $\{1, \ldots, k\}$.

Let F be a digraph. An F-subdivision is a subdivision of F. A digraph D is said to be F-subdivision-free, if it contains no F-subdivision.

The union of two digraphs D_{1} and D_{2} is the digraph $D_{1} \cup D_{2}$ defined by $V\left(D_{1} \cup\right.$ $\left.D_{2}\right)=V\left(D_{1}\right) \cup V\left(D_{2}\right)$ and $A\left(D_{1} \cup D_{2}\right)=A\left(D_{1}\right) \cup A\left(D_{2}\right)$. If \mathcal{D} is a set of digraphs, we denote by $\bigcup \mathcal{D}$ the union of the digraphs in \mathcal{D}, i.e. $V(\bigcup \mathcal{D})=\bigcup_{D \in \mathcal{D}} V(D)$ and $A(\bigcup \mathcal{D})=\bigcup_{D \in \mathcal{D}} A(D)$.

Let P be a dipath. We denote by $s(P)$ its initial vertex and by $t(P)$ its terminal vertex. For any two vertices, a (u, v)-dipath or dipath from u to v is a dipath P with $s(P)=u$ and $t(P)=v$. For two sets X, Y of vertices, an (X, Y)-dipath or dipath from X to Y is a dipath P such that $s(P) \in X, t(P) \in Y$, and no internal vertex is in $X \cup Y$.

If D is a dipath or a directed cycle, then we denote by $D[a, b]$ the subdipath of D with initial vertex a and terminal vertex b. We denote by $D[a, b[$ the dipath $D[a, b]-b$, by $D] a, b]$ the dipath $D[a, b]-a$, and by $D] a, b[$ the dipath $D[a, b]-\{a, b\}$. If P and Q are two dipaths such that $V(P) \cap V(Q)=\{s(P)\}=\{t(Q)\}$, the concatenation of P and Q, denoted by $P \odot Q$, is the dipath $P \cup Q$.

A digraph is connected (resp. 2-connected) if its underlying graph is connected (resp. 2 -connected). The connected components of a digraph are the connected components of its underlying graph. A digraph D is strongly connected or strong if for any two vertices x, y there is dipath from x to y. The strong components of a digraph are its maximal strong subdigraphs.

Let G be a graph or a digraph. A proper k-colouring of G is a mapping $\phi: V(G) \rightarrow[k]$ such that $\phi(u) \neq \phi(v)$ whenever u is adjacent to $v . G$ is k-colourable if it admits a proper k-colouring. The chromatic number of G, denoted by $\chi(G)$, is the least integer k such that G is k-colourable.

A (directed) graph G is k-degenerate if every subgraph H of G has a vertex of degree at most k. The following three statements are well-known.

Proposition 15. Every k-degenerate (directed) graph is $(k+1)$-colourable.
Theorem 16 (Brooks). Let G be a connected graph. Then $\chi(G) \leqslant \Delta(G)$ unless G is a complete graph or an odd cycle.

Lemma 17. Let D_{1} and D_{2} be two digraphs. Then $\chi\left(D_{1} \cup D_{2}\right) \leqslant \chi\left(D_{1}\right) \times \chi\left(D_{2}\right)$.
Lemma 18. Let D be a digraph, D_{1}, \ldots, D_{l} be disjoint subdigraphs of D and D^{\prime} the digraph obtained by contracting each D_{i} into one vertex d_{i}. Then $\chi(D) \leqslant \chi\left(D^{\prime}\right)$. $\max \left\{\chi\left(D_{i}\right) \mid i \in[l]\right\}$.

Proof. Set $k_{1}=\max \left\{\chi\left(D_{i}\right) \mid i \in[l]\right\}$ and $k_{2}=\chi\left(D^{\prime}\right)$. For each i, let ϕ_{i} be a proper colouring of D_{i} using colours in $\left[k_{1}\right]$ and let ϕ^{\prime} be a proper colouring of D^{\prime} using colours
in $\left[k_{2}\right]$. Define $\phi: V(D) \rightarrow\left[k_{1}\right] \times\left[k_{2}\right]$ as follows. If x is a vertex belonging to some D_{i}, then $\phi(x)=\left(\phi_{i}(x), \phi^{\prime}\left(d_{i}\right)\right)$, else $\phi(x)=\left(1, \phi^{\prime}(x)\right)$. Let x and y be adjacent vertices of D. If they belong to the same subdigraph D_{i}, then $\phi_{i}(x) \neq \phi_{i}(y)$ and so $\phi(x) \neq \phi(y)$. If they do not belong to the same component, then the vertices corresponding to these vertices in D^{\prime} are adjacent and so $\phi(x) \neq \phi(y)$. Thus ϕ is a proper colouring of D using $k_{1} \cdot k_{2}$ colours.

The rotative tournament on $2 k-1$ vertices, denoted by $R_{2 k-1}$, is the tournament with vertex set $\left\{v_{1}, \ldots, v_{2 k-1}\right\}$ in which v_{i} dominates v_{j} if and only if $j-i$ modulo $2 k-1$ belongs to $\{1,2, \ldots, k-1\}$.

Proposition 19. Let T be a strong tournament of order $2 k-1$, then T contains a $B(k, 1 ; 1)$-subdivision.

Proof. Let T be a strong tournament of order $2 k-1$. By Camion's Theorem, it has a hamiltonian directed cycle $C=\left(v_{1}, v_{2}, \ldots, v_{2 k-1}, v_{1}\right)$. If there exists an arc $\left(v_{i}, v_{j}\right)$ with $j-i \geqslant k$ (indices are modulo $2 k-1$), then the union of $C\left[v_{i}, v_{j}\right],\left(v_{i}, v_{j}\right)$ and $C\left[v_{j}, v_{i}\right]$ is a $B(k, 1 ; 1)$-subdivision. Henceforth, we may assume that $T=R_{2 k-1}$. Then the union of $C\left[v_{1}, v_{k-1}\right] \odot\left(v_{k-1}, v_{k+1}, v_{k+2}\right),\left(v_{1}, v_{k}, v_{k+2}\right)$, and $C\left[v_{k+2}, v_{1}\right]$ is a $B(k, 1 ; 1)$-subdivision.

We will need the following lemmas:
Lemma 20. Let $\sigma=\left(u_{t}\right)_{t \in[p]}$ be a sequence of integers in $[k]$, and let l be a positive integer. If $p \geqslant l^{k}$, then there exists a set L of l indices such that for any $i, j \in L$ with $i<j$ the following holds : $u_{i}=u_{j}$ and $u_{t}>u_{i}$, for all $i<t<j$.

Proof. By induction on k. The result holds trivially when $k=1$. Assume now that $k>1$. Let L_{1} be the elements of the sequence with value 1. If L_{1} has at least l elements, we are done. If not, then there is a subsequence σ^{\prime} of $\left\lceil\frac{l^{k-(l-1)}}{l}\right\rceil=l^{k-1}$ consecutive elements in $\{2, \ldots, k-1\}$. Applying the induction hypothesis to σ^{\prime} yields the result.

Lemma 21. Let $\sigma=\left(u_{t}\right)_{t \in[p]}$ be a sequence of integers in [k]. If $p>k(m-1)$, then there exists a subsequence of m consecutive integers such that the last one is the largest.

Proof. By induction on k. The result holds trivially when $k=1$. Let i be the smallest integer such that $u_{t} \leqslant k-1$ for all $t \geqslant i$. If $i>m$, then $u_{i-1}=k$, and the subsequence of the $i-1$ first elements of σ is the desired sequence. If $i \leqslant m$, apply the induction on $\sigma^{\prime}=\left(u_{t}\right)_{i \leqslant t \leqslant p}$ which is a sequence of more than $(k-1)(m-1)$ integers in $[k-1]$, to get the result.

$3 \quad \mathrm{~B}(\mathrm{k}, 1 ; 1)$

In this section, we present a proof of Theorem 12.
Let \mathcal{C} be a collection of directed cycles. It is nice if all cycles of \mathcal{C} have length at least $2 k-2$, and any two distinct cycles of \mathcal{C} intersect on at most one vertex. A component
of \mathcal{C} is a connected component in the adjacency graph of \mathcal{C}, where vertices correspond to cycles in \mathcal{C} and two vertices are adjacent if the corresponding cycles intersect. Note that if \mathcal{S} is a component of \mathcal{C}, then $\bigcup \mathcal{S}$ is both a connected component and a strong component of $\cup \mathcal{C}$. Call $D_{\mathcal{C}}$ the digraph obtained from D by contracting each component of \mathcal{C} into one vertex. For sake of simplicity, we denote by $D[\mathcal{S}]$ the digraph $D[\bigcup \mathcal{S}]$. Observe that this digraph contains $\bigcup \mathcal{S}$ but has more arcs.

We will prove that every $B(k, 1 ; 1)$-subdivision-free strong digraph D has bounded chromatic number in the following way: We take a maximal nice collection \mathcal{C} of directed cycles. We will prove that for every component \mathcal{S} of \mathcal{C}, the digraph $D[\mathcal{S}]$ has bounded chromatic number. Then we will prove that, since it contains no long directed cycle and it is strong, $D_{\mathcal{C}}$ has bounded chromatic number. Those two results allow us to conclude by Lemma 18 .

We will need the following lemma:
Lemma 22. Let \mathcal{C} be a nice collection of directed cycles in a $B(k, 1 ; 1)$-subdivision-free digraph D and let C, C^{\prime} be two cycles of the same component \mathcal{S} of \mathcal{C}. There is no dipath P from C to C^{\prime} whose arcs are not in $A(\cup \mathcal{S})$.

Proof. By the contrapositive. We suppose that there exists such a dipath P and show that there is a $B(k, 1 ; 1)$-subdivision in D.

By definition of \mathcal{S}, there exists a dipath Q from C to C^{\prime} in $\bigcup \mathcal{S}$. By choosing C and C^{\prime} such that Q is as small as possible, then $s(Q) \neq t(P)$ and $t(Q) \neq s(P)$ (note that $s(Q)$ and $t(Q)$ can be the same vertex).

Since C has length at least $2 k-2$, either $C[t(Q), s(P)]$ has length at least $k-1$ or $C[s(P), t(Q)]$ has length at least k.

- If $C[t(Q), s(P)]$ has length at least $k-1$, then the union of $Q \odot C[t(Q), s(P)] \odot P$, $C^{\prime}[s(Q), t(P)]$ and $C^{\prime}[t(P), s(Q)]$ is a $B(k, 1 ; 1)$-subdivision between $s(Q)$ and $t(P)$.
- If $C[s(P), t(Q)]$ has length at least k, then the union of $C[s(P), t(Q)], P \odot$ $C^{\prime}[t(P), s(Q)] \odot Q$ and $C[t(Q), s(P)]$ is a $B(k, 1 ; 1)$-subdivision between $s(P)$ and $t(Q)$.

Lemma 23. Let $k \geqslant 3$ be an integer, and let \mathcal{C} be a nice collection of directed cycles in a $B(k, 1 ; 1)$-subdivision-free digraph D and \mathcal{S} a component of \mathcal{C}. Then $\chi(D[S]) \leqslant 2 k-2$.

Proof. By induction on the number of directed cycles in \mathcal{S}. Let C be a cycle of \mathcal{S}. There is no chord (x, y) of C such that $C[x, y]$ has length at least k, for otherwise there would be a $B(k, 1 ; 1)$-subdivision. Hence $D[C]$ has maximum degree at most $2 k-2$. Moreover, by Proposition 19, $D[C]$ is not a tournament of order $2 k-1$. Thus, by Brooks' Theorem (16), $\chi(D[C]) \leqslant 2 k-2$. Let c be a proper colouring of C with $2 k-2$ colours. Let $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{r}$ be the components of $\mathcal{S} \backslash\{C\}$. Since \mathcal{S} is the union of the $\mathcal{S}_{l}, l \in[r]$, and $\{C\}$, each \mathcal{S}_{l} has less cycles than \mathcal{S}. By the induction hypothesis, there exists a proper colouring c_{l} using $2 k-2$ colours for each $D\left[\mathcal{S}_{l}\right]$.

Now, we claim that each $D\left[\mathcal{S}_{l}\right]$ intersects C in exactly one vertex. It is easy to see that C must intersect at least one cycle of each \mathcal{S}_{l}. Now suppose there exist two vertices of C, x and y, in $D\left[\mathcal{S}_{l}\right]$. By definition of a nice collection, they cannot belong to the same cycle of \mathcal{S}_{l}, so there exist two cycles C_{i} and C_{j} of S_{l} such that $x \in C_{i}$ and $y \in C_{j}$. Now $C[x, y]$ is a dipath from C_{i} to C_{j} whose arcs are not in $A\left(\bigcup \mathcal{S}_{l}\right)$. This contradicts Lemma 22.

Consequently, free to permute the colours of c_{l}, we may assume that each vertex of C receives the same colour in c and in c_{l}. In addition, by Lemma 22, there is no arc between different $D\left[\mathcal{S}_{l}\right]$ nor between $D\left[\mathcal{S}_{l}\right]$ and C. Hence the union of c_{l} and c is a proper colouring of $D[\mathcal{S}]$ using $2 k-2$ colours.

Lemma 24. Let \mathcal{C} be a maximal nice collection of directed cycles in a $B(k, 1 ; 1)$ -subdivision-free strong digraph D. Then $\chi\left(D_{\mathcal{C}}\right) \leqslant 2 k-3$.

Proof. First note that since D is strong, then so is $D_{\mathcal{C}}$. Suppose $\chi\left(D_{\mathcal{C}}\right) \geqslant 2 k-2$. By Bondy's Theorem (5), there exists a directed cycle $C=\left(x_{1}, \ldots, x_{l}, x_{1}\right)$ of length at least $2 k-2$ in $D_{\mathcal{C}}$. We derive a cycle C^{\prime} in D the following way: Suppose the vertex x_{i} corresponds to a component \mathcal{S}_{i} of \mathcal{C} : the $\operatorname{arc}\left(x_{i-1}, x_{i}\right)$ corresponds in D to an arc whose head is a vertex p_{i} of $\bigcup \mathcal{S}_{i}$, and the arc $\left(x_{i}, x_{i+1}\right)$ corresponds to an arc whose tail is a vertex l_{i} of $\bigcup \mathcal{S}_{i}$. Let P_{i} be a dipath from p_{i} to l_{i} in $D\left[\mathcal{S}_{i}\right]$. Note that P_{i} intersects each cycle of S_{i} on a, possibly empty, subdipath of P_{i}. Then C^{\prime} is the cycle obtained from C by replacing the vertices x_{i} by the path P_{i}.
C^{\prime} is a cycle of D of length at least $2 k-2$ because it is no shorter than C. Let C_{1} be a cycle of \mathcal{C}. By construction of C^{\prime} and $D_{\mathcal{C}}, C^{\prime}$ and C_{1} can intersect only along a subdipath of one P_{i}. Suppose this dipath is more than just one vertex. Let x and y be the initial and terminal vertex, respectively, of this dipath. Then the union of $C^{\prime}[x, y], C_{1}[x, y]$ and $C_{1}[y, x]$ is a $B(k, 1 ; 1)$-subdivision, a contradiction.

So C^{\prime} is a cycle of length at least $2 k-2$, intersecting each cycle of \mathcal{C} on at most one vertex, and which does not belong to \mathcal{C}, for otherwise it would be reduced to one vertex in $D_{\mathcal{C}}$. This contradicts the fact that \mathcal{C} is maximal.

We can finally prove Theorem 12.
Proof of Theorem 12. Let \mathcal{C} be a maximal nice collection of directed cycles in D. Lemmas 23, 24 and 18 give the result.

$4 \quad \mathrm{~B}(\mathrm{k}, 1 ; \mathrm{k})$

In this section, we present a proof of Theorem 13.
We prove the result by the contrapositive. We consider a $B(k, 1 ; k)$-subdivision-free digraph D. We shall prove that $\chi(D) \leqslant \gamma_{k}=8 k^{2}\left(4 k^{2}+2\right)\left(2 \cdot(4 k)^{4 k}+1\right)\left(2 \cdot\left(6 k^{2}\right)^{3 k}+14 k\right)$.

Our proof heavily uses the notion of k-suitable collection of directed cycles, which can be seen as a generalization of the notion of nice collection of directed cycles used to prove Theorem 12.

A collection \mathcal{C} of directed cycles is k-suitable if all cycles of \mathcal{C} have length at least $8 k$, and any two distinct directed cycles $C_{i}, C_{j} \in \mathcal{C}$ intersect on a dipath $P_{i, j}$ of order at most k. We denote by $s_{i, j}$ (resp. $t_{i, j}$) the initial (resp. terminal) vertex of $P_{i, j}$.

The proof of Theorem 13 uses the same general idea as Theorem 12: take a maximal k suitable collection of directed cycles \mathcal{C}; show that the digraph $D_{\mathcal{C}}$ obtained by contracting the components of \mathcal{C} has bounded chromatic number, and that each component also has bounded chromatic number; conclude using Lemma 18. However, because the intersection of cycles in this collection are more complicated and because there might be arcs between directed cycles of the same component, bounding the chromatic number of the components is way more challenging. The next subsection is devoted to this.

4.1 k-suitable collections of directed cycles

Let ϕ be a colouring of a graph G. A subset of vertices or a subgraph S of G is rainbowcoloured by ϕ if all vertices of S have distinct colours.

Set $\alpha_{k}=2 \cdot\left(6 k^{2}\right)^{3 k}+14 k$. The first step of the proof is the following lemma.
Lemma 25. Let \mathcal{C} be a k-suitable collection of directed cycles in a $B(k, 1 ; k)$-subdivisionfree digraph. There exists a proper colouring ϕ of $\bigcup \mathcal{C}$ with α_{k} colours, such that, each subdipath of length $7 k$ of each directed cycle of \mathcal{C} is rainbow-coloured.

In order to prove this lemma, we need some definitions and preliminary results.
Lemma 26. Let \mathcal{C} be a k-suitable collection of directed cycles in a $B(k, 1 ; k)$-subdivisionfree digraph. Let C_{1}, C_{2}, C_{3} be three pairwise-intersecting directed cycles of \mathcal{C}, and let v belong to $V\left(C_{2}\right) \cap V\left(C_{3}\right) \backslash V\left(C_{1}\right)$. Then exactly one of the following holds:
(i) $C_{2}\left[t_{1,2}, v\right]$ and $C_{3}\left[t_{1,3}, v\right]$ have both length less than $3 k$;
(ii) $C_{2}\left[v, s_{1,2}\right]$ and $C_{3}\left[v, s_{1,3}\right]$ have both length less than $3 k$.

Proof. Observe first that since C_{2} has length at least $8 k$ and $P_{1,2}$ has length at most $k-1$, the sum of the lengths of $C_{2}\left[t_{1,2}, v\right]$ and $C\left[v, s_{1,2}\right]$ is at least $7 k+1$. Similarly, the sum of the lengths of $C_{2}\left[t_{1,3}, v\right]$ and $C\left[v, s_{1,3}\right]$ is at least $7 k+1$. In particular, if (i) holds, then (ii) does not hold and vice-versa.

Suppose for a contradiction that both (i) and (ii) do not hold. By symmetry and the above inequalities, we may assume that both $C_{2}\left[t_{1,2}, v\right]$ and $C_{3}\left[v, s_{1,3}\right]$ have length more than $3 k$. But $v \notin V\left(C_{1}\right)$, so $v \notin V\left(P_{1,3}\right)$. Thus $C_{3}\left[v, t_{1,3}\right]$ has also length at least $3 k$.

If there is a vertex in $V\left(C_{1}\right) \cap V\left(C_{2}\right) \cap V\left(C_{3}\right)$, then $C_{3}\left[v, t_{1,3}\right]$ would have length less than $2 k$ (since it would be contained in $P_{2,3} \cup P_{1,3}$ and each of those paths has length less than k), a contradiction. Hence $V\left(C_{1}\right) \cap V\left(C_{2}\right) \cap V\left(C_{3}\right)=\emptyset$. In particular, $P_{1,2}, P_{1,3}$, and $P_{2,3}$ are disjoint.

The dipath $C_{2}\left[s_{1,2}, t_{2,3}\right]$ has length at least $3 k$ because it contains $C_{2}\left[t_{1,2}, v\right]$. Moreover, the dipath $C_{3}\left[t_{2,3}, s_{1,3}\right]$ has length at least $2 k$ because $C_{3}\left[v, s_{1,3}\right]$ has length at least $3 k$ and $C_{3}\left[v, t_{2,3}\right]$ has length less than k. Thus $C_{3}\left[t_{2,3}, s_{1,3}\right] \odot C_{1}\left[s_{1,3}, s_{1,2}\right]$ has length at least $2 k$. Consequently, the union of $C_{2}\left[s_{1,2}, t_{2,3}\right], C_{2}\left[t_{2,3}, s_{1,2}\right]$, and $C_{3}\left[t_{2,3}, s_{1,3}\right] \odot C_{1}\left[s_{1,3}, s_{1,2}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.

Let \mathcal{C} be a k-suitable collection of directed cycles. For every set of vertices or digraph S, we denote by $\mathcal{C} \cap S$ the set of directed cycles of \mathcal{C} that intersect S.

Let $C_{1} \in \mathcal{C}$. For each $C_{j} \in \mathcal{C} \cap C_{1}$ such that $C_{j} \neq C_{1}$, let Q_{j} be the subdipath of C_{j} containing all the vertices that are at distance at most $3 k$ from $P_{1, j}$ in the cycle underlying C_{j}. Then the dipaths $C_{j}\left[s\left(Q_{j}\right), s_{1, j}\right]$ and $C_{j}\left[t_{1, j}, t\left(Q_{j}\right)\right]$ have length $3 k$. Set $Q_{j}^{-}=C\left[s\left(Q_{j}\right), s_{1, j}\left[\right.\right.$ and $\left.\left.Q_{j}^{+}=C\right] t_{1, j}, t\left(Q_{j}\right)\right]$.

Set $I\left(C_{1}\right)=C_{1} \cup \bigcup_{C_{j} \in \mathcal{C} \cap C_{1}} Q_{j}, I^{+}\left(C_{1}\right)=\bigcup_{C_{j} \in \mathcal{C} \cap C_{1}} Q_{j}^{+}$and $I^{-}\left(C_{1}\right)=\bigcup_{C_{j} \in \mathcal{C} \cap C_{1}} Q_{j}^{-}$. Observe that Lemma 26 implies directly the following.

Corollary 27. Let \mathcal{C} be a k-suitable collection of directed cycles and let $C_{1} \in \mathcal{C}$.
(i) $I^{+}\left(C_{1}\right)$ and $I^{-}\left(C_{1}\right)$ are vertex-disjoint digraphs.
(ii) $I^{-}\left(C_{1}\right) \cap C_{j}=Q_{j}^{-}$and $I^{+}\left(C_{1}\right) \cap C_{j}=Q_{j}^{+}$, for all $C_{j} \in \mathcal{C} \cap C_{1}$.

Lemma 28. Let \mathcal{C} be a k-suitable collection of directed cycles in a $B(k, 1 ; k)$-subdivisionfree digraph D. Let C_{1} be a directed cycle of \mathcal{C} and let A be a connected component of $\cup \mathcal{C}-I\left(C_{1}\right)$. All vertices of $\bigcup(\mathcal{C} \cap A)-A$ belong to a unique directed cycle C_{A} of \mathcal{C}.

Proof. Suppose it is not the case. Then there are two distinct directed cycles C_{2}, C_{3} of $\mathcal{C} \cap A$ that intersect with C_{1}. Observe that there is a sequence of distinct directed cycles $C_{2}=C_{1}^{*}, C_{2}^{*}, \ldots, C_{q}^{*}=C_{3}$ of $\mathcal{C} \cap A$ such that $C_{j}^{*} \cap C_{j+1}^{*} \neq \emptyset$ because A is a connected component of $\cup \mathcal{C}-I\left(C_{1}\right)$. Free to consider the first $C_{j}^{*} \neq C_{2}$ in this sequence such that $V\left(C_{j}^{*}\right) \nsubseteq A$ in place of C_{3}, we may assume that all $C_{j}^{*}, 2 \leqslant j \leqslant q-1$, have all their vertices in A. In particular, there exists a (C_{3}, C_{2})-dipath Q_{A} in $D[A]$.

Let $R_{3}=C_{1}\left[t_{1,2}, t_{1,3}\right] \odot Q_{3}$. Clearly, R_{3} has length at least $3 k$. Let v be the last vertex in $Q_{2} \cap R_{3}$ along Q_{2}. (This vertex exists since $t_{1,2} \in Q_{2} \cap R_{3}$.) Since there is a $\left(C_{3}, C_{2}\right)$-dipath in $D[A]$, by Corollary 27, $C_{3}\left[t\left(Q_{3}\right), s\left(Q_{A}\right)\right]$ is in $D[A]$. Thus there exists a $\left(t\left(Q_{3}\right), C_{2}\right)$-dipath R_{A} in $D[A]$. Let w be its terminal vertex. By definition of A, w is in $C_{2}\left[t\left(Q_{2}\right), s\left(Q_{2}\right)\right]$, therefore $C_{2}[w, v]$ has length at least $3 k$ since it contains $C_{2}\left[s\left(Q_{2}\right), s_{1,2}\right]$. Consequently, both $C_{2}\left[v, t\left(Q_{2}\right)\right]$ and $R_{3}\left[v, t\left(Q_{3}\right)\right]$ have length less than k for otherwise the union of $C_{2}[w, v], C_{2}[v, w]$ and $R_{3}\left[v, t\left(Q_{3}\right)\right] \odot R_{A}$ would be a $B(k, 1 ; k)$-subdivision. In particular, $v \neq t\left(Q_{2}\right)$. This implies that $s_{2,3} \in V\left(Q_{2} \cap R_{3}\right)$. Moreover, $Q_{2}\left[s_{2,3}, t\left(Q_{2}\right)\right]$ has length less than $2 k$ because $Q_{2}\left[s_{2,3}, v\right]$ is a subdipath of $P_{2,3}$ and so has length less than k. Therefore $C_{2}\left[t_{1,2}, s_{2,3}\right]=Q_{2}\left[t_{1,2}, s_{2,3}\right]$ has length at least k because Q_{2} has length at least $3 k$. It follows that the union of $C_{2}\left[s_{2,3}, t_{1,2}\right], C_{2}\left[t_{1,2}, s_{2,3}\right]$ and $R_{3}\left[t_{1,2}, s_{2,3}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.

Lemma 29. Let \mathcal{C} be a k-suitable collection of directed cycles in a $B(k, 1 ; k)$-subdivisionfree digraph. For any directed cycle $C_{1} \in \mathcal{C}$, the digraph $I^{+}\left(C_{1}\right)$ has no directed cycle.

Proof. Suppose for a contradiction that $I^{+}\left(C_{1}\right)$ contains a directed cycle C^{\prime}. Clearly, it must contain arcs from at least two Q_{j}^{+}.

Assume that C^{\prime} contains several vertices of Q_{j}^{+}. Necessarily, there must be two vertices x, y of $Q_{j}^{+} \cap C^{\prime}$ such that no vertex of $\left.C^{\prime}\right] x, y\left[\right.$ is in C_{j} and y is before x in Q_{j}^{+}. Therefore
$C^{\prime}[x, y] \odot Q^{+}[y, x]$ is also a directed cycle in $I^{+}\left(C_{1}\right)$. Free to consider this cycle, we may assume that $C^{\prime} \cap Q_{j}^{+}$is a dipath.

Doing so, for all j, we may assume that $C^{\prime} \cap Q_{j}^{+}$is a dipath for every $C_{j} \in \mathcal{C} \cap C_{1}$. Without loss of generality, we may assume that there are directed cycles C_{2}, \ldots, C_{p} such that

- C^{\prime} is in $Q_{2}^{+} \cup \cdots \cup Q_{p}^{+}$;
- for all $2 \leqslant j \leqslant p, C^{\prime} \cap Q_{j}^{+}$is a dipath P_{j}^{+}with initial vertex a_{j} and terminal vertex b_{j};
- the a_{j} and the b_{j} appear according to the following order around $C^{\prime}:\left(a_{2}, b_{p}, a_{3}, b_{2}\right.$, $\ldots, a_{p}, b_{p-1}, a_{2}$) with possibly $a_{j+1}=b_{j}$ for some $1 \leqslant j \leqslant p$ where $a_{p+1}=a_{2}$.

For $2 \leqslant j \leqslant p$, set $B_{j}=C_{j}\left[b_{j}, a_{j}\right]$. Note that B_{j} has length at least $4 k$, because Q_{2}^{+}has length less than $3 k$.

Consider the closed directed walk

$$
W=C_{p}\left[a_{2}, b_{p}\right] \odot B_{p} \odot C_{p-1}\left[a_{p}, b_{p-1}\right] \odot \cdots \odot B_{3} \odot C_{2}\left[a_{3}, b_{2}\right] \odot B_{2} .
$$

W contains a directed cycle C_{W}. Wihtout loss of generality, we may assume that this cycle is of the form

$$
C_{W}=B_{q}\left[v, a_{q}\right] \odot C_{q-1}\left[a_{q}, b_{q-1}\right] \odot \cdots \odot B_{3} \odot C_{2}\left[a_{3}, b_{2}\right] \odot B_{2}\left[b_{2}, v\right]
$$

for some vertex $v \in B_{2} \cap B_{q}$. (The case when W is a directed cycle corresponds to $q=p+1$ and $B_{2}=B_{p+1}$.)

Note that necessarily, $q \geqslant 4$, for B_{3} does not intersect B_{2}, for otherwise $b_{3}=b_{2}$ since the intersection of C_{2} and C_{3} is a dipath.

Observe that $C_{W}\left[b_{2}, v\right]=C_{2}\left[b_{2}, v\right]$ or $C_{W}\left[v, a_{4}\right]$ has length at least k. Indeed, if $q=$ $p+1$, then it follows from the fact that B_{2} has length as least $4 k$; if $5 \leqslant q \leqslant p$, then it comes from the fact that B_{4} is a subdipath of $C_{W}\left[v, a_{r}\right]$; if $q=4$, then it follows from Lemma 26 applied to C_{3}, C_{2}, C_{4} in the role of C_{1}, C_{2}, C_{3} respectively. In both cases, $C_{W}\left[b_{2}, a_{4}\right]$ has length at least k.

Furthermore, $C_{W}\left[a_{4}, b_{2}\right]$ has length at least k because it contains B_{3}. Therefore the union of $C_{W}\left[b_{2}, a_{4}\right], C_{W}\left[a_{4}, b_{2}\right]$ and $C^{\prime}\left[b_{2}, a_{4}\right]=C_{3}\left[b_{3}, a_{4}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.

Lemma 30. Let \mathcal{C} be a k-suitable collection of directed cycles in a $B(k, 1 ; k)$-subdivisionfree digraph.

Let ϕ be a partial colouring of a directed cycle $C_{1} \in \mathcal{C}$ such that only a path of length at most $7 k$ is coloured and this path is rainbow-coloured. Then ϕ can be extended into a colouring of $I\left(C_{1}\right)$ using α_{k} colours, such that every subdipath of length at most $7 k$ of C_{1} is rainbow-coloured and Q_{j} is rainbow-coloured, for every $C_{j} \in \mathcal{C} \cap C_{1}$.

Proof. We can easily extend ϕ to C_{1} using $14 k$ colours (including the at most $7 k$ already used colours) so that every subdipath of C_{1} of length $7 k$ is rainbow-coloured.

We shall now prove that there exists a colouring ϕ^{+}of $I^{+}\left(C_{1}\right)$ with $\left(6 k^{2}\right)^{3 k}$ (new) colours so that Q_{j}^{+}is rainbow-coloured for every $C_{j} \in \mathcal{C} \cap C_{1}$, and a colouring ϕ^{-}of $I^{-}\left(C_{1}\right)$ with $\left(6 k^{2}\right)^{3 k}$ (other new) colours so that Q_{j}^{-}is rainbow-coloured for every $C_{j} \in \mathcal{C} \cap C_{1}$. The union of the three colourings ϕ, ϕ^{+}, and ϕ^{-}is clearly the desired colouring of $I\left(C_{1}\right)$. (Observe that a vertex of $I\left(C_{1}\right)$ is coloured only once because $C_{1}, I^{+}\left(C_{1}\right)$ and $I^{-}\left(C_{1}\right)$ are disjoint by Corollary 27.)

It remains to prove the existence of ϕ^{+}and ϕ^{-}. By symmetry, it suffices to prove the existence of ϕ^{+}. To do so, we consider an auxiliary digraph D_{1}^{+}. For each $C_{j} \in \mathcal{C} \cap C_{1}$, let T_{j}^{+}be the transitive tournament whose hamiltonian dipath is Q_{j}^{+}. Let $D_{1}^{+}=\bigcup_{C_{j} \in \mathcal{C} \cap C_{1}} T_{j}^{+}$. The arcs of $A\left(T_{j}^{+}\right) \backslash A\left(Q_{j}^{+}\right)$are called fake arcs. Clearly, ϕ^{+}exists if and only if D_{1}^{+}admits a proper $\left(6 k^{2}\right)^{3 k}$-colouring. Henceforth it remains to prove the following claim.
Claim 31. $\chi\left(D_{1}^{+}\right) \leqslant\left(6 k^{2}\right)^{3 k}$.
Subproof. To each vertex v in $I^{+}\left(C_{1}\right)$ we associate the set $\operatorname{Dis}(v)$ of the lengths of the $C_{j}\left[t_{1, j}, v\right]$ for all directed cycles $C_{j} \in \mathcal{C} \cap C_{1}$ containing v such that $C_{j}\left[t_{1, j}, v\right]$ has length at most $3 k$.

Suppose for a contradiction that $\chi\left(D_{1}^{+}\right) \leqslant\left(6 k^{2}\right)^{3 k}$. By Theorem $1, D_{1}^{+}$admits a dipath of length $\left(6 k^{2}\right)^{3 k}$. Replacing all fake arcs (u, v) in some $A\left(T_{j}^{+}\right)$, by $Q_{j}^{+}[u, v]$ we obtain a directed walk P in $I^{+}\left(C_{1}\right)$ of length at least $\left(6 k^{2}\right)^{3 k}$. By Lemma 29, P is necessarily a dipath. Set $P=\left(v_{1}, \ldots, v_{p}\right)$. We have $p \geqslant\left(6 k^{2}\right)^{3 k}$.

For $1 \leqslant i \leqslant p$, let $m_{i}=\min \operatorname{Dis}\left(v_{i}\right)$. Lemma 20 applied to $\left(m_{i}\right)_{1 \leqslant i \leqslant p}$ yields a set L of $6 k^{2}$ indices such that for any $i<j \in L, m_{i}=m_{j}$ and $m_{k}>m_{i}$, for all $i<k<j$. Let $l_{1}<l_{2}<\cdots<l_{6 k^{2}}$ be the elements of L and let $m=m_{l_{1}}=\cdots=m_{l_{6 k^{2}}}$.

For $1 \leqslant j \leqslant 6 k^{2}-1$, let $M_{j}=\max \bigcup_{l_{j} \leqslant i<l_{j+1}} \operatorname{Dis}\left(v_{i}\right)$. By definition $M_{j} \leqslant 3 k$. Applying Lemma 21 to $\left(M_{j}\right)_{1 \leqslant j \leqslant 6 k^{2}}$, we get a sequence of size $2 k M_{j_{0}+1}, \ldots, M_{j_{0}+2 k}$ such that $M_{j_{0}+2 k}$ is the greatest. For sake of simplicity, we set $\ell_{i}=j_{0}+i$ for $1 \leqslant i \leqslant 2 k$. Let f be the smallest index not smaller than $\ell_{2 k}$ for which $M_{\ell_{2 k}} \in \operatorname{Dis}\left(v_{f}\right)$.

Let j_{1} be an index such that $C_{j_{1}}\left[t_{1, j_{1}}, v_{\ell_{1}}\right]$ has length m and set $P_{1}=C_{j_{1}}\left[t_{1, j_{1}}, v_{\ell_{1}}\right]$. Let j_{2} be an index such that $C_{j_{2}}\left[t_{1, j_{2}}, v_{\ell_{k}}\right]$ has length m and set $P_{2}=C_{j_{2}}\left[t_{1, j_{2}}, v_{\ell_{k}}\right]$. Let j_{3} be an index such that $C_{j_{3}}\left[t_{1, j_{3}}, v_{f}\right]$ has length $M_{\ell_{2 k}}$ and set $P_{3}=C_{j_{3}}\left[v_{f}, s_{1, j_{3}}\right]$ (some vertices of P_{3} are not in $I^{+}\left(C_{1}\right)$).

Note that any internal vertex x of P_{1} or P_{2} has an integer in $\operatorname{Dis}(x)$ which is smaller than m and every internal vertex y of P_{3} has an integer in $\operatorname{Dis}(y)$ which is greater than $M_{\ell_{2 k}}$, or does not belong to $I^{+}\left(C_{1}\right)$. Hence, P_{1}, P_{2} and P_{3} are disjoint from $P\left[v_{\ell_{1}}, v_{f}\right]$.

We distinguish between the intersection of P_{1}, P_{2} and P_{3} :

- Suppose P_{3} does not intersect $P_{1} \cup P_{2}$.
- Assume first that P_{1} and P_{2} are disjoint. If $s\left(P_{1}\right)$ is in $C_{1}\left[t\left(P_{3}\right), s\left(P_{2}\right)\right]$, then the union of $P_{1} \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3} \odot C_{1}\left[t\left(P_{3}\right), s\left(P_{1}\right)\right]$ and $C_{1}\left[s\left(P_{1}\right), s\left(P_{2}\right)\right] \odot P_{2}$ is a $B(k, 1 ; k)$-subdivision, a contradiction. If $s\left(P_{1}\right)$ is in $C_{1}\left[s\left(P_{2}\right), t\left(P_{3}\right)\right]$, then
the union of $C_{1}\left[s\left(P_{2}\right), s\left(P_{1}\right)\right] \odot P_{1} \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3} \odot C_{1}\left[t\left(P_{3}\right), s\left(P_{2}\right)\right]$, and P_{2} is a $B(k, 1 ; k)$-subdivision, a contradiction.
- Assume now P_{1} and P_{2} intersect. Let u be the last vertex along P_{2} on which they intersect. The union of $P_{1}\left[u, v_{\ell_{1}}\right] \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3} \odot$ $C\left[t\left(P_{3}\right), s\left(P_{1}\right)\right] \odot P_{1}\left[s\left(P_{1}\right), u\right]$, and $P_{2}\left[u, v_{\ell_{k}}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.
- Assume P_{3} intersects $P_{1} \cap P_{2}$. Let v be the first vertex along P_{3} in $P_{1} \cap P_{2}$ and let u be the last vertex of $P_{1} \cap P_{2}$ along P_{2}. The union of $P_{1}\left[u, v_{\ell_{1}}\right] \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P\left[v_{\ell_{k}}, v_{f}\right] \odot$ $P_{3}\left[v_{f}, v\right] \odot P_{1}[v, u]$, and $P_{2}\left[u, v_{\ell_{k}}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.
- Assume now that P_{3} intersects $P_{1} \cup P_{2}$ but not $P_{1} \cap P_{2}$. Let v be the first vertex along P_{3} in $P_{1} \cup P_{2}$.
- If $v \in P_{2}$, let u be the last vertex on $P_{2} \cap P_{3}$ along P_{3}. Observe that $P_{3}[v, u]$ is also a subdipath of P_{2} and therefore contains no vertex of P_{1}. Furthermore, there is a dipath Q from u to $v_{\ell_{1}}$ in $P_{3}\left[u, t\left(P_{3}\right)\right] \cup C_{1} \cup P_{1}$. Hence, the union of $P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3}\left[v_{f}, v\right], Q \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right]$, and $P_{2}\left[u, v_{\ell_{k}}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.
- If $v \in P_{1}$, let u be the last vertex on $P_{1} \cap P_{3}$ along P_{3}. Observe that $P_{3}[v, u]$ is also a subdipath of P_{1} and therefore contains no vertex of P_{2}. Furthermore, there is a dipath Q from u to $v_{\ell_{k}}$ in $P_{3}\left[u, t\left(P_{3}\right)\right] \cup C_{1} \cup P_{2}$. The union of $P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3}\left[v_{f}, u\right], P_{1}\left[u, v_{\ell_{1}}\right] \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right]$ and Q is a $B(k, 1 ; k)$-subdivision, a contradiction.

Claim 31 shows the existence of ϕ^{+}and completes the proof of Lemma 30.
We are now ready to prove Lemma 25. In fact, we prove the following stronger statement.

Lemma 32. If there exists a partial colouring ϕ such that one of the directed cycle C_{1} has a path of length less than $7 k$ which is rainbow-coloured, then we can extend this colouring to all $D[\mathcal{C}]$ using less than α_{k} colours such that, on each directed cycle, every subdipath of length $7 k$ is rainbow-coloured.

Proof. By induction on the number of directed cycles in \mathcal{C}. Consider a rainbow-colouring of a subdipath of length less than $7 k$ of a directed cycle $C_{1} \in \mathcal{C}$. By Lemma 30, we can extend this colouring to a colouring ϕ_{1} of $I\left(C_{1}\right)$ at most α_{k} colours. Note that the non-coloured vertices of $\bigcup \mathcal{C}$ are in one of the connected components of $\bigcup \mathcal{C}-I\left(C_{1}\right)$. Let A be a connected component of $\bigcup \mathcal{C}-I\left(C_{1}\right)$. The coloured (by ϕ_{1}) vertices of $\mathcal{C} \cap A$ are those of $(\mathcal{C} \cap A)-A$. Hence, by Lemma 28 , they all belong to some directed cycle C_{j} and so to the dipath Q_{j} which has length at most $7 k$. Hence, by the induction hypothesis, we can extend ϕ_{1} to A. Doing this for each component, we extend ϕ_{1} to the whole $\bigcup \mathcal{C}$.

Set $\beta_{k}=k\left(4 k^{2}+2\right)\left(2 \cdot(4 k)^{4 k}+1\right) \alpha_{k}$. The second step of the proof is the following lemma.

Lemma 33. Let \mathcal{C} be a k-suitable collection of directed cycles in a $B(k, 1 ; k)$-subdivisionfree digraph D. For every component \mathcal{S} of \mathcal{C}, we have $\chi(D[\mathcal{S}]) \leqslant \beta_{k}$.

Proof. We define a sort of Breadth-First-Search for \mathcal{S}. Let C_{0} be a directed cycle of \mathcal{S} and set $L_{0}=\left\{C_{0}\right\}$. For every directed cycle C_{s} of $\mathcal{S} \cap C_{0}$, we put C_{s} in level L_{1} and say that C_{0} is the father of C_{s}. We build the levels L_{i} inductively until all directed cycles of \mathcal{S} are put in a level : L_{i+1} consists of every directed cycle C_{l} not in $\bigcup_{j \leqslant i} L_{j}$ such that there exists a directed cycle in L_{i} intersecting C_{l}. For every $C_{l} \in L_{i+1}$, we choose one of the directed cycles in L_{i} intersecting it to be its father. Henceforth every directed cycle in L_{i+1} has a unique father even though it might intersect many directed cycles of L_{i}. A directed cycle C is an ancestor of C^{\prime} if there is a sequence $C=C_{1}, \ldots, C_{q}=C^{\prime}$ such that C_{i} is the father of C_{i+1} for all $i \in[q-1]$.

For a vertex x of $\bigcup \mathcal{S}$, we say that x belongs to level L_{i} if i is the smallest integer such that there exists a directed cycle in L_{i} containing x. Observe that the vertices of each directed cycle C_{l} of \mathcal{S} belong to consecutive levels, that is there exists i such that $V\left(C_{l}\right) \subseteq L_{i} \cup L_{i+1}$.

To bound the chromatic number of $D[\mathcal{S}]$, we partition its arc set in $\left(A_{0}, A_{1}, A_{2}\right)$, where

- A_{0} is the set of arcs of $D[\mathcal{S}]$ which ends belong to the same level, and
- A_{1} is the set of arcs of $D[\mathcal{S}]$ which ends belong to different levels i and j with $|i-j|<k$.
- A_{2} is the set of arcs of $D[\mathcal{S}]$ which ends belong to different levels i and j with $|i-j| \geqslant k$.

For $i \in\{0,1,2\}$, let D_{i} be the spanning subdigraph of $D[\mathcal{S}]$ with arc set A_{i}. We shall now bound the chromatic numbers of D_{0}, D_{1} and D_{2}.
Claim 34. $\chi\left(D_{1}\right) \leqslant k$.
Subproof. Let ϕ_{1} be the colouring that assigns to all vertices of level L_{i} the colour i modulo k, it is easy to see that ϕ_{1} is a proper colouring of D_{1}.

Let C_{l} be a directed cycle of $L_{i}, i \geqslant 1$ and $C_{l^{\prime}}$ its father.
Let p_{l}^{+}and r_{l}^{+}be the vertices such that $C_{l}\left[t_{l, l^{\prime}}, p_{l}^{+}\right]$and $C_{l}\left[p_{l}^{+}, r_{l}^{+}\right]$have length k. Let p_{l}^{-}and r_{l}^{-}be the vertices such that $C_{l}\left[p_{l}^{-}, s_{l, l^{\prime}}\right]$ and $C_{l}\left[r_{l}^{-}, p_{l}^{-}\right]$have length k. Let R_{l}^{-}be the set of vertices of $\left.C_{l}\right] r_{l}^{-}, s_{l, l^{\prime}}\left[, P_{l}^{-}\right.$the set of vertices of $\left.C_{l}\right] p_{l}^{-}, s_{l, l^{l}}, R_{l}^{+}$the set of vertices of $\left.C_{l}\right] t_{l, l^{\prime}}, r_{l}\left[, P_{l}^{+}\right.$the set of vertices of $\left.C_{l}\right] t_{l, l^{\prime}}, p_{l}^{+}\left[\right.$, and finally let R_{l}^{\prime} be the set of vertices belonging to L_{i} in $C_{l} \backslash\left\{R_{l}^{+} \cup R_{l}^{-}\right\}$.
Claim 35. Let x be a vertex in L_{i} with $i \geqslant 1$. Let C_{l} and C_{m} be two directed cycles of L_{i} containing x. Then either $x \in P_{l}^{+}$and $x \in P_{m}^{+}$, or $x \in P_{l}^{-}$and $x \in P_{m}^{-}$.
Subproof. Suppose for a contradiction that $x \in P_{l}^{+}$and $x \notin P_{m}^{+}$. Let $C_{l^{\prime}}$ and $C_{m^{\prime}}$ be the fathers of C_{l} and C_{m} respectively (they can be the same directed cycle). By definition of the L_{j} 's, there exists a dipath P from $t_{l, l^{\prime}}$ to $s_{m, m^{\prime}}$ only going through $C_{l^{\prime}}, C_{s^{\prime}}$ and their
ancestors. In particular P is disjoint from $C_{l}-C_{l^{\prime}}$ and $C_{s}-C_{s^{\prime}}$. Observe that $C_{l}\left[s_{l, l^{\prime}}, t_{l, m}\right]$ has length at most $3 k$ because it is contained in the union of $P_{l, l^{\prime}}, P_{l, m}$, and $C_{l}\left[t_{l, l^{\prime}}, x\right]$ which has length at most k because $x \in P_{l}^{+}$. Hence $C_{l}\left[t_{l, m}, s_{l, l^{\prime}}\right]$ has length at least k. Moreover $C_{m}\left[s_{m, m^{\prime}}, t_{l, m}\right]$ contains $C_{m}\left[t_{m, m^{\prime}}, x\right]$ which has length at least k because $x \notin P_{m}^{+}$. Thus the union of $C_{l}\left[t_{l, m}, s_{l, l^{\prime}}\right] \odot P, C_{m}\left[t_{l, m}, s_{m, m^{\prime}}\right]$, and $C_{m}\left[s_{m, m^{\prime}}, t_{l, m}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction. The case where $x \in P_{l}^{-}$and $x \notin P_{m}^{-}$is symmetrical and the case where x does not belong to $P_{l}^{-} \cup P_{l}^{+} \cup P_{m}^{-} \cup P_{m}^{+}$is identical.

Claim 35 implies that each level L_{i} may be partitioned into sets X_{i}^{+}, X_{i}^{-}and X_{i}^{\prime}, where X_{i}^{+}(resp. X_{i}^{-}) is the set of vertices x of L_{i} such that every $x \in R_{l}^{+}$(resp. $x \in R_{l}^{-}$) for every directed cycle C_{l} of L_{i} containing x and X_{i}^{\prime} is set of vertices in L_{i} but not in $X_{i}^{+} \cup X_{i}^{-}$. Set $X^{+}=V\left(C_{0}\right) \cup \bigcup_{i \geqslant 1} X_{i}^{+}, X^{-}=\bigcup_{i \geqslant 1} X_{i}^{-}$and $X^{\prime}=\bigcup_{i \geqslant 1} X_{i}^{\prime}$. Clearly $\left(X^{+}, X^{-}, X^{\prime}\right)$ is a partition of $V(D[\mathcal{S}])$.
Claim 36. $\chi\left(D_{2}\right) \leqslant 4 k^{2}+2$.
Subproof. Since $X^{+} \cup X^{-} \cup X^{\prime}=V\left(D_{2}\right)$, we have $\chi\left(D_{2}\right) \leqslant \chi\left(D_{2}\left[X^{+} \cup X^{\prime}\right]\right)+\chi\left(D_{2}\left[X^{-} \cup\right.\right.$ $\left.\left.X^{\prime}\right]\right)$. We shall prove that $\chi\left(D_{2}\left[X^{+} \cup X^{\prime}\right]\right) \leqslant 2 k^{2}+1$ and $\chi\left(D_{2}\left[X^{-} \cup X^{\prime}\right]\right) \leqslant 2 k^{2}+1$, which imply the result.

Let x and y be two adjacent vertices of $D_{2}\left[X^{+} \cup X^{\prime}\right]$. Let L_{i} be the level of x and L_{j} be the level of y. Without loss of generality, we may assume that $j \geqslant i+k$. Let C_{x} be the directed cycle of L_{i} such that $x \in C_{x}$ and C_{y} the directed cycle of L_{j} such that $y \in C_{y}$. By considering ancestors of C_{x} and C_{y}, there is a shortest sequence of directed cycles C_{1}, \ldots, C_{p} such that $C_{1}=C_{x}$ and $C_{p}=C_{y}$ and for all $l \in[p-1]$, either C_{l} is the father of C_{l+1} or C_{l+1} is the father of C_{l}. In particular C_{p-1} is the father of C_{p}. Since $y \in X^{+} \cup X^{\prime}$, then $C\left[y, t_{p-1, p}\right]$ has length at least k.

Assume that (x, y) is an arc. In $\bigcup_{l=1}^{p-1} C_{l}$, there is a dipath P from $t_{p-1, p}$ to x. This dipath has length at least $k-1$ because it must go through all levels $L_{i^{\prime}}, i \leqslant i^{\prime} \leqslant j-1$ because the vertices of any directed cycle of \mathcal{S} are in two consecutive levels. Hence the union of $P \odot(x, y), C_{p}\left[t_{p-1, p}, y\right]$, and $C_{p}\left[y, t_{p-1, p}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction. Hence (y, x) is an arc.

Suppose that C_{x} is not an ancestor of C_{y}. In particular, C_{2} is the father of C_{1} and there exists a path P from $t_{1,2}$ to y in $\bigcup_{l=2}^{p-1} C_{l}$ of length at least $k-1$ and internally disjoint from C_{1}. Hence the union of $P \odot y x, C_{1}\left[x, t_{1,2}\right]$ and $C_{1}\left[t_{1,2}, x\right]$ is a subdivsion of $B(k, 1 ; k)$. Hence C_{x} is an ancestor of C_{y}.

In particular, C_{l} is the father of C_{l+1} for all $l \in[p-1]$. Let P be the dipath from $t_{1,2}$ to y in $\bigcup_{l=2}^{p} C_{l}$. It has length at least $k-1$ because it must go through all levels $L_{i}, 1 \leqslant i \leqslant p-1 . C_{1}\left[x, t_{1,2}\right]$ has length less than k, for otherwise the union of $P \odot y x$, $C_{1}\left[x, t_{1,2}\right]$ and $C_{1}\left[t_{1,2}, x\right]$ would be a subdivision of $B(k, 1 ; k)$.

To summarize, the only arcs of $D_{2}\left[X^{+} \cup X^{\prime}\right]$ are arcs (y, x) such that C_{x} is an ancestor of C_{y} and $C_{1}\left[x, t_{1,2}\right]$ has length less than k with $C_{1} \ldots C_{p}$ the sequence of directed cycles such that $C_{1}=C_{x}$ to $C_{p}=C_{y}$ and C_{l} is the father of C_{l+1} for all $l \in[p-1]$. In particular, $D_{2}\left[X^{+} \cup X^{\prime}\right]$ is acyclic.

Let y be a vertex of $D_{2}\left[X^{+} \cup X^{\prime}\right]$. Let L_{p} be the level of y and let C_{0}, \ldots, C_{p} be the sequence of directed cycles such that C_{l-1} is the father of C_{l} for all $l \in[p]$. For $0 \leqslant l \leqslant p-1$, let R_{l} be the subdipath of C_{l} of length $k-1$ terminating at $t_{l, l+1}$. By the above property, the out-neighbbours of y are in $\bigcup_{l=0}^{p-1} R_{l}$. Suppose for a contradiction that y has out-degree at least $2 k^{2}+1$. Then there are $2 k+1$ distinct indices $l_{1}<\cdots<l_{2 k+1}$ such that for all $i \in[2 k+1], C_{l_{i}}$ contains an out-neighbour X_{i} of y. Let P be the shortest dipath from x_{1} to y in $\bigcup_{l=l_{1}}^{p} C_{l}$. This dipath intersects all directed cycles $C_{l} l_{1} \leqslant l \leqslant p$. Let z be the first vertex of P along $C_{l_{k+1}}\left[x_{k+1}, t_{l_{k+1}, l_{k+2}}\right]$. Vertex z belongs to either $L_{l_{k+1}-1}$ or $L_{l_{k+1}}$. Thus $P\left[x_{1}, z\right]$ and $P[z, y]$ have length at least $k-1$ and k respectively since P goes through all levels from $L_{l_{1}}$ to L_{p}. Hence the union of $\left(y, x_{1}\right) \odot P\left[x_{1}, z\right],\left(y, x_{k+1}\right) \odot C_{l_{k+1}}\left[x_{k+1}, z\right]$, and $P[z, y]$ is a $B(k, 1 ; k)$-subdivision, a contradiction. Therefore $D_{2}\left[X^{+} \cup X^{\prime}\right]$ has maximum out-degree at most $2 k^{2}$.
$D_{2}\left[X^{+} \cup X^{\prime}\right]$ is acyclic and has maximum out-degree at most $2 k^{2}$. Therefore it is $2 k^{2}{ }^{-}$ degenerate, and so $\chi\left(D_{2}\left[X^{+} \cup X^{\prime}\right]\right) \leqslant 2 k^{2}+1$. By symmetry, we have $\chi\left(D_{2}\left[X^{-} \cup X^{\prime}\right]\right) \leqslant$ $2 k^{2}+1$.

To bound $\chi\left(D_{0}\right)$ we partition the vertex set according to a colouring ϕ of $\bigcup \mathcal{S}$ given by Lemma 25. For every colour $c \in\left[\alpha_{k}\right]$, let $X^{+}(c)$ be the set $X^{+} \cap \phi^{-1}(c)$ of vertices of X^{+}coloured c, and $X^{-}(c)$ the set $X^{-} \cap \phi^{-1}(c)$ of vertices of X^{-}coloured c. Similarly, let $X_{i}^{+}(c)=X_{i}^{+} \cap \phi^{-1}(c)$ and $X_{i}^{-}(c)=X_{i}^{-} \cap \phi^{-1}(c)$. We denote by $D_{0}^{+}(c)$ (resp. $D_{0}^{-}(c)$, $\left.D_{0}^{\prime}(c)\right)$ the subdigraph of D_{0} induced by the vertices of $X^{+}(c)$, (resp. $\left.X^{-}(c), X^{\prime}(c)\right)$.
Claim 37. $\chi\left(D_{0}^{\prime}(c)\right)=1$ for all $c \in\left[\alpha_{k}\right]$.
Subproof. We need to prove that $D_{0}^{\prime}(c)$ has no arc. Suppose for a contradiction that (x, y) is an arc of $D_{0}^{\prime}(c)$. By definition of D_{0}, the vertices x and y are in a same level L_{i}. Let C_{l} and C_{m} be two directed cycles of L_{i} such that $x \in C_{l}$ and $y \in C_{m}$.

If $C_{l}=C_{m}$, then both $C_{l}[x, y]$ and $C_{l}[y, x]$ have length at least $7 k$ because the subdipaths of length $7 k$ of C_{l} are rainbow-coloured by ϕ. Hence the union of those paths and (x, y) is a $B(k, 1 ; k)$-subdivision, a contradiction. Henceforth, C_{l} and C_{m} are distinct directed cycles.

Suppose first that C_{l} and C_{m} intersect. By Claim 35, $s_{l, m}$ belongs to P_{l}^{-}, P_{l}^{+}or L_{i-1}, and by construction of $R_{l}^{\prime}, C_{l}\left[x, s_{l, m}\right]$ and $C_{l}\left[s_{l, m}, x\right]$ are both longer than k. Therefore they form with $(x, y) \odot C_{m}\left[y, s_{l, m}\right]$ a $B(k, 1 ; k)$-subdivision, a contradiction.

Suppose now that C_{l} and C_{m} do not intersect. Let C_{l}^{\prime} and C_{m}^{\prime} be the fathers of C_{l} and C_{m} respectively. Let P be the dipath from $s_{m, m^{\prime}}$ to $s_{l, l^{\prime}}$ in $\bigcup_{j<i} L_{j}$. Then the union of $C_{l}\left[s_{l, l^{\prime}}, x\right],(x, y) \odot C_{m}\left[y, s_{m, m^{\prime}}\right] \odot P$, and $C_{l}\left[x, s_{l, l^{\prime}}\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.

Claim 38. $\chi\left(D_{0}^{+}(c)\right) \leqslant(4 k)^{4 k}$ for all $c \in\left[\alpha_{k}\right]$.
Subproof. Set $p=(4 k)^{4 k}$. Suppose for a contradiction that there exists c such that $\chi\left(D_{0}^{+}(c)\right)>p$. Observe that $D_{0}^{+}(c)$ is the disjoint union of the $D\left[X_{i}^{+}(c)\right]$. Thus there exists a level $L_{i_{0}}$ such that $\chi\left(D\left[X_{i}^{+}(c)\right]\right)>p$. Moreover $i_{0}>0$, because the vertices of
C_{0} coloured c form a stable set. By Theorem 1, there exists a dipath $P=\left(v_{0}, \ldots, v_{p}\right)$ of length p in $D\left[X_{i}^{+}(c)\right]$.

Suppose that P contains two vertices x and y of a same directed cycle C of \mathcal{S}. Without loss of generality, we may assume that $P] x, y[$ contains no vertices of C. Now both $C[x, y]$ and $C[y, x]$ have length at least $7 k$ because the subdipaths of length $7 k$ of C are rainbowcoloured by ϕ. Thus the union of $C[x, y], P[x, y]$ and $C[y, x]$ is a $B(k, 1 ; k)$-subdivision, a contradiction. Hence P intersects every directed cycle of \mathcal{S} at most once.

For every $v \in V(P)$, let $\operatorname{Len}(v)$ be the set of lengths of $C_{l}\left[t_{l, l^{\prime}}, v\right]$ for all directed cycles $C_{l} \in L_{i_{0}}$ containing v and whose father is $C_{l^{\prime}}$.

For $1 \leqslant i \leqslant p$, let $m_{i}=\min \operatorname{Len}\left(v_{i}\right)$. By Claim 35, Len $\left(v_{i}\right) \subseteq[2 k]$. Lemma 20 applied to $\left(m_{i}\right)_{1 \leqslant i \leqslant p}$ yields a set L of $4 k^{2}$ indices such that for any $i<j \in L, m_{i}=m_{j}$ and $m_{k}>m_{i}$, for all $i<k<j$. Let $l_{1}<l_{2}<\cdots<l_{4 k^{2}}$ be the elements of L and let $m=m_{l_{1}}=\cdots=m_{l_{4 k k^{2}}}$.

For $1 \leqslant j \leqslant 4 k^{2}-1$, let $M_{j}=\max \bigcup_{l_{j} \leqslant i<l_{j+1}} \operatorname{Len}\left(v_{i}\right)$. By definition $M_{j} \leqslant 2 k$. Applying Lemma 21 to $\left(M_{j}\right)_{1 \leqslant j \leqslant 4 k^{2}}$, we get a sequence of size $2 k M_{j_{0}+1}, \ldots, M_{j_{0}+2 k}$ such that $M_{j_{0}+2 k}$ is the greatest. For sake of simplicity, we set $\ell_{i}=j_{0}+i$ for $1 \leqslant i \leqslant 2 k$. Let f be the smallest index not smaller than $\ell_{2 k}$ for which $M_{\ell_{2 k}} \in \operatorname{Len}\left(v_{f}\right)$.

Let j_{1} and j_{1}^{\prime} be indices such that $v_{\ell_{1}} \in C_{j_{1}}, C_{j_{1}}$ is in $L_{i_{0}}, C_{j_{1}^{\prime}}$ is the father of $C_{j_{1}}$ and $C_{j_{1}}\left[t_{j_{1}^{\prime}, j_{1}}, v_{\ell_{1}}\right]$ has length m. Set $P_{1}=C_{j_{1}}\left[t_{j_{1}^{\prime}, j_{1}}, v_{\ell_{1}}\right]$. Let j_{2} and j_{2}^{\prime} be indices such that $v_{\ell_{k}} \in C_{j_{2}}, C_{j_{2}}$ is in $L_{i_{0}}, C_{j_{2}^{\prime}}$ is the father of $C_{j_{2}}$ and $C_{j_{2}}\left[t_{j_{2}^{\prime}, j_{2}}, v_{\ell_{k}}\right]$ has length m. Set $P_{2}=C_{j_{2}}\left[t_{j_{2}^{\prime}, j_{2}}, v_{\ell_{k}}\right]$. Let j_{3} and j_{3}^{\prime} be indices such that $v_{f} \in C_{j_{3}}, C_{j_{3}}$ is in $L_{i}, C_{j_{3}^{\prime}}$ is the father of $C_{j_{3}}$ and $C_{j_{3}}\left[t_{j_{3}^{\prime}, j_{3}}, v_{f}\right]$ has length $M_{\ell_{2 k}}$. Set $P_{3}=C_{j_{3}}\left[v_{f}, s_{j_{3}^{\prime}, j_{3}}\right]$. Note that any internal vertex x of P_{1} or P_{2} has an integer in $\operatorname{Len}(x)$ which is smaller than m and every internal vertex y of P_{3} either has an integer in Len (y) which is greater than $M_{\ell_{2 k}}$, or does not belong to $X^{+}(c)$. Hence, P_{1}, P_{2} and P_{3} are disjoint from $P\left[v_{\ell_{1}}, v_{f}\right]$.

We distinguish cases according to the intersection between P_{1}, P_{2} and P_{3} : Let P_{4} be a shortest dipath in $\cup_{i<i_{0}} L_{i}$ from $t_{j_{1}^{\prime}, j_{1}}$ to $t_{j_{2}^{\prime}, j_{2}}$ and P_{5} be a shortest dipath in $\cup_{i<i_{0}} L_{i}$ from $s_{j_{3}^{\prime}, j_{3}}$ to $t_{j_{2}^{\prime}, j_{2}}$

- Suppose P_{3} does not intersect $P_{1} \cup P_{2}$.
- Suppose P_{1} and P_{2} are disjoint. Let v be the last vertex of P_{4} in $P_{4} \cap P_{5}$. The union of $P_{5}\left[v, t_{j_{1}^{\prime}, j_{1}}\right] \odot P_{1} \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P_{4}\left[v, t_{j_{2}^{\prime}, j_{2}}\right] \odot P_{2}$, and $P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3} \odot$ $P_{5}\left[s_{j_{3}^{\prime}, j_{3}}, v\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.
- Assume now P_{1} and P_{2} intersect. Let u be the last vertex along P_{2} on which they intersect. The union of $P_{1}\left[u, v_{\ell_{1}}\right] \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P_{2}\left[u, v_{\ell_{k}}\right]$, and $P\left[v_{\ell_{k}}, v_{f}\right] \odot$ $P_{3} \odot P_{5} \odot P_{1}\left[t_{j_{1}^{\prime}, j_{1}}, u\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.
- Assume P_{3} intersects $P_{1} \cap P_{2}$. Let v be the first vertex along P_{3} in $P_{1} \cap P_{2}$ and let u be the last vertex of $P_{1} \cap P_{2}$ along P_{2}. The union of $P_{1}\left[u, v_{\ell_{1}}\right] \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P_{2}\left[u, v_{\ell_{k}}\right]$, and $P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3}\left[v_{f}, v\right] \odot P_{1}[v, u]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.
- Assume now that P_{3} intersects $P_{1} \cup P_{2}$ but not $P_{1} \cap P_{2}$. Let v be the first vertex along P_{3} in $P_{1} \cup P_{2}$.
- If $v \in P_{2}$, let u be the last vertex of $P_{2} \cap P_{3}$ along P_{3}. Observe that $P_{3}[v, u]$ is also a subdipath of P_{2} and therefore contains no vertex of P_{1}. Hence, the union of $P_{3}\left[u, s_{j_{3}^{\prime}, j_{3}}\right] \odot P_{5} \odot P_{1} \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P_{2}\left[u, v_{\ell_{k}}\right]$, and $P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3}\left[v_{f}, v\right]$ is a $B(k, 1 ; k)$-subdivision, a contradiction.
- If $v \in P_{1}$, let u be the last vertex of $P_{1} \cap P_{3}$ along P_{3}. Observe that $P_{3}[v, u]$ is also a subdipath of P_{1} and therefore contains no vertex of P_{2}. Hence the union of $P_{1}\left[u, v_{\ell_{1}}\right] \odot P\left[v_{\ell_{1}}, v_{\ell_{k}}\right], P_{3}\left[u, s_{j_{3}^{\prime}, j_{3}}\right] \odot P_{6} \odot P_{2}$, and $P\left[v_{\ell_{k}}, v_{f}\right] \odot P_{3}\left[v_{f}, u\right]$, is a $B(k, 1 ; k)$-subdivision, a contradiction.

Similarly to Claim 38, one proves that $\chi\left(D_{0}^{-}(c)\right) \leqslant(4 k)^{4 k}$ for all $c \in\left[\alpha_{k}\right]$. Hence, $\chi\left(D_{0}(c)\right) \leqslant \chi\left(D_{0}^{+}(c)\right)+\chi\left(D_{0}^{-}(c)\right)+\chi\left(D_{0}^{\prime}(c)\right) \leqslant 2 \cdot(4 k)^{4 k}+1$. Thus

$$
\chi\left(D_{0}\right) \leqslant\left(2 \cdot(4 k)^{4 k}+1\right) \alpha_{k} .
$$

Via Lemma 17, this equation and Claims 34 and 36 yield

$$
\chi(D) \leqslant \chi\left(D_{0}\right) \times \chi\left(D_{1}\right) \times \chi\left(D_{2}\right) \leqslant k\left(4 k^{2}+2\right)\left(2 \cdot(4 k)^{4 k}+1\right) \alpha_{k}=\beta_{k} .
$$

4.2 Proof of Theorem 13

Consider a maximal k-suitable collection \mathcal{C} of directed cycles in D. Recall that $D_{\mathcal{C}}$ is the digraph obtained by contracting every component of \mathcal{C} into one vertex. For each connected component \mathcal{S}_{i} of \mathcal{C}, we call s_{i} the new vertex created.

Claim 39. $\chi\left(D_{\mathcal{C}}\right) \leqslant 8 k$.
Proof. First note that since D is strong so is $D_{\mathcal{C}}$.
Suppose for a contradiction that $\chi\left(D_{\mathcal{C}}\right)>8 k$. By Theorem 5, there exists a directed cycle $C=\left(x_{1}, x_{2}, \ldots, x_{l}, x_{1}\right)$ of length at least $8 k$. For each vertex x_{j} that corresponds to an s_{i} in D, the arc $\left(x_{j-1}, x_{j}\right)$ corresponds in D to an arc whose head is a vertex p_{i} of \mathcal{S}_{i} and the arc $\left(x_{j}, x_{j+1}\right)$ corresponds to an arc whose tail is a vertex l_{i} of \mathcal{S}_{i}. Let P_{j} be the dipath from p_{i} to l_{i} in $\bigcup \mathcal{C}$. Note that this dipath intersects the elements of \mathcal{S}_{i} only along a subdipath. Let C^{\prime} be the directed cycle obtained from C where we replace all contracted vertices x_{j} by the dipath P_{j}. First note that C^{\prime} has length at least $8 k$. Moreover, a directed cycle of \mathcal{C} can intersect C^{\prime} only along one P_{j}, because they all correspond to different strong components of $\bigcup \mathcal{C}$. Thus C^{\prime} intersects each directed cycle of \mathcal{C} on a subdipath. Moreover this subdipath has length less than k for otherwise D would contain a $B(k, 1 ; k)$-subdivision. So C^{\prime} is a directed cycle of length at least $8 k$ which intersects every directed cycle of \mathcal{C} along a subdipath of length less than k. This contradicts the maximality of \mathcal{C}.

Using Lemma 18 with Claim 39 and Lemma 33, we get that $\chi(D) \leqslant 8 k \cdot \beta_{k}$. This proves Theorem 13 for $\gamma_{k}=8 k \cdot \beta_{k}=8 k^{2}\left(4 k^{2}+2\right)\left(2 \cdot(4 k)^{4 k}+1\right)\left(2 \cdot\left(6 k^{2}\right)^{3 k}+14 k\right)$.

Acknowledgements

The authors would like to thank an anonymous referee for his comments that helped us to improve the presentation of the paper.

References

[1] L. Addario-Berry, F. Havet, and S. Thomassé. Paths with two blocks in n-chromatic digraphs. J. Combin. Theory, Ser. B, 97 (4): 620-626, 2007.
[2] L. Addario-Berry, F. Havet, C. L. Sales, B. A. Reed, and S. Thomassé. Oriented trees in digraphs. Discrete Math., 313 (8): 967-974, 2013.
[3] P. Aboulker, N. Cohen, F. Havet, W. Lochet, P. Moura and S. Thomassé. Subdivisions in digraphs of large out-degree or large dichromatic number. arXiv:1610.00876.
[4] J. A. Bondy, Disconnected orientations and a conjecture of Las Vergnas. J. London Math. Soc., 14 (2), 277-282, 1976.
[5] J. A. Bondy and U.S.R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, 2008.
[6] S. A. Burr. Subtrees of directed graphs and hypergraphs. In Proceedings of the 11th Southeastern Conference on Combinatorics, Graph theory and Computing, pages 227-239, Boca Raton - FL, 1980. Florida Atlantic University.
[7] S. A. Burr. Antidirected subtrees of directed graphs. Canad. Math. Bull. 25 (1982), no. 1, 119-120.
[8] N. Cohen, F. Havet, W. Lochet, and N. Nisse. Subdivisions of oriented cycles in digraphs with large chromatic number. J. Graph Theory, to appear. Available online at doi:10.1002/jgt. 22360.
[9] P. Erdős. Graph theory and probability. Canad. J. Math., 11:34-38, 1959.
[10] T. Gallai. On directed paths and circuits. In Theory of Graphs (Proc. Colloq. Titany, 1966), pages 115-118. Academic Press, New York, 1968.
[11] M. Hasse. Zur algebraischen bergründ der graphentheorie I. Math. Nachr., 28: 275-290, 1964.
[12] R. Kim, SJ. Kim, J. Ma, and B. Park. Cycles with two blocks in k-chromatic digraphs. J. Graph Theory, to appear. Available online at doi:10.1002/jgt. 22232.
[13] B. Roy. Nombre chromatique et plus longs chemins d'un graphe. Rev. Francaise Informat. Recherche Opérationnelle, 1 (5): 129-132, 1967.
[14] L. M. Vitaver. Determination of minimal coloring of vertices of a graph by means of boolean powers of the incidence matrix. Doklady Akademii Nauk SSSR, 147: 758-759, 1962.

