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Résumé : Ce papier présente une classe de deux-niveaux préconditioneurs totalement algébrique
et efficaces pour les matrices SPD. Nous introduisons la notion de la séparation local et algébrique
SPSD d’une matrice SPD et nous characterisons tout les séparations possibles. Cette séparation
aide à construire algéebriquement et localement une classe d’espaces grossiers efficaces qui bornent
le conditionement spectral du système préconditioné par un numbre défini a priori. Nous introdui-
sons ainsi les espaces de τ -filtering. Ces derniers permettent à comparer les dimensions des espaces
grossiers. Certains préconditioneurs qui dépendendent de l’EDP font l’objet d’un cas particulier
de la classe intorduite. Les exemples des espace grossiers algébriques dans ce papier ne sont pas
pratiques suite à la construction chère de la séparation algébrique. Nous proposon une approxima-
tion heuristique qui n’est pas chèr. Les résultats numériques montrent l’efficacité de la méthode
proposée.
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A class of efficient locally constructed preconditioners based
on coarse spaces

Abstract: In this paper we present a class of robust and fully algebraic two-level preconditioners
for SPD matrices. We introduce the notion of algebraic local SPSD splitting of an SPD matrix
and we give a characterization of this splitting. This splitting leads to construct algebraically
and locally a class of efficient coarse spaces which bound the spectral condition number of the
preconditioned system by a number defined a priori. We also introduce the τ -filtering subspace.
This concept helps compare the dimension minimality of coarse spaces. Some PDEs-dependant
preconditioners correspond to a special case. The examples of the algebraic coarse spaces in this
paper are not practical due to expensive construction. We propose a heuristic approximation
that is not costly. Numerical experiments illustrate the efficiency of the proposed method.

Key-words: preconditioners, iterative linear solvers, domain decomposition
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1 Introduction
The conjugate gradient method CG [8] is a widely known Krylov iterative method, for solving

large linear systems of equations of the form

Ax = b, (1)

where A ∈ Rn×n is a symmetric positive definite matrix, b ∈ Rn is the right-hand side, and x ∈ Rn
is the vector of unknowns. It finds at iteration j the approximate solution xj that minimizes the
norm of the error ‖x∗ − xj‖A, where x∗ is the exact solution of (1) and ‖.‖A is the A-norm.
The convergence of this method is well studied in the literature [16]. The rate of convergence
depends on the condition number of the matrix A. Let κ = λn

λ1
be the spectral condition number

of A, where λn and λ1 are the largest and the smallest eigenvalues of A respectively, the error
at iteration j satisfies the following inequality

‖x∗ − xj‖A ≤ ‖x∗ − x0‖A
(√

κ− 1√
κ+ 1

)j
, (2)

where x0 is the initial solution. We suppose that the graph of the matrix is partitioned into a
number of subdomains by using a k-way partitioning method [10]. To enhance the convergence,
it is common to solve the preconditioned system

M−1Ax = M−1b. (3)

Block Jacobi, additive Schwarz, restricted additive Schwarz, etc., are widely used precondi-
tioners. These preconditioners are called one-level preconditioners. They correspond to solving
subproblems on subdomains. In [2, 3] the authors prove that the largest eigenvalue of the pre-
conditioned system by the additive Schwarz preconditioner is bounded by a number that is
independent of the number of subdomains. However, no control is guaranteed for the smallest ei-
genvalue of the preconditioned matrix. Furthermore, when the number of subdomains increases,
the smallest eigenvalue might become even smaller. Thus, the number of iterations to reach
convergence typically increases. This occurs since this type of preconditioner employs only local
information and does not include global information. For this reason, these preconditioners are
usually combined with a second-level preconditioner, which corresponds to a coarse space correc-
tion or deflation. In principle, it is meant to annihilate the impact of the smallest eigenvalues of
the operator. Different strategies exist in literature to add this level. In [20], the authors compare
different strategies of applying two-level preconditioners. In [2, 21, 12, 18, 3, 6, 11], the authors
propose different methods for constructing a coarse space correction. Coarse spaces can be ca-
tegorized in two types, analytic and algebraic. Analytic coarse spaces depend on the underlying
problem from which the matrix A is issued. Algebraic coarse spaces depend only on the coefficient
matrix A and does not require information from the underlying problem from which it arises.
Based on the underlying PDE and its discretization, several methods that propose analytic coarse
spaces are described in literature [3, 2, 21, 12, 18].

In most cases, a generalized (or standard) eigenvalue problem is solved in each subdomain.
Every subdomain then contributes to the construction of the coarse space by adding certain
eigenvectors. These methods are efficient in several applications. Nevertheless, the dependence
on the analytic information makes it impossible to be made in a pure algebraic way. Algebraic
coarse space correction can be found in literature [6, 11]. However, the construction of the coarse
space can be even more costly than solving the linear system (1). In this paper we discuss a class
of robust preconditioners that are based on locally constructed coarse spaces. We characterize the
local eigenvalue problems that allow to construct an efficient coarse space related to the additive

RR n° 9184



4 H. Al Daas & L. Grigori

Schwarz preconditioner. The paper is organized as follows. In 2 we review general theory of
one- and two-level preconditioners, in 3 we present our main result. We introduce the notion of
algebraic local SPSD splitting of an SPD matrix. For a simple case, given the block SPD matrix

B =

B11 B12

B21 B22 B23

B32 B33

, the local SPSD splitting of B with respect to the first block means

finding two SPSD matrices B1, B2 of the form B1 =

B11 B12

B21 ∗

 and B2 =

 ∗ B23

B32 B33

,

where ∗ represents a non-zero block matrix such that B = B1 +B2. We characterize all possible
local SPSD splittings. Then we introduce the τ -filtering subspace. Given two SPSD matrices
A,B, a τ -filtering subspace Z makes the following inequality hold

(u− Pu)
>
B (u− Pu) ≤ u>Au, ∀u,

where P is an orthogonal projection on Z. Based on the local SPSD splitting and the τ -filtering
subspace, we propose in 4 an efficient coarse space, which bounds the spectral condition number
by a given number defined a priori. Furthermore, we show how the coarse space can be chosen
such that its dimension is minimal. The resulting spectral condition number depends on three
parameters. The first parameter depends on the sparsity of the matrix, namely, the minimum
number of colours kc needed to colour subdomains such that two subdomains of the same colour
are disjoint, see Lemma 7 [2, Theorem 12]. The second parameter km depends on the algebraic
local SPSD splitting. It is bounded by the number of subdomains. For a special case of splitting it
can be chosen to be the maximal number of subdomains that share a degree of freedom. The third
parameter is chosen such that the spectral condition number is bounded by the user-defined upper
bound. In all stages of the construction of this coarse space, no information is necessary but the
coefficient matrix A and the desired bound on the spectral condition number. We show how the
coarse space constructed analytically by the method GenEO [17, 3] corresponds to a special case
of our characterization. We also discuss the extreme cases of the algebraic local SPSD splitting
and the corresponding coarse spaces. We explain how these two choices are expensive to construct
in practice. Afterwards, we propose a practical strategy to compute efficiently an approximation
of the coarse space. In 5 we present numerical experiments to illustrate the theoretical and
practical impact of our work. At the end, we give our conclusion in 6.

To facilitate the comparison with GenEO we follow the presentation in [3, Chapter 7].

Notation
Let A ∈ Rn×n denote a symmetric positive definite matrix. We use MATLAB notations. Let

S1, S2 ⊂ {1, . . . , n } be two sets of indices. The concatenation of S1 and S2 is represented by
[S1, S2]. We note that the order of the concatenation is important. A(S1, :) is the submatrix of
A formed by the rows whose indices belong to S1. A(:, S1) is the submatrix of A formed by the
columns whose indices belong to S1. A(S1, S2) := (A(S1, :)) (:, S2). The identity matrix of size n
is denoted In. We suppose that the graph of A is partitioned into N non-overlapping subdomains,
where N � n. The coefficient matrix A is represented as (aij)1≤i,j≤n. Let N = {1, . . . , n} and
let Ni,0 for i ∈ {1, . . . , N} be the corresponding subsets of N such that Ni,0 stands for the
subset of the degrees of freedom, DOF, in the subdomain i. We refer to Ni,0 as the interior DOF
in subdomain i. Let ∆i for i ∈ {1, . . . , N} be the subset of N that represents the neighbors DOF
of the subdomain i, i.e., the DOFs of distance = 1 from the subdomain i through the graph of A.
We refer to ∆i as the overlapping DOF in the subdomain i. We denote Ni,1 = [Ni,0, ∆i], ∀i ∈

Inria



CELPCS 5

{1, . . . , N}, the concatenation of the interior and the overlapping DOF of subdomain i. We
denote Ci, ∀i ∈ {1, . . . , N}, the complementary of Ni,1 in N , i.e., Ci = N \ Ni,1. We note ni,0
the cardinality of the set Ni,0, δi the cardinality of ∆i and ni,1 the cardinality of the set Ni,1, ∀i ∈
{1, . . . , N}. Let Ri,0 ∈ Rni,0×n be defined as Ri,0 = In (Ni,0, : ). Let Ri,δ ∈ Rδi×n be defined as
Ri,δ = In (∆i, : ). Let Ri,1 ∈ Rni,1×n be defined as Ri,1 = In ([Ni,0,∆i], : ). Let Ri,c ∈ R(n−ni,1)×n

be defined as Ri,c = In (Ci, : ). Let Pi = In ([Ni,0,∆i, Ci], : ) ∈ Rn×n, be a permutation matrix
associated to the subdomain i, ∀i ∈ {1, . . . , N}. We denote Di ∈ Rni,1,×ni,1 , i = 1, . . . , N , any
non-negative diagonal matrix such that

In =

N∑
i=1

R>i,1DiRi,1. (4)

We refer to (Di)1≤i≤N as the algebraic partition of unity. Let n0,1 be a positive integer, n0,1 � n.
Let V0 ∈ Rn×n0,1 be a tall and skinny matrix of full rank. We denote S the subspace generated by
the columns of V0. This subspace will stand for the coarse space. We denote R0,1 the projection
operator on S. We denote R>0,1 the interpolation operator from S to the global space. The
subscript 1 in R0,1 is to be compatible with other restriction operators Ri,1, for i = 1, . . . , N .
We note that subscripts 0 and 1 in Ri,., Ni,., ni,. refer to the interior and the interior-and-
overlapping items respectively. Let R1 be the operator defined by :

R1 :

N∏
i=1

Rni,1 → Rn

(ui)1≤i≤N 7→
N∑
i=1

R>i,1ui.

(5)

In the same way we define R2 by taking into account the coarse space correction

R2 :

N∏
i=0

Rni,1 → Rn

(ui)0≤i≤N 7→
N∑
i=0

R>i,1ui.

(6)

We note that the subscripts 1 and 2 in R1 and R2 refer to one-level and two-level interpolation
operators respectively. The following example of two-subdomains-partitioned A illustrates our
notation. Let A be given as

A =


a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

 .

Then, N = {1, 2, 3, 4}. The sets of interior DOF of subdomains are N1,0 = {1, 2 }, N2,0 = {3, 4}.
The sets of overlapping DOF of subdomains are ∆1 = {3}, ∆2 = {2}. The sets of concatenation of
the interior DOF and the overlapping DOF of subdomains are N1,1 = {1, 2, 3 }, N2,1 = {3, 4, 2}.
The restriction operator on the interior DOF of subdomains is

R1,0 =

(
1 0 0 0
0 1 0 0

)
, R2,0 =

(
0 0 1 0
0 0 0 1

)
.
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6 H. Al Daas & L. Grigori

The restriction operator on the overlapping DOF of subdomains is

R1,δ =
(
0 0 1 0

)
, R2,δ =

(
0 1 0 0

)
.

The restriction operator on the concatenation of the interior DOF and the overlapping DOF is

R1,1 =

1 0 0 0
0 1 0 0
0 0 1 0

 , R2,1 =

0 0 1 0
0 0 0 1
0 1 0 0

 .

The permutation matrix associated with each subdomain is

P1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , P2 =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 .

The permuted matrix associated with each subdomain is

P1AP>1 =


a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

 , P2AP>2 =


a33 a34 a32
a43 a44
a23 a22 a21

a12 a11

 .

Finally, the algebraic partition of unity can be defined as

D1 =

1 0 0
0 1

2 0
0 0 1

2

 , D2 =

 1
2 0 0
0 1 0
0 0 1

2

 .

We note that the reordering of lines in the partition of unity matrices (Di)1≤i≤N has to be
adapted with the lines reordering of (Ri,1)1≤i≤N such that (4) holds.

2 Background
In this section, we start by presenting three lemmas that help compare two symmetric positive

definite (or semidefinite) matrices. Then, we review generalities of one- and two-level additive
Schwarz preconditioners.

2.1 Auxiliary lemmas
The Lemma 1 can be found in [3, Lemma 7.3, p. 164]. This lemma helps prove the effect of

the additive Schwarz preconditioner on the largest eigenvalues of the preconditioned operator.

Lemma 1 Let A1, A2 ∈ Rn×n be two symmetric positive definite matrices. Suppose that there
is a constant cu > 0 such that,

v>A1v ≤ cu v>A2v, ∀v ∈ Rn. (7)

Then the eigenvalues of A−12 A1 are strictly positive and bounded from above by cu.

The Lemma 2 is widely known in the community of domain decomposition by the Fictitious
subspace lemma.

Inria
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Lemma 2 (Fictitious subspace lemma) Let A ∈ RnA×nA , B ∈ RnB×nB be two symmetric
positive definite matrices. Let R be an operator defined as

R : RnB → RnA

v 7→ Rv,
(8)

and let R> be its transpose. Suppose that the following conditions hold :
1. The operator R is surjective.
2. There exists cu > 0 such that

(Rv)
>
A (Rv) ≤ cu v>Bv, ∀v ∈ RnB . (9)

3. There exists cl > 0 such that ∀vnA ∈ RnA ,∃vnB ∈ RnB |vnA = RvnB and

cl v
>
nBBvnB ≤ (RvnB )

>
A (RvnB ) = v>nAAvnA . (10)

Then, the spectrum of the operator RB−1R>A is contained in the segment [cl, cu].

Proof 1 We refer the reader to [3, Lemma 7.4 p.164] or [14, 13, 4] for a detailed proof.

We note that there is a general version of Lemma 2 for infinite dimensions. This lemma plays a
crucial role in bounding the condition number of our preconditioned operator. The operator R
will stand for the interpolation operator. The matrix B will stand for the block diagonal operator
of local subdomain problems. It is important to note that in the finite dimension the existence of
the constants cu and cl are guaranteed. This is not the case in the infinite dimension spaces. In
the finite dimension case, the hard part in the fictitious subspace lemma is to find R such that
cu/cl is independent of the number of subdomains. When R and B are chosen to form the one-
or two-level additive Schwarz operator, the first two conditions are satisfied for an upper bound
cu independent of the number of subdomains. An algebraic proof which depends only on the
coefficient matrix can be found in [3]. However, the third condition is still an open question if no
information from the underlying PDE is used. In this paper we address the problem of defining
algebraically a surjective interpolation operator of the two-level additive Schwarz operator such
that the third condition holds for a cl independent of the number of subdomains. This is related to
the stable decomposition property which was introduced in [9]. Later, in [3], the authors proposed a
stable decomposition with the additive Schwarz. This decomposition was based on the underlying
PDE. Thus, when only the coefficient matrix A is known, this decomposition is not possible to
be computed.

The two following lemmas will be applied to choose the local vectors that contribute to the
coarse space. They are based on low rank corrections. In [3], the authors present two lemmas
[3, Lemma 7.6 p.167, Lemma 7.7 p.168] similar to the following lemmas. The rank correction
proposed in their version is not of minimal rank. We modify these two lemmas to obtain the
smallest rank correction.

Lemma 3 Let A, B ∈ Rm×m be two symmetric positive matrices. Let ker(A), range(A) denote
the null space and the range of A respectively. Let ker(B) denote the kernel of B. Let L =
ker(A) ∩ ker(B), we note L⊥ker(A) the orthogonal complementary of L in ker(A). Let P0 be an
orthogonal projection on range(A). Let τ be a strictly positive real number. Consider the following
generalized eigenvalue problem,

Find (uk, λk) ∈ range(A)× R such that

RR n° 9184



8 H. Al Daas & L. Grigori

P0BP0uk = λkAuk. (11)

Let Pτ be an orthogonal projection on the subspace

Z = L⊥ker(A) ⊕ span {uk |λk > τ} ,

then, the following inequality holds :

(u− Pτu)
>
B (u− Pτu) ≤ τu>Au, ∀u ∈ Rm. (12)

Furthermore, Z is the subspace of smallest dimension such that (12) holds.

Proof 2 Let mA = dim(range(A)). Let

λ1 ≤ . . . ≤ λmτ ≤ τ < λmτ+1 ≤ . . . ≤ λmA

be the eigenvalues of the generalized eigenvalue problem (11). Let

u1, . . . , umτ , umτ+1, . . . , umA

be the corresponding eigenvectors, A-orthonormalized. Let kB = dim(ker(B) ∩ ker(A)), kA =
dim(ker(A)) = m−mA. Let v1, . . . , vkB be an orthogonal basis of L and let vkB+1, . . . , vkA be an
orthogonal basis of L⊥ker(A) such that v1, . . . , vkA is an orthogonal basis of ker(A). The symmetry
of A and B permits to have

u>i Auj = δij , 1 ≤ i, j ≤ mA,

u>i Buj = λiδij , 1 ≤ i, j ≤ mA,

v>i vj = δij , 1 ≤ i, j ≤ kA,
L = span {v1, . . . , vkB} ,

L⊥ker(A) = span {vkB+1, . . . , vkA} ,

where δij stands for the Kronecker symbol. For a vector u ∈ Rm we can write :

P0u =

mA∑
k=1

(u>k AP0u)uk.

Then, we have

Pτu = u− P0u−
kB∑
k=1

(v>k u)vk +

mA∑
k=mτ+1

(u>k AP0u)uk.

Thus,

u− Pτu =

kB∑
k=1

(v>k u)vk +

mτ∑
k=1

(u>k AP0u)uk.

Inria
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Hence, the left side of (12) can be written as :

(u− Pτu)
>
B (u− Pτu) =

(
kB∑
k=1

(v>k u)vk +

mτ∑
k=1

(u>k AP0u)uk

)>
B

(
kB∑
k=1

(v>k u)vk +

mτ∑
k=1

(u>k AP0u)uk

)
,

=

(
kB∑
k=1

(v>k u)vk +

mτ∑
k=1

(u>k AP0u)uk

)>(mτ∑
k=1

λk(u>k AP0u)Auk

)
,

=

(
kB∑
k=1

(v>k u)Avk +

mτ∑
k=1

(u>k AP0u)Auk

)>(mτ∑
k=1

λk(u>k AP0u)uk

)
,

=

(
mτ∑
k=1

(u>k AP0u)Auk

)>(mτ∑
k=1

λk(u>k AP0u)uk

)
,

=

 ∑
k|λk≤τ

(u>k AP0u)uk

> ∑
k|λk≤τ

λk(u>k AP0u)Auk

 ,

=

 ∑
k|λk≤τ

∑
j|λj≤τ

(u>k AP0u)u>k
(
λj(u

>
j AP0u)Auj

) ,

=
∑

k|λk≤τ

(u>k AP0u)2λk.

We obtain (12) by remarking that.

∑
k|λk≤τ

(u>k AP0u)2λk ≤ τ
mA∑
k=1

(u>k AP0u)2,

= τ

mA∑
k=1

(u>k AP0u)(u>k AP0u),

= τ(P0u)>AP0u,

= τu>Au.

There remains the minimality of the dimension of Z. First, remark that

u>Bu > τu>Au, ∀u ∈ Z.

To prove the minimality, suppose that there is a subspace Z1 of dimension less than the dimension
of Z. By this assumption, there is a non-zero vector w ∈ (Z ∩ Z1)

⊥Z , where (Z ∩ Z1)
⊥Z is the

orthogonal complementary of (Z ∩ Z1) in Z, such that w ⊥ Z1. By construction, we have

w>Bw > τw>Aw.

Lemma 4 Let A ∈ Rm×m be a symmetric positive matrix and B ∈ Rm×m be an SPD matrix. Let
ker(A), range(A) denote the null space and the range of A respectively. Let P0 be an orthogonal
projection on range(A). Let τ be a strictly positive real number. Consider the following generalized
eigenvalue problem,

Find (uk, λk) ∈ Rm × R such that

RR n° 9184



10 H. Al Daas & L. Grigori

Auk = λkBuk. (13)

Let Pτ be an orthogonal projection on the subspace

Z = span
{
uk |λk <

1

τ

}
,

then, the following inequality holds :

(u− Pτu)
>
B (u− Pτu) ≤ τu>Au ∀u ∈ Rm. (14)

Z is the subspace of smallest dimension such that (14) holds.

Proof 3 Let u1, . . . , um0 be an orthogonal basis vectors of ker(A). Let

0 < λm0+1 ≤ . . . ≤ λmτ <
1

τ
≤ λmτ+1 ≤ . . . ≤ λm

be the eigenvalues strictly larger than 0 of the generalized eigenvalue problem (13). Let

um0+1, . . . , umτ , umτ+1, . . . , um

be the corresponding eigenvectors A-orthonormalized. We can suppose that

u>i Auj = δij , m0 + 1 ≤ i, j ≤ m,

u>i Buj =
1

λi
δij , m0 + 1 ≤ i, j ≤ m,

u>i uj = δij , 1 ≤ i, j ≤ m0,

where δij stands for the Kronecker symbol. We can write

P0u =

m∑
k=m0+1

(u>k AP0u)uk.

Then, we have

Pτu = u− P0u+

mτ∑
k=m0+1

(u>k AP0u)uk.

Thus,

u− Pτu =

m∑
k=mτ+1

(u>k AP0u)uk,

=
∑

k|λk≥ 1
τ

(u>k AP0u)uk.

Inria
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Hence, the left side of (14) can be written

(u− Pτu)
>
B (u− Pτu) =

 ∑
k|λk≥ 1

τ

(u>k AP0u)uk

>B
 ∑
k|λk≥ 1

τ

(u>k AP0u)uk

 ,

=

 ∑
k|λk≥ 1

τ

(u>k AP0u)uk

> ∑
k|λk≥ 1

τ

1

λk
(u>k AP0u)Auk

 ,

=

 ∑
k|λk≥ 1

τ

∑
j|λj≥ 1

τ

(u>k AP0u)u>k

(
1

λj
(u>j AP0u)Auj

) ,

=
∑

k|λk≥ 1
τ

(u>k AP0u)2
1

λk
.

We obtain (14) by remarking that.

∑
k|λk≥ 1

τ

(u>k AP0u)2
1

λk
≤ τ

m∑
k=1

(u>k AP0u)2,

= τ

m∑
k=m0+1

(u>k AP0u)(u>k AP0u),

= τ(P0u)>AP0u,

= τu>Au.

There remains the minimality of Z. First, remark that

u>Bu > τu>Au, ∀u ∈ Z.

To prove the minimality, suppose that there is a subspace Z1 of dimension less than the dimension
of Z. By this assumption, there is a non-zero vector w ∈ (Z ∩ Z1)

⊥Z , where (Z ∩ Z1)
⊥Z is the

orthogonal complementary of (Z ∩ Z1) in Z, such that w ⊥ Z1. By construction, we have

w>Bw > τw>Aw.

The previous lemmas are general and algebraic and not directly related to the preconditioning.
In the following section we will review the one- and two-level additive Schwarz preconditioner.

2.2 One- and two-level additive Schwarz preconditioner

In this section we review the definition and general properties of one- and two-level additive
Schwarz preconditioners, ASM, ASM2 respectively. We review, without proving, several lemmas
introduced in [2, 3]. These lemmas show how the elements of ASM2 without any specific property
of the coarse space S verify the conditions 1 and 2 of the fictitious subspace Lemma 2.

The two-level preconditioner ASM2 with coarse space S is defined as

M−1ASM,2 =

N∑
i=0

R>i,1
(
Ri,1AR

>
i,1

)−1
Ri,1. (15)
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12 H. Al Daas & L. Grigori

If n0,1 = 0, i.e., the subspace S is trivial, the term

R>0,1
(
R0,1AR

>
0,1

)−1
R0,1 = 0

by convention.
The following lemma gives the additive Schwarz method a matrix representation as in [3].

Lemma 5 The additive Schwarz operator can be represented as :

M−1ASM,2 = R2B−1R>2 , (16)

where R>2 is the operator adjoint of R2 and B is a block diagonal operator defined as the following

B :

N∏
i=0

Rni,1 →
N∏
i=0

Rni,1

(ui)0≤i≤N 7→
((
Ri,1AR

>
i,1

)
ui
)
0≤i≤N

(17)

where Ri,1AR>i,1 for 0 ≤ i ≤ N is the ith diagonal block.

Proof 4 The proof follows directly from the definition of B and R2.

We note that the dimension of the matrix representation of B is larger than the dimension of A.
More precisely, B has the following dimension

nB =

N∑
i=0

ni,1 = n+ n0,1 +
∑
i=1

δi.

The one-level additive Schwarz preconditioner can be defined in the same manner. It corresponds
to the case where the subspace S is trivial. The following Lemma 6, [3, Lemma 7.10, p. 173] states
that the operator R2 is surjective without any specific assumption about the coarse space S.

Lemma 6 The operator R2 as defined in (6) is surjective.

Proof 5 The proof follows from the definition of R2 (6) and the definition of the partition of
unity (4).

Lemma 6 shows that the interpolation operator R2 seen as a matrix verifies the condition 1
in Lemma 2. The following Lemma 7 guarantees that the matrix representation of the additive
Schwarz verifies condition 2 in Lemma 2.

Lemma 7 Let kc be the minimum number of distinct colours so that
(
span{R>i,1}

)
1≤i≤N of the

same colour are mutually A-orthogonal. Then, we have

(R2uB)
>
A (R2uB) ≤ (kc + 1)

N∑
i=0

u>i
(
Ri,1AR

>
i,1

)
ui, ∀uB = (ui)0≤i≤N ∈

N∏
i=0

Rni,1 . (18)

Proof 6 We refer the reader to [2, Theorem 12 p.93] for a detailed proof.

We note that Lemma 7 is true for any coarse space S, especially when this subspace is trivial.
This makes the lemma applicable also for the one-level additive Schwarz preconditioner (the
constant on the right-hand side in Lemma 7 becomes kc). Lemma 8 is the first step to obtain a
reasonable constant cl that verifies the third condition in Lemma 2

Inria
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Lemma 8 Let uA ∈ RnA and uB = (ui)0≤i≤N ∈
∏N
i=0 Rni,1 such that uA = R2uB. The addi-

tive Schwarz operator without any other restriction on the coarse space S verifies the following
inequality

N∑
i=0

u>i
(
Ri,1AR

>
i,1

)
ui ≤ 2 u>AAuA + (2kc + 1)

N∑
i=1

u>i Ri,1AR
>
i,1ui, (19)

where kc is defined in Lemma 7.

Proof 7 We refer the reader to [3, Lemma 7.12, p. 175] to view the proof in detail.

In order to apply the fictitious subspace Lemma 2, the term
∑N
i=1 u

>
i RiAR

>
i ui in the right-hand

side of the (19) must be bounded by a factor of u>AAuA. For this aim, the next section presents an
algebraic local decomposition of the matrix A. Combining this decomposition with the Lemma
3 or Lemma 4 (depending on the definiteness) defines a class of local generalized eigenvalue
problems. By solving them, we can define a coarse space S. The additive Schwarz preconditioner
combined with S satisfy the three conditions of the fictitious subspace Lemma 2. Hence, we can
control the condition number of the preconditioned system.

3 Algebraic local SPSD splitting of an SPD matrix

In this section we present our main contribution. We introduce the algebraic local SPSD
splitting of an SPD matrix related to a subdomain. Then, we characterize all the algebraic local
SPSD splittings of A that are related to each subdomain. We give a non-trivial bound from below
for the energy norm of a vector by a locally determined quantity.

We start by defining the algebraic local SPSD splitting of a matrix related to a subdomain.

Definition 1 (Algebraic local SPSD splitting of A related to a subdomain) Following the
previous notations, let Ãi be the matrix defined as

PiÃiP>i =

Ri,0AR>i,0 Ri,0AR
>
i,δ

Ri,δAR
>
i,0 Ãδ

0

 , (20)

where Ãδ ∈ Rδi×δi . We say that Ãi is an algebraic local SPSD splitting of A related to the
subdomain i if the following condition holds

0 ≤ u>Ãiu ≤ u>Au, ∀u ∈ Rn. (21)

Lemma 9 Let m1,m2,m3 be integers and m = m1 +m2 +m3, let B ∈ Rm×m be a 3× 3 block
tridiagonal SPD matrix

B =

B11 B12

B21 B22 B23

B32 B33

 , (22)

where Bii ∈ Rmi×mi is non-trivial matrix for i ∈ {1, 2, 3}. Let B̃1 ∈ Rm×m be

B̃1 =

B11 B12

B21 B̃22

0

 , (23)
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14 H. Al Daas & L. Grigori

where B̃22 ∈ Rm2×m2 is a symmetric matrix verifying the following inequalities

u>B21B
−1
11 B12u ≤ u>B̃22u ≤ u>

(
B22 −B23B

−1
33 B32

)
u, ∀u ∈ Rm2 , (24)

then, the following inequality holds

0 ≤ u>B̃1u ≤ u>Bu, ∀u ∈ Rm. (25)

Proof 8 Consider the difference matrix F = B− B̃1. Let F2 ∈ R(m2+m3)×(m2+m3) be the lowest
2× 2 sub-block diagonal matrix of F , i.e.,

F2 =

(
B22 − B̃22 B23

B32 B33

)
.

F2 admits the following decomposition,

F2 =

(
I B23B

−1
33

I

)(
B22 − B̃22 −B23B

−1
33 B32

B33

)(
I

B−133 B32 I

)
. (26)

Since B̃22 satisfies, by assumption, the inequality (24), F2 satisfies the following inequality

0 ≤ u>F2u ∀u ∈ R(m2+m3),

This proves the right inequality in (25).
Let E ∈ R(m1+m2)×(m1+m2) be the upper 2×2 sub-block diagonal of B̃1. E admits the following

decomposition,

E =

(
I

B21B
−1
11 I

)(
B11

B̃22 −B21B
−1
11 B12

)(
I B−111 B12

I

)
. (27)

The positivity of B̃1 follows directly from (24).

Lemma 10 Using the notations from Lemma 9, the following holds
— The condition (24) in Lemma 9 is not trivial, i.e., the set of matrices B̃1 that verify the

condition (24) is not empty
— There exist matrices, B̃22, that verify the condition (24) with strict inequalities
— The left inequality in condition (24) is optimal, i.e., if there exists a non-zero vector

u2 ∈ Rm2 that verifies
u>2 B21B

−1
11 B12u2 > u>2 B̃22u2.

Then, there exists a non-zero vector u ∈ Rm such that

u>B̃1u < 0

— The right inequality in condition (24) is optimal, i.e., if there exists a non-zero vector
u2 ∈ Rm2 that verifies

u>2 B̃22u2 > u>2
(
B22 −B23B

−1
33 B32

)
u2.

Then, there exists a non-zero vector u ∈ Rm such that

u>B̃1u > u>Bu

Inria
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Proof 9 First we prove the non-triviality of the set of matrices verifying (24). Indeed, let S(B22)
be the Schur complement of B22 in B, namely

S(B22) = B22 −B21B
−1
11 B12 −B23B

−1
33 B32.

Set B̃22 := 1
2S(B22) +B21B

−1
11 B12. Then we have,

B̃22 −B21B
−1
11 B12 =

(
B22 −B23B

−1
33 B32

)
− B̃22 =

1

2
S(B22),

which is an SPD matrix. Hence, the strict inequalities in (24) follow.
Let u2 ∈ Rm2 be a vector such that

u>2 B21B
−1
11 B12u2 > u>2 B̃22u2,

The block-LDLT factorization (27) shows that

u>B̃1u = u>2

(
B̃22 −B21B

−1
11 B12

)
u2 < 0,

where u is defined as

u =

(
I B−111 B12

I

)−1(
0
u2

)
.

In the same manner we verify the optimality mentioned in the last point.

Remark 1 We note that the matrix
(
B11 B12

B21 B̃22

)
defines a seminorm in Rm1+m2 . Furthermore,

if B̃22 is set such that the left inequality in (24) is strict, then the seminorm becomes a norm.

For i ∈ {1, . . . , N}, the matrix PiAP>i has the form of a block tridiagonal matrix (the
permutation matrix Pi is defined in the section Notation). The first diagonal block corresponds
to the interior DOF of the subdomain i, the second diagonal block corresponds to the overlapping
DOF in the subdomain i, and the third block diagonal is associated to the rest of the DOF.
This means that we can apply Lemma 9 on each subdomain by considering its interior DOF,
overlapping DOF and the rest of the DOF.

Proposition 1 For each subdomain i ∈ {1, . . . , N}, let Ãi ∈ Rn×n be defined as

PiÃiP>i =

Ri,0AR>i,0 Ri,0AR
>
i,δ

Ri,δAR
>
i,0 Ãiδ

0

 , (28)

where Ãiδ ∈ Rδi×δi satisfies the following conditions
∀u ∈ Rδi ,
— u>

(
Ri,δAR

>
i,0

) (
Ri,0AR

>
i,0

)−1 (
Ri,0AR

>
i,δ

)
u ≤ u>Ãiδu

— u>Ãiδu ≤ u>
((
Ri,δAR

>
i,δ

)
−
(
Ri,δAR

>
i,c

) (
Ri,cAR

>
i,c

)−1 (
Ri,cAR

>
i,δ

))
u.

Then, ∀i ∈ {1, . . . , N} the matrix Ãi is an algebraic local SPSD splitting of A related to the
subdomain i. Moreover, the following inequality holds,

0 ≤
N∑
i=1

u>Ãiu ≤ kmu>Au ∀u ∈ Rn, (29)

where km is a number bounded by N .
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16 H. Al Daas & L. Grigori

Proof 10 Lemma 9 shows that Ãi is an algebraic local SPSD splitting of A related to the sub-
domain i. The inequality (29) holds with the constant N for all algebraic local SPSD splittings
of A. Thus, depending on the SPSD splitting related to each subdomain there exists a number
km ≤ N such that the inequality holds.

We note that the matrix Ãi is considered local since it has non-zero elements only in the
overlapping subdomain i. More precisely,

∀ j, k ∈ N | j /∈ Ni,1 ∨ k /∈ Ni,1, Ãi(j, k) = 0.

Proposition 1 shows that the A-norm of a vector v ∈ Rn can be bounded from below by a sum
of local seminorms, Remark 1.

4 Algebraic stable decomposition with R2

In the previous section we introduced the algebraic local SPSD splitting of A. In this section
we present the τ -filtering subspace that is associated with each SPSD splitting. In each subdomain
a τ -filtering subspace will contribute to the coarse space. We show how this leads to a class of
stable decomposition with R2. We note that the previous results of 2 hold for any coarse space S.
Those results are sufficient to determine the constant cu in the second condition of the fictitious
subspace lemma, Lemma 2. However, they do not allow to control the constant cl of the third
condition of the same lemma.

As we will see, the GenEO coarse space [17, 3] corresponds to a special SPSD splitting of A.
Therefore, we follow the presentation in [3] in the construction of the coarse space. We note that
the proof of Theorem 1 is similar to the proof of [3, Theorem 7.17, p.177]. We present it for the
sake of completeness.

Definition 2 Let Ãi be an algebraic local SPSD splitting of A related to the subdomain i, for
i = 1, . . . , N . Let τ > 0. Let Z̃i ⊂ Rni,1 be a subspace and let P̃i be an orthogonal projection on
Z̃i. We say that Z̃i is a τ -filtering subspace if

u>i
(
Ri,1AR

>
i,1

)
ui ≤ τ (Ri,1u)

>
(
Ri,1ÃiR

>
i,1

)
(Ri,1u) , ∀u ∈ Rn,

where ui =
(
Di

(
Ini,1 − P̃i

)
Ri,1u

)
and Di is the partition of unity, for i = 1, . . . , N .

After the characterization of the local SPSD splitting of A related to each subdomain, we cha-
racterize the associated smallest τ -filtering subspace.

Lemma 11 Let Ãi be an algebraic local SPSD splitting of A related to the subdomain i, for
i = 1, . . . , N . Let τ > 0. For all subdomains 1 ≤ i ≤ N , let

G̃i = Di

(
Ri,1AR

>
i,1

)
Di,

where Di is the partition of unity. Let P̃0,i be the projection on range(Ri,1ÃiR
>
i,1) parallel to

ker(Ri,1ÃiR
>
i,1). Let K = ker(Ri,1ÃiR

>
i,1), L = ker(G̃i) ∩K, and L⊥K the orthogonal comple-

mentary of L in K.
— If G̃i is indefinite, consider the following generalized eigenvalue problem

Find (ui,k, λi,k) ∈ range(Ri,1ÃiR>i,1)× R

such that P̃0,iG̃iP̃0,iui,k = λi,kRi,1ÃiR
>
i,1ui,k.

Set
Z̃τ,i = L⊥K ⊕ span {ui,k | λi,k > τ} . (30)
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— If G̃i is definite, consider the following generalized eigenvalue problem

Find (ui,k, λi,k) ∈ Rni,1 × R

such that Ri,1ÃiR>i,1ui,k = λi,kG̃iui,k.

Set

Z̃τ,i = span
{
ui,k | λi,k <

1

τ

}
. (31)

Then, Z̃τ,i is the smallest dimension τ -filtering subspace and the following inequality holds

u>i
(
Ri,1AR

>
i,1

)
ui ≤ τ (Ri,1u)

>
(
Ri,1ÃiR

>
i,1

)
(Ri,1u) ,

where ui =
(
Di

(
Ini,1 − P̃τ,i

)
Ri,1u

)
, and P̃τ,i is the orhtogonal projection on Z̃τ,i.

Proof 11 Direct application of Lemma 3 and Lemma 4.

We will refer to the smallest dimension τ -filtering subspace as Z̃τ,i and to the projection on it
as P̃τ,i. Note that for each algebraic local SPSD splitting of A related to a subdomain i, the
τ -filtering subspace Z̃τ,i defined in Definition 2 changes. Thus, the projection P̃τ,i depends on
the algebraic local SPSD splitting of A related to the subdomain i.
In the rest of the paper, the notations Z̃τ,i and P̃τ,i will be used according to the algebraic local
SPSD splitting of A that we deal with and following Lemma 11.

Definition 2 leads us to bound the sum in (19) by a sum of scalar products associated to
algebraic SPSD splittings of A. Therefore, a factor, which depends on the value of τ , of the
scalar product associated to A will bound the inequality in (19).

Definition 3 (Coarse space based on algebraic local SPSD splitting of A, ALS) Let Ãi
be an algebraic local SPSD splitting of A related to the subdomain i, for i = 1, . . . , N . Let Z̃τ,i
be the subspace associated to Ãi as defined in Lemma 11. We define S the coarse space based
on the algebraic local splitting of A related to each subdomain, as the sum of expanded weighted
τ -filtering subspaces associated to the algebraic local splitting of A related to each subdomain,

S =

N⊕
i=1

R>i,1DiZ̃τ,i. (32)

Let Z̃0 be a matrix whose columns form a basis of S. We denote its transpose by R0,1 = Z̃>0 .

As mentioned previously, the key point to apply the fictitious subspace lemma, Lemma 2, is to
find a coarse space that induces a relatively large cl in the third condition of the lemma. The
following theorem proves that ALS satisfies this.

Theorem 1 Let Ãi be an algebraic local SPSD splitting of A related to the subdomain i, for
i = 1, . . . , N . Let Z̃τ,i be the τ -filtering subspace associated to Ãi, and P̃τ,i be the projection on
Z̃τ,i as defined in Lemma 11. Let u ∈ Rn and let ui =

(
Di

(
Ini,1 − P̃τ,i

)
Ri,1u

)
for i = 1, . . . , N .

Let u0 be defined as,

u0 =
(
R0,1R

>
0,1

)−1
R0,1

(
N∑
i=1

R>i,1DiP̃τ,iRi,1u

)
.
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18 H. Al Daas & L. Grigori

Let cl = (2 + (2kc + 1)kmτ)
−1. Then,

u =

N∑
i=0

R>i,1ui,

and

cl

N∑
i=0

u>i Ri,1AR
>
i,1ui ≤ u>Au.

Proof 12 Since ∀y ∈ S, y = R>0,1
(
R0,1R

>
0,1

)−1
R0,1y, the relation

u =

N∑
i=0

R>i,1ui = R2 (ui)0≤i≤N ,

follows directly. Lemma 8 shows that

N∑
i=0

u>i Ri,1AR
>
i,1ui ≤ 2u>Au+ (2kc + 1)

N∑
i=1

u>i
(
Ri,1AR

>
i,1

)
ui.

By using Lemma 11 we can write

N∑
i=0

u>i Ri,1AR
>
i,1ui ≤ 2u>Au+ (2kc + 1)τ

N∑
i=1

(Ri,1u)
>
(
Ri,1ÃiR

>
i,1

)
(Ri,1u) .

Since Ãi is local, we can write

N∑
i=0

u>i Ri,1AR
>
i,1ui ≤ 2u>Au+ (2kc + 1)τ

N∑
i=1

u>Ãiu.

Then, by applying Proposition 1, we can write

N∑
i=0

u>i Ri,1AR
>
i,1ui ≤ 2u>Au+ (2kc + 1)kmτ u

>Au,

N∑
i=0

u>i Ri,1AR
>
i,1ui ≤ (2 + (2kc + 1)kmτ)u>Au.

Theorem 2 Let MALS be the two-level ASM preconditioner combined with ALS. The following
inequality holds,

κ
(
M−1ALSA

)
≤ (kc + 1) (2 + (2kc + 1)kmτ)

Proof 13 Lemma 6, Lemma 7, and Theorem 1 show that the two-level preconditioner associated
with ALS verifies the conditions of the fictitious subspace lemma, Lemma 2. Hence, the eigenva-
lues of M−1ALSA verify the following inequality,

1

2 + (2kc + 1)kmτ
≤ λ

(
M−1ALSA

)
≤ (kc + 1),

and the result follows.
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Remark 2 Since any τ -filtering subspace Z̃i can replace Z̃τ,i in Theorem 1, the Theorem 2
applies for coarse spaces of the form S =

⊕N
i=1R

>
i,1DiZ̃i. The difference is that the dimension

of the coarse space is minimal by choosing Z̃τ,i, see Lemma 11.

We note that the previous theorem, Theorem 2, shows that the spectral condition number of
the preconditioned system does not depend on the number of subdomains. It depends only on
kc, km, and τ . kc is bounded by the maximum number of neighbors of a subdomain. km is a
number bounded by the number of subdomains. It depends on the algebraic local SPSD splitting
of each subdomain. Partitioned graphs of sparse matrices have structures such that kc is small.
The parameter τ can be chosen small enough such that ALS has a relatively small dimension.

4.1 GenEO coarse space
In [3], the authors present the theory of one- and two-level additive Schwarz preconditioners.

To bound the largest eigenvalue of the preconditioned system they use the algebraic properties
of the additive Schwarz preconditioner. However, to bound the smallest eigenvalue, they benefit
from the discretization of the underlying PDE. In the environment of the finite element method,
they construct local matrices corresponding to the integral of the operator in the overlapping
subdomain. For each subdomain, the expanded matrix has the form

PiÃiP>i =

Ri,0AR>i,0 Ri,0AR
>
i,δ

Ri,δAR
>
i,0 Ãiδ

0

 ,

where Ãiδ corresponds to the integral of the operator in the overlapping region with neighbors of
the subdomains i. This matrix is SPSD since the global operator is SPD. Since the integral over
the subdomain is always smaller than the integral over the global domain (positive integrals),
the following inequality holds

0 ≤ u>Ãiu ≤ u>Au, ∀u ∈ Rn.
Hence, Lemma 10 confirms that the matrix Ãi corresponds to an algebraic local SPSD splitting
of A related to the subdomain i. Thus, GenEO is a member of the class of preconditioners that
are based on the algebraic local SPSD splitting of A. We note that the parameter km, defined in
(29), with the algebraic local SPSD splitting of A corresponding to GenEO can be shown to be
equal to the maximum number of subdomains sharing a DOF.

4.2 Extremum efficient coarse space
In this section we discuss the two obvious choices to have algebraic local SPSD splitting of

A. We show how in practice these two choices are costly. However, they have two advantages.
The first is that one of these choices gives an answer to the following question that appears in
domain decomposition. How many local vectors must be added to the coarse space in order to
bound the spectral condition number by a number defined a priori ? We are able to answer this
question in the case where the additive Schwarz preconditioner is to be used. We note that the
answer is given without any analytic information. Only the coefficients of the matrix A have to
be known. The second advantage is that both choices give an idea of constructing a non-costly
algebraic approximation of an ALS.

In the following discussion we disregard the impact of the parameter km. Numerical experi-
ments in 5 demonstrate that the impact of this parameter can be negligible. We note that this
parameter depends only on the algebraic local SPSD splitting and it is bounded by N .
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Suppose that we have two SPSD splittings of A related to a subdomain i, Ã(1)
i , Ã

(2)
i , such

that :
u>Ã

(1)
i u ≤ u>Ã(2)

i u, ∀u ∈ Rn.
We want to compare the number of vectors that contribute to the coarse space for each SPSD
splitting. It is clear that a τ -filtering subspace associated to Ã(1)

i is a τ -filtering subspace asso-
ciated to Ã(2)

i . Thus, the following inequality holds,

dim(Z̃
(1)
τ,i ) ≥ dim(Z̃

(1)
τ,i ),

where Z̃(1)
τ,i , Z̃

(2)
τ,i are the smallest τ -filtering subspaces associated to Ã(1)

i , Ã
(2)
i , respectively. The-

refore, Lemma 10 shows that closer we are to the upper bound in (24) less vectors will contribute
to ALS. Moreover, closer we are to the lower bound in (24) more vectors will contribute to ALS.
Indeed, the set of algebraic local SPSD splitting of A related to a subdomain i admits a relation
of partial ordering.

M1 ≤M2 ⇐⇒ u>M1u ≤ u>M2u, ∀u.
This set admits obviously a smallest and a largest element defined by the left and the right
bounds in (24), respectively.

Hence, the best ALS corresponds to the following algebraic local SPSD splitting of A, for
i = 1, . . . , N ,

PiÃiP>i =

Ri,0AR
>
i,0 Ri,0AR

>
i,δ

Ri,δAR
>
i,0 Ri,δAR

>
i,δ −

(
Ri,δAR

>
i,c

) (
Ri,cAR

>
i,c

)−1 (
Ri,cAR

>
i,δ

)
0

 . (33)

The dimension of the subspace Z̃τ,i associated to Ãi (33) is minimal over all possible algebraic
local SPSD splittings of A related to the subdomain i. We remarke that this splitting is not
a choice in practice since it includes inverting the matrix

(
Ri,cAR

>
i,c

)
which is of large size

(approximately corresponding to N − 1 subdomains). We will refer to (33) as the upper bound
SPSD splitting, the associated coarse space will be referred to as the upper ALS.
In the same manner, we can find the worst ALS. The corresponding algebraic local SPSD splitting
of A related to the subdomain i is the following

PiÃiP>i =

Ri,0AR
>
i,0 Ri,0AR

>
i,δ

Ri,δAR
>
i,0

(
Ri,δAR

>
i,0

) (
Ri,0AR

>
i,0

)−1 (
Ri,0AR

>
i,δ

)
0

 . (34)

On the contrary of the best splitting (33), this splitting is not costly. It includes inverting the
matrix

(
Ri,0AR

>
i,0

)
which is considered small. However, the dimension of Z̃τ,i associated to Ãi

(34) is maximal. It is of dimension δi at least. Indeed, a block-LDLT factorization of Ri,1ÃiR>i,1
shows that its null space is of dimension δi. We will refer to (34) as the lower bound SPSD
splitting the associated coarse space will be referred to as the lower ALS.

Remark 3 A convex linear combination of the lower bound and the upper bound of the SPSD
splitting is also an algebraic local SPSD splitting.

α× the upper bound SPSD splitting + (1− α)× the lower bound SPSD splitting

We refer to it as α-convex SPSD splitting, We refer to the corresponding ALS as the α-convex
ALS.

In the following section we propose a strategy to compute an approximation of reasonable ALS
that is not costly.
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4.3 Approximate ALS

As mentioned in 4.2, the extremum cases of ALS are not practical choices. Nevertheless, the
ALS can be approximated by considering the following strategy. We restrict the matrix Ri,cAR>i,c
to the neighbors DOF of the subdomain i through the graph of A such that the restriction of
the matrix Ri,cAR>i,c has a dimension dimi ≤ d × ni,1, where d is a fixed integer. Then we can
take a convex linear combination of the lower bound SPSD splitting and the approximation of
the upper bound SPSD splitting. For instance, the error bound on this approximation is still an
open question. Numerical experiments show that d does not need to be large.

5 Numerical experiments

In this section we present numerical experiments for ALS. We denote ASMALS the two-level
additive Schwarz combined with ALS. If it is not specified, the number of vectors deflated by
subdomain is fixed to 15. We use the preconditioned CG implemented in MATLAB 2017R to
compare the preconditioners. The threshold of convergence is fixed to 10−6. Our test matrices
arise from the discretization of two types of challenging problems : linear elasticity and diffusion
problems [5, 1, 15]. Our set of matrices are given in Table 1. The matrices SKY2D and SKY3D
arise from the boundary value problem of the diffusion equation on Ω, the (2-D) unit square and
the (3-D) unit cube, respectively :

−div(κ(x)∇u) = f in Ω, (35)
u = 0 on ΓD, (36)

∂u

∂n
= 0 on ΓN . (37)

They correspond to skyscraper problems. The domain Ω contains several zones of high per-
meability. These zones are separated from each other. The tensor κ is given by the following
relation :

κ(x) = 103([10x2] + 1) if [10xi] is odd, i = 1, 2,

κ(x) = 1 otherwise.

ΓD = [0, 1]× {0, 1} in the (2-D) case. ΓD = [0, 1]× {0, 1} × [0, 1] in the (3-D) case. ΓN is chosen
as ΓN = ∂Ω \ ΓD and n denotes the exterior normal vector to the boundary of Ω. The linear
elasticity problem with Dirichlet and Neumann boundary conditions is defined as follows

div(σ(u)) + f = 0 in Ω, (38)
u = 0 on ΓD, (39)

σ(u) · n = 0 on ΓN , (40)

Ω is a unit cube (3-D). The matrix El3D corresponds to this equation discretized using a trian-
gular mesh with 30×5×5 vertices. ΓD is the Dirichlet boundary, ΓN is the Neumann boundary,
f is a force, u is the unknown displacement field. The Cauchy stress tensor σ(.) is given by
Hooke’s law : it can be expressed in terms of Young’s modulus E and Poisson’s ration ν. n
denotes the exterior normal vector to the boundary of Ω. We consider discontinuous E and ν :
(E1, ν1) = (2 × 1011, 0.45), (E2, ν2) = (107, 0.25). Data elements of this problem are obtained
by the application FreeFem++ [7]. Table 5 presents a comparison between one-level ASM and
ASM2 with the upper bound ALS. As it is known, the iteration number of CG preconditioned by
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Matrix name Type n NnZ κ
SKY3D Skyscraper 8000 53000 105

SKY2D Skyscraper 10000 49600 106

EL3D Elasticity 15795 510181 3× 1011

Table 1 – Matrices used for tests. n is the size of the matrix, NnZ is the number of non-zero
elements. HPD stands for Hermitian Positive Definite. κ is the condition number related to the
second norm.

Matrix n N nuC nASM
4 23 29
8 25 35

SKY3D 8000 16 25 37
32 22 55
64 24 79
128 24 -
4 18 54
8 19 -

SKY2D 10000 16 20 -
32 22 -
64 26 -
128 31 -
4 38 -
8 43 -

EL3D 15795 16 51 -
32 51 -
64 67 -
128 92 -

Table 2 – Comparison between ASM2 with the upper ALS and one-level additive Schwarz, n
is the dimension of the problem, N is the number of subdomains, nuC is the iteration number
of CG preconditioned by ASM2, and nASM is the iteration number of CG preconditioned by
one-level ASM . The sign − means that the method did not converge in fewer than 100 iteration.
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Matrix n N nuC nα1 nα2

4 23 22 22
8 25 25 23

SKY3D 8000 16 25 24 24
32 22 22 22
64 24 23 21
128 24 24 22
4 18 18 17
8 19 19 19

SKY2D 10000 16 20 19 19
32 22 21 18
64 26 24 20
128 31 28 20
4 38 38 38
8 43 43 43

EL3D 15795 16 51 51 51
32 51 51 51
64 67 67 67
128 92 92 92

Table 3 – Comparison between ALS variants, the upper bound ALS, the α1-convex ALS, and
the α2-convex CosBALSS, n is the dimension of the problem, N is the number of subdomains,
the subscript uC refers to the upper bound ALS, n. is the iteration number of ASM2, α refers
to the coefficient in the convex linear combination, α1 = 0.75 and α2 = 0.25.

ASM increases by increasing the number of subdomains. However, we remark that the iteration
number of the CG preconditioned by ALS is robust when the number of subdomain increases.

In Table 5 we compare three ALS, the upper bound, α1-convex, and α2-convex, where α1 =
0.75 and α2 = 0.25. Table 5 shows the efficiency of three ALS related to different SPSD splittings.

To illustrate the impact of the parameter km, when increasing the number of subdomains, on
bounding the spectral condition number, we do the following. We choose τ as

τ = (
κ̃

2kc
− 2)(2kc + 1)−1,

i.e., we suppose that km has no impact on τ . The resulting spectral condition number will
be effected only by the parameter km see Table 5. Table 5 and Table 5 present results for
ALS variants when κ̃ = 100. We perform this test on the elasticity problem where we could
also compare against the GenEO coarse space [17, 3]. Table 5 shows the dimension of ALS of
each variant as well as the iteration number for preconditioned CG to reach the convergence
tolerance. On the other hand, Table 5 shows an estimation of the spectral condition number
of the preconditioned system. This estimation is performed by computing an approximation of
the largest and the smallest eigenvalues of the preconditioned operator by using the Krylov-
Schur method [19] in MATLAB. The same tolerance τ is applied for GenEO. In order to avoid
a large-dimension coarse space, 30 vectors at max are deflated per subdomain.

We note that results in Table 5 satisfy the discussion in 4.2. Indeed the upper bound ALS has
the minimum dimension, 0.75- and 0.25-convex ALS follow the upper bound ALS respectively.

Table 5 demonstrates the impact of km on the bound of the spectral condition number. We
notice that its effect increases when α is closer to 1. In Figure 1 we present a histogram of the
number of deflated vectors by each subdomain. We remark that the number of vectors that each
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N dimuC nuC dimα1 nα1 dimα2 nα2 dimGen nGen
4 82 20 92 19 120 18 106 20
8 179 23 209 20 240 20 229 24
16 304 37 394 30 480 28 391 38
32 447 53 583 45 960 36 614 42
64 622 84 769 73 1920 51 850 55
128 969 131 1096 112 3834 77 1326 61

Table 4 – Matrix El3D, ALS variants and GenEo coarse space with the minimum number of
deflated vectors disregarding the parameter km, N is the number of subdomains, the subscript
uC refers to the upper bound ALS. dim. is the dimension of ALS, n. is the iteration number of
ASM2, α refers to the coefficient in the convex ALS, α1 = 0.75 and α2 = 0.25, the subscript
Gen stands for the GenEO coarse space. See Table 5

N κuC κα1 κα2 κGen
4 5 4 4 5
8 8 5 5 7
16 15 10 9 15
32 34 25 15 18
64 100 67 30 31
128 231 178 86 39

Table 5 – Estimation of the spectral condition number of matrix El3D preconditioned by ASM2

with ALS variants and GenEo coarse space, results correspond to Table 5, N is the number of
subdomains, the subscript uC refers to the upper bound ALS, α refers to the coefficient in the
convex ALS, α1 = 0.75 and α2 = 0.25, the subscript Gen stands for the GenEO coarse space.

Figure 1 – Histogram of the number of deflated vectors by each subdomain for different ALS,
GenEO ; uC, the upper bound ALS ; α1-convex ALS, α1 = 0.75 ; α2-convex ALS, α2 = 0.25
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Figure 2 – Comparaison between the number of deflated vectors per subdomain GenEO coarse
space and the upper bound ALS

subdomain contributes to the coarse space is not necessarily equal. In the case of α2-convex ALS,
most subdomains reach the maximum number of deflated vectors, 30, that we fixed. Moreover,
Figure 2 compares the number of deflated vectors in each subdomain for the GenEO subspace
and the upper bound ALS. This figure illustrates the relation of partial ordering between the
SPSD splitting as discussed in 4.2.

In Table 5 we show the impact of the approximation strategy that we proposed in 4.3. The
distance parameter related to the approximation, see 4.3, is fixed for each matrix. It is obtained
by tuning. The convex linear combination is chosen as α = 0.01. Each subdomain contributes 20
vectors to the coarse space. We remark that the approximation strategy gives interesting results
with the conviction-diffusion problem matrices SKY2D and SKY3D. With a small factor of the
local dimension d = 2 and d = 3, respectively, the approximate ALS is able to perform relatively
as efficient as the upper bound ALS. For the elasticity problem with a larger factor d = 5, the
approximate ALS reduces the iteration number, however, we remark that the latter increases by
increasing the number of subdomains.

6 Conclusion

In this paper we reviewed generalities of one- and two-level additive Schwarz preconditioner.
We introduced the algebraic local SPSD splitting of an SPD matrix A. We characterized all
possible algebraic local SPSD splitting. To study the minimality of the dimension of the coarse
space, we introduced the τ -filtering subspaces. Based on the algebraic local SPSD splitting and
inspired by the GenEO method [17, 3], we introduced a class of algebraic coarse spaces that
are constructed locally, ALS. The characterization of algebraic local SPSD splitting of A and
the associated τ -filtering subspaces makes an algebraic framework for studying the coarse spaces
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Matrix n N nuC d nap
4 22 22
8 23 23

SKY3D 8000 16 24 2 22
32 22 22
64 24 22
128 22 44
4 17 17
8 18 18

SKY2D 10000 16 20 3 19
32 22 22
64 26 59
128 31 90
4 27 54
8 36 56

EL3D 15795 16 37 5 77
32 43 136
64 61 -
128 83 -

Table 6 – Comparison between the upper bound ALS and the approximation strategy presented
in 4.3, n is the dimension of the problem, N is the number of subdomains, nuC is the iteration
number of CG preconditioned by ASM2 with the upper bound ALS, d stands for the factor of
local dimension to approximate the upper bound SPSD splitting, as explained in 4.3, and nap
is the iteration number of CG preconditioned by ASM2 with approximation of ALS, the convex
linear combination is chosen as (0.01×approximation of the upper bound+0.99× lower bound).
The sign − means that the method did not converge in fewer than 150 iteration.
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related to the additive Schwarz method. We proved that the coarse space of GenEO corresponds
to a special case of the SPSD splitting. We discussed different types of ALS and suggested a simple
method to approximate a valuable coarse space. For matrices issued from the conviction-diffusion
problem, the simple method that we proposed gave very interesting results.
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