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Abstract

This paper presents an application of the Linear Sampling Method to ultrasonic
Non Destructive Testing of an elastic waveguide. In particular, the NDT con-
text implies that both the solicitations and the measurements are located on
the surface of the waveguide and are given in the time domain. Our strategy
consists in using a modal formulation of the Linear Sampling Method at mul-
tiple frequencies, such modal formulation being justified theoretically in [1] for
rigid obstacles and in [2] for cracks. Our strategy requires the inversion of some
emission and reception matrices which deserve some special attention due to
potential ill-conditioning. The feasibility of our method is proved with the help
of artificial data as well as real data.

Keywords: Elastic waveguide, Inverse scattering problem, Linear Sampling
Method, Lamb modes, Experimental data.

1. Introduction

This paper presents a Non Destructive Testing method to identify some de-
fects in an elastic waveguide. Such a subject is far from being original, but the
novelty of our contribution is that we apply a rather mathematical approach of
inverse problems, namely the Linear Sampling Method, to improve the ultra-5

sonic inspection of elastic waveguide structures from real data. In particular,
at the end of the paper we present some promising identification results ob-
tained with experimental data. There is a huge amount of works dealing with
NDT experimental ultrasonic techniques for waveguides such as metallic plates
or pipes. But NDT ultrasonic techniques have limitations: some of them take10

the modal decomposition of the waves into account, which allows the inspection
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of a wide area. But these techniques need to track the propagation of a single
guided mode at a low frequency, which is difficult in practice [3, 4, 5, 6, 7, 8].
Moreover, the guided-wave based techniques often depend on the type of defect
which is expected, that is a void, a crack or some corrosion. Other techniques15

do not take the modal decomposition of the waves into account and enable the
inspection, at a high frequency, of a limited area which is close to the sensor
[9, 10]. Our aim is to image an elastic waveguide in a wide area and at a high
frequency, using all the propagating modes at the same time. Furthermore, we
wish to conceive a method which does not depend on the number and the type20

of defects that are likely to be detected. A sampling method such as the Linear
Sampling Method has all these nice features, provided we manage to adapt it
to the constraining context of NDT.

The Linear Sampling Method has now a long history since its introduction
in [11] in the free space configuration and for the acoustic case. It consists,25

for each sampling point z describing a grid, to check if some appropriate and
analytically known test function depending on z belongs or not to the range of
a linear operator the definition of which is based on the data. In the case of
a positive answer, the point z belongs to the defect, which is a practical way
of retrieving its boundary. Since the nineties, the LSM has been widely used30

in other configurations and for other types of physical settings. For example,
both for penetrable or impenetrable objects, the LSM was extended to elasticity
in [12, 13] and to electromagnetism in [14, 15]. In the acoustic case, the LSM
was adapted to the waveguide geometry in [16, 17, 18, 19]. The case of elastic
waveguides was addressed in [1], the case of electromagnetic waveguides in [20].35

Given the importance of cracks in NDT, we mention that the LSM was adapted
to the detection of cracks in [21, 22] in the case of acoustics and in [2, 23] in the
case of elasticity. To complete this short review of the Linear Sampling Method,
while the previous contributions consider waves in the frequency domain, we
point out that a time domain version of the LSM was developed in [24] and40

adapted to waveguides in [25].
In almost all papers cited above, the LSM was applied to artificial data which

somehow can be considered as ideal. In [1, 2, 17, 25], for instance, the sources
and the receivers are located along transverse sections of the waveguide, which
is not realistic in the context of Non Destructive Testing, where the sources and45

the receivers are both located on the surface of the waveguide. Furthermore,
[1, 2, 17] stick to the frequency regime, while data are produced in the time
domain in practice. The work we propose in elasticity is the same as we did in
[26] in the acoustic case starting from [18]: handling surface data in the time
domain in order to be in the exact conditions of a true experiment. An important50

contribution in [1, 2, 18] was that a modal formulation of the Linear Sampling
Method, which is specific to waveguides, was introduced. Indeed, the term
“modal formulation” refers to the fact that all the incident and scattered fields,
in the region of the waveguide where there is no defect, can be decomposed along
the guided modes. This decomposition enables us to select, among all modal55

amplitudes of the incident and scattered fields, those which correspond to the
propagating part, that is the part which propagates at long distance without
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attenuation. The remainder of the modal amplitudes is simply dropped. The
advantage of such technique, which is justified in the acoustic case in [18], is
that it regularizes, in a very efficient way, the ill-posed LSM equation to solve60

for each sampling point. In addition, our modal approach enables us to optimize
the number of the sources/receivers and the spacing between them. Note that
such optimization is significantly more difficult in the case of elasticity than in
the case of acoustics, due to much higher complexity of the dispersion curves.
Like in [26], our strategy is the following. Firstly, we transform the time domain65

data into multi-frequency data with the help of the Fourier transform. Secondly,
at each frequency we transform the surface data into a novel set of ideal data
which are suitable for the modal formulation of the LSM. Thirdly, we combine
all the images given by the LSM at each frequency in order to obtain the best
possible defect identification. The Linear Sampling Method in the frequency70

domain for an elastic waveguide is already justified for a Dirichlet obstacle in [1]
and for cracks in [2]. The justification for a Neumann obstacle would follow the
same lines and the justification for a penetrable obstacle would be very close to
that of [27] for the periodic acoustic waveguide. It is important to note that our
article does not provide any new result in this direction. Instead, it is focused75

on the application of the LSM in the presence of real data (in particular, surface
data in the time domain) and on how the substantial issues generated by those
real data can be fixed. To our best knowledge, proving the feasibility of the
LSM with the help of real experiments on an elastic waveguide is new.

The outline of our paper is the following. Our Non Destructive Testing prob-80

lem is described in section 2. In section 3, we briefly introduce the framework of
mixed X,Y variables, which is a key tool in view of the modal formulation of the
Linear Sampling Method. In section 4, we summarize such modal formulation
and its far field approximation. Section 5 details the way, starting from surface
data in the time domain, we can handle those data in order to come back to85

the previous modal formulation. The section 6 is dedicated to some numeri-
cal experiments with artificial data, while section 7 presents our experimental
setup and the corresponding identification results. Some conclusions are given
in section 8. Lastly, in appendix A we derive the fundamental solution of the
elastic waveguide for a Dirac located on its boundary, while the appendix B is90

an analysis of the cases when the matrix of modes introduced in section 5 is not
invertible.

2. Setting of the problem

We consider a 2D waveguide W = S×R for S = (0, d) and d > 0 is the height
of the waveguide. We denote (x1, x3) the coordinates of a generic point of W in95

the orthonomal basis (e1, e3), x3 being the coordinate of the infinite direction of
the waveguide. The boundary of W is denoted Γ = Γ0∪Γd, where Γ0 (resp. Γd)
corresponds to x1 = 0 (resp. x1 = d). This 2D configuration can also be viewed
as a 3D configuration, such that if (x1, x2, x3) are the three spatial coordinates,
the waveguide is infinite in both directions x2 and x3 with invariance of all100

quantities with respect to x2. This will coincide with the configuration of our
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experimental device in section 7. In what follows, all vectors in R2 will be
marked in bold characters while scalars and matrices will appear normally. For
instance, v will denote the displacement, ε and σ the strain and stress tensors,
respectively. We recall that, in the case of linear and isotropic elasticity, they105

are linked by

ε(v) =
∇v +∇vT

2
, σ(v) = λ tr[ε(v)]Id2 + 2µ ε(v),

where mT , tr(m) denote the transpose and the trace of the matrix m, respec-
tively, Id2 denotes the identity matrix, while λ and µ are the Lamé constants,
which satisfy λ+ 2µ > 0 and µ > 0.

We now consider a compactly supported scalar function ϕ of x3 and a smooth110

(at least C1) compactly supported scalar function χ of time t, with supp(χ) ⊂
[0,+∞). For some impenetrable obstacle D such that D ⊂ W , let us denote
Ω = W \ D and assume that Ω is connected. We consider the displacement
solution v in Ω × (0,+∞) to the scattering problem with Dirichlet boundary
condition on ∂D:115 

ρ∂2
t v − div(σ(v)) = 0 in Ω× (0,+∞)
σ(v)ν = ϕχe1 on Γd × (0,+∞)
σ(v)ν = 0 on Γ0 × (0,+∞)

v = 0 on ∂D × (0,+∞)
v = 0 on Ω× {0}
∂tv = 0 on Ω× {0},

(1)

where ρ is the density of the material and ν is the outward unit normal to Ω.
It should be noted that ν = e1 on Γd and ν = −e1 on Γ0. Let us introduce two
scalar functions f and g that are both compactly supported and even. While
the function of time χ is given once and for all, the function of space ϕ is
alternatively chosen as120

ϕ(x3) = f(x3 − xs±3 ), (2)

for several source locations xs±3 . We denote by vi the solution to the same
problem as (1) in W without the boundary condition on ∂D and vs = v − vi.
In the classical terminology of scattering problems, v is the total field while vi

is the incident field and vs = v − vi is the scattered field. The measurements
are given for all time t ∈ (0,+∞), for several receiver locations xr±3 , by125

γ(xr±3 , t) =

∫
R
g(x3 − xr±3 )vs1(d, x3, t) dx3, (3)

where vs1 is the component of the displacement vs along e1. We assume that
the position of sources and receivers are given by

xm±3 = ±(R+mδ), m = 0, . . . ,M − 1, (4)

whereR > 0 is such that the obstacleD is a priori located between the transverse
sections of coordinates x3 = −R and x3 = R and δ > 0. The well-posedness
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Figure 1: Configuration of the inverse problem

of the forward problem (1) for some data (ϕ, χ), which can be analyzed with130

classical tools like the J.-L. Lions Theorem or the Hille-Yosida Theorem (see
[28]), will not be discussed in the present paper. The inverse problem consists
in identifying the obstacle D in two situations:

• the full-scattering situation, that is we use the sources and receivers at
xm+

3 and xm−3 given by (4) for m = 0, . . . ,M − 1, which amounts to 2M135

sources and 2M receivers,

• the back-scattering situation, that is we use the sources at xm−3 and the
receivers at xm−3 for m = 0, . . . ,M − 1, which amounts to M sources and
M receivers.

In the full-scattering situation, both sides of the defect are accessible, while140

only one side is accessible in the back-scattering situation. The configuration
of our inverse problem is illustrated in figure 1. In the inverse problem that
we consider, the obstacle D is characterized by a Dirichlet boundary condition
v = 0 on ∂D for simplicity, like in [1]. But all the justifications remain valid for
the Neumann boundary condition σ(v)ν = 0 on ∂D or σ(v)ν = 0 on both sides145

of a non closed curve, which model a void or a crack, respectively, like those we
look for in the real experiment. We introduced the functions f and g in order
to make the data of the inverse problem closer to the real data. Indeed, a Dirac
Distribution would correspond for f to a punctual force applied at point xr±3
and for g to a punctual measurement of the displacement at point xs3±, while150

in practice using piezoelectric transducers leads us to impose a distributed force
around xr±3 and to measure a weighted displacement around xs3±. Lastly, in
our inverse problem, we impose a pressure force (along e1) on the boundary
of the waveguide and measure the transverse displacement (along e1) on such
boundary, because this is what is usually done in experiments and what we155

actually do in section 7. In fact, the theory developed in the present article
enables us to consider other configurations (see [29]), for example a shear force
(along e3) on the boundary and the axial displacement (along e3).
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3. The X,Y variables

In this section we briefly summarize the results given in [30].160

3.1. The guided modes

Let us introduce the X and Y variables, which is a useful tool in order to
study the guided modes. They are defined from the displacement field u as

X =

(
t1
u3

)
and Y =

(
u1

t3

)
,

where u = (u1, u3) and σ(u)e3 = (t1,−t3) := (σ31, σ33). These variables X and
Y, which mix some components of the displacement and some components of165

the stress tensor, were introduced in [31] and revisited in [30, 32]. The main
advantage of those variables is that, contrary to the displacement field u, its
X and Y extensions can be decomposed in a complete basis of any transverse
section of the waveguide, as we will see later. In our elastic waveguide, for a
given fixed frequency ω, the so-called guided modes are the solutions u, with170

separate dependance on x1 and x3, to the system{
divσ(u) + ρω2u = 0 in W,

σ(u)ν = 0 on Γ.
(5)

It can be proved (see [30]) by using the X,Y variables that the system (5) is
equivalent to the “evolution” problem with respect to the coordinate x3:

∂

∂x3

(
X
Y

)
=

(
0 FY
FX 0

)(
X
Y

)
in W,

σ11(Y) = 0 on Γ,
t1 = 0 on Γ,

(6)

where the transverse operators FX and FY are defined by

FY Y =

(
−∂x1

σ11(Y)− ρω2u1

−α∂x1u1 −
α

λ
t3

)
and FXX =

 t1
µ
− ∂x1u3

∂x1
t1 + ρω2u3

 , (7)

with175

σ11(Y) = 2µ(1 + α)∂x1u1 − α t3, α = λ/(λ+ 2µ). (8)

The guided modes are obtained by searching solutions to problem (6) in the
form (

X(x)
Y(x)

)
=

(
X (x1)
Y(x1)

)
eiβ x3

with β ∈ C, which amounts to
iβ

(
X
Y

)
=

(
0 FY
FX 0

)(
X
Y

)
in S,

σ11(Y) = 0 for x1 ∈ {0, d},
t1 = 0 for x1 ∈ {0, d}.

(9)
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By using the spectral properties of the operators FX and FY (see [30]) we obtain
a discrete family of guided modes depending on n ∈ N, given either in the X,Y180

variables or in the u variable, by:(
X±n (x)
Y±n (x)

)
=

(
±Xn(x1)
Yn(x1)

)
e±iβnx3 , u±n (x) =

(
un1 (x1)
±un3 (x1)

)
e±iβnx3 . (10)

In 2D, the guided modes defined above are also known in the literature as the
Lamb modes. In practice, for some given ω, the βn do not have an analytical ex-
pression. The dispersion relation that they satisfy, as well as the corresponding
displacement (un1 , u

n
3 ) are specified in appendix B. An essential result (see [30])185

concerning these guided modes is the following biorthogonality relationship, for
m,n ∈ N:

(Xn|Ym)S = δnmJn

for some constant Jn, where the bilinear form (·|·)S is defined for X = (t1, u3)T

and Y = (u1, t3)T in L2(S) = (L2(S))2 by

(X |Y)S =

∫ d

0

(X1Y1 + X3Y3) ds =

∫ d

0

(t1 u1 + u3 t3) ds. (11)

The bilinear form (11) can be extended by duality to the case when X ∈190

H̃−
1
2 (S)×H 1

2 (S) and Y ∈ H 1
2 (S)× H̃− 1

2 (S), where H̃−
1
2 (S) is the dual space

of H
1
2 (S). The following assumption is made in the sequel.

Assumption 1. The frequency ω is such that none of the βn vanishes and none
of the elements of the family (Xn,Yn) satisfies (Xn|Yn)S = 0.

Assumption 1 eliminates the possibility of infinite phase velocity and of195

vanishing group velocity (see [33]). Such assumption enables us to set Jn = 1
for all n ∈ N. From the numerical results, Assumption 1 seems to be violated
for at most a countable set of frequencies ω. The guided modes for which βn
is purely real are said to be propagating, since they propagate at long distance
without attenuation. The guided modes can then be organized in two families:200

• the rightgoing modes (βn,Xn,Yn) for n ∈ N, which correspond to Im(βn) >
0 (for non-propagating modes) or ∂ω

∂βn
> 0 (for propagating modes), where

ω is an implicit function of βn via the dispersion relation (60).

• the leftgoing modes (−βn,−Xn,Yn) for n ∈ N.

It should be noted that the non-propagating modes are either evanescent (βn205

is purely imaginary) or inhomogeneous (βn is not purely imaginary). Without
loss of generality, we assume that the propagating modes are ordered in such a
way that the sequence of βn decreases with respect to n.

3.2. The radiation condition

Let us assume the following conjecture.210

7



Conjecture 2. For every X ∈ H̃− 1
2 (S)×H 1

2 (S) we have

X =
∑
n∈N

(X |Yn)SXn, (12)

for every Y ∈ H 1
2 (S)× H̃− 1

2 (S) we have

Y =
∑
n∈N

(Xn|Y)SYn, (13)

and there exists C > 0 such that∑
n

|(X |Yn)S |2 ≤ C ‖X‖2
H̃−

1
2 (S)×H

1
2 (S)∑

n

|(Xn|Y)S |2 ≤ C ‖Y‖2
H

1
2 (S)×H̃−

1
2 (S)

.

Decompositions (12) and (13) are also true for X and Y in L2(S).215

To our best knowledge, a rigorous proof of the above completeness result,
which seems true according to all our numerical experiments, does not exist.
Following [30], from conjecture 2 the family (βn,Xn,Yn) enables us to define a
continuous Y-to-X operator T acting on a transverse section S, precisely

T :

(
H

1
2 (S)× H̃− 1

2 (S)→ H̃−
1
2 (S)×H 1

2 (S)
Y 7→

∑
n∈N(Xn|Y)SXn

)
. (14)

It is shown in [30] that the radiation condition in the elastic waveguide can220

be imposed by restricting the scattering problem to a bounded domain WR

located between a right transverse section SR = S × {R} and a left transverse
section S−R and by prescribing the boundary conditions T+Y = X on SR and
T−Y = −X on S−R, where T+ and T− are acting on sections SR and S−R,
respectively. In what follows, ΓR is the portion of Γ delimited by the sections225

S−R and SR.

3.3. The fundamental solution

The classical outgoing Green solution of the elastic waveguide W , denoted
by Gσu, is such that for y ∈WR, the 2× 2 tensor Gσu(·, y) satisfies the problem: −divσ(Gσu(·, y))− ρω2Gσu(·, y) = δ(· − y)Id2 in WR

σ(Gσu(·, y))ν = 0 on ΓR
T±G

σ
Y (·, y) = ±GσX(·, y) on S±R,

(15)

where GσX (resp. GσY ) denotes the 2×2 tensors such that each line of GσX (resp.230

GσY ) is formed by the X extension (resp. Y extension) of the corresponding line
of tensor Gσu. By using the coordinates of Xn = (tn1 , u

n
3 )T and Yn = (un1 , t

n
3 )T ,

the tensor Gσu is given by

Gσu(x, y) = −
∑
n∈N

(
un
1 (x1)un

1 (y1) −s(x3 − y3)un
1 (x1)un

3 (y1)
s(x3 − y3)un

3 (x1)un
1 (y1) −un

3 (x1)un
3 (y1)

)eiβn|x3−y3|

2
,
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where s is the sign function. As a useful tool to formulate the Linear Sampling
Method in our elastic waveguide, we introduce the extended outgoing Green ten-235

sor G for the elastic waveguide already introduced in [1], which is well adapted
to the X,Y formalism. The 4 × 4 tensor G is such that for y ∈ WR, G(·, y) is
the solution to the problem:

∂

∂x3
G(·, y) =

(
0 FY
FX 0

)
G(·, y)− δ(· − y)

(
Id2 02

02 Id2

)
in WR

σ11(GY (·, y)) = 0, t1(GY (·, y)) = 0 on ΓR
T±GY (·, y) = ±GX(·, y) on S±R.

(16)
Here, GX andGY denote theX−rows and Y−rows of the matrixG, respectively.
If we decompose the tensor G into four 2× 2 blocks, that is240

G =

(
GXX GYX
GXY GYY

)
, (17)

it is proved in [1] that these blocks can be specified as

GXX(x, y) = −
∑
n∈N

s(x3 − y3)Xn(x1)⊗Yn(y1)
eiβn|x3−y3|

2
,

GYX(x, y) = −
∑
n∈N

Xn(x1)⊗Xn(y1)
eiβn|x3−y3|

2
,

GXY (x, y) = −
∑
n∈N

Yn(x1)⊗Yn(y1)
eiβn|x3−y3|

2
,

GXY (x, y) = −
∑
n∈N

s(x3 − y3)Yn(x1)⊗Xn(y1)
eiβn|x3−y3|

2
.

(18)

By selecting among the rows of matrix G those which correspond to the compo-
nents of u and by selecting among the columns of G those which correspond to
the components of σ e3 (we recall that σ e3 = (t1,−t3)T ), we obtain the classical
Green tensor Gσu from the extended one. More generally and for simplicity, Gba245

will denote the tensor obtained from G by selecting among the rows of matrix
G those which correspond to the components of type a and by selecting among
the columns of G those which correspond to the components of type b.

4. The modal formulation of the Linear Sampling Method

We briefly summarize the modal formulation of the Linear Sampling Method250

such as described in [1] for rigid obstacles. But the justification can be easily
adapted to the case of voids or cracks (see [2]). As recalled in the introduction,
the method itself is independent of the nature of the defect.
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4.1. The theoretical foundation

We consider the following scattering forward problem : for f ∈ (H−
1
2 (∂D))2,255

find u ∈ (H1(ΩR))2 such that
divσ(u) + ρω2u = 0 in ΩR,

σ(u)ν = 0 on ΓR,
u = f on ∂D

T±Y = ±X on S±R,

(19)

where ΩR = WR \ D. Let us denote by usY (·, y) the solution to problem (19)

which corresponds to f = −GYu (·, y)|∂D for y ∈ Ŝ := S−R ∪ SR and by Xs
Y (·, y)

the X extension of usY (·, y). Similarly, let us denote by usX(·, y) the solution to

problem (19) which corresponds to f = −GXu (·, y)|∂D for y ∈ Ŝ and by Y sX(·, y)260

the Y extension of usX(·, y). We consider the inverse problem of finding the

obstacle D from the trace on Ŝ of either Xs
Y (·, y) or Y sX(·, y), for all y ∈ Ŝ. In

order to solve it we introduce the near field operators NX and NY defined by

NX :

 L2(Ŝ)→ L2(Ŝ)

h 7→
∫
Ŝ

Xs
Y (x, y)h(y) ds(y), x ∈ Ŝ

 (20)

and

NY :

 L2(Ŝ)→ L2(Ŝ)

h 7→
∫
Ŝ

Y sX(x, y)h(y) ds(y), x ∈ Ŝ

 . (21)

The Linear Sampling Method relies on the following theorem (see Theorem 3.6265

in [1]). The proof of such theorem follows exactly the same lines as the proof of
Theorem 2 in [34] by using the factorization of the operators NX and NY which
is derived and analyzed in [1].

Theorem 3. Let NX and NY be the near field operators defined by (20) and
(21) and p be some unit vector in R2. Except maybe for a countable set of270

frequencies ω, the following statements hold:

• if z ∈ D, for all ε > 0 there exists some field hε(·, z,p) ∈ L2(Ŝ) such that

‖NXhε −GYX(·, z)p‖L2(Ŝ) ≤ ε

and some field hε(·, z,p) ∈ L2(Ŝ) such that

‖NY hε −GXY (·, z)p‖L2(Ŝ) ≤ ε.

In these two cases, for a given ε > 0,

lim
z→∂D

‖hε(·, z,p)‖L2(Ŝ) = +∞.

10



• if z ∈ ΩR = WR \D, for all field hε(·, z,p) ∈ L2(Ŝ) such that275

‖NXhε −GYX(·, z)p‖L2(Ŝ) ≤ ε or ‖NY hε −GXY (·, z)p‖L2(Ŝ) ≤ ε,

we have
lim
ε→0
‖hε(·, z,p)‖L2(Ŝ) = +∞.

Then a practical method to identify D from one of the operators NX and
NY and given a unit vector p, consists for all z in some sampling grid, to solve
in L2(Ŝ) the equation

NXh = GYX(·, z)|Ŝ p (22)

or280

NY h = GXY (·, z)|Ŝ p (23)

and then to plot the function ψ(z) = 1/‖h(z)‖L2(Ŝ), which from the above
theorem turns out to be an indicator function of the defect.

4.2. The modal formulation

Now let us introduce the modal formulation of the LSM. To this end, let us
denote by us±n the solution to problem (19) which corresponds to f = −u±n |∂D,285

where u±n are the guided modes given for n ∈ N by (10), and let us denote by
Xs±n the X extension of us±n . By our conjecture 2, we can decompose

Xs+n |S−R
= −

∑
m∈N

S+−
mnXm, Xs−n |S−R

= −
∑
m∈N

S−−mnXm, (24)

Xs+n |SR
=
∑
m∈N

S++
mnXm, Xs−n |SR

=
∑
m∈N

S−+
mnXm. (25)

Similarly, we set h = (h−,h+) ∈ L2(S−R)× L2(SR) with

h− = −
∑
n∈N

h−nYn, h+ =
∑
n∈N

h+
nYn.

It is proved in [1] that the equation (22) is equivalent to the infinite system290 
∑
n∈N

eiβnR
(
S+−
mnh

−
n + S−−mnh

+
n

)
= eiβm(R+z3)(Xm(z1) · p)∑

n∈N
eiβnR

(
S++
mnh

−
n + S−+

mnh
+
n

)
= −eiβm(R−z3)(Xm(z1) · p)

∀m ∈ N. (26)

From (24) and (25), we can deduce that

Ys+n |S−R
=
∑
m∈N

S+−
mnYm, Ys−n |S−R

=
∑
m∈N

S−−mnYm,

Ys+n |SR
=
∑
m∈N

S++
mnYm, Ys−n |SR

=
∑
m∈N

S−+
mnYm,

11



so that by choosing now

h− =
∑
n∈N

h−nXn, h+ =
∑
n∈N

h+
nXn,

we can prove similarly that the equation (23) is equivalent to the infinite system
295 

∑
n∈N

eiβnR
(
S+−
mnh

−
n + S−−mnh

+
n

)
= eiβm(R+z3)(Ym(z1) · p)∑

n∈N
eiβnR

(
S++
mnh

−
n + S−+

mnh
+
n

)
= eiβm(R−z3)(Ym(z1) · p)

∀m ∈ N. (27)

Like in acoustics, the above equivalence between the equation (22) (resp. the
equation (23)) and the system (26) (resp. the system (27)) shows that it is
equivalent:

• to know the X (resp. Y) extension of the scattered fields on Ŝ associated
to all point sources GYu (·, y) (resp. GXu (·, y)) for y ∈ Ŝ300

• to know the projections on the Xm (resp. Ym) functions of the X (resp.
Y) extension of the scattered fields on Ŝ associated to all the guided modes
u±n for m,n ∈ N.

However, the notion of polarization is new in elasticity compared to acoustics:
while a single system is solved in acoustics (see [18]), four differents systems can305

be solved in 2D elasticity, because of the scalar products (Xm · p) and (Ym · p)
for p = (1, 0) and p = (0, 1). Since X = (t1, u3)T and Y = (u1, t3)T , we obtain
four different polarizations : u1, u3, t1 and t3.

Remark 4. We have shown in [2] that when the defect is a Neumann crack
instead of a void, it can be detected point by point by using polarizations t1 and310

t3. More precisely, the correct polarization is t1ν1 − t3ν3, where (ν1, ν3) is the
local normal to the crack. Such normal can be obtained locally by an optimization
process.

4.3. The regularization

As proved in [1, 2], the near field operators NX and NY are compact, so315

that the equations (22) and (23) are ill-posed. A convenient way to regularize
the infinite systems (26) and (27) is then to restrict the indices m and n to the
N first terms, where N is the finite number of propagating modes. Indeed, the
evanescent and inhomogeneous modes do not contribute to the scattered field
at a long distance from the defect, in particular on Ŝ = S−R ∪ SR when R is320

large, only the propagating modes do. Let us specify such discretization for the
system (27). We hence define the matrices and vectors

S−± = (S−±mn ), S+± = (S+±
mn ), m, n = 0, . . . , N − 1

H± = (h±m), F±Y,p = eiβm(R∓z3)(Ym(z1) · p), m = 0, . . . , N − 1.

12



We also introduce the N ×N diagonal matrix K formed by the diagonal terms
eiβnR, n = 0, . . . , N − 1, as well as the global matrices and vectors325

S =

(
S+− S−−

S++ S−+

)
, U = S

(
K 0
0 K

)
, H =

(
H−

H+

)
, FY,p =

(
F−Y,p
F+
Y,p

)
.

With those notations, the regularization applied to the infinite system (27) leads
to the 2N × 2N system

UH = FY,p. (28)

We refer to the 2N × 2N matrix S as the scattering matrix while we refer to
the 2N ×2N matrix U as the LSM matrix. In what follows it will be convenient
to introduce the matrices U−± = S−±K, U+± = S+±K. Obviously, we obtain330

from (26) the same system as (28), except that the right-hand side FY,p is
replaced by some vector FX,p. In view of the experimental setup of last section
7, it is important to address the back-scattering case, that is the data of the
inverse problem are supported by S−R instead of Ŝ = S−R ∪ SR. The inverse
problem consists then in finding the obstacle D from the trace on S−R of either335

Xs
Y (·, y) or Y sX(·, y), for all y ∈ S−R. In the back-scattering situation, it is

readily seen that the 2N × 2N system (28) is replaced by the N ×N system

U+−H− = F−Y,p. (29)

Remark 5. Here we highlight the fact that the system (28) is both a discretiza-
tion and a regularization of the ill-posed problem (23). The discretization con-
sists of a projection on the transverse modes Xn. The regularization consists340

in considering only the integers n associated with the propagating modes (this
is justified in [18] in the acoustic case). This regularization seems relevant
for at least two reasons. Firstly, it is based on a physical argument (the non-
propagating modes vanish at long distance). Secondly, it leads to a very limited
number of meaningful degrees of freedom. Such physical way to regularize the345

ill-posed problem would not be possible by handling the data directly in the time
domain. In particular, this strongly motivates us to use the modal formulation
and hence a multi-frequency approach rather than a time domain approach like
in [25], as detailed in the next section.

5. The case of surface data in the time domain350

In this section, we explain how to exploit the modal formulation of the Linear
Sampling Method exposed in section 4 to tackle the realistic NDT problem of
section 2.

5.1. From time domain to frequency domain data

First of all, by taking the Fourier transform with respect to time t in the355

system (1), that is

v̂(x, ω) =

∫
R
v(x, t)eiωt dt, (30)

13



then for some fixed frequency ω > 0 the solution u = v̂(·, ω) satisfies the scat-
tering problem in ΩR:

div(σ(u)) + ρω2u = 0 in ΩR
σ(u)ν = ϕωe1 on Γd,R
σ(u)ν = 0 on Γ0,R

u = 0 on ∂D
T±Y = ±X on S±R,

(31)

where Γd,R = Γd ∩ ΓR, Γ0,R = Γ0 ∩ ΓR and ϕω = χ̂(ω)ϕ.

Remark 6. It is fundamental to consider the exponential eiωt and not e−iωt in360

our definition (30) of the Fourier transform in order that u satisfies the radiation
condition in problem (31). In the slightly simpler case of acoustics, this fact is
fully justified in [29] with the help of the limiting absorption principle. Besides,
the definition of (30) requires v to be sufficiently decreasing with respect to time
t at infinity. This aspect is discussed in the numerical section. In the presence365

of experimental data, the Fourier transform is of course replaced by the discrete
Fourier transform.

For convenience, we also introduce the solution ui to the system
div(σ(ui)) + ρω2ui = 0 in WR

σ(ui)ν = ϕωe1 on Γd,R
σ(ui)ν = 0 on Γ0,R

T±Y
i = ±Xi on S±R.

(32)

As a result, u is the total field while ui is the incident field and us = u − ui

is the scattered one. Besides, the scattered field us is solution to problem (19)370

with f = −ui|∂D. A convenient way to give an explicit expression of ui is to use
the fundamental solution of problem (32), which corresponds to the particular
case when ϕω is chosen as the Dirac distribution δ at point y3. As proved in
Appendix A, such fundamental solution coincides with Gt1u , which is obtained
by selecting among the rows of matrix G given by (18) those which correspond375

to the components of u and by selecting the first column of G, that corresponds
to the component t1. The vector function Gt1 is hence given by(

Gt1X
Gt1Y

)
= −

∑
n∈N

(
s(x3 − y3)Xn(x1)

Yn(x1)

)
un1 (d)

2
eiβn|x3−y3|.

By convolution, it is readily seen that the incident field ui in the extended
variables X,Y is expressed as(

Xi

Yi

)
= −

∑
n∈N

∫
R

(
s(x3 − y3)Xn(x1)

Yn(x1)

)
un1 (d)

2
eiβn|x3−y3|ϕω(y3) dx3. (33)
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5.2. From surface to modal data380

We will need the following lemma.

Lemma 7. For R′ > R and g ∈ H 1
2 (SR) × H̃− 1

2 (SR), the extension Y of the
solution u to the problem

div(σ(u)) + ρω2u = 0 in S × (R,R′)
σ(u)ν = 0 on ({x1 = d} ∪ {x1 = 0})× (R,R′)
Y = g on SR
T+Y = X on SR′

(34)

is given by

Y(x) =
∑
n∈N

(Xn|g)SR
eiβn(x3−R)Yn(x1). (35)

Symmetrically, the extension Y of the solution u to the problem385 
div(σ(u)) + ρω2u = 0 in S × (−R′,−R)

σ(u)ν = 0 on ({x1 = d} ∪ {x1 = 0})× (−R′,−R)
Y = g on S−R
T−Y = −X on S−R′

(36)
is given by

Y(x) =
∑
n∈N

(Xn|g)S−R
e−iβn(x3+R)Yn(x1). (37)

Proof. Let us begin with the first case (34). From Lemma 2.8 in [1], the solution
to the first two common equations of systems (34) and (36) is given by(

X(x)
Y(x)

)
=
∑
n∈N

a+
n

(
X+
n (x)

Y+
n (x)

)
+ a−n

(
X−n (x)
Y−n (x)

)
for some complex numbers a+

n and a−n . Given the expression (10) of the guided390

modes X±n ,Y
±
n , we obtain in particular

X(x) =
∑
n∈N

(a+
n e

iβnx3 − a−n e−iβnx3)Xn(x1)

and
Y(x) =

∑
n∈N

(a+
n e

iβnx3 + a−n e
−iβnx3)Yn(x1).

From the definition (14) of the operator T , we have TYn = Xn for all n, then
the radiation condition on S′R implies∑

n∈N
(a+
n e

iβnR
′
+ a−n e

−iβnR
′
)Xn(x1) =

∑
n∈N

(a+
n e

iβnR
′
− a−n e−iβnR

′
)Xn(x1),
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that is a−n = 0 for all n ∈ N. Lastly we use the boundary condition on SR, that395

is
Y(x) =

∑
n∈N

a+
n e

iβnRYn(x1) = g(x),

which implies by using the biorthogonality relationship (11) that

a+
n e

iβnR = (Xn|g)SR

for all n, and we end up with (35). Let us now consider the other case (36).
The radiation condition on S−R′ now gives∑
n∈N

(a+
n e
−iβnR

′
+ a−n e

iβnR
′
)Xn(x1) = −

∑
n∈N

(a+
n e
−iβnR

′
− a−n eiβnR

′
)Xn(x1),

that is a+
n = 0 for all n ∈ N. The boundary condition on S−R implies that400

Y(x) =
∑
n∈N

a−n e
iβnRYn(x1) = g(x),

so that
a−n e

iβnR = (Xn|g)S−R

for all n, and we end up with (37).

We have now to consider four configurations separately, depending on the
fact that the source or the receiver is on the left or on the right of the defect.
Let us first consider a left source located at point (d, ys−3 ) with ys−3 = −R− sδ,405

for s = 0, . . . ,M − 1. From (33), the incident field is(
Xi(x)

Yi(x)

)
= −

∑
n∈N

(
Xn(x1)
Yn(x1)

)
un1 (d)

2

∫
R
eiβn(x3−y3)ϕω(y3) dy3

= −
∑
n∈N

(
X+
n (x)

Y+
n (x)

)
un1 (d)

2

∫
R
e−iβny3ϕω(y3) dy3.

The corresponding scattered field is then(
Xs(x)
Ys(x)

)
= −

∑
n∈N

(
Xs+n (x)
Ys+n (x)

)
un1 (d)

2

∫
R
e−iβny3ϕω(y3) dy3,

where we recall that Xs+n ,Ys+n are the X,Y extensions of us±n , which is itself
the solution to problem (19) associated with f = −u±n |∂D. Since ϕω(y3) =410

fω(y3 − ys−3 ), where fω = χ̂(ω) f , and taking into account the fact that f is an
even function, we obtain

Ys(x) = −
∑
n∈N

Ys+n (x)
un1 (d)

2
eiβn(R+sδ)

∫
R
eiβnzfω(z) dz.
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Let us now consider a reception point (d, x3) located on the right of the waveg-
uide. By using Lemma 7 in the case of (34) and given the definition of the
scattering matrix S++, we have that415

Ys+n (d, x3) =
∑
m∈N

(Xm|Ys+n )SR
eiβm(x3−R)Ym(d) =

∑
m∈N

eiβm(x3−R)S++
mnYm(d).

By plugging this identity in the expression of Ys, we obtain

Ys(d, x3) = − χ̂(ω)

2

∑
m,n∈N

eiβm(x3−R)S++
mnu

n
1 (d)eiβn(R+sδ)fnYm(d),

where

fn =

∫
R
eiβnzf(z) dz. (38)

In view of (3), the Fourier transform of the measurement at the receiver located
at xr+3 = R+ rδ, for r = 0, . . . ,M − 1, is given by

γ̂(xr+3 , ω) =

∫
R
g(x3 − xr+3 )us1(d, x3) dx3,

that is420

γ̂(xr+3 , ω) = − χ̂(ω)

2

∑
m,n∈N

eiβmrδgmu
m
1 (d)S++

mne
iβnRun1 (d)fne

iβnsδ,

where

gm =

∫
R
eiβmzg(z) dz. (39)

By restricting the two sums to the first N terms, where N is the number of
propagating modes, we obtain that for r, s = 0, . . . ,M − 1, the measurement
M++
rs obtained at point xr+3 = R+ rδ for a source located at ys−3 = −R− sδ is

approximately given by425

M++
rs = − χ̂(ω)

2

N−1∑
m,n=0

eirβmδgmu
m
1 (d)U++

mn u
n
1 (d)fne

iβnsδ,

where we have used the fact that U++ = S++K. Using matrices, we obtain
that

M++ = − χ̂(ω)

2
RU++ET , (40)

where
R = V FgT, E = V FfT (41)

and

• Ff and Fg are the N ×N diagonal matrices formed by the diagonal terms430

fn and gn, respectively,
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• T is the N ×N diagonal matrix formed by the diagonal terms un1 (d),

• V is the M ×N Vandermonde matrix given by

Vmn = eimβnδ, m = 0, . . . ,M − 1, n = 0, . . . , N − 1. (42)

In what follows, the matrices Ff and Fg will be called the source shape and
receiver shape matrices, the matrix T will be called the matrix of modes, while435

the matrices R and E will be called the reception and emission matrices.
Let us now consider a reception point (d, x3) located on the left of the waveg-

uide. By using Lemma 7 in the case of (36) and by the definition of the scattering
matrix S+−, we have that

Ys+n (d, x3) =
∑
m∈N

(Xm|Ys+n )S−R
e−iβm(x3+R)Ym(d) =

∑
m∈N

e−iβm(x3+R)S+−
mnYm(d).

For a source located at point (d, ys−3 ), we hence obtain440

Ys(d, x3) = − χ̂(ω)

2

∑
m,n∈N

e−iβm(x3+R)S+−
mn e

iβnRun1 (d)eiβnsδfnYm(d).

The Fourier transform of the measurement at the receiver located at xr−3 =
−R− rδ, for r = 0, . . . ,M − 1, is given by

γ̂(xr−3 , ω) = − χ̂(ω)

2

∑
m,n∈N

eiβmrδgmu
m
1 (d)S+−

mn e
iβnRun1 (d)fne

iβnsδ,

so that for r, s = 0, . . . ,M − 1, the measurement M+−
rs for a receiver located at

xr−3 = −R− rδ and for a source located at xs−3 = −R− sδ is approximated by

M+−
rs = − χ̂(ω)

2

N−1∑
m,n=0

eirβmδgmu
m
1 (d)U+−

mn u
n
1 (d)fne

iβnsδ,

that is445

M+− = − χ̂(ω)

2
RU+−ET . (43)

Let us now consider a right source located at point (d, ys+3 ) with ys+3 = R+ sδ,
for s = 0, . . . ,M − 1. From (33), the incident field is(

Xi(x)

Yi(x)

)
= −

∑
n∈N

(
−Xn(x1)
Yn(x1)

)
un1 (d)

2

∫
R
e−iβn(x3−y3)ϕω(y3) dy3

= −
∑
n∈N

(
X−n (x)
Y−n (x)

)
un1 (d)

2

∫
R
eiβny3ϕω(y3) dy3
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and the corresponding scattered field is then(
Xs(x)
Ys(x)

)
= −

∑
n∈N

(
Xs−n (x)
Ys−n (x)

)
un1 (d)

2

∫
R
eiβny3ϕω(y3) dy3.

By proceeding as previously, for r, s = 0, . . . ,M − 1, the measurement M−+
rs for450

a receiver located at xr+3 = R + rδ and for a source located at ys+3 = R + sδ is
approximated by M−+

rs such that

M−+ = − χ̂(ω)

2
RU−+ET , (44)

while the measurement M−−rs for a receiver located at xr−3 = −R− rδ and for a
source located at ys+3 = R+ sδ is approximated by M−−rs such that

M−− = − χ̂(ω)

2
RU−−ET . (45)

Gathering all the previous contributions (40), (43), (44) and (45), we end up455

with

M = − χ̂(ω)

2
RU ET , (46)

where

M =

(
M+− M−−

M++ M−+

)
, R =

(
R 0
0 R

)
, E =

(
E 0
0 E

)
.

We hence conclude that for a given frequency, we can compute the LSM matrix
U from the measurement matrix M by inverting the reception and emission
matrices R and E . In the case of back-scattering, the system to invert is reduced460

to (43).

5.3. The general strategy

The global strategy to solve the inverse problem in the full-scattering situa-
tion consists in the following steps:

1. Compute or measure the transverse component of the scattered field vs in465

the time domain at all receivers x±r for all sources x±s for r, s = 0, . . . ,M−1.

2. Form the measurement matrix M(ω) for all frequencies ω.

3. Invert the system (46) to obtain the LSM Matrix U(ω) for all ω.

4. For all z ∈ G, where G is a sampling grid, compute the indicator function
ψ(z, ω) by inverting the system (28).470

5. Compute a global indicator function Ψ of the defect as

Ψ(z) =

(∫ ω+

ω−

maxz′∈G |ψ(z′, ω)|2

|ψ(z, ω)|2
dω

)−1/2

, (47)

for some lower and upper bounds ω− and ω+.
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In the back-scattering situation, we recall that the receivers and the sources are
limited to x−r and x−s for r, s = 0, . . . ,M−1, the measurement matrix reduces to
M+−(ω), the LSM matrix reduces to U+−(ω) and is obtained by inverting the475

system (43), lastly the LSM system to invert for all point z reduces to (29). We
also recall that the indicator functions Ψ and ψ(·, ω) are implicitly parametrized
by one of the four polarizations u1, u3, t1 and t3. The definition of the global
indicator function Ψ given by (47) corresponds to a “serial” combination. Such
choice is discussed and justified in [26].480

Remark 8. We point out that in general, the system (28) should be solved in the
Tikhonov sense (like in [35]), since the underlying operator to invert is compact.
But in our case, since the system (28) is already regularized (see Remark 5) and
small, an additional regularization is not necessary when the amplitude of noise
is reasonable.485

5.4. On the inversion of the emission and reception matrices

A key point of our method is the computation of the LSM matrix U from the
measurement matrixM given by (46), which amounts to inverting the reception
and emission matrices R and E. Given their definition (41), we are led to check
the invertibility of the source and receiver shape matrices Ff , Fg, the matrix of490

modes T and the Vandermonde matrix V .

5.4.1. The source/receiver shape matrices

Since the two matrices have the same form, we concentrate on the source
shape matrix Ff , the diagonal term fn of which is given by (38). We choose
f such that none of the fn vanishes for n = 0, . . . , N − 1. In particular, if f495

coincides with the Dirac function, Ff is the identity matrix. We expect that,
if the function f is not “too far” from the Dirac, for example a hat function
with a small support and a high amplitude, then Ff will be invertible and well
conditioned.

5.4.2. The matrix of modes500

The matrix of modes T is also diagonal, the diagonal term being given by
un1 (d) for n = 0, . . . , N − 1, where un1 (d) is the transverse component of the nth

mode given by (10) on the upper boundary of the waveguide. The matrix T
is invertible if and only if none of the un1 (d) vanishes for n = 0, . . . , N − 1. It
happens that there are some exceptional values of ω such that one of the un1 (d)505

vanishes. To be more specific, we prove the following theorem in appendix B,
where the notion of symmetric/antisymmetric mode is also defined.

Theorem 9. Let us assume that λ > 0. The matrix T is not invertible if and
only if for some propagating mode (βn,Xn,Yn), n = 0, . . . , N − 1, there exists
(p, q) ∈ N2 such that p and q are either both odd or both even, with510

β2
n = ω2 ρ

µ
−
(
pπ − 2κn

d

)2

= ω2 ρ

λ+ 2µ
−
(
qπ − 2κn

d

)2

,

where κn = 0 if the mode is symmetric and κn = π/2 if it is antisymmetric.

20



We also prove in appendix B that for such mode, the corresponding βn is as-
sociated with both a symmetric and an antisymmetric mode. From a geometric
point of view, this means that if we plot the dispersion curves associated with
all the propagating guided modes in the plane (ω, β), the cases when T is not515

invertible are those which correspond to the intersection of four curves: a curve
associated with a symmetric mode, a curve associated with an antisymmetric
mode and two curves of equations given by

β2 = ω2 ρ

µ
−
(πm
d

)2

(48)

and

β2 = ω2 ρ

λ+ 2µ
−
(πn
d

)2

, (49)

for m,n ∈ N, respectively. In the figure 2, above is represented the condition520

number of the matrix T as a function of the frequency ω, while below are
represented the dispersion curves in the coordinates (ω, β), as well as the curves
(48) and (49). Since T is a diagonal matrix, the condition number is the ratio
between the largest diagonal term and the lowest one with respect to the complex
norm. The parameters d, ρ, λ and µ are those which are chosen in the numerical525

section. We observe that the peaks in the condition number of T coincide with
the intersections of the four curves mentioned above.

Figure 2: Above : logarithm of the condition number of the matrix T as a function of ω.
Below : dispersion curves for symmetric modes (blue) and for antisymmetric modes (red),
(48)-type of curve (dashed green), (49)-type of curve (dashed black).

5.4.3. The Vandermonde matrix

The invertibility and the conditioning of the rectangular Vandermonde ma-
trix V given by (42) have already been studied in the acoustic case in [26].530
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However, the elastic case is more complicated since the βn are not known an-
alytically, contrary to the acoustic case. The matrix V depends only on the
βn, on the number M of sources and receivers and on the smallest distance δ
between two sources or two receivers. It is recalled in the appendix A of [26]
that for a Vandermonde matrix with entries on the unit circle, that is535

Vmn = e2πimfn , m = 0, . . . ,M − 1, n = 0, . . . , N − 1,

for real numbers fn and M ≥ N , the matrix V ∗V is invertible if and only if for
all n′ 6= n, fn′ − fn is not an integer. Here

fn =
βnδ

2π
, n = 0, . . . , N − 1.

An important issue, which can be seen on the dispersion curves, is that we
may have βn(ω) = βn′(ω) for n 6= n′ for some exceptional values of ω, that
is multiple eigenvalues. The matrix V ∗V is not invertible in that case. We540

hence assume from now on that ω is such that all the βn are different, which
in particular implies that the matrix of modes T is invertible. Since the βn
are ordered decreasingly, the invertibility of V ∗V is achieved if the distance δ
satisfies

δ <
2π

β0 − βN−1
. (50)

Let us consider now the condition number κ(V ) of V , which is defined by545

κ(V ) =

√
σmax

σmin
,

where σmax and σmin are the largest and smallest eigenvalues of V ∗V , respec-
tively. Let us introduce the wrap-around distance on the unit interval, that
is

dw(f, g) = inf
q∈Z
|f − g + q|

as well as the minimal separation between the fn as

∆ = min
n,n′=0,...,N−1

n 6=n′

dw(fn, fn′). (51)

The following theorem is proved in [36, 26].550

Theorem 10. If the minimal separation ∆ defined by (51) satisfies M > 1/∆+
1, then

κ(V ) ≤

√
M + 1/∆− 1

M − 1/∆− 1
.

Such theorem shows that κ(V ) is decreasing with respect to M and with
respect to ∆. It is then tempting to use as many sources and receivers as pos-
sible. Maximizing ∆ with respect to δ is desirable but contrary to the acoustic555
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case, it is rather difficult in elasticity due to the fact that the βn are not known
analytically. In the case when all the βn are positive, which means that there
are no inverse modes (the phase velocity and the group velocity have the same
sign), we simply choose

δ = λ0 :=
2π

β0
, (52)

which fulfills (50). In the acoustic case, it was proved in [26] that such choice560

of δ was the optimal one. In the figure 3, we have represented the condition
number of the Vandermonde matrix V as a function of δ/λ0, for P = 12 and for
increasing values of M , that is M = P , M = 2P , M = 4P and M = 8P . Such
figure confirms that choosing δ as in (52) ensures the invertibility of V ∗V and
is a relevant value (the peaks correspond to the non-invertibility cases). It also565

confirms that the condition number improves when M increases.

Figure 3: Logarithm of the condition number of the matrix V as a function of δ/λ0, for
M = P , M = 2P , M = 4P and M = 8P .

6. Numerical results

In this section we test the strategy detailed in section 5.3 with the help
of numerical experiments, not only for rigid obstacles, but also for voids and
cracks. The height of the waveguide is d = 1 mm and the selected material570

constants are

λ = 121 GPa, µ = 80 GPa, ρ = 7900 kg ·m−3.

The artificial data are obtained by solving the forward problems (1) in the time
domain. To this aim we use the code Echo, which is developed at CEA-List
[37]. It relies on a spectral finite element method in space (with domain decom-
position), a leap-frog scheme in time and Perfectly Matched Layers to bound575
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the domain. We also need the computation of the guided modes (βn,Xn,Yn),
which is based on the SAFE method [33, 38], which allows us to solve a general-
ized eigenvalue problem with the help of a finite element method. The function
f in (2) is chosen as

f(x3) =
10

d
max

(
1− 10|x3|

d
, 0

)
while the function χ is chosen as580

χ(t) =
∑
n∈I

χn(t) =
∑
n∈I

[sin(ant) exp(−bn(t− cn)2)]′, (53)

with I ⊂ N. The shape of χ given by (53) is designed in such a way that the
support of χ̂ avoids all the cut-off frequencies ωn, which are the frequencies
such that there exists a guided mode with vanishing group velocity, that is
∂ω/∂βn = 0. These are also the frequencies such that (Xn|Yn)S = 0 (see
assumption 1). As detailed in [26], this enables us to obtain some scattered585

fields which decay rapidly with respect to time and then to reasonably bound
the duration of the forward computations. But contrary to acoustics, these
special frequencies ωn have to be computed and are not equally distributed.
Once they have been computed, the constants an, bn and cn are set to

bn =
π2

200d2
,

cn =
5√
2bn

,

an +
√
a2
n + 16bn

2
=

1

2
(ωn − ωn−1).

Moreover, we choose the set I of n ∈ N such that the support of χn is sufficiently590

small. In practice we have set I = {8, 11, 14}. This implies that for all the
frequencies which belong to the support of χ̂, the corresponding number of
propagating modes is 8, 11 or 14. The frequencies ω− and ω+ in (47) are the
lower and upper bounds of the support of χ̂, that is ω− = ω7 and ω+ = ω14. The
function g in (3) is simply chosen as the Dirac distribution, which corresponds595

to a pointwise measurement. The number of sources/receivers on each side of
the waveguide is M = 42 while the x3 coordinate of the closest sensor is R = 1
and the distance δ between two sources/receivers is given by (52), with β0

associated with the largest frequency ω, that is ω+. The parameters M , R and
δ governing the location of sources/receivers (see (4)) are then determined. The600

sampling grid G consists of the subpart of the waveguide delimited by x3 = −R
and x3 = R. In figure 4 we present some identifications results of an obstacle
characterized by a Dirichlet boundary condition and formed by a square or two
rectangles, either in the full-scattering situation or the back-scattering situation,
with polarization u1. We observe that the Dirichlet defects are well retrieved,605

in particular in the full-scattering situation, as expected. In figure 5 we present
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Figure 4: Obstacle with Dirichlet boundary condition. Top: one square. Bottom: two rect-
angles. Left: full-scattering situation. Right: back-scattering situation.

the same results for a square characterized by a Neumann boundary condition,
in the full-scattering situation, and with two kinds of polarizations: t1 and t3.
We observe that voids are not as well retrieved as Dirichlet defects, which is

Figure 5: Obstacle with Neumann boundary condition in the full-scattering situation. Left:
polarization t1. Right: polarization t3.

usual in sampling methods. Lastly, in figure 6 we present the same results for610

two straight cracks, in the full-scattering situation, and with polarizations t1
and t3. Those results are consistent with Remark 4: in the case of cracks, the
polarization has to be in accordance with the local normal to the crack. The
crack on the left is better retrieved with polarization t1 while the crack on the
right is better retrieved with polarization t3. An optimization procedure to615

compute such local normal for curved cracks (not used here) is described in [2].
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Figure 6: Case of two cracks in the full-scattering situation. Left: polarization t1. Right:
polarization t3.

7. Experimental results

We complete this article with some experimental results on a steel plate of
dimensions 12 mm× 110 mm× 500 mm in the x1, x2 and x3 directions, respec-620

tively. As shown in figure 7 (on the left), the plate is divided into 3 parts in the
x2 direction:

• a zone of width 50 mm which doesn’t contain any defect,

• a zone of width 10 mm which contains a cylindrical notch, the section of
which is a rectangle of dimension 0.25 mm in the x3 direction and 2 mm625

in the direction x1,

• a zone of width 50 mm which contains a cylindrical hole, the section of
which is a disc of diameter 2 mm.

The zone which is free of defect enables us to measure the incident field while
the two others enable us to measure the total fields in the presence of the defect.630

The material constants of the plate are completely determined by measurements
of the 3 following quantities: the density ρ, the celerity of P waves cP and the
celerity of S waves cS , which in turn enable us to compute the Lamé constants
λ and µ thanks to

cP =

√
λ+ 2µ

ρ
, cS =

√
µ

ρ
.

We have found635

ρ = 7926 kg ·m−3, cP = 5897 m · s−1, cS = 3225 m · s−1.

A classical linear ultrasonic transducer array is used for the non-destructive
inspection of the plate. More precisely, the mean frequency of that transducer
is 2 Mhz and its bandwidth contains frequencies which correspond to 12 to 25
propagating modes. It consists of 128 elements of size 18 mm × 0.55 mm in
the x2 and x3 directions, respectively, the distance between two elements being640

0.25 mm, which implies that the distance between two sources/receivers (see
(4)) is δ = 0.8 mm. As concerns the signal which is actually obtained with such
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transducer, the time function χ in (1) can be measured directly, while the space
functions in (2) and (3) are both approximated by

f(x3) = g(x3) = e−x
2
3/σ

2

χ[−`/2,`/2](x3),

where ` is the size of the element in the x3 direction, χ[−`/2,`/2] is the indicator645

function of the segment [−`/2, `/2] and σ is calibrated from experimental ob-
servations. We have chosen `/σ = 1.1. Note that the value of that ratio is not
that sensitive. In the following experiments, only the back-scattering situation
is tested. A photograph of the experimental setup is shown in figure 7 (on the
right). As explained in the paragraph 5.4.3, the Vandermonde matrix V , and

Figure 7: Left: scheme of the plate with defects. Right: experimental setup.

650

consequently the emission and reception matrices E and R, are not invertible
when two distinct propagating modes are associated with the same wave num-
ber. It is well-known that at high frequencies ω the two eigenvalues β0(ω) and
β1(ω) (which correspond to the first and second Lamb modes A0 and S0) actu-
ally become very close, which deteriorates the quality of the identification. This655

is why, if |(β0 − β1)/β0| < 10−5, only the first of these two modes is taken into
account in the inversion procedure.

Remark 11. Our specimen is far from being a true waveguide: its dimension in
the x3 direction is rather small, so that it can hardly be considered as a waveg-
uide. In figure 8, we have represented the displacements measured at all receivers660

with respect to time for a given source (element number 128 of the transducer)
and when the defect is the cylindrical hole. We can clearly distinguish 3 dif-
ferent waves: the wave emitted by the source (blue arrow), the wave scattered
by the defect (green arrow) and the wave reflected by the edge of the plate (red
arrow). We conclude that the total field is perturbed by some artifact due to the665

smallness of the plate length. Furthermore, the dimensions of the three zones of
the specimen in the x2 direction are rather small too, especially the cylindrical
notch, so that it seems to contradict the 2D assumption. However, eventhough
the assumptions of a 2D waveguide are violated somehow, we will see that the
identification of defects is acceptable.670

In the figure 9, we can see the identification results obtained by our inversion
procedure described in paragraph 5.3 (back-scattering case) from experimental
data when the defect is the cylindrical hole. The chosen polarization is t3. The
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Figure 8: How the edge of the plate perturbs the measurements.

different pictures correspond to different distances D between the transducer
and the defect. More precisely, the element number 1 of the transducer is675

exactly located on the left edge of the picture and is fixed (the element number
128 is outside the picture), so that the defect is moving to the right of the picture
when the distance D increases. In the figure 10, the same identification results
are shown when the defect is the cylindrical notch, again with polarization t3.

In all cases, the defect is identified. But we observe that the smaller is the

Figure 9: Identification of the cylindrical hole for D = 35 mm, D = 55 mm, D = 95 mm and
D = 150 mm.

Figure 10: Identification of the cylindrical notch for D = 25 mm and D = 45 mm.

680

distance between the transducer and the defect, the better is the resolution,
which can be explained by some attenuation that is not taken into account
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in our model. In the last figure 11, we show an identification result for the
cylindrical hole with the help of another transducer of lower mean frequency 1
MHz, that is its bandwidth contains frequencies which correspond to 8 to 15685

propagating modes. In addition, this transducer has 64 elements, the size of
each element is 20 mm × 0.9 mm in the x2 and x3 directions, respectively, the
distance between two elements being 0.5 mm, which implies that the distance
between two sources/receivers in (4) is δ = 1.4 mm. We expect some degradation
in the quality of the identification, because the support of the functions f and690

g is bigger and above all the frequencies are lower, which is what we observe for
two different distances D.

Figure 11: Identification of the cylindrical hole with a transducer of lower mean frequency for
D = 80 mm and D = 170 mm.

Remark 12. The data used in our numerical validations were noise free. The
influence of noise has already been studied in [26] in the acoustic case for nu-
merical data and is actually the same in the elastic case. When experimental695

data are used, the presence of a small noise is inherent to the measurements,
but we have seen that the reconstructions remain of good quality in that case.

8. Conclusion

To conclude, the numerical and experimental identification results that we
obtained in the present study enable us to be confident in the feasibility of the700

Linear Sampling Method to retrieve a wide class of defects in the context of
ultrasonic NDT of waveguides. For simplicity, all the theory in our paper was
presented in 2D, but it is also valuable in 3D, as shown in [1, 2] as well as in [29].
However, the design of experiments with 3D waveguides, which are tubes rather
than plates, raise some new questions related to the geometry and the location705

of the transducers. Those questions are partially addressed in [29]. It would be
certainly interesting to try the LSM for 3D geometries, both numerically and
experimentally. More generally, from the experimental point of view, exploring
other kinds of sensors and materials would be desirable in order to conclude on
the future of sampling methods in the context of NDT.710
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Appendix A: The fundamental solution for a Dirac on the boundary

In this appendix, for y = (d, y3) we establish an expression of the solution
Gu(·, y) to the problem

div(σ(Gu(·, y)) + ρω2Gu(·, y) = 0 in ΩR
σ(Gu(·, y))ν = δy3e1 on Γd,R
σ(Gu(·, y))ν = 0 on Γ0,R

T±GY (·, y) = ±GX(·, y) on S±R.

(54)

It is readily seen that the corresponding extended fundamental solution G(·, y)
satisfies the evolution equation715 

∂

∂x3
G(·, y) =

(
0 FY
FX 0

)
G(·, y) in WR

σ11(GY (·, y)) = δy3 , t1(GY (·, y)) = 0 on Γd,R
σ11(GY (·, y)) = 0, t1(GY (·, y)) = 0 on Γ0,R

T±GY (·, y) = ±GX(·, y) on S±R.

(55)

We will need the following lemma.

Lemma 13. For sufficiently smooth X = (t1, u3)T , X̃ = (t̃1, ũ3)T , Y =
(u1, t3)T , Ỹ = (ũ1, t̃3)T , we have

(FYY |Ỹ)S − (Y |FY Ỹ)S

= −σ11(Y)(d) ũ1(d) + σ11(Y)(0) ũ1(0) + σ11(Ỹ)(d)u1(d)− σ11(Ỹ)(0)u1(0)

and720

(FXX |X̃ )S − (X |FXX̃ )S = t1(d) ũ3(d)− t1(0) ũ3(0)− t̃1(d)u3(d) + t̃1(0)u3(0).

Proof. From the definition of FY given by (7), we have

(FYY |Ỹ)S = −
∫ d

0

(
∂x1σ11(Y) + ρω2u1

)
ũ1 ds−

∫ d

0

(
α∂x1u1 +

α

λ
t3

)
t̃3 ds.

By using the integration by parts formula, we have∫ d

0

∂x1
σ11(Y) ũ1 ds = −

∫ d

0

σ11(Y) ∂x1
ũ1 ds+σ11(Y)(d) ũ1(d)−σ11(Y)(0) ũ1(0).

In addition, in view of (8), α t̃3 = 2µ(1 + α)∂x1
ũ1 − σ11(Ỹ), we hence obtain

(FYY |Ỹ)S = −σ11(Y)(d) ũ1(d) + σ11(Y)(0) ũ1(0)

+

∫ d

0

(
σ11(Y)∂x1

ũ1 + σ11(Ỹ)∂x1
u1 − 2µ(1 + α)∂x1

u1∂x1
ũ1 −

α

λ
t3t̃3 − ρω2u1ũ1

)
ds.
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We notice that the integral term in the right-hand side is symmetric with respect725

to Y and Ỹ , so that we obtain the first equality. From the definition of FX (see
again (7)), we have

(FXX |X̃ )S =

∫ d

0

(
t1
µ
− ∂x1

u3

)
t̃1 ds+

∫ d

0

(
∂x1

t1 + ρω2u3

)
ũ3 ds,

which by using the integration by parts formula leads to

(FXX |X̃ )S = t1(d)ũ3(d)− t1(0)ũ3(0)

+

∫ d

0

(
−(∂x1

u3 t̃1 + ∂x1
ũ3 t1) +

1

µ
t1t̃1 + ρω2u3ũ3

)
ds.

Again the second equality stems from the symmetry of the integral term of the730

right-hand side with respect to X and X̃ .

In what follows, D(R) will denote the space of compactly supported and in-
finitely smooth functions on R, while D′(R) will denote the space of distributions
on R. By multiplying the two equations of (55) by X̃n(x1, x3) = ψ(x3)Xn(x1)
and Ỹn(x1, x3) = ψ(x3)Yn(x1), where ψ ∈ D(R) with supp(ψ) ⊂ (−R,R) and735

by integrating in W , we obtain
∫
W

∂GX
∂x3

Ỹn dx =

∫
W

(FY GY )Ỹn dx∫
W

∂GY
∂x3

X̃n dx =

∫
W

(FXGX)X̃n dx,

that is 
∫
W

GX
∂Ỹn
∂x3

dx+

∫
W

(FY GY )Ỹn dx = 0∫
W

GY
∂X̃n
∂x3

dx+

∫
W

(FXGX)X̃n dx = 0,

(56)

By using the first equality of Lemma 13, we have∫
W

(FY GY )Ỹn dx =

∫
R

(FY GY |Ỹn)Sx3
dx3 =

∫
R
(GY |FYYn)Sx3

ψ(x3) dx3

−
∫

Γd

σ11(GY )(d, x3)un1 (d)ψ(x3) ds+

∫
Γ0

σ11(GY )(0, x3)un1 (0)ψ(x3) ds

740

+

∫
Γd

σ11(Yn)(d)Gu1(d, x3)ψ(x3) ds−
∫

Γ0

σ11(Yn)(0)Gu1(0, x3)ψ(x3) ds.

The system (9) satisfied by the guided modes implies that FYYn = iβnXn

and σ11(Yn)(d) = σ11(Yn)(0) = 0. In addition, from the boundary conditions
satisfied by σ11(GY ) on Γd and Γ0 in (55), we end up with∫

W

(FY GY )Ỹn dx = iβn

∫
R

(GY |Xn)Sx3
ψ(x3) dx3 − un1 (d)ψ(y3). (57)
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By using the second inequality of Lemma 13, we have∫
W

(FXGX)X̃n dx =

∫
R

(FXGX |X̃n)Sx3
dx3 =

∫
R

(GX |FXXn)Sx3
ψ(x3) dx3

745

+

∫
Γd

Gt1(d, x3)un3 (d)ψ(x3) ds−
∫

Γ0

Gt1(0, x3)un3 (0)ψ(x3) ds

−
∫

Γd

tn1 (d)Gu3(d, x3)ψ(x3) ds+

∫
Γ0

tn1 (0)Gu3(0, x3)ψ(x3) ds.

The system (9) satisfied by the guided modes implies that FXXn = iβnYn and
tn1 (d) = tn1 (0) = 0. From the boundary conditions satisfied by Gt1 on Γd and Γ0

in (55), we end up with∫
W

(FXGX)X̃n dx = iβn

∫
R

(GX |Yn)Sx3
ψ(x3) dx3. (58)

Gathering the equations (56), (57) and (58), we obtain750 
∫
R

(GX |Yn)Sx3
ψ′(x3) dx3 + iβn

∫
R

(GY |Xn)Sx3
ψ(x3) dx3 = un1 (d)ψ(y3)∫

R
(GY |Xn)Sx3

ψ′(x3) dx3 + iβn

∫
R

(GX |Yn)Sx3
ψ(x3) dx3 = 0.

(59)
Plugging the decomposition

GX(x1, x3) =
∑
m∈N

am(x3)Xm(x1)

GY (x1, x3) =
∑
m∈N

bm(x3)Ym(x1)

in (59) and using the biothogonality condition (Xn|Ym)S = δmn for m,n ∈ N,
we obtain

∫
R
an(x3)ψ′(x3) dx3 + iβn

∫
R
bn(x3)ψ(x3) dx3 = un1 (d)ψ(y3)∫

R
bn(x3)ψ′(x3) dx3 + iβn

∫
R
an(x3)ψ(x3) dx3 = 0,

which is equivalent, in the distributional sense in R, to{
−a′n + iβnbn = un1 (d)δy3
−b′n + iβnan = 0,

which in particular implies that755

b′′n + β2
nbn = −iβnun1 (d)δy3

The general solution to that equation in D′(R) is

bn = −u
n
1 (d)

2
eiβn|x3−y3| +Ane

iβnx3 +Bne
−iβnx3 .
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Since the radiation condition implies that An = Bn = 0, we obtain that for all
n ∈ N,

an(x3) = −s(x3 − y3)
un1 (d)

2
eiβn|x3−y3|, bn(x3) = −u

n
1 (d)

2
eiβn|x3−y3|.

In conclusion, the expression of G(·, y) for y = (d, y3) is
GX(x, y) = −

∑
n∈N

s(x3 − y3)
un1 (d)

2
Xn(x1)eiβn|x3−y3|

GY (x, y) = −
∑
n∈N

un1 (d)

2
Yn(x1)eiβn|x3−y3|.

We hence see that the vector function G(·, y) for y = (d, y3) coincides with the760

first column Gt1(·, y) of the fundamental solution G(·, y) given by (18).

Appendix B: The invertibility of the matrix of modes

This appendix provides a proof of Theorem 9, which is a necessary and
sufficient condition to have un1 (d) = 0 for some n = 0, . . . , N − 1. Let us recall
that the behaviour of our 2D waveguide is governed by isotropic elasticity, the765

density is ρ and the Lamé constants are λ and µ. If β is associated with a
propagating mode, then −β is as well. Since β 6= 0, we can then assume without
loss of generality that β > 0. From [39] (see also [33]), such β is a solution to
the following dispersion relation:

(α2
s − β2)2 cos

(
αpd

2
+ κ

)
sin

(
αsd

2
+ κ

)
+4β2αpαs sin

(
αpd

2
+ κ

)
cos

(
αsd

2
+ κ

)
= 0,

(60)

with770

α2
s = k2

s − β2, α2
p = k2

p − β2, ks = ω

√
ρ

µ
, kp = ω

√
ρ

λ+ 2µ
, (61)

where κ = 0 or κ = π/2. The two components of the corresponding mode are
given by

u1(x1) = −2Apαp sin

(
αp(x1 −

d

2
) + κ

)
+ 2Asβ sin

(
αs(x1 −

d

2
) + κ

)
(62)

and

u3(x1) = 2Apiβ cos

(
αp(x1 −

d

2
) + κ

)
+ 2Asiαs cos

(
αs(x1 −

d

2
) + κ

)
, (63)
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where the amplitudes Ap and As are obtained with the help of the free boundary
condition, that is775 

t cos

(
αpd

2
+ κ

)
Ap − 2βαs cos

(
αsd

2
+ κ

)
As = 0,

2βαp sin

(
αpd

2
+ κ

)
Ap + t sin

(
αsd

2
+ κ

)
As = 0,

(64)

with t = α2
s − β2. The mode is said to be symmetric (resp. antisymmetric)

if the component u3 is symmetric (resp. antisymmetric) with respect to axis
x1 = d/2. The first case corresponds to κ = 0, while the second one corresponds
to κ = π/2.
That the system (64) has a non trivial solution provides the dispersion relation780

(60). Under this condition, we can in general (provided the two terms in the
right-hand side of (65) be not zero) choose the following amplitudes

Ap = 2βαs cos

(
αsd

2
+ κ

)
As = t cos

(
αpd

2
+ κ

)
.

(65)

Plugging these amplitudes in (62), we obtain

u1(d) = −4βαsαp sin

(
αpd

2
+ κ

)
cos

(
αsd

2
+ κ

)
+2βt sin

(
αsd

2
+ κ

)
cos

(
αpd

2
+ κ

)
.

It follows from the dispersion relation (60) that

u1(d) = β sin

(
αsd

2
+ κ

)
cos

(
αpd

2
+ κ

)(
(α2
s − β2)2

β2
+ 2t

)
,

and lastly785

u1(d) = t
k2
s

β
sin

(
αsd

2
+ κ

)
cos

(
αpd

2
+ κ

)
. (66)

Let us now study the different cases when u1(d) = 0. From (66), this could
occur in the 2 following cases.

1. The first case is t = 0. This implies that α2
s − β2 = 0, that is

β = ω

√
ρ

2µ
.

Besides, from (60), the fact that t = 0 leads to

4β2αpαs sin

(
αp
d

2
+ κ

)
cos

(
αs
d

2
+ κ

)
= 0,
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which from the fact that αs 6= 0 implies that790

αp sin

(
αp
d

2
+ κ

)
cos

(
αs
d

2
+ κ

)
= 0.

Again we have to study 3 cases.

(a) The first sub-case is αp = 0. We have then β = kp = ks/
√

2, which
in not possible since λ > 0.

(b) The second sub-case is sin(αpd/2 + κ) = 0. Then there exists p ∈ N
such that795

β2 = ω2 ρ

λ+ 2µ
− 4(pπ − κ)2

d2
.

This implies that β = ks/
√

2 ≤ kp, which is impossible since λ > 0
(c) The third sub-case is cos(αsd/2+κ) = 0. This case is also impossible.

Indeed, if we substitute t = 0 and cos(αsd/2 + κ) = 0 in the free
boundary condition (64), we can take Ap = 0 and As = 1. It follows
from (62) that800

u1(d) = 2β sin

(
αsd

2
+ κ

)
6= 0.

In conclusion, the case t = 0 is impossible.

2. The other case is sin(αsd/2 + κ) cos(αpd/2 + κ) = 0.
Then, the dispersion relation becomes

4β2αpαs sin

(
αpd

2
+ κ

)
cos

(
αsd

2
+ κ

)
= 0.

Since β > 0, we have again 3 cases to consider:

(a) The first sub-case is sin(αpd/2+κ) cos(αsd/2+κ) = 0. This identity,805

together with sin(αsd/2 + κ) cos(αpd/2 + κ) = 0, implies that either

sin

(
αsd

2
+ κ

)
= sin

(
αpd

2
+ κ

)
= 0

or

cos

(
αsd

2
+ κ

)
= cos

(
αpd

2
+ κ

)
= 0.

We obtain that there exists (p, q) ∈ N2, p and q being both odd or
both even such that

β2 = ω2 ρ

µ
− (pπ − 2κ)2

d2
,

β2 = ω2 ρ

λ+ 2µ
− (qπ − 2κ)2

d2
.

(67)
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(b) The second sub-case is αp = 0, that is810

β = ω

√
ρ

λ+ 2µ
.

Besides, since sin(αsd/2 + κ) cos(αpd/2 + κ) = 0, either κ = π/2 or
sin(αsd/2+κ) = 0. From (62), (63) and (65), we note that if κ = π/2,
then As = 0 and therefore the two components of the displacement
vanish, which we exclude. We hence infer that sin(αsd/2 + κ) = 0
and κ = 0. That sin(αsd/2) = 0 implies that there exists m ∈ N815

such that

β2 = ω2 ρ

µ
−
(

2mπ

d

)2

.

We notice that such case is a particular case of (67), with κ = 0,
p = 2m and q = 0.

(c) The third sub-case is αs = 0, that is

β = ω

√
ρ

µ
.

Besides, since sin(αsd/2 + κ) cos(αpd/2 + κ) = 0, either κ = 0 or820

cos(αpd/2 + κ) = 0. From (62), (63) and (65), we note that if κ = 0,
then Ap = 0 and therefore the two components of the displacement
vanish, which we exclude. We hence have cos(αpd/2 + κ) = 0 and
κ = π/2, which implies there exists m ∈ N such that

β2 = ω2 ρ

λ+ 2µ
−
(

2mπ

d

)2

.

This never happens because β = ks ≤ kp, which is impossible since825

λ > 0.

Conversely, the condition (67) implies that T is not invertible. This completes
the proof of Theorem 9.

Remark 14. From the above analysis, it happens that when the condition (67)
is satisfied, except when κ = 0, p is even and q = 0, the corresponding βn is830

both associated with a symmetric and an antisymmetric mode.
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