
HAL Id: hal-01820469
https://hal.inria.fr/hal-01820469

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A SPARQL 1.1 Query Builder for the Data Analytics of
Vanilla RDF Graphs

Sébastien Ferré

To cite this version:
Sébastien Ferré. A SPARQL 1.1 Query Builder for the Data Analytics of Vanilla RDF Graphs.
[Research Report] IRISA Rennes Bretagne Atlantique, équipe LIS. 2018. �hal-01820469�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163062888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01820469
https://hal.archives-ouvertes.fr

A SPARQL 1.1Query Builder for the
Data Analytics of Vanilla RDF Graphs

Sébastien Ferré∗
IRISA, Université de Rennes 1

Rennes, France
ferre@irisa.fr

ABSTRACT
As more and more data are available as RDF graphs, the availability
of tools for data analytics beyond semantic search becomes a key
issue of the Semantic Web. Previous work has focused on adapting
OLAP-like approaches and question answering by modelling RDF
data cubes on top of RDF graphs. We propose a more direct – and
more expressive – approach by guiding users in the incremental
building of SPARQL 1.1 queries that combine several computation
features (aggregations, expressions, bindings and filters), and by
evaluating those queries on unmodified (vanilla) RDF graphs. We
rely on the N<A>F design pattern to hide SPARQL behind a natural
language interface, and to provide results and suggestions at every
step. We have implemented our approach on top of Sparklis, and
we report on three experiments to assess its expressivity, usability,
and scalability.

KEYWORDS
Data Analytics, RDF Graphs, SPARQL 1.1, OLAP, Expressivity,
Query Builder, Natural Language Interface

1 INTRODUCTION
Data analytics is concerned with groups of facts whereas search is
concernedwith individual facts. Consider for instance the difference
betweenWhich films were directed by Tim Burton? (search) and How
many films were produced each year in each country? (data analytics).
Data analytics has been well studied in relational databases with
data warehousing and OLAP [3], but is still in its infancy in the
Semantic Web [4, 10, 11, 13, 18]. Existing work on data analytics
for RDF has generally proposed solutions to reproduce the features
of OLAP on top of RDF graphs. Typically, data cubes are derived
from RDF graphs by specifying what are the observations, the
dimensions, and the measures [5]. Traditional OLAP user interfaces
can then be used for cube transformations and visualizations. The
first limit of this approach is that end-users have no direct access to
RDF graphs, and can only explore the cubes that have been defined
by some admin-user. This limit is mitigated in [4] by an Analytical
Schema (AnS), from which end-users can derive themselves many
different cubes. However, there is still the need for an admin-user
to define the AnS. The second limit is expressivity. OLAP cubes
and their transformations only allow for one level of aggregation,
∗This research was supported by ANR project IDFRAud (ANR-14-CE28-0012-02).

, ,

© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of ,
https://doi.org/10.1145/nnnnnnn.nnnnnnn.

and end-users cannot derive new dimensions or measures from
existing one by computation (e.g., population density from total
population and area). Semantic Faceted Search (SFS) supports direct
exploration of RDF graphs but is even more limited in expressivity
w.r.t. data analytics [18].

In contrast, SPARQL 1.1 [19] supports multiple aggregations,
nested aggregations with sub-queries, expressions and bindings on
numbers, dates, and strings to derive new dimensions/measures [12].
Those features can be mixed with graph patterns with a lot of flex-
ibility. We give concrete use cases that show the need for such
a high expressivity. The main reason that prevents end-users to
use SPARQL for data analytics is the difficulty to write queries.
Question Answering (QA) systems [14], which offer to translate
spontaneous user questions to SPARQL, have only recently been
extended to RDF data cubes [5], and to statistical question answer-
ing thanks to a new task at QALD-6 [20]. However, they exhibit
the same limits about direct access and expressivity.

In this paper, we propose an alternative approach that is at the
same time more direct and more expressive. More direct by allowing
its application to vanilla RDF graphs, i.e. RDF graphs not customized
to data analytics. More expressive by allowing complex and varied
combinations of the computation features of SPARQL 1.1 (aggre-
gations, expressions, bindings and filters). Section 2 lists a number
of use cases to motivate the need for SPARQL 1.1 expressivity. Sec-
tion 3 discusses related work. Section 4 presents the principles of
our approach, and Section 5 formalizes it as a query builder that
guides users in the combination of SPARQL computations. We rely
on the N<A>F design pattern [7] to hide SPARQL behind a natural
language interface, and to provide results and suggestions at every
step. Section 6 presents the implementation of our approach, and
Section 7 reports on three experiments on real data, comparing our
approach to SPARQL and QA systems, with both IT and non-IT
users. Section 8 concludes this paper. Online material1 related to
the paper includes a Web application, the permalinks of about 70
analytical queries, and screencasts.

2 USE CASES
We here present a set of use cases for data analytics on RDF graphs,
in the form of questions, in order to clarify our objectives, and to
motivate our approach. We first give a few use cases for each kind
of SPARQL computation feature (aggregations, and expressions in
bindings and filters), and we then give a few use cases combining
several computation features. The SPARQL translations of those
use cases are given in Figure 1. Use cases are based on a concrete
dataset, Mondial [15], to make them more vivid and easier to

1http://bit.ly/sparklis-analytics

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, , Sébastien Ferré

(A1) SELECT (COUNT(?c) AS ?n) WHERE{?c a :Country; :encompassed :Europe.}
(A2) SELECT ?k (AVG(?p) AS ?ap) (AVG(?a) AS ?aa) WHERE {

?c a :Country; :encompassed ?k; :population ?p; :area ?a.
} GROUP BY ?k

(E) SELECT ?c (?p/?a AS ?d) WHERE{?c a :Country;:population ?p;:area ?a.}
(C) SELECT ?c ?G ?p ?g ?ag WHERE {

?c a :Country; :gdpTotal ?G; :population ?p. BIND(?G*1e6/?p AS ?g)
{SELECT (AVG(?g) AS ?ag) WHERE {
?c a :Country;:gdpTotal ?G;:population ?p. BIND(?G*1e6/?p AS ?g)}}
FILTER(?g > ?ag)}

(N1) SELECT (AVG(?sa) AS ?asa) WHERE {
{SELECT ?I (SUM(?a) AS ?sa) WHERE {
?i a :Island; :belongsToIslands ?I; :area ?a.} GROUP BY ?I } }

(N2) SELECT ?ci (COUNT(?I) AS ?cI) WHERE {
{SELECT ?I (COUNT(?i) AS ?ci) WHERE {

?i a :Island; :belongsToIslands ?I.} GROUP BY ?I }
} GROUP BY ?ci

Figure 1: SPARQL queries for the different use cases

grasp. However, they have nothing specific to that dataset, and
could easily be transposed to other datasets. Mondial contains
geographical knowledge on countries, cities, continents, bodies of
water, etc., and includes the CIA World Factbook. Compared to the
BowlognaBench [6], our use cases are at the same timemore focused
because they consider only computations, and wider because they
cover a much larger expressivity range.

Aggregations. A basic aggregation is the application of an ag-
gregation operator on a set of entities or values, resulting in a single
value. Use case (A1): How many countries are there in Europe?. A
simple aggregation consists in making groups out of a set of values
according to one or several criteria, and then applying an aggre-
gation operator on each group of values. An aggregation defines
a cube, where the grouping criteria are its dimensions, and where
the aggregated values are its measures. A multiple aggregation ex-
tends simple aggregation by having several aggregated values for
each group. Use case (A2): Give me the average population and the

average area of countries, for each continent. In SPARQL, aggrega-
tions rely on the use of aggregation operators in the SELECT clause,
and on GROUP BY clauses. OLAP-like approaches, including existing
approaches for RDF, are limited to this category or a subset of it.

Expressions in Bindings and Filters. Direct data analytics
sometimes requires other computations than aggregations: e.g.,
computations on numbers, dates/times, or strings. They correspond
to expressions in SPARQL, and can be used either in BIND or FILTER
constructs. Use case (E): Give me the population density for each

country, from population and area. Semantic Faceted Search systems
are limited to comparisons between a variable and a literal.

Complex Combinations. A complex combination mixes the
previous features in a same question, in any order, and/or several
instances of a same feature. SPARQL puts no limit to such com-
binations. Use case (C) combines a binding, an aggregation, and
a filter:Which countries have a GDP per capita above the average?.
This example requires to compute the GDP per capita as (total GDP
×106/ population) for each country (binding), to average GDP per
capita over all countries (basic aggregation), and to select countries
whose GDP per capita is higher than the average (filter). This use
case serves as a running example through Sections 5 and 6.

An interesting kind of complex combination is nested aggregation,
i.e. an aggregation (basic, simple or multiple) that applies to the
result of another aggregation, which can be a nested aggregation
itself. Use case (N1):What is the average area of archipelagos? (given

that the area of each archipelago has first to be summed up from the
area of individual islands). Note that the aggregation operator of
the nesting aggregation can not only apply to aggregated measures
of the nested aggregation but also to dimensions. Use case (N2):
Give me for every number of islands in an archipelago, the number

of archipelagos having that number of islands. In SPARQL, nested
aggregations rely on subqueries.

3 RELATEDWORK
To the best of our knowledge, our approach is the only one in
data analytics of RDF graphs that does not assume the data to be
modelled as – or converted to – a datacube at some point. It is also
the only one that covers a range of analytical questions beyond the
simple aggregations or OLAP cubes.

Most existing approaches rely onOLAP. Kämpgen andHarth [13]
propose a pipeline to convert statistical linked data for use in OLAP
systems. Colazzo et al. [4] propose analytical schemas as views over
RDF data from which OLAP cubes can be queried in a flexible way.
Linked Data QueryWizard [10] is an interface to explore RDF cubes
or tables. It supports the filtering of a column (e.g., by a keyword or
a numeric value), and simple aggregations. Höffner and Lehmann
introduced Question Answering (QA) on RDF Data Cubes (RDCQA)
as a subfield of question answering, and designed Task 3 of QALD-6
as a benchmark [11]. Two RDCQA systems have been developed and
evaluated in QALD-6: CubeQA by the same authors, and QA3 [2].
Unlike our approach, OLAP-based approaches (a) require the data
to be modelled along the RDF Data Cube Vocabulary [5] so as
to identify datasets, dimensions, and measures; (b) are limited to
simple aggregations; and (c) require dataset-specific preprocessing
and/or templates.

Some approaches allow direct computations on RDF graphs,
generally limited to simple filters and aggregations. Neumayr et
al. [16] propose ontology-driven RDF analytics to systematically
infer statistical facts about classes (e.g., the average age of men,
women, people). Sherkhonov et al. [18] propose to extend Semantic
Faceted Search (SFS) with filters limited to comparisons between
a variable and a number; and with simple aggregations limited
to one grouping variable and one triple in the aggregated pattern.
Ferré [9] has not those limitations on aggregations but is still limited
to simple aggregations.

4 DIRECT AND EXPRESSIVE DATA
ANALYTICS OF RDF GRAPHS

Each SPARQL computation feature can be formalized as a function
taking a table (of query results) as input, and returning a new table
as output. A binding extends a table with a new column, whose
values are computed from values in other columns according to
the binding expression (see use cases (E) and (C)). A filter selects
a subset of the rows, those rows where the filtering expression
evaluates to true (see use case (C)). An aggregation groups the rows
by some columns, and for each valuation of the grouping columns,
applies aggregators (e.g., COUNT) to some other columns in order
to define one aggregated value for each aggregated column. The
result of an aggregation is a table with a column for each grouping
column and for each aggregated column, and with a row for each
valuation of the grouping columns.

A SPARQL 1.1 Query Builder for the
Data Analytics of Vanilla RDF Graphs , ,

Natural

Language

(NL)

Formal

Language

(FL)Abstract Query

Transformation

control suggestions

verbalization formalization

User Machine

focus

Figure 2: Principle of the N<A>F design pattern [7]

Our ambition is to support all combinations of those computa-
tions, only avoiding Cartesian products. The latter restriction is not
only for the sake of tractability, but also for the sake of interpretabil-
ity of results. Combinations naturally include arbitrary chains of
computations, e.g., use cases (N1, N2). However, chains are not
enough. For example, use case (C) has a filter that compares two
columns that are in two different computed tables (the binding and
the aggregation). The two tables need to be joined before applying
the filter. This situation is not uncommon as it occurs whenever
one wants to compare (aggregated) values at different granularity
levels (here, GDP at country level vs average GDP at world level).

The problem of extracting the initial tables from an RDF graph
amounts to the problem of composing a SPARQL graph pattern.
The table of a graph pattern P is the result of the SPARQL query
SELECT * WHERE {P}. Semantic faceted search enables non-IT users
to interactively build such patterns over RDF graphs. It makes
it unnecessary to rely on experts to prepare tables of data, and
it therefore allows for direct analysis of RDF data. The two most
advanced systems seem to be Sparklis [9] and SemFacet [1]. While
the latter supports OWL2 reasoning, the former supports a much
larger set of patterns: i.e., projection of several variables, cycles (not
only tree patterns), negation (MINUS), and optionals (OPTIONAL). In
particular, the capability to project several variables, i.e. to produce
tables and not only sets, is essential to data analytics. Note that,
as our approach only assumes an initial table to start with, it is
also applicable to any context where such tables are available (e.g.,
relational databases, spreadsheets, OLAP cubes).

Compared to relying on RDF data cubes [5], direct data analytics
on vanilla RDF graphs offers the following advantages. Arbitrary
graph patterns can be built to specify the observations, dimensions,
and measures of cubes, without the need for RDF data cube mod-
elling or pre-processing. For example, to answer the questionWhat

is the total area of lakes per country?, other approaches would need
a data cube where countries and lakes are two dimensions, and
where the area is a measure. However, a better and more natural
RDF modelling is to have a property from lakes to their countries,
and another property from lakes to their area. In fact, we think that
RDF data cube models have more to do with query patterns than
with data models. Indeed, a data cube can be seen as a SPARQL
query template where it remains to choose the projected variables
(dimensions), and the aggregation operators.

5 BUILDING ANALYTICAL QUERIES
We address the problem of composing analytical queries by guiding
users in the incremental building of SPARQL computation queries,
and by hiding SPARQL behind a Natural Language Interface (NLI).
We formalize our approach using the N<A>F design pattern [7].
Its purpose is to bridge the gap between a natural language (NL)

Table 1: Table queries, along with their columns C (T), their
dimensions D (T), and their well-formedness conditions

table query T C (T) D(T) well-formedness
conditions

Pattern(X , P) X X X ⊆ Vars(P)
Bind (T1,x ,E) C (T1) ∪ {x } D (T1) XE ⊆ C (T1),

x fresh
Filter (T1,E) C (T1) D (T1) XE ⊆ C (T1),

E Boolean
Aggreg(T1,X ,Y ,G,Z) X ∪ Z X X ⊎ Y ⊆ C (T1),

Z fresh
T1 ▷T2 C (T1) ∪C (T2) D (T1) D (T2) ⊆ D (T1),

and a formal language (FL, here SPARQL). Figure 2 summarizes
N<A>F. The user stands on the NL side, and does not understand
the FL. The machine, here a SPARQL endpoint, stands on the FL
side, and does not understand the NL. The central element of the
bridge is an abstract query. In short, it is a representation of the
user’s question in a language that is intermediate between NL and
FL. That language is designed to make translations from abstract
queries to both NL (verbalization) and FL (formalization) as simple
as possible. A sub-query of the abstract query is distinguished as
the query focus, and the remainder is called query context. N<A>F
includes the query builder approach, where the structure that is
incrementally built is precisely the abstract query. The abstract
query is initially the simplest query, and it is incrementally built by
applying transformations. A transformation may insert or delete a
query element, or move the focus. N<A>F also includes the faceted
search approach, where transformations are suggested by the ma-
chine based on query semantics and actual data, and controlled
by users. Like queries, transformations are verbalized in NL. This
section successively defines abstract queries, their formalization in
SPARQL, their verbalization in English, their transformations, and
finally the type-based suggestion of transformations. All definitions
are illustrated on complex use case (C).

5.1 Abstract Queries
We call our abstract queries table queries (T) because their evalua-
tion returns tables. Table queries are recursively composed of other
table queries, and are also composed of expressions.

Definition 1 (Expressions). An expression is one of:

• n, where n is an RDF node (URI or literal),

• ?x , where x is a table column,

• E1 op E2, where op is a binary SPARQL operator (e.g., +) applied
to two sub-expressions,

• f (E1, . . . ,En), where f is a SPARQL function (e.g., str) ap-

plied to a tuple of sub-expressions as arguments,

• ??, representing an undefined expression (yet to be built).

We note XE the set of columns occuring in expression E.

Definition 2 (Table qeries). Table queries take one of the
forms given in Table 1 (left column). A Pattern-query is a primitive

table query, ▷ is a binary operator, and Bind, Filter,Aggreg are unary
operators. Those unary operators represent the computation of a table

as a function of another table, as informally presented in Section 4.

, , Sébastien Ferré

Table 2: Translation of table queries to SPARQL patterns

T PatternT
Pattern(X , P) P
Bind (T1, x, E) PatternT1 BIND (exprE AS ?x)
Filter (T1, E) PatternT1 FILTER (exprE)
Aggreg(T1, X , Y , G, Z) {SELECT . . . ?xi . . . (дj (?yj) AS ?zj) . . .

WHERE { PatternT1 }
GROUP BY . . . ?xi . . . }

T1 ▷T2 PatternT1 PatternT2

Table 1 also gives for each form the resulting set of columns C (T),
the set of dimensions D (T) ⊆ C (T), and well-formedness conditions.

D (T) plays the role of a key for the resulting table T (i.e., at most one

row for each valuation of D (T)).

Pattern(X , P) represents an initial table from the SPARQL pat-
tern P , where the set of columns X is a subset of the variables in P .
Bind (T1,x ,E) extendsT1 with a new column x computed by expres-
sion E over T1’s columns. Filter (T1,E) filters the rows of table T1
based on the Boolean expression E. Aggreg(T1,X ,Y ,G,Z) defines
an aggregated view over T1, grouping by columns in X , and aggre-
gating each column yj ∈ Y with aggregator дj ∈ G into aggregated
column zj ∈ Z . Finally, T1 ▷T2 is a restricted form of join where
D (T2) ⊆ D (T1) (the key of T2 is a subset of the key of T1), so that
each T1-row has at most one corresponding T2-row.

Example. In order to illustrate our language of abstract queries,
and show its expressive power, we show below the table query T
for the complex use case (C) of Section 2. For readability, we decom-
pose the table query by naming each sub-query (T0,T1,T2). This
also avoids the duplication of T1, which is used twice.

T = Filter(T1 ▷T2, (?g > ?ag))
where T2 = Aggreg(T1, (), (g), (AVG), (ag))
and T1 = Bind(T0, g, ((?G * 1e6) / ?p))
and T0 = Pattern({c,G,p},

?c a :Country ; :gdpTotal ?G ; :population ?p .)

T0 is the initial table based on a SPARQL pattern relating coun-
tries to their total GDP (in M$), and their population. T1 extends T0
with a binding computing the GDP per capita (column д). T2 per-
forms an aggregation over T1 to produce a one-row one-column
table containing the average GDP per capita (column aд). Finally,
T filters the join T1 ▷T2 by comparing columns д from T1 and col-
umn aд fromT2. The join is here necessary in order to make the two
columns accessible to the filter expression from a same table. For
final tableT , the set of columns isC (T) = {c,G,p,д,aд}, and the set
of dimensions is D (T) = {c,G,p} because д and aд are introduced
by a binding and an aggregation, respectively.

5.2 Formalization in SPARQL
We here provide a formalization and semantics for abstract queries
by translating them to SPARQL. Although the translation of each
table query and expression is relatively straightforward (see Table 2
for tables), it is complicated by the fact that the table query to be
translated depends on the current query focus. Indeed, the idea is
to give access not only to the final table, but also to the initial table

and every intermediate table (each Ti in the above example). The
current focus can be used to select the sub-query to translate. For
example, in use case (N1), the user can choose between: (1) islands
and their archipelagos and area, (2) archipelagos and their total
area, and (3) the average area of archipelagos.

However, it is also desirable to show as much information as
possible, by joining the table at focus with other compatible tables.
For example, in use case (C), when the focus is on the initial table
about countries, it is valuable to include the column on “GDP per
capita” from the binding (T1), and also the “average GDP per capita”
from the aggregation (T2). In particular, it makes it possible to
compare side-by-side for each country its GDP per capita to the
average. To formalize this intuition, we define the saturation of a
table sub-query.

Definition 3. Let T be a query table, and Ti be a sub-query

of T (or T itself). The saturation of Ti is T
▷
i = Ti ▷ {Tj ⊆ T |

Tj , Ti ,D (Tj) ⊆ D (Ti)}, i.e. the join ofTi with all other sub-queries

of T whose dimensions are a subset of the dimensions of Ti .

In the above example query T , the saturation of T0 is T▷0 = T0 ▷
T1▷T2▷T , which simplifies toT▷0 = T thanks to the following rules:
T ▷Bind (T ,x ,E) = Bind (T ,x ,E), andT ▷Filter (T ,E) = Filter (T ,E).
The saturation of T1 is the same. The saturation of T2 is T▷2 = T2
because D (T2) = ∅, unlike other sub-queries.

Definition 4. The SPARQL translation of a table query T is

SELECT * WHERE { PatternT ▷
focus

},

where T
focus

is the sub-query that has focus, T▷
focus

is its saturation,

and PatternT ▷
focus

is defined recursively on table queries by Table 2.

In Table 2, exprE represents the translation of our abstract ex-
pression E to SPARQL expressions. The translation of expressions is
trivial but the focus and undefined expressions (??) have to be taken
into account again. First, when an expression under focus contains
the undefined expression ??, the encompassing BIND or FILTER is
removed from the translation because the expression cannot yet
be computed. Second, when the focus is on a sub-expression, the
rest of the expression is ignored in the translation in order to give
access to the values of that sub-expression. For example, if the focus
is on (?G * 1e6) in use case (C), then the rest of the expression (/
?p) is ignored, and column д contains values of the “total GDP in
dollars” instead of values of the “GDP per capita”.

Example. The formalization of use case (C) when the focus is on
one of T0,T1,T , and not on a sub-expression is the following.
SELECT ?c ?G ?p ?g ?ag WHERE {
?c a :Country ; :gdpTotal ?G ; :population ?p .
BIND (?G*1e6/?p AS ?g)
{ SELECT (AVG(?g) AS ?ag) WHERE {

?c a :Country ; :gdpTotal ?G ; :population ?p .
BIND(?G*1e6/?p AS ?g) } }

FILTER (?g > ?ag) }

Note the duplication of the initial pattern and the binding, com-
ing from the two occurences of T1 in table query T . When the
focus is on T2, the formalization is only the aggregation query, i.e.
a subquery of the previous one.
SELECT (AVG(?g) AS ?ag) WHERE {
?c a :Country ; :gdpTotal ?G ; :population ?p .
BIND(?G*1e6/?p AS ?g) }

A SPARQL 1.1 Query Builder for the
Data Analytics of Vanilla RDF Graphs , ,

5.3 Verbalization in English
Before defining the verbalization of expressions and table queries,
we have to define the verbalization of column names. We assume
that a noun is associated to each column of a Pattern-query: ex.,
‘country’ for c , and ‘total GDP’ for G in the running example.
Columns introduced by bindings can be named by users: ex., ‘GDP
per capita’ for д. Otherwise, the verbalization of the binding
expression is used instead. Finally, the verbalization of each ag-
gregated column z is the verbalization of д(y) (e.g., ‘the number
of y’, ‘the average y’).

The verbalization of expressions results from the nesting of the
verbalization of its functions and operators It mixes mathematical
notations and text depending on which is the clearer: ‘E1 + E2’
is clear to everybody and less verbose than ‘the addition of
E1 and E2’, while ‘E1 or E2’ is less obscure than ‘E1 || E2’
for non-IT people. The verbalization of table queries is a matter of
templates (optional parts are between []), given the verbalization
of columns, aggregated columns, and expressions.
• Bind (T1,x ,E): ‘give me [x =] E’
• Filter (T1,E): ‘where E’
• Aggreg(T1,X ,Y ,G,Z): ‘[for . . . each xi. . . ,] give
me . . . дj (yj). . . ’

All sub-queries in a table query are verbalized once – hence avoiding
duplications for sub-queries that have several occurences (e.g.,T1 in
use case (C)) – and coordinated with ‘and’. Sub-queries are put in
dependency ordering, starting with the initial table. In agreement
with formalization, if the focus is on sub-query Ti then the sub-
queries that do not appear in the saturation T▷i are dimmed in the
display to show that they are inactive at the current focus. Here is
the verbalization of use case (C), whose first line is the verbalization
of the initial pattern, as done in Sparklis [9].
give me a country that has a total GDP, and that has a population
and give me GDP per capita = the total GDP * 1e6 / the population
and give me the average GDP per capita
and where the GDP per capita > the average GDP per capita

5.4 Query Transformations
A query transformation applies changes to an abstract query at and
around its focus. This notion of focus is essential to target the part
of the query to be changed, and to simplify the definition of the
transformations. Each of our transformations is represented in the
following way:

focus@context

transf

−−−−−→ focus
′@context

′

where a pair focus@context exhibits the split of an abstract query
between the sub-query or sub-expression at focus, and its context,
i.e. the surrounding query. For example, E@Filter (T , _) denotes the
query Filter (T ,E) with focus on E.

The simplest way to have a complete set of transformations
would be to have a focus for each table sub-query and sub-expression,
and to have an insertion transformation for each form of table
queries and expressions: i.e., bindings, filters, aggregations, joins,
nodes, columns, operators, and functions. However, this would not
be satisfying for several reasons. First, it would force users to think
in terms of table queries (e.g., bindings, filters), whereas it is more
natural to think in terms of entities, values, and function/operator

Table 3: Query transformations (see Definition 6)

(0) x@T
f [1]
−−−−→ f (?x , ??)@Bind (T▷,x , _)

??
−−→

(1) E@E ′
f [1]
−−−−→ f (E, ??)@E ′

??
−−→

(2) ??@E ′
n
−→ n@E ′

??
−−→

(3) ??@E ′
x
−→?x@E ′

??
−−→

(4) ??@E ′
f
−→ f (??, ??)@E ′

??
−−→

(5) E@Bind (T ,x , _)
type(E)=bool
−−−−−−−−−−−→ E@Filter (T , _)

(6) E@Filter (T , _)
type(E),bool
−−−−−−−−−−−→ E@Bind (T ,x∗, _)

(7) y@T
д
−→ z∗@Aggreg(T▷, (), (y), (д), (z∗))

(8) c@Aggreg(T ,X ,Y ,G,Z)
group by x
−−−−−−−−−→ x@Aggreg(T , (Xx),Y ,G,Z)

(9) c@Aggreg(T ,X ,Y ,G,Z)
д (y)
−−−−→ z∗@Aggreg(T ,X , (Yy), (Gд), (Zz∗))

applications. Therefore the focus should be on a column or an ex-
pression instead. Second, it would force to compose expressions
top-down, which would require anticipation of the whole expres-
sion. It should be possible to compose expressions in a mixture of
top-down and bottom-up, and even to insert functions/operators
in the middle of an expression.

Definition 5 (qery focus). There are two kinds of query focus:
• x@T sets the focus on one column x ∈ C (T) of table query T ;
• E@E ′ sets the focus on an expression E, whose context is E ′.
Context E ′ can be refined into Bind (T ,x , _) or Filter (T , _).

Definition 6 (qery transformations). The query transfor-
mations of table queries and expressions are listed in Table 3. The

starred columns represent the introduction of fresh columns. The trail-

ing (
??
−−→) in Transf. (0-4) represents an automatic move of the focus to

the next undefined expression if there is any, or to the whole expression

otherwise, in order to save manual focus moves.

Transf. (0) introduces a binding by applying function f to col-
umn x , as the 1st argument of f . Transf. (1) inserts a function call
on any expression focus. For brevity, those two transformations
are only given for binary functions and 1st arguments, but they
are also defined for operators, other function arities, and other
argument positions (e.g., *[1], concat[2]). Transf. (2,3,4) replace
an undefined expression with one of: a node n, column x (when
x ∈ C (T), where T is the focus table), or a call to function f with
arguments waiting to be defined. Transf. (5,6) represent automatic
switches between bindings and filters based on the type of the ex-
pression being Boolean or not. Transf. (7) introduces an aggregation
by applying aggregator д to column y. Transf. (8,9) respectively add
a grouping by column x (when x ∈ C (T) \X \Y) and an aggregated
column д(y) (when y ∈ C (T) \X) to an aggregation. Note the use of
saturation when introducing bindings (Transf. (0)) and aggregations
(Transf. (7)) in order to give access to as many columns as possible
for defining the binding or aggregation. In fact, there is no transfor-
mation to insert a join, and all joins are automatically inserted in
this way. For brevity, we have omitted additional transformations
for removing query elements. They are not necessary in theory but
they are very useful in practice for undoing insertions in a different

, , Sébastien Ferré

order to their insertion. In addition to those transformations, the
focus can be moved freely.

Only transformations that are applicable to the current focus, and
that respect type constraints are suggested (see Section 5.5). The sug-
gested operators and functions in Transf. (0,1,4), and the aggregators
in Transf. (7,9) are selected from the list of SPARQL-supported oper-
ators, functions, and aggregators, according to type constraints. The
suggested columns in Transf. (3) are the columns C (T▷

focus
) of the

saturation of the focus table. The suggested columns in Transf. (8,9)
are taken among the columns of the aggregated table T , according
to the well-formed conditions of Aggreg-tables (Table 1). Finally,
the nodes in Transf. (2) are obtained by asking the user to fill an
input field, and by checking the input according to type constraints.

Example. The sequence of transformations that leads, in use
case (C), from the initial table (T0) to the complete query (T) is
the following, where each transformation, and each focus move
(e.g., G@T0), is followed by the table query that has been created
or modified. In the latter, the query focus is underlined. We recall
that transformations are not written by the user but selected (by
click) in a suggestion list.

step transf. created or modified table query
1 G@T0 T0 ← Pattern({c,G,p},. . .)
2 *[1] T1 ← Binding(T0, g, (?G * ??))
3 1e6 T1 ← Binding(T0, g, (?G * 1e6))
4 /[1] T1 ← Binding(T0, g, ((?G * 1e6) / ??))
5 p T1 ← Binding(T0, g, ((?G * 1e6) / ?p))
6 AVG T2 ← Aggreg(T1, (), (g), (AVG), (ag))
7 g@T1 T1 ← Binding(T0, g, ((?G * 1e6) / ?p))
8 >[1] T ← Filter(T1 ▷T2, (?g > ??))
9 ag T ← Filter(T1 ▷T2, (?g > ?ag))

The above sequence of transformations can be informally pre-
sented in a narrative way (imagine the user talking to herself): from
the initial table, “select the total GDP... multiply it by... 106... and
divide the result by... the population (the result is the GDP per capita)...

get the average of that... select the GDP per capita... it should be greater

than... the average GDP per capita”. It can be observed that 9 steps
are sufficient to build the whole table query although it contains
5 sub-queries, and 8 sub-expressions. It can also be observed that
every applied transformation is either referring to a column (2 focus
changes, 2 column insertions), or inserting a computing element (3
operators, 1 number, 1 aggregator). Therefore, users can think in
terms of which computations should be applied to which columns,
and table queries are implicitly created/modified as needed. Note
that, despite T1 having two occurences in T , it needs only be built
once thanks to the automatic joins.

5.5 Type-Based Suggestions
Among the possible transformations presented in Section 5.4, only
those that lead to well-typed expressions and aggregations should
be suggested to users. For example, when the focus is ??@(?G * _),
i.e. on the right-hand side of a product, only numeric literals, columns
and functions can be inserted. We have implemented a type infer-
ence mechanism that determines two type constraints: the focus
type and the context type. The focus type comes from the analysis of
the query focus, and possibly the focus values. If the query focus

is an expression, then the focus type is infered from the type sig-
natures of its functions and operators. Similarly for aggregations.
If the query focus is a pattern column, the focus type is infered
from the datatype of its values in the SPARQL results. If the query
focus is an undefined expression, which happens when inserting
an n-ary function, the focus type is undefined. The context type
comes from the analysis of the query context. If the query con-
text is a function/operator argument, then the context type is the
type of that argument, otherwise it is undefined. By definition of
the transformations, at least one of the two constraints is defined.
From there, the suggested aggregators, functions, and operators
are simply those that can be inserted at the focus while satisfying
the defined type constraints. In fact, there is a distinct transforma-
tion for each function argument (Section 5.4), and only function
arguments compatible with focus type are suggested. The type
constraints are also used to check user inputs of literals.

In practice, a few additional complications must be dealt with
for the sake of robustness w.r.t. real datasets. First, the focus values
may have several incompatible types (e.g., URIs and strings). In this
case, the focus type is a set of types, and if the inserted function
is only compatible with one of them, the resulting expression will
only be partially defined (there will be blank cells in the results).
Second, the focus values may be improperly typed, thus requir-
ing to explicitly apply conversion functions. The common case is
numerical literals having no datatype (e.g., QALD-6 datacubes) or
non-standard datatypes (e.g., DBpedia USdollar). We parse literals
independently of their datatype to recognize numbers, and implic-
itly apply conversion functions in the SPARQL formalization as
necessary.

6 IMPLEMENTATION
We have fully implemented the proposed approach on top of Spark-
lis [9], a semantic search tool that is also based on the N<A>F design
pattern. It allows end-users to build SPARQL graph patterns that
arbitrarily combine basic graph patterns, UNION, OPTIONAL, and MINUS.
It also supports ORDER BY clauses. It therefore provides everything
needed for the building of Pattern-table queries, and our proposed
approach fits well with Sparklis.

Our implementation, called Sparklis-Analytics, incorporates
Sparklis, and adds 3500 lines of code to the existing 5000. The
N<A>F design pattern helped us to integrate table queries and ex-
pressions in a modular way. First, new data structures were defined
beside patterns for table queries and expressions. Second, the al-
gorithms for the formalization in SPARQL and the verbalization
in English were extended to those new data structures. Third, the
set of suggestions was augmented with our computation-oriented
transformations. Finally, type-checking mechanisms were added
for the filtering of suggested transformations.

Availability. Sparklis-Analytics is available on-line2 as a
client-side application that works on top of SPARQL endpoints. A
few endpoints are proposed (e.g., DBpedia, Mondial, Nobel Prizes)
but any endpoint can be explored by simply entering its URL. A
few configuration options allow to adapt to different endpoints
(e.g., GET/POST method, sending with credentials), and to specify
labelling properties. It also includes the YASGUI editor [17] to let

2http://bit.ly/sparklis-analytics.

A SPARQL 1.1 Query Builder for the
Data Analytics of Vanilla RDF Graphs , ,

advanced users access and modify the SPARQL translation of the
query. The application page links to a list of clickable examples
including the use cases of Section 2 (and more), and the 50 test
questions from the QALD-6 challenge. A number of examples have
a screencast on YouTube to show their incremental building.

Example. Figure 3 shows a screenshot of Sparklis-Analytics,
taken at the last step of use case (C), just before inserting ‘the
average GDP per capita’ (columnaд) in the filtering expression3.
The user interface has three main parts, from top to bottom: the
query, the suggested transformations organized in three lists, and
the table of results. In the query, the focus is on the right-hand side
of operator >, and the left-hand side is dimmed because it is not
under focus. The middle list suggests column names whose type is
compatible, and entry fields for compatible types (here, numeric
types). The right list suggests functions and operators whose type
is compatible (here, operators returning a number). The left list is
not relevant for computations, it is used for building graph patterns
(suggesting classes and properties). In the table of results, we can
see the active column names, and the first row. Both the computed
‘GDP per capita’ and ‘average GDP per capita’ are active,
which allows to compare them side by side. The last column is
added to show the Boolean value of the comparison expression
under building but it contains only blank cells because the focus is
undefined at this stage.

Expressivity and limits. Our approach and its implementa-
tion covers almost all SPARQL 1.1 computations. The non-covered
features are: (a) a few technical functions like SHA256, (b) the cus-
tomization of the separator in the GROUP_CONCAT aggregator, and (c)
the application of COUNT to a row of variables (e.g., COUNT(*)). The
limits therefore do not lie in the computation features but in their
combinations. A hard limit is that a query cannot contain several
disconnected patterns because our join (T1 ▷T2) is the only way to
combine several patterns, and its restriction (D (T2) ⊆ D (T1)) im-
plies that the two patterns share variables, and hence are connected.
An example of question that cannot be answered in our approach
is “Are there more cities than rivers?”, because cities and rivers are
not connected. However, it is possible to answer the question “Are
there more cities than rivers in France?”, because cities and rivers
are now connected through entity France. A soft limit is that some
questions, although answerable in our approach, are awkward to
build. The typical example is the computation of proportions, and
more generally, the combination of aggregations on different filter-
ings of a table query: e.g., “What proportion of cities in China have
more than 1 million inhabitants?”.

Scalability. The addition of computation features to Sparklis
has not much impact on scalability, apart from the SPARQL eval-
uation of aggregations that are intrinsically costly, in particular
in complex combinations. Bindings and filters do not impact sub-
tantially efficiency as they are evaluated row-wise. The cost of
the translations from abstract queries to SPARQL and English is
negligible compared to the cost of evaluating SPARQL queries by
the endpoint. The type-based choice of suggestions is cheap be-
cause it can be computed on the client side without any request to

3We warmly invite the reader to look at the full screencast (2’54”) of example (C) at
https://youtu.be/MPiYMwxasFo.

the SPARQL endpoint. Our experiments in real settings (Section 7)
confirm those theoretical observations.

7 EXPERIMENTS
We here report on three experiments in order to evaluate our ap-
proach. The first is a user study that compares the usability of our
approach to the writing of SPARQL queries. The second reports
on our participation to the QALD-6 challenge, and compares our
results to question answering systems. The third evaluates the ade-
quecy of our approach w.r.t. real needs at Persée, a dataset used by
researchers in social sciences.

7.1 Comparison with Writing SPARQL Queries
Methodology. The objective of this user study is to evaluate the
usability of our approach compared to writing SPARQL queries
directly. The subjects were 24 post-graduate students working in
pairs. They had all recently attended a Semantic Web course with
about 10h of teaching and practice of SPARQL. The task given to
subjects was to answer two series of 10 questions on the Mondial
dataset, covering all categories presented in Section 2. The questions
in the two series involve exactly the same kinds of computations
in the same order, they only differ by the initial pattern: e.g. Give
the average population of European countries vs Give the average
area of Mediterranean islands. The subjects had to use two different
systems, one for each series of questions: (a) YASGUI [17], a SPARQL
query editor improved with syntax highlighting, and (b) our tool
Sparklis-Analytics. The subjects had only a 1h presentation of
our tool before, and no practice of it. Each subject was randomly
assigned an order (YASGUI first vs Sparklis-Analytics first) to
avoid bias. For each system/series couple, they were given 10min
for setup, and 45min for question answering. To help the writing of
SPARQL queries, they were given the list of classes and properties
used in Mondial. Finally, the subjects filled a questionnaire at the
end to report their feelings and comments.

Questions. Question 1 is a simple pattern. Question 2 is a bind-
ing, and Question 3 is a filtering. Questions 4-7 are aggregations
with different numbers of groupings. Question 8-9 are complex com-
binations of an aggregation and a binding or filtering. Question 10
is a nested aggregation.

Objective results. With YASGUI, the subjects managed to pro-
duce answers for 1-3 questions, 1.67 on average. The rate of correct
answers was 71%. The best subject answered to 3 questions, all
correctly, and with an average of 15min per question. In compari-
son, with Sparklis-Analytics, the subjects managed to produce
answers for 3-10 questions, 6.17 on average. This is 3.7 more ques-
tions, and the weakest result for our tool is equal to the strongest
result for YASGUI. The rate of correct answers is also higher at
85%. Most errors (8/13) were done by only 2 subjects out of 12. The
most common error is the omission of groupings in aggregations,
suggesting to make them more visible in the user interface. The
best subject answered to 10 questions, 8 of which were correct,
and with an average of 4.5min per question. The time spent per
question is generally higher for the first 2 questions, and generally
stays under 10min for the other questions, although they are more
complex, and can be as low as 2-3min. Those results demonstrate
that, even without practice of our tool, subjects quickly learned to

, , Sébastien Ferré

Figure 3: Screenshot of Sparklis-Analytics at the last step of use case (C)

use it, and are much more effective with it. The weakest subject
on Sparklis-Analytics is still as good as the strongest subject on
YASGUI. Moreover, all subjects had better results with the former
than with the latter.

Subjective results.As a first question, we asked subjects whether
they (1) clearly prefer YASGUI, (2) would rather use YASGUI, (3)
have no preference, (4) would rather use Sparklis-Analytics,
or (5) clearly prefer Sparklis-Analytics. Over the 12 subjects, 9
clearly prefer Sparklis-Analytics and 3 would rather use Sparklis-
Analytics, hence unanimous preference for our tool. As a sec-
ond question, we asked them to evaluate the two systems on a
0-10 scale. YASGUI got marks between 2 and 8, 4.8 on average.
Sparklis-Analytics got marks between 7 and 10, 8.3 on average
(6/12 subjects gave 9-10 marks). From two other questions, we know
that (a) 11/12 subjects think that knowledge about Semantic Web

technologies is not necessary to use Sparklis-Analytics, and (b)
10/12 subjects said that non-IT people would quickly learn how to

use Sparklis-Analytics. When asking them what they preferred
in our tool compared to writing SPARQL, most said that “it is easy-
to-use and intuitive”, and that “it is not necessary to make searches
out of the application to find classes and properties”.

7.2 QALD-6 Datacube Challenge
In this experiment, we evaluated our approach on a large and real
dataset, and on a challenging set of questions. The QALD-6 chal-
lenge (QuestionAnswering over LinkedData) introduced a new task
(Task 3) on “Statistical question answering over RDF datacubes” [20].
The dataset contains about 4 million transactions on government
spendings all over the world, organized into 50 datacubes. Note
that organisation into datacubes is not required by our approach,

Table 4: Performance onQALD-6 statistical questions by two
different users

user answered correct min/median/max
questions answers time

expert 49/50 = 0.98 47/50 = 0.94 31”/1’30”/6’20”
beginner 44/50 = 0.88 38/50 = 0.76 1’/4’/10’

unlike in other approaches. There are about 16M triples in total. For
the evaluation, we used our tool with the following configuration:
http://cubeqa.aksw.org/sparql as endpoint, and rdfs:label
as labelling property for entities, classes and properties.

Questions. All 100 training questions and 50 test questions are
basic or simple aggregations, except for two questions (training
Q23 and test Q23) that are complex combinations (comparisons of
two aggregations). The limitation to simple aggregations comes
from the limited expressivity of existing systems. As a consequence,
all questions can be answered with Sparklis-Analytics, and its
“Examples” page provides the solutions to the 50 test questions as
“Open” links.

Methodology.Weparticipated to the challenge by going through
the 150 questions, building a table query in Sparklis-Analytics
for each question, and submitting the found answers for the 50 test
questions. In order to estimate the usability of our approach on real
and large data, we also asked a non-IT person to go through the
same process. Her education is in business studies, she worksmostly
with Excel, and had never used our tool before the experiment. We
therefore submitted two set of answers: expert and beginner. We
wanted to involve more non-IT subjects but going through that
experiment was quite time-consuming (10h in total for the beginner

A SPARQL 1.1 Query Builder for the
Data Analytics of Vanilla RDF Graphs , ,

user). Still we believe that because of the very different profiles of
those users our experiment is instructive from a qualitative point of
view, and shows promising results. At the least, it demonstrates the
possibility for a non-IT user to answer a large range of questions
on real and complex data. To the best of our knowledge, no other
tool achieves a similar result. During the test phase, we measured
the clock time, including: question reading and understanding by
the user, user actions in the tool, and computations by the tool and
the endpoint.

Results and interpretation.Table 4 compares the performances
of the expert and beginner users. The performance of the expert
shows that virtually all questions (94%, F1 = 0.95) can be answered
accurately and efficiently (half questions answered in less than
1’30”), once the user is fluent in the use of the tool. Although the
median time of the beginner is nearly three times higher (4’) than
for the expert, the success rate of 76% (F1 = 0.82) is very satisfying
for a beginner given the complexity of the data, and the novelty of
the tool compared to Excel. Also, the maximum time per question
does not differ drastically between the two users. The clock time
measures of the expert imply that our tool is responsive because
each question requires about 10 steps, each of which involves user
action and SPARQL evaluation in addition to the computations
specific to our approach. To compare with other challenge par-
ticipants, which used automated question answering approaches,
their success rate is 50% for QA3 (F1 = 0.53), and 38% for CubeQA
(F1 = 0.44).

The difference in success rate between expert and beginner is
mitigated when looking at the cause of errors. Among the 6 begin-
ner errors, 1 is explained by a lack of attention because the missed
action was performed in several other questions, 3 are explained
by a lack of exposure to a similar case during the training phase
(“When” questions, numeric filters like “more than 10000000”), and
2 are explained by the difficulty to find the right property and value
in a datacube. The 2 expert errors come from ambiguity in ques-
tions Q35 and Q42, which admit several equally plausible answers
(e.g., several URIs have the same label). The explanation for unan-
swered questions is generally that the datacube is not explicit in
the question. This requires to catch a first entity by string matching
(e.g., “Research into Infrastructure” in Q33), which appeared to be
inefficient and unreliable on the SPARQL endpoint. During the
training phase, the expert user found a few errors in the manually
crafted golden standard, which were reported to the organizers. At
the QALD-6 workshop during ESWC’16, we were invited to give a
talk in order to present our approach and results to the challenge
(see [8] for detailed results).

7.3 Data Analytics at Persée
Persée4 is a French organization that provides free access to more
than 600,000 scientific publications, notably in the domain of hu-
manities and social sciences. It maintains a SPARQL endpoint that
gives access to their metadata5, and they had already adopted Spark-
lis as an exploration and querying tool. We have contacted them
in order to evaluate their need for analytical questions, in order to

4http://www.persee.fr/
5http://data.persee.fr/

measure the adequacy of our approach to their needs. Without ex-
plaining them our approach or the range of questions that we cover,
we collected a set of spontaneous questions they were interested
in. To our surprise, those questions cover all kinds of uses cases
presented in Section 2. We had rather expected simpler queries
like retrieval queries, e.g. all publications of some author after some

date. We here list a sample of representative questions, and then
comment on them:

Q1 How many documents a given person (e.g., Pierre Bourdieu)
has co-authored with each of his co-authors?

Q2 For each author, get the number and the list of the titles of
his documents.

Q3 How does the average number of authors per document
evolves through time?

Q4 Are there persons whose death date is before the birth date,
thus revealing errors in data?

Q5 Sort authors by decreasing duration of their activity period,
computed as the difference between the maximal and the
minimal publication date of their documents.

Q6 For each publication year, get the number of articles pub-
lished that year, and whose title matches a given term (e.g.,
"rural"), in order to study the evolution of that term across
time.

Q1 and Q2 are aggregations, with two aggregators in Q2 (“the list
of” translates to GROUP_CONCAT). Q3 is a nested aggregation, first
counting authors per document, then averaging that count per
publication year. Q4 involves a filter whose expression combines
two properties of persons (birth date and death date). Q5 and Q6
are complex combinations of aggregations and bindings. In Q5, first
two aggregations, a maximum and a minimum, then a binding for
the difference, and finally a sorting. In Q6, first a filtering, then
an aggregation. We did not receive any question that could not be
answered with Sparklis-Analytics. This validates the relevance
of our use cases, and the expressivity range of our table queries.

Note that the Persée’s dataset is not at all organized into data
cubes, and does not even contain numerical data, apart from dates.
The central property is the one relating documents to authors,
which is an n-n relationship. As the above questions show, both
documents and authors can be used either as a dimension or as a
measure (counting authors per document or counting documents
per author). This real use case therefore validates our direct ap-
proach to RDF data analytics.

8 CONCLUSION AND FUTUREWORK
We have shown how the expressivity of SPARQL 1.1 can be lever-
aged to offer rich data analytics on vanilla RDF graphs. This includes
OLAP-like analytical queries, and goes beyond with nested aggre-
gations, and combinations with bindings and filters. We have also
shown how to make it accessible to people without knowledge of
SPARQL, through a NLI. We have implemented our approach, and
validated its expressivity, usability, and scalability in real settings.
Future work includes the addition of higher-level constructs (e.g.,
‘the proportion of’) to simplify frequent complex combina-
tions of computations; and the graphical visualization of results
(e.g., charts, maps, timelines).

, , Sébastien Ferré

Acknowledgement. I wish to thank QALD organizers for the
datacube task, Pierre-Antoine Champin and Cécile Almonté for
valuable feedback and suggestions, and Eléonore Jouffe and the
Miage students at Univ. Rennes 1 for their participation to the user
studies.

REFERENCES
[1] M. Arenas, B. Cuenca Grau, E. Kharlamov, Š. Marciuška, and D. Zheleznyakov.

2016. Faceted search over RDF-based knowledge graphs. Web Semantics: Science,

Services and Agents on the World Wide Web 37 (2016), 55–74.
[2] M. Atzori, G. Mazzeo, and C. Zaniolo. 2016. QA3 : a natural language approach to

statistical question answering. (2016). http://www.semantic-web-journal.net/
system/files/swj1847.pdf submitted to the Semantic Web journal.

[3] S. Chaudhuri and U. Dayal. 1997. An overview of data warehousing and OLAP
technology. ACM Sigmod record 26, 1 (1997), 65–74.

[4] D. Colazzo, F. Goasdoué, I. Manolescu, and A. Roatiş. 2014. RDF analytics: lenses
over semantic graphs. In Int. Conf. World Wide Web. ACM, 467–478.

[5] R. Cyganiak, D. Reynolds, and J. Tennison. 2013. The RDF data cube vocabulary.
W3C Recommendation (January 2014) (2013).

[6] G. Demartini, I. Enchev, M. Wylot, J. Gapany, and P. Cudré-Mauroux. 2011.
BowlognaBench – Benchmarking RDF Analytics. In Data-Driven Process Discov-

ery and Analysis. Springer, 82–102.
[7] S. Ferré. 2016. Bridging the Gap Between Formal Languages and Natural Lan-

guages with Zippers. In Extended Semantic Web Conf. (ESWC), H. Sack et al. (Eds.).
Springer, 269–284.

[8] S. Ferré. 2016. SPARKLIS on QALD-6 Statistical Questions. In Semantic Web

Evaluation Challenge. Springer, 178–187.
[9] S. Ferré. 2017. Sparklis: An Expressive Query Builder for SPARQL Endpoints

with Guidance in Natural Language. Semantic Web: Interoperability, Usability,

Applicability 8, 3 (2017), 405–418.
[10] P. Hoefler, M. Granitzer, V. Sabol, and S. Lindstaedt. 2013. Linked Data Query

Wizard: A Tabular Interface for the Semantic Web. In The Semantic Web: ESWC

2013 Satellite Events. Springer, 173–177.
[11] K. Höffner, J. Lehmann, and R. Usbeck. 2016. CubeQA - Question Answering on

RDF Data Cubes. In Int. Semantic Web Conf. Springer, 325–340.
[12] M. Kaminski, E. V. Kostylev, and B. Cuenca Grau. 2016. Semantics and expressive

power of subqueries and aggregates in SPARQL 1.1. In Int. Conf. World Wide Web.
ACM, 227–238.

[13] B. Kämpgen and A. Harth. 2011. Transforming statistical linked data for use in
OLAP systems. In Int. Conf. Semantic systems. ACM, 33–40.

[14] V. Lopez, V. S. Uren, M. Sabou, and E. Motta. 2011. Is Question Answering fit for
the Semantic Web?: A survey. Semantic Web 2, 2 (2011), 125–155.

[15] W. May. 1999. Information Extraction and Integration with Florid: The Mondial

Case Study. Technical Report 131. Universität Freiburg, Institut für Informatik.
Available from http://dbis.informatik.uni-goettingen.de/Mondial.

[16] B. Neumayr, C.G. Schuetz, and M. Schrefl. 2015. Towards Ontology-Driven RDF
Analytics. In Advances in Conceptual Modeling. Springer, 210–219.

[17] L. Rietveld and R. Hoekstra. 2013. YASGUI: Not just another SPARQL client. In
The Semantic Web: ESWC 2013 Satellite Events. Springer, 78–86.

[18] E. Sherkhonov, B. Cuenca Grau, E. Kharlamov, and E. V. Kostylev. 2017. Semantic
Faceted Search with Aggregation and Recursion. In Int. Semantic Web Conf.

(ISWC) (LNCS 10587), C. d’Amato et al. (Eds.). Springer, 594–610.
[19] SPARQL11 2012. SPARQL 1.1 Query Language. (2012). http://www.w3.org/TR/

sparql11-query/ W3C Recommendation.
[20] C. Unger, A.-C. N. Ngomo, and E. Cabrio. 2016. 6th Open Challenge on Question

Answering over Linked Data (QALD-6). In Semantic Web Evaluation Challenge,
H. Sack et al. (Eds.). Springer, 171–177.

http://www.semantic-web-journal.net/system/files/swj1847.pdf
http://www.semantic-web-journal.net/system/files/swj1847.pdf
http://dbis.informatik.uni-goettingen.de/Mondial
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

	Abstract
	1 Introduction
	2 Use Cases
	3 Related Work
	4 Direct and Expressive Data Analytics of RDF Graphs
	5 Building Analytical Queries
	5.1 Abstract Queries
	5.2 Formalization in SPARQL
	5.3 Verbalization in English
	5.4 Query Transformations
	5.5 Type-Based Suggestions

	6 Implementation
	7 Experiments
	7.1 Comparison with Writing SPARQL Queries
	7.2 QALD-6 Datacube Challenge
	7.3 Data Analytics at Persée

	8 Conclusion and Future Work
	References

