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A Unified Approach to Word Occurrence
Probabilities

Mireille Régnier

INRIA, 78153 Le Chesnay, France

Abstract

Evaluation of the expected frequency of occurrences of a given set of patterns in a
DNA sequence has numerous applications and has been extensively studied recently.
We provide a unified framework for this evaluation that adapts to various constraints
and allow to extend previous results. We assume successively that the patterns may,
then may not, overlap. We derive exact formulae for the moments in a Markovian
model, that are linear functions of the size of the sequence. We show that our
formulae, that occasionnally simplify previous results, are computable at low cost,
which makes them useful for practical applications.

1 Introduction

Repeated patterns and related phenomena in sequences (also called words or
strings) are studied in molecular biology. A survey on various methods can
be found in [21]. One fundamental question that arises is the frequency of
pattern occurrences in another string known as the text. This question is ad-
dressed below for a set of patterns (H;) and various assumptions on the count-
ing of possible overlaps. The text may be generated according either to the
Bernoulli model or the Markovian model. Among the problems of molecular
biology that can benefit from these results, one may cite the search of patterns
with unexpectedly high or low frequencies [14] and gene recognition based on
statistical properties [31,12]. Statistical methods have been successfully used
from the early 80’s to extract information from sequences of DNA. In par-
ticular, identifying deviant short motifs, the frequency of which is either too
high or too low, might point out unknown biological information [8,7,23,18].
From this perspective, these results give estimates for the statistical signifi-
cance of deviations of word occurrences from the expected values and allow a

1 This research was supported by ESPRIT LTR Project No. 20244 (ALCOM IT).
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biologist to build a dictionary of contrast words in genetic texts. They have
been recently used to detect dos-DNA in the yeast chromosome [10]. Another
biological problem for which such results might be useful is gene recognition.
Most gene recognition techniques rely on the observation that the statistics
of patterns (motifs/codon) usage in coding and non-coding regions are differ-
ent [9,34]. These findings allow the estimation of the statistical significance of
such differences, and the construction of the confidence interval for pattern
occurrences.

The problem of pattern occurrences in a random string is a classical one,
[11,17,20,6,4,15,5,16,26,30,33]. In this paper, frequency of pattern occurrences
is fully characterized. It is known [2,32] that the limiting distribution is “usu-
ally normal”. Let us mention that large deviation results hold [28]. Results
below allow an easy computation of all moments, using for instance a sym-
bolic computation system. Additionally, derivation is not restricted to the
asymptotically dominating term, usually linear, but provides final results that
are exact, or up to an exponentially decreasing term, with the same compu-
tational effort. The computation of the probability of occurrences in the finite
range also follows. Moreover, most parameters of interest (average number of
occurrences, waiting time for the first occurrence, r-scans,...) steadily follow.

The method of analysis treats uniformly two probability models, Bernoulli
and Markov, and various constraints on the possible overlaps of the strings.
It relies on classical combinatorial methods briefly presented in the last sec-
tion. It allows for a simplification of existing formulae [22,32] as well as some
corrections and, moreover, provides formulae that are computable. E.g. the
computational complexity is low and the formulae translate into algorithms
that are numerically stable. As a matter of fact, some are implemented in

software COMBSTRUCT. This is crucial to applications.

2 Basic Tools

2.1  Qverlapping and renewal models

Let us consider a text string S = #1t5...1, of length n and a set H of patterns
(Hi)iz1..q of lengths (m;);=1.., over an alphabet S of size V. In order to ensure
an unambiguous counting, one assumes that H is a reduced set of patterns [17];
e.g. no pattern in H is a substring of any other pattern in H. When H patterns
are searched in text S, various constraints can be imposed on the counting of
overlapping occurrences. In the various models so-defined, the occurrence of
a pattern from H that satisfies the pre-imposed constraints is called a valid
occurrence.



In the overlapping model, any occurrence is valid. Notably, two overlapping
patterns both contribute to the count. For example, let

S =AATTATTATATTATTTT

with (Hy, Hy) = (TTA, TAT). Patterns Hy; and Hy occur at positions 3,6, 11
and 4,7,9,12. All these occurrences are valid. This is the general scheme in
the search of words that occur with unexpectedly high or low frequencies. A

possible application is notably the search of tandem repeats[1,3]. The problem
has been extensively studied in [2,25,28,29,22.33].

In the renewal model, studied in [6,32], two overlapping occurrences cannot be
valid simultaneously. In a chain of overlapping occurrences, the first occurrence
is always valid. An other occurrence is valid iff it does not overlap on the left
with a valid occurrence. In the example above, valid occurrences of H; and
H; are found at positions 3,6 and 9. This is the assumption in the enzyme
restriction problem. Intuitively, when one enzyme has cut on one occurrence
of pattern H;, an overlapping occurrence of pattern H; does not allow enzyme
j to be active.

Many other constraints can be chosen that define other variants. For example,
one may count overlapping occurrences of different patterns. Or one can force
a minimal distance between valid occurrences.

2.2  Probabilistic models and notations

Throughout this paper, the pattern set is fired and given, while the text string
is random. More precisely, text generation follows either one of the two prob-
abilistic models:

(B) BERNOULLI MODEL
The text is generated randomly by a memoryless source. Fvery symbol s
of a finite alphabet is created independently of the other symbols, with
probability p,. The model is uniform if all these probabilities are equal,
otherwise it is biased.

(M) MARKOVIAN MODEL
The text is a realization of a stationary Markov sequence of order K, that
is, probability of the next symbol occurrence depends on the K previous
symbols.

Below, P(w) is the stationary probability that the word w occurs in the random
text S between symbols k and k + |w| — 1 and P(w1|ws) is the conditional
probability that wy occurs at position k knowing that ws occurs at position



k— |w2|

We adopt the following convention to work with matrices and vectors. Bold
upper-case letters are reserved for vectors which are assumed to be column
vectors; e.g. 14 denotes the unit vector with ¢ rows. The upper index "t
denotes transpose and 14 can be rewritten (1,...,1)". We shall use blackboard
bold letters for matrices. In particular, we write I for the identity matrix.
M, ; = m;; denotes element with index (7, j) from matrix M while M; denotes
the matrix derived from M by a substitution of 0s in all columns but the z-th
one.

Below, most derivations for the Markov model deal only with the first order
Markov chain (K = 1). One makes use of the transition matrix P = {p; ; }; jes
where p;; = Pr{tyy1 = jltx = i}. Vector # = (71,...,7v) denotes the sta-
tionary distribution satisfying wlP = o, and II is the stationary matrix that
consists of V identical rows equal to w. Finally, Z is the fundamental matrix
Z = (I—(P—TI))~! where [ is the identity matrix.

2.3  Qverlapping and correlation sets

The goal of this paper is to calculate the expected frequency of multiple pat-
tern occurrences in the text assuming either the Bernoulli or the Markovian
model. It turns out that several properties of pattern occurrences depend on
the so called correlation polynomial introduced in [17] for the Bernoulli model,
extended below to the Markov model.

Definition 1 Given two strings H and F, the overlapping set of (H, F) is the
set of H-suffizes that are F-prefizes. F-suffizes of the associated F-factorisations
form the correlation set Apr. One defines the correlation polynomial of H and
I as:

Anr(z) = Z P(w|H)Z|W|

wEAR F

When H is equal to F, Ann ts named the autocorrelation set and denoted
Agn; empty word € is in Ag. The autocorrelation polynomial is defined as:

An(z) = > P(w|H)z"™

’LUE.AH

Intuitively, a word in Ay r, when concatenated to H, creates an (overlapping)
occurrence of F. For example, let H = 11011 and F' = 1110 be two strings
over binary alphabeet {0,1}. Then App = {10,110} and Apy = {11} #



Apr. The associated correlation polynomials are, in biased Bernoulli model
where (po,p1) = (1/372/3)7 A11011,1110(Z) = %ZQ + 24—723 while A1110,11011(Z) =

AH7:(2)922. The autocorrelation polynomials are: Aj110(2) = 1 and Aq1011(2) =

14 24—723 + 524. As empty word € is in Ay but not in Agp, the constant term
of An(z) is always 1 while the constant term of Ay p(z) is always 0.

Assume now that H = CGC over alphabet S = {A,C, G, T}. Observe that
Aun = {¢,GC}, where € is the empty word. Thus, for the uniform Bernoulli
model (all symbols occur with the same probability equal to 0.25), Acge(z) =
1+ %. In the Markovian model of order one, only the last letter in the common
prefix is taken into account, and one has: Acgc(2) = 1 + poapacz®

Notation: In the following, A(z) denotes the ¢ x ¢ matrix of correlation
polynomials. For the given set H = (Hj)i=1.. 4 of searched patterns, A(z) =

(Am 1 (2))ij=1.q-

3 Language Counting

One approach to word statistics is the study of texts that contain a finite
number, say r, of occurrences of H patterns. For a given r, this set of texts is a
language -e.g. a collection of words satisfying some properties- that is denoted
L,. This section is devoted to the combinatorial properties of such languages.
The approach is rather classical in combinatorics [13]: the structure, here a
language, is decomposed into smaller substructures, here sub-languages, that
are already known or more easily studied.

In combinatorics on words, two basic laws of decomposition naturally arise. A
language can be decomposed into the disjoint union of smaller sub-languages
while the concatenation of words, denoted by symbol -, defines a product
on languages. More precisely, given two languages A and B, their product,
denoted A - B or AB, is the set {a-bja € A,b € B} where a - b is the
concatenation of strings @ and b. One denotes AT the set of words formed with
a concatenation of a finite number of words in A. One denotes A* = At U{¢}.

It is shown below that languages £, can be decomposed, using such laws, onto
basic languages that satisfy some simple equations, stated below.

3.1 Basic languages

Basic languages that appear relevant to word statistics are given below:



Definition 2 Let H be a set of patterns. Given a pattern H;, the first occur-
rence language R; is the set of words that admit H; as a suffiz, and contain
no other pattern. One denotes Ry = U;/R;.

The tail language U; is the set of words w such that H; is the only valid
occurrence in Hy.w. It contains the empty string.

The minimal languages M, ;jare defined, for two patterns H; and H; in 'H as:

(i) Hjis a suffix of Hyw;
(ii) H; is valid when H; is valid;

(tii) H; and H; are the only valid occurrences in Hyw.
The k-minimal language ./\/lf];) is the set of words w such that:

(Z) ME}J) = Mlﬂj 5
5 ) _ 51 g0 g
(”) M%] Zl:l Mz,l Ml,]v k Z 2.

Intuitively, a word is in M, ; (respectively Mfé)) if its concatenation to H;
creates one valid occurrence of H; as a suffix of H;w (respectively creates k
valid H-occurrences, the last one being H;, occurring as a suffix). Languages

Mfé) are said minimal as no prefix of any word w in ./\/lf];) can be in Ul./\/lgﬁ).

It is worth noticing that matrix (Mfé)) from Definition 2 is equal to matrix

(M)

Remark 3 In the renewal scheme, M, ; = R;. This equation also holds in
the overlapping case whenever Hy and H; do not overlap.

Example 4 When H reduces to a single pattern H = 01, then Ror = {1}* -
{0} {1} = {1}*-{0}*-{01} and Uy = {1}*{0}*. As H is not self-overlapping,

. . k
in both counting models, Moy 91 = Ro1; moreover, ./\/lél)’m = ./\/llg1 o1 -

It follows from the definition that for all constraints the general equation below

holds:

PROOF. A wordin £, is associated to a set of r occurrences in ‘H: H;,, ..., H;,.
Hence, it can be rewritten: wy w;, . .. w;, u where w;, isin Ry, and w;;,2 < j <

risin M _ ;. and uisin U;,.



A major consequence of (1) is that £, is fully known when first occurrence lan-
guages, minimal languages and tail languages are known. The characterisation
of these languages is the goal of the next section.

3.2 Set equations on basic languages

Notation: Let W denote the language of all words on a given alphabet S.

Proposition 5 The tail languages satisfy the set of equations:

q
Viil;=W—=>_ M ;W . (2)

i=1

This result follows from a simple remark: for any word w in W — U;, Hyw
contains at least two words from H, e.g. exists 7 such that w has a prefix in

M ;.

Now, observe that the first occurrence or initial languages definition does not
depend on the model; hence, they satisty the same equations in the overlapping
and renewal model:

Proposition 6 The initial languages satisfy the following equations:

q
Vi WHj = ZRi(AiJ + WHJ') . (3)

i=1

PROOF. For any word w in WH;, the set of ‘H occurrences is not empty
as it contains its suffix H;. Assume the first H occurrence is H;. Then some
word in R,;, say r;, is a prefix of w. Now, suffix Hj of w may overlap r;: in that
case w = r; - a; ; where a; ; € A; ;. Remark that a; ; may be the empty string:
this occurs if w is in R;. Otherwise, w = r; - ¢ - Hj where ¢ is any string over

alphabet S.

An alternative proof relies on the remark that {R;} can also be derived as a
function of { M, ;}. Then, the two counting models are treated differently. In
the overlapping scheme, languages {R;} satisfy:

\V/i . RZ == W.Hi — Z W.Hj.MLi .
i



The first term counts all words ending with H;j; the second term enumerates
the words in W.H; that contain at least one additional occurrence H; from H.
Such words are not in R;. Notice that these occurrences are always valid.

In the renewal scheme, one must also subtract from W.H; the set of words
with several occurrences from H, only one being valid; this leads to:

\V/i . RZ == WHZ — ZW.HJ'.MJ'J — ZRJ'(‘AJ'J — {6}) 3
J i

notice that e is in A;; iff 2 = 5. Hence, this equation is equivalent to:

Vit Y RiA = WH = S WH My,
J J

Proposition 7 In the overlapping scheme, the following language equations

hold:

V(i) s Y ME) = WH; + (A — {e}) (4)

k>1

In the renewal scheme, the following language equations hold:

q
V(i) S MW A =wn (5)

E>11=1

PROOF. Let w be in WH; and let k41 be the number of valid H occurrences
in Hyw when Hj is valid. In both models, k£ + 1 is greater than or equal to 1: if
suffix H;j is not valid (renewal scheme), then it overlaps with a valid occurrence
H;. Such an occurrence cannot overlap with valid occurrence Hj, hence it is a
factor of w and w rewrites mt where prefix m is in Mﬁ) In the overlapping

scheme, suffix H; is valid, hence ¢ is empty and m is in ./\/lf];) In the renewal
scheme, when £ is not the empty string, it is a proper suffix of H;. Otherwise,
by the reasoning above, it would contain an additional valid occurrence. Hence
tisin A ;.

In examples above, basic languages were given explicitly. It is noteworthy
that, in general, equations (2)-(5) do not provide explicit expressions for
sets Ry, M, ;,U; e.g. cannot be inverted in general. Nevertheless, they appear
adapted for enumeration purposes, that are developed in the next section.



4 Generating Functions
4.1 Definitions

One combines the probability generating functions and the ordinary generat-
ing functions used in combinatorics for enumeration purposes. In this problem,
the combinatorial data structures that appear are languages. Consider first the
probability generating functions involved in this problem.

Definition 8 Given a set H of patterns (Hy,...,Hy) searched in a random
text of size n, one denotes Ny, the random variable that counts the number of
valid occurrences of pattern H; in a random text t. Conditioning by the size n
of the text yields random variables Ny, (n).

Definition 9 Given a set 'H of patterns (Hy,...,Hy) the probability gen-
erating function P, (uq,---,u,) associated to the q-uple of random variables

(NH1 (n)v T 7NHq(n)) is:

Pn(Uh T ,Uq) = Z PI’(]\/YH1 (n) =T1, 7NHq(n) = rq)uql e u2q (6)

T1,7Tq

Exists a simple relation between the moments of these random variables and
the derivatives of P,(uy,...,u,) at (ug,---,u,) = (1,---,1). Namely [11]:

BV ) = 521 1) g
BNy (n) Nig () = aiigzj(lv”‘@) s)

Remark 10 Un-conditioning allows easier computation through complex analy-
sis. This leads to a combination with ordinary generating functions used in
combinatorics [13].

Definition 11 For any language L its generating function L(z) is defined as

L(z) = 3 Pw)"! (9)

weL

where |w| is the length of w, with the usual convention that P(e) = 1.

Given a pattern H, its H-conditional generating function is defined as:

Lyg(z) = 3 Pw[H)zM (10)

weL



Definition 12 Given a set of patterns H = (H;)iz1..q, the multivariate gen-
erating function for the number of occurrences is defined as:

T(z,u1,. e ug) = Y 2" Polug, -+ uy) . (11)

Notation: We denote by [2"]f(z,u1,- - -, u,) the coefficient of 2 in the multi-
variate function f and [z"]L(z) represents the coefficient of z” in the generating
function L(z).

In Definition 2, tail languages ¢; and minimal languages M, ; determine words
that appear right of a given word H;. Hence, H;-conditional generating func-
tions of U; and M, ; arise naturally.

Definition 13 One denotes M, ;(z) and Uy, (z) the Hi-conditional generating
functions of languages M, ; and U;. One defines:

U'(:)
H'(:)

(s Uit (2), )
(P(Hy)z™, ..., P(Hy)z™) .

Additionally, H is the g X ¢ matriz with q identical rows that are equal to H'(2).
Finally, M(z) is the ¢ x ¢ matriz which has M; ;(z) as its (¢,7)-element, and
the matriz associated to the minimal languages is:

M(z, w1, .. uy) = (M i(2)u;) . (12)

One denotes M(z) = M(z,1,...,1).

Initial languages appear as prefixes of the text sequences. Hence, the (uncon-
ditional) generating functions arise naturally.

Definition 14 One defines the row vector associated to initial languages:

R'(z,up, - uy) = (o, Bi(2)us, o) (13)

One denotes R'(z) = R'(z,1,---,1) . Finally, R(2) is the ¢ x ¢ matriz with q
rows identical to R'(z).

4.2 Basic generating functions

Equations on basic languages will translate onto equations on their generating
functions. Solving such equations in 4.3 will involve the generating functions

10



of some basic sets, that are derived in this section. The following notations
appear useful:

Definition 15 Let F(z) be the ¢ X ¢ matriz defined by:

F(z)i; = (P — (T — (P = ID2) ™l it -

;1]
where H;[1] denotes the first character of Hy and Hi[m;] denotes the last char-
acter of H;.
It is noteworthy that F(z) is the zero matrix in the Bernoulli model.

Proposition 16 Let W denote the language of all words on a given alphabet
S. In the Bernoulli and Markov models, its generating function and its H-
generating function satisfy, for any H:

W(z) = W(z) = : (14)

PROOF. From the definition, W(z) = X ,ep P(w)z"l = 302 0 3 2n Pw0)2"
Y o2y 2" = == The derivation of Wiy(z) relies on the fact that for any prob-
ability matrix I’ and any character 7, one has }~;.sP;; = 1. One has:

ZZ w|Hz—1—|—ZZPn z—l—l—Zz

n=0 |w|=n n=1j=1

Proposition 17 The generating function of the set W.H; is:

1 .

The H;-conditional generating function of the set W.H; is:

(e + (=) x P(H)A = (1

H(z) + F(z)H(z))i

PROOF. The generating function for WH is: 37, 2" [7P"] pyp x 7];;}[11)]Z|H|' Ap-

plying n times the stationarity equation PP = =& yields [#P"|gn) = 7o
and the result follows. The Hj-conditional generating function for W.H; is:

2zt Pl " ¥ ( [1)]Z|H| L. Rewriting P" = TI" + (P — )" yields the

result.

11



4.3 Language generating functions

By the methods given in [13], the translation of (1) into an equation on the
multivariate generating function is “automatic” :

Theorem 18 Given a set 'H of patterns, the multivariate generating function
T(z,u1,...,u,) satisfies the fundamental equation:

T(z,upy .. uy) = Rz up, - uy) < (T—=M(z,uq,...,u,))"" x U(z) .(15)

PROOF. Let us compute the contribution to the generating function T'(z, uy, . .., u,)
of aword t = w;, w;, ... w;uin Lg. The probability that ¢ occurs is: P(w;, ) P(w;, |w;,) - - P(w;, |w;,_, ) P(;
One observes that P(w;, |w;,_,) = P(w;,|H;_,) and P(u|w;,) = P(u|H;, ). Ad-

ditionally, wy, 1sin Ry, , wy, isin My, 4, ..., wy, 1sin M, .. Now, 21t rewrites

i1

Zoal vl and for a given subset {4y, ..., iz}, the associated monomial is
wi Uy, - - - ug, . Reordering yields 21Vl P(w; Yug, 21"l P(w;, [H; uj, - - - P(a|Hj, )z
Summation over possible decompositions rewrites:

> il Py, Yug, > vl Py, |Hj, u, ... > P(u|H;, )z |

wiy ER4y Wiy EMiy ig u€lh,

which is:
Ry (2)wiy My, iy (2)wiy <o My (2)ug, Ui, (2)

Summingover all subsets {4y, ...,4;} yields: R (2, uy, - uy) xM(z, uy, . .., u,
U(z) and summing over all & gives the result.

We now state our main theorem for minimal languages. Notice that, in the
renewal case, all minimal languages M, ; are equal to the corresponding initial
language R;.

Theorem 19 The generating function of the minimal languages satisfy the
following matrical equations:

(a) Overlapping scheme:

(1 M(2))™ = A(:) + (- + F(=))H(2) (16)
(b) Renewal scheme:
(1 M(2))" = T+ (2 + F(=) () A() (1)

12



PROOF. One uses the Hj-conditional generating function for WH; derived
in Proposition (17). For any (1, j), the generating function of the right-hand
side of (4) in Proposition (7) is: [A(z) + (liz + F(2))H(z)]; ;. One associates

S MF(2); ; to the left-hand side. Hence, we get matrical equation (16). Equa-
tion (17) follows similarly from (5).

Theorem 20 The generating functions of the initial languages satisfy the fol-
lowing matrical equation:

RI(:) = - H'(2) x [AG) + (7= + FEDHGT . (19)

1 —=z

PROOF. This follows directly from equations above.

Finally, tail languages satisty:

Proposition 21 In Bernoulli and Markov models, for overlapping or non-
overlapping occurrences, the generating functions of the tail languages satisfy
the matrical equation:

PROOF. [t follows from Equation (14) in Proposition (16) that:

Ui (2) = Wing(2) = 32 Moy ()W) = (1= Y My ()

J

As 37, M; ;(z) is the i-th row of M(2) x 14, the result follows.

Although (19) does not depend on the model, observe that (Uy, (z)) depend on
it through M(z). It will appear below that (19) is enough for the main purpose
of this paper and there is no need for an explicit expression of (Uy,(z)). Nev-
ertheless, observe that plugging (16) or (17) into (19) yields a set of equations
for Uy, (z) for each model.

13



5 Mean, Variances and Covariances

A challenging point is the computation of the mean, variance and covariances.
Symbolic computation appears here a very powerful tool that allows a com-
putation in the finite range at the same computational effort as an asymptotic
computation.

More precisely, Equations (7)-(8) rewrite:

Lemma 22

BNy (1) ="V 1) (20
0*T ar oT

Cov( N, (n), Ni; (n)) = [2")( )21, 1) (21)

8ui8uj B 8u28—u]

Var(Nu (i) =1y + g — (G L) (22)

PROOF. A term by term derivation of (11) yields:

aT LOP (U, ... uy)
a—ui(zvulv"'?uq)zzz auZ !

n

It follows from (7) that:

n

and this is (20). Results on variances and covariances follow similarly from

(8).

It is noteworthy that Lemma 22 allows to avoid a formal inversion of Equation
(15). Only the derivatives at 1 are needed to compute the moments and it
appears that simplifications of the derivatives at (uq,---,u,) = (1,---,1) are
expected. This will be developed in the next subsections.

5.1 Formal expressions

The aim of this subsection is the derivation of Theorem 23 below. It provides
formal expressions for the partial derivatives of T' that appear in Lemma 22,
as functions of the generating functions of basic languages.

14



Theorem 23 The row vector (..., 885 (z,1,...,1),...) of partial derivatives

157

1
1—=z

R'(z) x (I — M(z))"! (23)

The matriz of second derivatives satisfies:

A ] t
G, 7L ) = g (0(2) £ DE (24)

where
_ 1t
D = (R(z)((I—-M(2))™")).(T-M(2))™" —1T) .
Remark 24 In the Bernoulli model and the renewal case, (24) reduces to

62T . 1 RZ(Z)RJ(Z)
Ou;0u, (5 1,.01) = 1 —2(1—= Ru(2))?

which can be obtained by a direct derivation.

The proof relies on the following lemma:

Lemma 25 For any 1, the following result holds:

Ol —M(z,uq,...
8ui

PROOF. Remark first that W is the matrix M(z);. Now, one derives

7

MF Zif:_& M MIMF=HD a5 the sum:

OM(z,uy, ... u,)k 2L i
b

Then, a term by term derivation of (I—M( 2, uy, ..., u,)) " = S, M(2, up, ..., u,))"
yields

SN Mz, u, .. ) M(2)M(2,uy, ... ug)™
Y4 m

Grouping yields finally (I — M(z, w1, ..., u ) "M(2); (I — M(z, w1, ..., u,))""

15

7uq))_1 _ (H—M(Z,Ul,...,uq))_l % M(Z)z X (]I—M(Z,Ul,...



One can now proceed with the proof of the theorem:

PROOF (Theorem) One uses Lemma 25 to derive %(Z, Uty ...,y in (15).

Additionally, W(Z, I,...,1) is a row vector where the i-th term is
R;(z) and other terms are 0. It can be rewritten R¥(z,1,---,1) x I,. Hence,
88_31'(2’ Uty .oy Uy) is:

[ R(2) x I; 4+ Rz, uy, -+ ug ) (T — Mz, uq, ..y ug)) " M(2)]
x (I—M(z,up,...,u,)) " U(z) (25)

One rewrites: (I-M(z, uy, ..., uy)) " M(2); = Xpso Mz, us, . . ., u, ) "Mz, uy, . . .

When (z,uq,...,uy) = (1,...,1), this is Zkzo[M(Z)kH]i = (I —M(2));' —I.
Now (19) implies that:

1
1—=z

(I-M(z,1,...,1))  x U(z) = (I - M(2))"'U(z) = 1, .

It follows that: %(Z, 1,...,1) = Ri(z) x (- M(z));! x =14 and the result
follows for the mean.

Variances and covariances come out the same. Derivation with respect to u;
of the second factor of (25) yields:

(T —M(z,u1,. .. uy)) "M(2); x (I—M(z,us,...,u,)) " U(2) .
A derivation with respect to u; of the first factor yields:

[RY(z,up, -+ ug ) (T —M(2,up, ... u,)) ' M(2); + Rf(2) x 1]
x (I —M(z,up, ... u,)) " "M(2);

Term (I — M(z,uy,...,u,)) ' U(z) factorizes and simplifies into =14 when
(zyu1y...yuy) = (2,1,...,1). When (ug,---,uy) = (1,--+,1), RY(2) x I, +
Ri(z,up, -+ uy) x (I—=M(z,1,...,1))"'M; simplifies into R!(z) x (I—M(2));*
and this provides R'(z) x (I — M(z));7' x (I — M(2))"*M;. Observe that,
for any matrix M, M; x I; = 0 when ¢ # j. Then, this term reduces to
R(z) x (I—M(z));" x (I—M(z));"'. Now, the contribution of (I — M(z));"
in this product is a multiplication by the (7, 7)-th element of (I — M(z))™!;
Ri(z) x (I—M(z)):" is the ¢-th element of row vector RY(z) x (I — M(z))™*
which also is the (j,4) element of matrix ||R(2)(I—M(z))™!|| and we get D(z).
One must now subtract, when 7 = j, the contribution R¥(z) x (I — M(z));}

Summing over all 7, this yields R(z) x (I — M(z))!.L 7
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The remaining terms provide the symmetric term.

5.2 Practical computation

At this stage, one plugs the equations derived in Section 4 for each specific
counting scheme into equations (23) and (24).

Theorem 26 Let 'H be a set of patterns H; of sizes m;. In the Markov and
Bernoulli case, in the renewal model, the row vector of expectations is:

nH(1)'AL)™ + [H(1)'A(L)™ + H(1)'AL) A (DAL ™ = H'(1)'A(1) 7] .(26)

When H reduces to a single pattern H, this leads to the equation:

Au(1)

E(Ni(n)) = e

[n—m+1+

] (27)

The following result, that can be obtained in a direct manner, is well-known

[33]:

Expectation in the overlapping case: The expected value of the number
of occurrences of a given pattern Hj is:

E(Ny(n))) = (n —mi + 1)P(H;) . (28)

Remark 27 The linear term in the renewal model coincides with the one
given in [6]. Also, when a word H; is not self-overlapping, then its autocorre-
lation polynomial Aw,(z) = 1 and this resull is consistent with the overlapping
model result.

PROOF. It relies on the following lemma:
Lemma 28 The row vector of partial derivatives is equal to:

(i) ﬁﬂt(z) in the overlapping scheme;
(ii) ﬁﬂt(z)A(z)_l 19 in the renewal scheme.

PROOF. One plugs (16), (17) and (18) into (23).
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In the renewal case, a Taylor expansion at z = 1 yields:

H(2)A(z)™ = H(DAL) ™ + (1 = 2)[H (AT (DA (A1) - H'(1)'A1) 7]

Then, one applies the classical formula that generalises the famous binomial
equation:

I'(n + p)

T )

(29)

where [2"] means the z" coefficient and I" represents the Gamma function that
satisfies ['(n + 1) = n! when n is an integer. This yields (26).

It is noteworthy that A(z), H(z) and derivatives at z = 1 arise at this step,
crucial to avoid the inversion of polynomial matrix A(z), hence to lower the
computational complexity.

Method applies for the overlapping model. Then, the :-th element in the row
vector of expectations is: ﬁP(Hi)zmﬂ Applying (29), one gets (28).

Remark 29 [Intuitively, when a text is long enough, the probability p to find a
valid occurrence at a given position does not depend of the position. Hence, the
linearity constant is p, that depends on the counting model. The constant term
arises from end effects. First, in both counting models, the pattern cannot
appear in the (m — 1) last positions, and one subtract (m — 1)p. A second
end effect, rather subtle, also appears in the renewal model: the dependance
to the past. Namely, the validity of an occurrence at position 1 depends on
the chain of overlapping occurrences ending at position 1, if any. Length { of
such a chain is upper bounded by i. Term H(1)'A(1)"'A’(1)A(1)™" accounts
for this truncation. This is easily checked when H reduces to a singleton, as
one subtracts:

n—m+1 1
P Y ST

which tends to %ﬁlfl) when n tends to infinity. Approximation order is

exponentially small. This follows rigorously from the analytic approach, or,
more intuitively, from the fact that the probability of an overlapping chain of
length { decreases exponentially with (.

Theorem 30 Let H be a set of patterns H; of sizes m;. Let B(z),C(z), E(z)
and L(z) be the matrices:

(i) Overlapping case:

18



The variance-covariance matrix is equal to:

n[Xy + Xo] +[Y1+ Y], (30)
where:

Xy =B(1) - B(1) + C(1) + Diag(L(1))

Y, =X, +B(1) - L'(1).L'(1)" = C'(1) — Diag(L'(1))
X, =E(1) + E(1)*

Y. =X, — (E(1)+E(1)) ,

In both cases, Xy and Yy reduce to 0 in the Bernoulli model.

PROOF. In the overlapping model, it follows from (16) and (18) that D(z) =
liZH(Z)(A(Z) — I+ (liz + F(z))H(z))". This rewrites ﬁH(Z).H(Z)t +
L H(z).(A(z) — I+ F(2)H(z))". In the renewal case, it follows from (17) and

11—z

(18) that

B(:) = _1Z)2H(Z)A(Z)—l,(H(Z)A(Z)—l)t +

1
1 —=z

In both cases, D(z) rewrites ﬁB(Z) + ﬁ@(z) + ﬁ[@(z) One uses
again (29), and a Taylor expansion at point z = 1 yields the asymptotic
expansion of second partial derivatives. One must subtract the product of
partial derivatives, e.g. :

((n + DL(1) = L'(1)).((n + DL(1) — L/(1))'

19
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A symbolic computation system such as Maple can output these formulae for
the variance-covariance matrix, providing the linear term and the constant
term with the same computational effort.

Remark 31 First results on variance in the overlapping scheme can be found
in [25]. The problem was first addressed globally in the unpublished thesis [22]
whose results are summarised in [33]. The matric Xy was derived in [22]
and, in a slightly more general case, in [2]. Additionally, the author of [22]
expressed the Markovian term Xy (that is 0 in the Bernoulli case) as infinite
sums. Fxpression in the theorem above provides the simplification of these
infinite sums as a closed computable formula, as well as the constant terms.
In [28], we addressed the case where H reduces to a single pattern, e.g. we
computed this constant term in the variance in the Markov case. The key to
the simplification over [22] that occurs is the quite general matriz equation (I—
M)t = 32, 5o M* that transforms the computation of an infinite sum into the
(less costly)_mversion of a matrix. More precisely, the power of this approach
is deeply related to the fact that “all” occurrences problems can be modellized
by a finite state automaton, which in turn “creates” the simplification.

Remark 32 Matriz Xy above was first derived for the renewal case in the
Bernoulli model in [32].

5.3  Computational complexity

In all approaches, it appears that the computation of the mean and the vari-
ance imply, at some step, the inversion of a linear system. Depending on the
approach, the size (or the structure) of the pattern set and the probabilis-
tic model imply limits to the tractability of formulae. We discuss below the
minimal size of the linear system involved.

It was proved above that all results depend on the overlapping of patterns in
the set ‘H. A fundamental advantage of Theorem 30 is to provide formulae
that are computable. More precisely, A(1) is a ¢ X ¢ matrix of real numbers
(often rational in practice), while A(z) = D(z) in [32] is a matrix of polyno-
mials. Hence, the inversion of A(z) is costly and induces numerical instability
while A(1) is still invertible in practice. Second, this formula shows that it is
enough to compute A(1)™* H, A’(1) and A“(1) to derive the linar term and
the constant term. Nevertheless, if set H is large, the computation of an au-
tocorrelation matrix of size |H| x |H| [2,32,27] by brute force may lead to
untractable formulae.

One first observe that not all patterns overlap with all other patterns. L.e. the
matrix is sparse. In the case where the counting of each pattern separately is
actually necessary, one may rely on this to derive the computation efficiently.
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It appears more efficient, in the case where one counts all possible occurrences
within the set H simultaneously, to aggregate the states:

Definition 33 Let 'H be a set of patterns. Let (H;)i<i<q be a finite partition
satisfying the following property:

V(e,7),3A:;: Y(H;, Hy) € Hi x H; : the correlation set of H; and H; is A, ; .(31)

Fact 1: H satisfies Property (31) iff:

de; ;¢ ¢ 1s the maximal suffix of H; that is a prefix of H; .

Fact 2: Given a set H and a partitioning satisfying the property above, the
mean and variance of the expected number of H-occurrences is linear and the
linearity constants derived in Theorems 23, 26 and 30 hold.

The key observation is that any pattern Hj in H; rewrites ¢; ;s; ;. Hence, the
computation of A; ;(z) reduces to a summation: (3 P(3i7j)z|5ivﬂ| in the Bernoulli
case). This reduces the complexity of the derivation of the expected number
of occurrences, that depend on the size of the partition. This size is briefly
discussed on some examples below.

6 Numerical Evaluation

We now provide some numerical evaluations in the Bernoulli and Markov
model, in the overlapping and renewal case. In order to make a comparison,
we chose one example from [32,6] in the renewal case and Bernoulli model.

Let H = {TTA,TAT, AA}. Then, in the overlapping case, the vector of ex-

pectations is:

[(pa —2pa+pa®)n —2pa +4pa® —2p4°,
(pa —2pa+pa®)n—2ps+4ps® —2pi°,

pA2 n— pAQ]

When (pa,pr) = (0.5,0.5), we get:

A125n — 250
A125n — 250
.25n — .25
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When (pa,pr) = (0.1,0.9), we get:

081n — .162
081n — .162
0ln — .01

In the renewal case, we get the vector of expectations:

(=l 4pa)Ppan (=14 pa)? pa(pa—2pa®+pa®+2)

pa® —pa®—1 (pa® — pa® —1)? 7
(=14 pa)ppa(pat —pa® —pa)n (=14 pa)® pa(=1+3pa)
(pa® = pa® —1)? (pa®—pa® =12 7

(pa”" =3 pa® —pa* +pa> +2pa> +2pa) pa’n
(pa® = pa? = 1)2 (1 + pa)?
(—2pa®+4pa* +3pa® —5pa® —3pa+2) pa’
(pa® = pa? = 1)2 (1 + pa)?

_|_

The numerical values are, when (pa, pr) = (0.5,0.5):

A11111111 I — 12098765432
.05555555556n — .04938271605
1296296296 — .01646090535

The linear term coincide with the result derived in [32].

7 Miscelleanous Problems and Applications

7.1 Probabilities in the finite range

It is also of interest to compute the distribution of the word count and the
renewal count in the finite range. Determining words with unexpected frequen-
cies implies the (fast) computation of the probability to find r occurrences of
a given word H in a text of size n, for finite n. It follows from Equation (15)
and from language equations that this probability satisfies a linear recurrence
equation of degree rm. More precisely, let us introduce B)(z) the generating
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function of sequences that contain at least r occurrences of a given word H.
With the notations of Section 4, one gets, for any given r:

BO(z)= Y2 P(Nu(n) = r)2" = Y [w!]T(z,u)

n>0 p2>r

= > R(z) M- Un(z) = R(z) - My (1 = My (2))™" - Un(z) -

p2r—1

Applying (19) yields the generating function: iR(Z)M{I_l. One now plugs

(18) and, in the overlapping case, (16). Hence:

20 Dy(2) = (1 = 2)]" T

with Dy(z) = (1 —2)An(z) + P(H)Z|H| +(1- Z)P(H)Z|H|F(z). In the Bernoulli
model, Dy(z) is a polynomial; hence, [2"]B")(2)Dy(2)"(1 — z) is 0. One
rewrites Dy (z)"(2)(1—2) = ¢2°+qp—12P" '+ - -+qo. Then, r, = P(Nu(n) >r)

satisfies linear equation:

rngo + Tno1qr + -+ 1rpqy =0 .

This ensures a numerical computation that is stable and fast, e.g. O(log(n)).
Moreover, such an equation can be automatically written and solved by the
software COMBSTRUCT developed by B. Salvy. Renewal model is treated the
same. Markov model is trickier: additional term (1—z)P(H)zMF(z) introduces
a correcting term that decreases exponentially. Implementation is currently
done.

Parameters of interest for r-scans follow from a simplification and a differen-
tiation of (15). For example, the probability of a first occurrence at position
(is [2']R(z). Hence, average waiting time for the first occurrence is R'(1), for
the various probabilistic and counting models. Also, the method adapts to a
modification of the constraints assumed: it only implies a modification of the
equations on the languages defined in Definition 2.

Other parameters of interest to biologists can be studied through this
approach. One can cite the search for Dos-DNA. The formulae above have
been used by E. Coward [10]. A possible application is the use of the results
above on covariances for the search of contrast words. To illustrate this sug-
gestion, let us cite one application in [10]. One scan on a genome has shown
that CCG,CGA,GAC and ACC were overrepresented. A high covariance
was suggesting they were part of a bigger pattern. A more careful study has
actually shown that C'C'GA was appearing in tandem repeats.
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7.2 Regular expressions

An important application is the distribution of regular expressions. For ex-
ample, homologous genes may be characterized in a database by a common
motif, a profile, expressed as a regular expression. Such a profile has a very
small probability to occur in a random gene but appears in all homologous
genes of the family.

Regular expressions -that may represent infinite sets- are recognized by a fi-
nite automaton. This guarantees that the set H of all instantiations admits
a partition satisfying Property (31), and all results derived above apply. In
a recent work [24], adaptation of algorithms searching for regular expressions
allows for the computation of mean and variance for any given regular ex-
pression. Nevertheless, closed formulae are not attainable and the size of the
linear system to be inversed for a given regular expression is the size of the
corresponding searching automaton. It is worth pointing out here that this
size is always bigger than the size of a (minimal) partition satisfying Property
(31). Let us illustrate the complexity improvements on one example.

Let ‘H be the set of patterns that instantiate PROSITE expression P500844:

[LIVM)2(3)[GAl2[GSAIVIRILIVC AIDILIV M F)(2)a(7,9)[LI]Ja E[LIV A]N[ST Plx P[G A]

Here [ | stands for a choice and ( ) for a length. E.g. either one of the four
characters L, I, V, M can occur at position 1 . while the three next positions
are unspecified; also, ©(7,9) means that 7 to 9 unspecified characters occur
after position 13. The cardinality of this set is about 1.9 x 10%°. Inversion of the
correlation matrix by brute force is intractable. Searching automaton size has,
in the Bernoulli case, 946 states [24]. Nevertheless, set H can be partitioned
into 5 states in Bernoulli and Markov models [27]. This rather surprising fact
can be explained by the fact that, despite the number of unspecified choices,
only a few overlaps are allowed. One expects this to be rather general on most

PROSITE profiles.

Remark that in the very specific case where H is a set of non-overlapping
patterns, overlapping matrix is diagonal. Equivalently, a 1-partition satisfies
Property (31). Hence, all results in [28] steadily apply.

7.8 Approximate matching

It appears of particular interest to be able to evaluate the expected number of
approximate occurrences of a given word [19] in order to test the significance
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of repeated approximate patterns. Among possible applications, let us cite
the study of periodical patterns in sequences of promoters or to the search of
regulatory sites. Let us illustrate our approach by a specific example. Let Hy be
the pattern abacaba and 'H the patterns which are within distance 1 according
to Hamming distance (at most one substitution is allowed). It appears that
|H| = 7 x V, where V is the size of the alphabet §. Nevertheless, H can be
partitioned into 4 sets, in the Bernoulli case ((4 4+ (¢ — 1)) in the Markovian
case) [27]. It is still an open problem to design an efficient algorithm to build
the overlapping automaton in that case.

8 Conclusion

The problem of the counting of one or several patterns under various con-
straints was addressed here. A general scheme was provided allowing the
derivation of exact formulae for the moments for Bernoulli and Markov model,
that are linear functions of the size of the text. This work extends many pre-
vious results, and occasionnally simplifies them. Moreover, such computations
can rely on symbolic computation systems with a low computational cost. This
opens the way to practical uses of the formulae. First promising attempts can

be found in [10].
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