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Solveurs linéaires scalables basés sur des
sous—espaces de Krylov Elargis avec réduction
dynamique des directions de recherche

Résumé : Les méthodes de Krylov sont largement utilisées pour résoudre les
systemes linéaires creux et de grande taille. Sur une architecture distribuée, leur
performance est limitée par les communications nécessaires a chaque itération
de lalgorithme. Dans ce papier, on étudie I'usage de sous—espaces de Krylov
élargis pour réduire le nombre d’itérations, et ainsi le total des communications,
des méthodes de Krylov. En particulier, on considére une reformulation de la
méthode du Gradient Conjugué qui utilise ces sous—espaces de Krylov élargis :
le Gradient Conjugué élargi.

On présente le design parallele de deux variantes de la méthode du Gradient
Conjugué élargi ainsi que les versions dynamiques associées, ou le nombre de
directions de recherche est réduit dynamiquement pendant les itérations. Pour
un probleme d’élasticité linéaire avec des coeflicients hétérogenes, en utilisant un
preconditioneur de type Jacobi par bloc, on montre que cette implémentation
passe a l'echelle jusqu’a 16,384 coeurs, et est jusqu’a 5,7 fois plus rapide que
I'implémentation de PCG présente dans PETSc.

Mots-clés : Méthodes des sous—espace de Krylov, Gradient Conjugué, Algo-
rithmes qui réduisent les communications
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1 Introduction

The discretization of partial differential equations, used to model physical phe-
nomena, or optimization problems lead to linear systems of the form Ax = b
where A is a sparse matrix. When A becomes very large, iterative methods based
on Krylov subspaces are the method of choice [34]. In this paper, we consider
the case where A € R™*" is symmetric (AT = A) positive definite (z7 Az > 0
for all z # 0). The Conjugate Gradient method [22], and its preconditioned
form, is a well-known method for solving such linear systems.

However, solving these linear systems efficiently on large scale computers
remains a challenging problem. One difficulty is the high cost of communication
compared to the computation on these machines [10, 9]. Recently, a lot of effort
has been put in enhancing the performance of Krylov methods by avoiding
global communication [7, 5], overlapping communication with computation [16],
or decreasing the number of iterations by searching in multiple directions at once
[35, 17]. In this paper, we focus on the third approach, more precisely on the
enlarged Conjugate Gradient method (ECG) [17, 19].

After recalling Orthodir and Orthomin variants of ECG, we show the explicit
link between the 2 methods. This gives a rigorous justification of an observation
already made concerning the robustness of Orthodir compared to Orthomin in
[19]. Then we study theoretically the convergence behavior of ECG. We greatly
improve the previous result in [17], and show that ECG acts as if the smallest
eigenvalues were somehow deflated. Then we present the parallel design of ECG.
We consider both Orthodir and Orthomin variants, as well as dynamic versions
of these variants that reduce dynamically the number of search directions in
order to reduce the extra arithmetic cost in ECG compared to classical CG.
In practice, we observe that enlarging the Krylov subspaces can drastically
reduce the number of iterations. Indeed in the numerical experiments it is used
with a block Jacobi preconditioner and acts as a second-level that, in a way,
deflates the smallest eigenvalues; this is in accordance with the theory. This
leads to a significant speed-up over the classical PCG. For instance for a 3D
linear elasticity problem with heterogeneous coefficients with 4.5 millions of
unknowns and 165 millions of nonzero entries, we observe that ECG is up to 5.7
times faster than the PETSc implementation of PCG, both using a block Jacobi
preconditioner. This test case is known to be difficult because the classical one-
level preconditioners are not expected to be very effective [12]. As it increases the
arithmetic intensity and reduces the communication, it is well suited for modern
and future architectures that exhibit massive parallelism. For the previous
elasticity problem, we show that the method can scale up to 16,384 threads,
each one being bound to one physical core, which means that each core owns
nearly 280 unknowns.

In summary, the contributions of the paper are the following. We provide
a rigorous justification of the lack of robustness of Orthomin compared to Or-
thodir observed experimentally in [19]. We give a proof of the speed of conver-
gence of ECG — based on a direct extension of the proof of [6, Theorem 3.2]
— which greatly improves the previous existing result presented in [17]. This
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shows that ECG acts as a second level preconditioner that mitigates the effect
of the smallest eigenvalues on the convergence of the iterative method. Hence
it is sufficient to use as preconditioner a highly parallel method as Block Jacobi
which bounds the largest eigenvalue of the preconditioned matrix. Finally, we
introduce a parallel design embedding several variations of ECG whose scalabil-
ity is assessed on different matrices and up to 16,384 cores. We want to point
out that our aim is not to design a specific solver for elliptic partial differential
equations such as GenEO [37] or multigrid preconditioners with some tuning.
For a detailed comparison of such solvers we refer to Jolivet’s thesis [28]. It is
very likely that for these test cases, these solvers are more effective than ECG
with a block Jacobi preconditioner. Nevertheless, unlike these methods ECG is
an algebraic method. It does not require any information from the underlying
PDE and does not rely on any assumption, except that the matrix is symmetric
positive definite. Hence it can be seen as a black-box solver and integrated very
easily in any existing code.

2 Enlarged Krylov Conjugate Gradients

2.1 Block Krylov methods

In 1980 O’Leary introduced the block Conjugate Gradient method [32] for solv-
ing SPD systems with several right-hand sides. In this seminal paper, she proved
that block CG can converge significantly faster than CG. This idea was then
generalized and extended to other classical Krylov methods as GMRES[33, 31]
or BICGSTABJ15]. Later Gutknecht[20] introduced a general framework for
defining Block Krylov subspaces.

Recently, Block Krylov methods are receiving an increasing attention in
the HPC field [4, 1, 27, 36, 30]. They appear to be well suited for modern
computers’ architectures with a high level of parallelism because they allow
to reduce the number of global synchronizations, while also featuring a higher
arithmetic intensity at the cost of some extra computations.

2.2 Enlarged Krylov subspaces

In [17], the authors define so-called enlarged Krylov subspaces. First, the matrix
A is reordered by partitioning its graph into A subdomains (using METIS [29]
for example). Then, the initial residual r( is split into ¢ vectors denoted RS(i),
1 < i < t. In the original paper the authors use t = N. It is important to note
that the case t < N can be dealt with many ways as long as rg = Zzzl Rg(i)
(Fig. 1). This is of particular interest in practice because typically N will
correspond to the number of MPI processes. The parameter ¢ is called the
enlarging factor. In practice for a given t the splitting of ry does not have a
high impact on the convergence of the method. In the numerical experiments
we construct the initial enlarged residual Rf = [Rg(l)7 RN Rﬁ(t)] as the leftmost
example in Fig. 1.

RR n° 9190



Scalable Enlarged Krylov solvers 5

Figure 1: Illustration of the ordering of A into 8 subdomains obtained with
METIS [29] and several admissible splittings of ry into 3 vectors.

Then, the enlarged Krylov subspace of order k denoted Ky, (A, 1) is defined
as the block Krylov subspace of order k associated to A and the enlarged residual
R§. More precisely, and following the notation introduced in [20],

Kii(A,ro) s = K2(A, RS) (1)
= span” {R§, AR§, ..., A" 'R} (2)

Using this definition and following [19] it is possible to derive two variants
(Orthomin and Orthodir) of the enlarged Conjugate Gradient (ECG) algorithm
(Fig. 1). More precisely, the enlarged approximate solution is a matrix of size
n x t denoted X, and the sum of its columns gives the approximate solution
of the original system. We denote Ry the enlarged approximate residual, and
similarly we obtain the approximate residual of the original system by summing
its columns. Py is a matrix of size n x t called search directions, it corresponds to
the A-orthonormalization of Z;. We denote ay the optimal step, unlike in CG
algorithm it is not a scalar but a matrix of size ¢t x t. Depending on the method
for constructing Zj,1, it is possible to derive two variants of ECG: Orthomin
and Orthodir.

Orthomin (Omin) corresponds to Block CG [32]:

Br = (AP:)" Ry, (3)

Zg+1 = R, — Py (4)

This method is very similar to the one originally proposed by Hestenes and
Stiefel [22] because it constructs the new descent directions Zx11 using Ry and

P.
Orthodir (Odir) corresponds to the Block Lanczos algorithm but with the

RR n° 9190
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inner product induced by A:

e = (APy) T (APy), (5)
pr = (AP,1) T (APRy), (6)
Zyy1 = APy — Peyi — Po_1pr. (7)

It is the block equivalent of the homonym method defined in [2]. Unlike the
previous variant, Zy4; is constructed using P, and Pj_;.

Both Orthodir and Orthomin produce Zj41 that is A-orthogonal to P; for
t < k. Then the search directions Py, are defined as

Pevr = Zi1 (Z)L 1 AZyia) Y2 (8)

Unlike CG algorithm a breakdown would occur if Z}IHAZI@H is singular, i.e.,
Zk+1 is not full rank. Although rare this situation can happen in practice and
several variants have been developed in order to handle this case [25, 19, 14, 32].
Overall, both Orthomin and Orthodir generate Py, such that

Pl AP, =0,Yi<k (9)
P/l APy = I (10)

Consequently, the ECG method can be summarized in Algorithm 1. Another
difference with the original block CG algorithm is that the search directions are
A-orthonormalized at each iteration: P is used as search directions instead
of Zj. It has be shown numerically that using this variant can increase the
numerical stability of the method [14].

Given a preconditioner M !, the idea for applying left preconditioning to
the (block) Conjugate Gradient method is to remark that M ~!A is self-adjoint
with respect to the M-inner product [34]. Then by replacing A by M~'A, and
the transpose by T M in the algorithm (Fig. 1), it follows the preconditioned en-
larged Conjugate Gradient method. In fact, some simplifications occur and the
algorithm remains exactly the same except the definition of Zj that is slightly
different. More precisely, it follows that the preconditioned Orthomin method
corresponds to,

Zyv1 = (I — PP A)M 'Ry, (11)

and the preconditioned Orthodir method corresponds to,
Zys1 = - PyP/ A— P, P JAM ' AP,. (12)

In both cases, the initialization also slightly differs because Z; = M ~1R§.
Overall, the preconditioner is applied once per iteration, as in the classical CG
method.

2.3 Equivalence between Orthodir and Orthomin

In what follows, we assume exact arithmetic and we study the connection be-
tween these two methods with the aim to derive formulas that links the ap-
proximate quantities of both variants. Indeed, by construction the approximate

RR n° 9190
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Algorithm 1 ECG algorithm.

1: Ph=0
2: leRS
3: k=1

4: fOI‘k‘Zl,...,kJmaX do

5: P, = Zk(Z];rAZk)il/Z

6: ap = P];rRk_l

7: X = Xg_1+ Pray

8: Ry, = Ri_1 — AP, qy,

9. if |2, RY|ls < ¢ then
10: stop

11:  end if

12:  construct Zxq using (3)-(4) (Orthomin) or (5)-(7) (Orthodir)
132 k=k+1

14: end for _

15, = 30 XY

solutions computed by Orthodir and Orthomin are equal. Hence, the approxi-
mate residuals are also equal. But this does not imply that the search directions
generated are equal even if they belong to the same space. We denote with a
tilde the variables related to Orthomin and with a hat the variables related to
Orthodir, e.g., Py are the A-orthonormalized search directions generated during
Orthodir. In order to simplify the presentation we consider that no breakdowns
have occurred, i.e., Z, P, and Zy, P; are all well-defined.

Since Orthomin and Orthodir rely on the same projection process [19] (they
both search an approximate solution in K 5, such that the corresponding resid-

ual is orthogonal to IC; ), we know that X1 = Xp.. It follows that:
Py, = Pyay, (13)
P.P] = Pb.P/. (14)

Hence, there exists 65, € R**! orthogonal and such that ]Sk = ﬁk§k. By definition
we also have,

Ri — Riy_1 = —AP,ay. (15)

A simple computation using the previous relationships gives,
~Zy 1048y, = — AP Gy, + Py + Py_1pra, (16)
= Ry, — PPk — Zi + PuP] ARy, 1, (17)

and,

PPl ARy_y = Zy(Z) AZy) ' Z] ARy _1, (18)
= Zu(Z{ AZ) T 2] AZy, (19)
= 7). (20)

RR n° 9190
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Thus, _ N
Zy41 = — L4100 (21)

This result is a generalization of a previous result presented by Manteuffel
et al. [2, p. 1550] for the classical CG. In fact, the authors show that z =
I¥_,(—ax)Zx but they never consider explicitly the A-orthonormalized search
directions. In particular, they define zpiq using zx (for Omin) and 25— (for
Odir). This explains the slight difference between our generalization and their
result. B

When k becomes large, ay = P,;FRk,l and |||z is more likely to be low
because Rj_; is supposed to converge to 0 and ﬁk is A-orthonormalized — the
same reasoning applies for ay. This result is very interesting because it shows
that, since dy is an orthogonal matrix, when k becomes large ||Zk+1||2 can be
significantly lower than ||Zk+1||2 Hence, the conditioning of Z i +1AZk+1 could

be much worse than that of Z & +1AZI¢+1’ possibly leading to a breakdown when
computing its Cholesky factorization (line 5 in Fig. 1). It is remarkable to
notice that even for classical CG method, this has already been noticed by
Manteuffel et al. in [2, p. 1551-1552]: “If BCA is indefinite, Omin may still be
used, but the previous direction vector [...] should be stored. Then, if &; = 0,
control can switch to the 3-term recursion of Odir to get p;+1”. In practice,
this phenomenon is indeed observed: there are cases where Orthomin breaks
down while Orthodir does not [19]. In conclusion, Orthodir is expected to
be more reliable than Orthomin. However, Orthodir is also more costly than
Orthomin: the construction of Zj,1 requires twice as many flops and memory
as for Orthomin.

2.4 Convergence study

As previously mentioned, O’Leary [32] proved that block CG can converge sig-
nificantly faster than the classical CG. In [17], it is proved that ECG converges
faster than CG but there is no further information on the speed of convergence
of ECG. This section is dedicated to the proof of the following result.

Theorem 1 Let xy be the approximate solution given by the Enlarged Conjugate
Gradient method with an enlarging factor t at step k. Then we have:

N2k
_ 2 < \/"?ti
o=l < 0 (Y2 2

A
where Ky = )\—n and C is a constant independent of k whose exact expression

t
will be given in the course of the proof.

Before starting the proof, we want to point out that this result is a big
improvement of the theorem stated in [17] because it explains that ECG’s con-

vergence is, to some extent, closer to that of Deflated-CG[13] rather than that
of the classical CG.

RR n° 9190



Scalable Enlarged Krylov solvers 9

Proof 1 The key idea of the proof is to remark the close link between ECG and
block CG. In particular, we follow the proof of Theorem 3.2 by Jie Chen in [6]
for block CG, and we adapt it to our case of interest: ECG. The approach of the
proof is similar to that of O’Leary [32] but the final result is slightly different.

First, we need to write the error at iteration k as a polynomial of A evaluated
in the initial error. Indeed,

t
=20+ Y gy (A)AdY, (23)

where déj) is the i-th component of the enlarged initial error [6], and qi; is a
polynomial of degree not exceeding k — 1.

Hence,
t
er=ar—a =Y (1+q;(A)A)dy (24)
j=1
t .
= pri(A)dy, (25)
j=1

where pr;(X) =1+ qi; (X)X is a polynomial of degree not exceeding k and such
that py;(0) =1, Yk, j.

Let A = ®TA® be the spectral decomposition of A. Let us rewrite ), accord-
ing to this decomposition,

t
€L — Zpkj( Z (I)pkj @Td ) (26)
7j=1

Thus,
llex| % = ef, Aey. (27)
T

t ) t

=Y op;(n)27ay” Z@pkj AT 4y (28)
t T t )

=[S d epen) | A pd)eTdd | (29)
; p

This final expression is a generalization of the expression that occurs in the
proof of convergence of the CG algorithm in [34].

Let} € {1,...,t}. We denote p := Py; in order to simplify the notations.
Following Chen [6], let us define

) er - paneTa = (1), v £ (30
oTdY = (ﬁ) . (31)

RR n° 9190
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The other polynomials py; are chosen such that py; = 7;(2 — p) where the 7;
are defined as the components of the solution of FiT = f1.
From those definitions, it follows that for j # j

pej (M@ Td) = (21 — p(A)@Td)7; (32)
= —p(A)(—p(A) (2 — p(A) T d)r; (33)
Fy
= —p(A 4
) (1) 34
Hence, when summing up those terms
S e )@ Tds) = —p(A). (35)
J#7
Thus,
t ) ! f
(NPT = ) —p(A ! > 36
S0 = pis () - (i, (30
0 0 T 50
= _ 374 37
(—p<A2)F2F11 p(Az)) g (87)
(0 0N\ T .
(% 8)era )
Finally,
0 ET 0 0 5
lali=a? o (3 5 )a(g p)erad (39)
-~ T T
<191)|(%s 57 )| (10)

Let us focus on the right term in this last inequality,

2

ETE ETP 9 0 0
<
(e 1= | (ar ) @
<||P|]? (a® +1) (42)
where a is the largest singular value of FgFfl
Finally, we have
lexl 3 < 115”113 (a + 1) |21 (43)

If we replace p (and therefore P) by the optimal choice we can rewrite the
bound as the following min-max problem,

) 2
<
lewlla < 14§11 V1) min o [p(0) (a4)

RR n° 9190
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Finally, it is possible to use Chebyshev polynomials to estimate this min-mazx
quantity [32, 84],

k
. VRt — 1
O < ~ .
g?elllP’% trgiag% ()l <2 (\/ ke +1 (45)

2.5 Dynamic reduction of the search directions

In what follows, we recall an approach for reducing the block size in the Or-
thodir method during the iterations presented in [19]. The idea is to reduce
the arithmetic and memory extra costs of Orthodir while maintaining its good
convergence behavior. As explained in the survey [20] the key idea to reduce
the block size is to monitor the rank of R;. Once Ry becomes rank deficient, it
means that a part of the approximate solution has already converged at iteration
k. More precisely for i > k — 1, there exists a linear combination (independent
of i) of columns of X; that remains constant. As a consequence, there exists a
linear combination of search directions that is not useful anymore to compute
the approximate solution. The idea is to remove these search directions in the
next iterations. As Rj_1 is an n X t matrix with n large, it is preferable to
avoid computing the rank of Rj_y directly. In [19], it is shown that the rank of
ap = P,;rRk_l can be computed instead.

The method presented in [19] can be divided into two parts. At each iteration
of the algorithm (Fig. 2) a Singular Value Decomposition of ay is computed
(line 8). If the numerical rank of ay, is below a given tolerance then the search
directions are reduced accordingly (line 12) and some of them are kept in order
to keep the A-orthogonality property (line 14, 24 and 25). Although computing
the SVD of oy, at each iterations induces an extra cost compared to Orthodir,
this operation does not involve any communications and it is negligible because
g is a small matrix of size t X t. Furthermore, as the search directions Py
are reduced, the dominant operation of Krylov iterations in terms of flops; the
matrix product (APy), and the application of the preconditioner (M ~1APy),
are cheaper.

2.6 Curing breakdowns in Orthomin

As explained previously Orthomin version of ECG can break down. There
exist several methods to overcome this issue and in the following we recall the
Breakdown-Free block CG method defined in [25]. Starting from the original
algorithm of O’Leary [32], the authors propose to perform a rank-revealing QR
decomposition of Zx 1 and then drop its null part before A-orthonormalizing it.
They show that in exact arithmetic this allows to continue the algorithm with
nearly no further modification. The resulting algorithm is given in Algorithm
3.

From a practical point of view the size of P, 1 can be reduced, but at each
iteration Zjy1 is of size n x t because the size of Rj remains constant. Hence
the matrix product AP is cheaper but the application of the preconditioner

RR n° 9190
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Algorithm 2 ECG D-Odir algorithm.

1: Pp=0
2: Z1=R8
3 H=10
4: k=1

5. for k=1,...,knax do

P, = Zy(Z] AZy) 1 /?

A = P];FRk_l

ap = UkEk.VkT

let si be the number of singular values of «y, bigger than eqer
10:  if s < si_1 then

11: Qp = U,;'—ozk

12: P, = P.U

13: ap = ap(l: sg,:)

14: H = [H,P(:,Sk : Skfl)]
15: P, = Pk(l, 1: Sk)

16: end if

17: Xk ZXk—l +Pkak

18: Rk. = Rk—l — APkak

19: if [|[ 20, RY|l2 < & then
20: stop

21:  end if

220 yp = (AP) T (APy)

23:  pr = (APy_1) T (AP)

24: O = (AH)T(APk)

25 Zpy1 = AP — Puye — Pe_1pr — Hog
2. k=k-+1

27: end for _

o8: x =31, XV

RR n° 9190
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M~'R}, is not. Furthermore computing a rank-revealing QR factorization of
Zr+1 cannot be neglected because Zj41 is of size n x {. In summary, as this
method was not meant for efficiency, but rather for improving the stability of
Orthomin, it does not allow to save as many computations as in the dynamic
variant of Orthodir.

Algorithm 3 BF-ECG algorithm.

1: Pp=0
2: Z1:R8
3: k=1

4: for k=1,..., kpax do

5. Pr=Zu(Z] AZy)71/?

6: ap = P]J—Rk—l

7 Xp =Xk 1+ Prag

8: Ry = Ri,_1 — APyay

o if ||, R, <& then
10: stop
11:  end if

122 Bp = (APy)" R

13: Zpp1 = Ry — PuBe
14: Zk+1 = O’I"th0<Z/€+1)
15 k=k+1

16: end for 4

17 xp = Z§=1 X]iz)

3 Parallel design

3.1 Data distribution

As it is usually the case in parallel implementations of Krylov methods, we as-
sume that the unknowns are distributed among the processors. We also assume
that each processor owns different unknowns. Thus all the variables whose size
scales as the size of the linear system (X, Rg, Pk, APy, Zy) are distributed row
wise among the processors according to the distribution of the unknowns. All
variables whose size scales as the enlarging factor ¢ (ay, Sk, Yk, pr) are repli-
cated on all the processors. Locally they are stored contiguously and column by
column. There is no allocation or deallocation of memory during the iterations.
In particular, when using Dynamic Orthodir or Breakdown-Free Orthomin the
memory is not freed when the block size is reduced. The local memory consump-
tion of preconditioned Orthodir and Orthomin on P processors is summarized
in Table 1. For completeness, we also add the local memory consumption of the
classical CG algorithm, described in [34] for instance, where only 5 vectors and
2 scalars are needed.

RR n° 9190
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Figure 2: Local distribution of the data: Orthodir on the left and Orthomin on
the right.

3.2 Cost analysis of ECG

Our implementation of ECG is based on Reverse Communication Interface [24].
For one iteration of ECG, it requires external routines to apply the sparse matrix
product and the preconditioner to a set of vectors. Indeed the implementation
of these routines highly depends on the linear system to be solved. This is why
we do not take into account these operations in our cost analysis.

Given n,t such that ¢ < n, we denote V, W tall and skinny matrices of size
n X t whose rows are distributed among the processors, and « is a matrix of size
t x t replicated on the P processors. Following [30], it is possible to decompose
the iterations of ECG (and more generally block CG) into the following kernels:

o V+ V+Wa (tsmm in [30]),

e o+ VW (tsmtsm in [30]),

e Cholesky factorization of «a (potrf),

e triangular solve of a with several right-hand sides (trsm).

Following ECG algorithm (fig. 1), each iteration of Orthodir and Orthomin
consists of 3 tsmm (lines 7, 8, and 12), 4 tsmtsm (lines 5, 6, 9, and 12), 1 potrf
(line 5) and 2 trsm (line 5). Indeed, the line 5 of the algorithm (fig. 1) can be
decomposed as,

AZy — Ax 7y sparse matrix set of vectors

form Z,;'—AZ;c

C <+ tsmtsm(Zy, AZ
smtsm(Zy, AZy) Cholesky factorization

C « potrf(C)
P+ trsm(Zk,C')

AP, « trsm(AZ;, O) update Py, and AP,
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# flops # messages # words  memory
Omin 1625 4% 4 L3 4log,(P) (4) 42 51 422
Odir 2075 5% 1 148 4logy(P) (4) 512 7% 43¢
CG 103 2logy(P) (2) 2 5%

Table 1: Complexity and memory consumption of Orthodir, Orthomin and CG
where ¢ is the enlarging factor, n is the number of rows of A and P is the number
of processors. In parenthesis is indicated the number of calls to MPI_Allreduce.

Doing so allows us to avoid calling the sparse matrix set of vectors product for
computing AP at the price of an extra trsm. Hence the difference between the
two algorithms is the construction of Zj41 (line 12). The tsmtsm and tsmm for
constructing Zy11 in Orthodir (equations (5)-(7)) are twice as much costly as
for Orthomin (equations (3)-(4)).

As matrices of size t x t are replicated among the processors, we notice that
tsmm, Cholesky factorization of « and triangular solve of a are local opera-
tions without any communication. Hence we use the corresponding LAPACK
routines: gemm, potrf (dense Cholesky factorization) and trsm (dense trian-
gular solve with several right-hand sides). However V and W are distributed
and tsmtsm is not a local operation. The LAPACK routine gemm is called to
compute the local product ViTWi followed by a call to MPI_Allreduce.

Thus, the only kernel operation that requires a communication is tsmtsm
and 4 calls to MPI_Allreduce are done per iteration. It is usually assumed that
during a call to MPI_Allreduce the number of messages sent and received on
the network is equal to log,(P) — although the exact number depends on the
MPT implementation [38]. Moreover it is a blocking operation: when completed
all the processors are synchronized. This is why in practice, as in the classical
CG, the communication cost is dominated by 2 calls to MPI_Allreduce: the
one after the sparse matrix set of vectors product (line 5) and the one after the
preconditioner (line 12), because they occur after operations with a potential
load imbalance between processors.

In summary, the detailed costs of one iteration of Orthodir and Orthomin
in terms of flops, words, and messages are indicated in Table 1. For the sake
of comparison, we recall the complexity of the CG algorithm described in [34].
We also report the number of MPI_Allreduce in parenthesis, in addition to the
order of magnitude of the number of messages. In summary, one iteration of
ECG is approximately t? times more costly in terms of flops than one iteration
of CG. While the number of messages is of the same order, the number of words
is also t? times larger. Indeed there is a trade-off between these extra costs and
the reduction of the number of iterations due to the enlargement of the search
spaces.
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3.3 Cost of dynamic reduction of ECG

The implementation of the dynamic reduction of the search directions within
Orthodir follows Algorithm 2. In practice, we use LAPACK routine gesvd and
only compute the right singular vectors of o denoted Ui. We check the singular
values obtained. If there are some lower than %, which is the criterion proposed
in [19], we call geqrf on U in order to perform the updates PUy, APU} and
U, ,;r ap, in-place with ormqr. Since Py and AP are stored in a column major
fashion the selection of the columns is done at no cost. Similarly H is not
explicitly defined. However the selection of the first rows of «j implies an in-
place memory rearrangement.

The implementation of Breakdown-Free Orthomin is similar to Orthomin
except the computation of a rank-revealing QR decomposition of Zji1. As
Zk41 is distributed, it is not reasonable to use a LAPACK kernel to compute it.
Instead we use a modification of Chol-QR algorithm [40] which is a cheaper but
less stable alternative to TS-RRQR [11, 9]. Its implementation is very easy using
the LAPACK routine pstrf (Cholesky with pivoting) for computing (R, ) at
line 2. Following [25] we use the default tolerance of pstrf for detecting exact
rank deficiency of Zy1.

Algorithm 4 Chol-RRQR
Input: P, ¢
Output: Q7 orthogonal such that

re=(@ e (g 32)

where 7 is a permutation and all the diagonal elements of Ri; are larger
than ¢

14— PTP

2: Compute (R, 7) such that 7" um = RT R with R = (RH i

0 R22> and all the

diagonal elements of Ry, are larger than £2

3. P+ P?T(:, 1: SiZ@(RH))
4: Q + PRy}

4 Numerical experiments

4.1 Description of the parallel environment

In the experiments we use a block Jacobi preconditioner, associating at each
block a MPI process. Before calling ECG, each MPI process factorizes the di-
agonal block of A corresponding to the local row panel that it owns. At each
iteration of ECG, each MPI process performs a backward and forward solve
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Figure 3: Heterogeneity pattern of the Young’s modulus and Poisson’s ratio for
elasticity matrices.

locally in order to apply the preconditioner. Hence the application of the pre-
conditioner does not need any communication. It is likely that there exists
better preconditioners than block Jacobi for our test cases, however we are in-
terested in the iterative method rather than in the preconditioner. In particular,
we do not want to target specific applications and aim at being as generic as
possible. Although in theory it is possible to apply any preconditioner within
this implementation, in practice it is essential that applying this preconditioner
to several vectors at the same time is not too costly, e.g, a sublinear complexity
with respect to the number of vectors.

The following experiments are performed on a machine located at Umea
University as part of High Performance Computing Center North (HPC2N),
called Kebnekaise. It is a heterogeneous machine formed by a mix of Intel
Xeon E5-2690v4 (Broadwell) with 2x14 cores (and E7-8860v4 for large memory
computations), Nvidia K80 GPU and Intel Xeon Phi 7250 (Knight’s Landing)
with 68 cores. In our experiments, we use the so-called compute nodes, which
are formed by Intel Xeon E5-2690v4 (Broadwell) with 2x14 cores. For a detailed
description of the machine, we refer to the online documentation®.

We compile the code (and its dependencies) using Intel toolchain installed
on the machine: mpiicc (based on icc version 18.0.1 20171018) and MKL [39]
version 2018.1.163. We use PETSc [3] in order to compare ECG implementa-
tion to PETSc PCG implementation. In particular, PETSc is configured to use
MKL-PARDISO as exact solver for sparse matrices in the block Jacobi precondi-
tioner. For partitioning the matrix we are using the METIS library downloaded
and installed by PETSc.

Ihttps://www.hpc2n.umu.se/resources/hardware/kebnekaise
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Name Size Nonzeros Problem

Flan_1565 1,564,794 117,406,044  Structural problem
Bump_2911 2,911,419 130,378,257 Reservoir simulation

Ela_20 2,118,123 74,735,397 Linear elasticity
Ela_30 4,615,683 165,388,197 Linear elasticity

Table 2: Test matrices.

4.2 Test cases

The Ela matrices arise from the linear elasticity problem with Dirichlet and
Neumann boundary conditions defined as follows

div(o(u)) +f=0 on (2 (46)
u=0 on d2p (47)
o(u)-n=0 on 00N (48)

where €2 is a unit cube. The matrices Ela_N correspond to this equation dis-
cretized with FreeFem++ [21] using a triangular mesh with 1600 x N x N
points on the corresponding vertices and P1 finite elements scheme. 9 p is the
Dirichlet boundary, 00y is the Neumann boundary, f is some body force, u
is the unknown displacement field. o(.) is the Cauchy stress tensor given by
Hooke’s law: it can be expressed in terms of Young’s Modulus E and Pois-
son’s ratio v. For a more detailed description of the problem see [26, 18, 36].
We consider a heterogeneous beam made of several layers of a hard material
(E1,v1) = (2x10*,0.25) and a soft material (Ey, v2) = (107,0.45), i.e., discon-
tinuous E and v (Figure 3). This test case is known to be difficult because the
matrix is ill conditioned. In particular, the classical one-level preconditioners
are not expected to be very effective [12].

As previously pointed out, ECG is an algebraic method that does not rely
on any particular assumption on the matrix, except that it is symmetric posi-
tive definite. As an illustration, we also test the implementation on two SPD
matrices coming from the Sparse Matrix Collection of Tim Davis [8]: Flan_1564
and Bump_2911. Numerical properties of the test matrices are summarized in
Table 2.

4.3 Results

In all the experiments the tolerance is set as the default tolerance of PETSc,
i.e., 107° and the maximum number of iterations is set to 5000. The right-hand
side is chosen uniformly random and normalized and the initial guess is set to
0. We do not use any kind of threading and use 28 MPI processes per node.
Unless otherwise stated, we use one OpenMP thread per MPI process — we
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also perform numerical experiments to observe the effect of threading in the
last section.

4.3.1 Impact of the enlarging factor

First we study the impact of the enlarging factor ¢ on the methods. We fix the
number of processors and we vary the value of ¢ for the 4 methods: Orthodir
(Odir), Orthodir with dynamic reduction of the search directions (D-Odir),
Orthomin (Omin) and Breakdown-Free Orthomin (BF-Omin). The results ob-
tained are summarized in Table 3

For Flan_1565 the number of MPI processes is fixed to 56. We remark that
the runtime is decreasing until £ = 12 and then it increases slightly. When ¢
is relatively small the 4 methods are comparable. However as ¢ increases the
effect of dynamic reduction becomes more visible. With ¢ = 28, D-Odir is
almost 10% faster than Odir. On the other hand, as we are detecting exact
rank deficiency of Ziy1, BF-Omin did not reduce the size of the block and as
no breakdown occurs it is slightly more costly than Omin. We also tested %
as the tolerance for detecting breakdowns but this does not allow the method
to converge. Overall, for this matrix, the best method is D-Odir with ¢ = 12.

For Bump_2911 we fix the number of MPI processes to 112. For this matrix
the reduction of the number of iterations is not balancing the increase in flops.
For instance, the number of iterations for D-Odir(8) is 695, and for D-Odir(12)
it is 665, which represents a decrease of only 4% in the number of iterations.
According to Theorem 1, it is very likely that in this case the preconditioned
matrix does not have a cluster of small eigenvalues, hence the convergence of
the method is not significantly improved when enlarging the Krylov subspace.
However, we also notice that using the dynamic Orthodir variant (D-Odir) al-
lows to reduce significantly the runtime when ¢ is large: D-Odir is around 20%
faster than Odir.

We also perform this study for Ela_20 with 112 MPI processes. First we
remark that a breakdown occurs with Orthomin for all the values of ¢ that
we tested. This behavior of elasticity matrices had also been reported in [19].
Using BF-Omin effectively cures the breakdowns but does not allow the method
to converge within the prescribed maximum number of iterations. Similarly, D-
Odir does not converge when t = 4, but performs very well when ¢ is larger. On
the contrary, Odir is very stable and converges for all the values of ¢ tested. As
for Bump_2911 we observe that D-Odir is around 20% faster than Odir when
t = 24. Overall, for this matrix, the best method is D-Odir with ¢ = 24.

In order to better understand how the dynamic reduction of the search di-
rections affects the convergence we plot the normalized residual and the block
size (dash line) as a function of the iteration count for Flan_1565 (Fig. 4a)
and Ela_20 (Fig. 4b). We notice that the convergence is not really affected by
the reduction of the search directions because the number of iterations remains
almost the same. However the block size is effectively reduced as soon as the
method starts to converge. We note that the Ela_20 test case is very favorable:
the block size is reduced even a bit before the convergence and the number of
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t Odir D-Odir Omin BF-Omin
Flan_1565 1 569 62.8 56.7 56.7
4  36.3 36.4 35.5 35.9
8 30.0 29.6 29.0 29.1
12 30.2 29.1 29.8 29.4
16 31.3 29.3 30.2 30.7
20 33.1 30.7 32.0 32.7
24 379 33.7 36.2 36.9
28  39.2 34.9 37.6 38.5
Bump 2911 1 544 53.3 53.4 53.0
2 649 62.7 64.5 65.5
4 76.9 72.4 75.4 77.0
8 93.6 85.4 91.5 91.5
12 1231 104.1 122.1 122.5
16 151.2 123.6 147.1 148.6
20 179.7  143.3 174.0 178.4
24 198.3  158.3 195.5 199.3
28 223.6 171.8  219.0 223.5
Ela_20 1 ++ ++ ++ ++
4  97.6 ++ - S
8 728 55.0 - ++
12 56.8 51.5 - A
16  53.6 47.5 - ++
20 56.3 47.2 - A
24  57.8 46.6 - ++
28 59.9 47.5 - A

Table 3: Runtime results (in seconds) for Flan_1565 (P = 56), Ela_20 (P = 112)
and Bump_2911 (P = 112). The ++ means that the maximum number of
iterations (5000) was reached and the - means that a breakdown occurred.
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1 Flan_1565, # procs = 56, t = 12 Ela_20, # procs = 112,t =24
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Figure 4: Convergence of D-Odir (odir-1) compared to Odir (odir-0). The dash
line represents the number of search directions for D-Odir. In parenthesis the
difference of iteration count to reach convergence between D-Odir and Odir (+
means that D-Odir took more iterations to converge).

iterations is lower than when the search reductions are not reduced.

In conclusion, D-Odir is the best method over the different variants of ECG
that we tested: it is a good compromise between the stability of Odir and
the efficiency of the classical CG. Nevertheless, there exists matrices such as
Bump_2911 for which the reduction of the number of iterations does not com-
pensate the extra cost of ECG compared to the classical CG, even when using
the dynamic reduction of the search directions. These results support the the-
oretical convergence study that was done in the previous section. ECG(t) is
acting as if the ¢ smallest eigenvalues of the matrix were deflated. Finally, we
notice that values of ¢ between 8 to 24 are good default parameters. Indeed, such
values allow to effectively reduce the number of iterations while maintaining an
affordable cost per iteration.

4.3.2 Strong scaling study

Following the parameter study, we perform a strong scaling study on Flan_1565
and Ela_30. As Bump_2911 does not seem particularly well suited for the method
we do not perform the strong scaling study on this matrix.

For Flan_1565 we compare PETSc PCG and D-Odir with ¢ = 12, the best
choice over the parameters we tested. The resulting runtimes are presented in
Table 4. When the number of MPI processes is relatively low ECG scales as
well as PETSc, i.e., almost linearly. As the number of iterations is significantly
reduced with D-Odir(24), there is about 20% speed-up compared to PETSc at
such scales. Nevertheless, we notice that for 2,016 MPI processes PETSc is
significantly faster than ECG. This is likely because the number of iterations
with PETSc is reduced with respect to 1,008 MPI processes. This behavior is not
expected because it is known that block Jacobi preconditioners are not scalable
(see [12] for instance). Indeed, we observe that the number of iterations is
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D-Odir(12) PETSc CG
# MPI # iter time (s) # iter time (s) speed-up
252 332 12.0 1,709 14.8 1.2
004 405 6.1 2,430 8.4 1.4
1,008 519 4.1 3,179 4.9 1.2
2,016 637 3.6 2,687 2.6 0.7

Table 4: Strong scaling study for Flan_1565. The speed-up is the ratio between
PETSc runtime and ECG runtime.

D-Odir(24) PETSc CG
# MPI # iter time (s) # iter  time (s) speed-up
252 513 77.9 13,626 406.8 5.2
504 531 45.5 15,819 258.9 5.7
1,008 606 23.7 17,023 94.7 4.0
2,016 696 14.5 19,047 34.5 2.5

Table 5: Strong scaling study for Ela_30. The speed-up is the ratio between
PETSc runtime and ECG runtime.

effectively increasing both for ECG and CG when the number of MPI processes
increases.

Then we make the same comparison on Ela_30 test case for which we use
D-Odir and ¢t = 24, as discussed previously. The resulting runtimes are summa-
rized in Table 5. We observe that both PETSc and ECG are scaling very well.
Enlarging the Krylov subspaces allows us to reduce drastically the number of
iterations: D-Odir(24) performs around 25 times less iterations than CG. As a
consequence, D-Odir(24) is more than 5 times faster than PETSc PCG at small
scale and around 2.5 times faster at large scale. We believe that this relatively
poor scaling of D-Odir(24) compared to PETSc PCG at large scale is due to the
implementation that is not as optimized as PETSc which has been developed for
many years. For instance, the routine we use for computing the sparse matrix—
set of vectors multiplication is certainly not as optimized as that of PETSc for
computing the sparse matrix—vector multiplication. Also, we mentioned that
we are currently performing 4 calls to MPI_Allreduce per iteration, but that
could be reduced to 2 by fusing them. Furthermore, we could use Pipelining
[16] or Communication-Avoiding based on s-step methods [23, 5] on top of ECG
— that would require to take into account a possible loss of numerical stability
of the method.
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D-Odir PETSc CG
# MPI n t  #iter time (s) # iter time (s) sp.-up
252 6.15 x 10> 24 323 4.5 8,842 13.2 2.9
504 1.21 x 106 24 418 6.9 11,652 18.3 2.7
1008 2.38 x 106 24 538 9.8 14,487 24.6 2.5
2016 4.61 x 106 24 696 14.5 19,047 34.5 2.5
252 6.15 x 10> 12 506 4.2 8,842 13.2 3.1
504 1.21 x 10 16 536 6.4 11,652 18.3 2.9
1008 2.38 x 108 20 538 9.7 14,847 24.6 2.5

Table 6: Weak scaling study. The dimension of the matrix is denoted n, and ¢
denotes the enlarging factor. The speed-up (sp.-up) is the ratio between PETSc
runtime and ECG runtime.

4.3.3 Dependence on the mesh size

Given the importance of the parameter ¢ regarding the efficiency of the method,
we perform a study of the convergence of the method with respect to the mesh
size for the elasticity test case. More precisely, we consider the mesh used for
generating the Ela_30 matrix, then we coarsen it by dividing the number of
points in each dimension by 2'/2. Thus, we generate 3 additional elasticity
matrices on which we perform a weak scaling experiment. Our major focus is
not the weak scaling of ECG, but rather the comparison between PETSc’s CG
and D-Odir in terms of runtime.

The results are summarized in Table 6. First, we fix t = 24 and we perform
a weak scaling study. We observe that D-Odir(24) is always between 2.5 to 2.9
times faster than PETSc PCG, but the gap tends to slightly decrease when the
number of MPI processes increases. As ECG(t) is acting as if the ¢ smallest
eigenvalues of the matrix were deflated, it seems natural to use smaller values
of t for the smaller matrices. Indeed, we perform another set of experiments
where we vary t as well as the size of the problem. We observe that this slightly
improves the results for the smaller matrices, we obtain for example an overall
speed-up of 3.1 compared to 2.9 for the smallest matrix. As expected, this
does not have a significant effect on the larger matrices. Another interesting
observation is that even if the number of iterations is almost constant when
increasing both ¢ and the number of MPI processes, it does not improve the
scaling because the cost of one iteration also increases. Overall, D-Odir is still
at least 2.5 times faster than PETSc CG.

4.3.4 Impact of threads on performance

One motivation for enlarging the Krylov subspaces is to increase the arithmetic
intensity of the resulting methods. This is particularly interesting to take ad-
vantage of the so-called manycore architecture as Nvidia GPUs, Intel Xeon Phi,
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(a) The bars represent the runtime (left) and the lines represent the cor-
responding speed-up with respect to 64 MPI with 1 thread each (right).

Omin(1) Odir(24)
# omp time (s) speed-up time (s) speed-up
1 89 - 44 -
2 74 1.2 29 1.5
4 80 1.1 21 2.1
8 79 1.1 16 2.8

(b) Comparison between Omin(1) and Odir(24) with 2048 MPI processes.
We indicate the speed-up when increasing the number of threads for each
method.

Figure 5: Strong scaling study for Ela_30 matrix on Cori (# omp stands for the
number of threads assigned to each MPI processes).
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or Sunway SW26010 used in the Sunway TaihuLight supercomputer. As the
implementation relies on the MKL library which is multi-threaded [39], it is
straightforward to assess its efficiency on the Xeon Phi processors.

In order to do so, we perform the following experiments on NERSC’s super-
computer Cori. It consists in two partitions, one with Intel Haswell processors
and another one with the last generation of Intel Xeon Phi processors: Knights
Landing (KNL). More precisely, the second partition consists in 9,688 single-
socket Intel Xeon Phi 7250 (KNL) processors with 68 cores each. For a detailed
description of the machine, we refer to the online documentation?. We com-
pile the code (and its dependencies) using the default compilers and libraries
installed on the machine: icc version 18.0.1, cray-mpich version 7.6.2, MKL
version 2018.1.163 and METIS version 5.1.0. We consider Ela_30 test case and
we study the impact of threads on the strong scaling of Odir(24). We do not use
the dynamic reduction of the search directions in order to keep the cost of one
iteration constant during the solve to better understand the effect of threading.
We both increase the number of MPI processes from 64 to 2048 and the number
of threads from 1 to 8 — this means at most 2,048 x 8 = 16, 384 threads, each
one being bound to one physical core.

The results obtained are summarized in Fig. 5a. First of all, we notice
that there is a trade-off between using threads or MPI processes because the
number of MPI processes dictates the preconditioner. Indeed, there are as
many blocks in the block Jacobi preconditioner as the number of MPI processes,
thus increasing the number of MPI processes deteriorates the quality of the
preconditioner. For instance, using 512 MPI processes takes 123s, and using
64 MPI processes with 8 threads each takes 179s: it is an increase of 50%
compared to 512 MPI processes. Nevertheless, we observe that using more than
2 threads, and up to 8, has always a significant effect on the speed-up, even
when the number of MPI processes is high. For instance, as shown in Table 5b,
increasing the number of threads from 1 to 8 with a fixed number of 2,048 MPI
processes leads to an decrease in runtime of nearly 3. Of course, we are not close
to full efficiency when using multiple threads, but we are still taking advantage
of the BLAS 3 routines. This is illustrated by the Table 5b where we compare
the speed-up obtained by using threads for Omin(1), which corresponds to the
classical PCG, and Odir(24). We observe that using more than 2 threads is
not effective at all with Omin(1) whereas it always significantly increases the
speed-up with Odir(24).

Finally, we are able to obtain an overall speed-up of 50 when using 16, 384
cores with respect to 64 cores. Compared to an ideal speed-up of 256, it may
seem that this result is not very good (around 20% of efficiency), however it is
well-known that Krylov methods may face efficiency issues at very large scale?
— in practice, such difficulties are overcome by using preconditioning strategies
well adapted to the underlying problem. Furthermore, it is important to notice
that the matrices tested are relatively small, but they allow us to simulate

2http://www.nersc.gov/users/computational-systems/cori/configuration/
3This is well illustrated by HPCG benchmark: http://www.hpcg-benchmark.org/custom/
index.html1?71id=155&s1id=293
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extreme scale situation: with 16,384 cores the average number of unknowns
per core is around 280. We have shown that in such cases, using enlarged
Krylov subspaces allows to increase arithmetic intensity while decreasing the
communication by drastically decreasing the overall iterations. Thus it takes
advantage of the current trend in hardware architecture for reaching exascale.

5 Conclusion

In this paper, we have studied the Enlarged Conjugate Gradient method. It
relies on so-called enlarged Krylov subspaces which can be seen as particular
cases of block Krylov subspaces. The parallel efficiency of the approach has
been assessed, and we have shown that this method is scalable up to 16,384
cores and it is up to 5.7 times faster than PETSc’s implementation of PCG.

First, we have thoroughly studied the method from a theoretical point of
view. In particular, we have described the link between the two variants of the
method (Orthodir and Orthomin), and thus explained their differences in terms
of robustness. We also have studied its convergence rate and we have showed
that the Enlarged Conjugate Gradient method is acting as if the smallest eigen-
values of the matrix were somehow deflated. Moreover, we have presented dy-
namic versions of Orthodir and Orthomin where the number of search directions
is adaptively reduced during the iterations. Starting from the theory, we have
described the link between the two variants of the method, and thus explained
their differences in terms of robustness. Then, we studied its convergence rate
and we have showed that ECG is acting as if the smallest eigenvalues of the
matrix were somehow deflated. Then, we have described the parallel design of
the method, including the two variants as well as their dynamic versions. Nu-
merical experiments show that enlarging the Krylov subspaces allow to reduce
significantly the number of iterations with respect to the classical PCG method.
Furthermore, the reduction of the search directions allows to reduce the cost of
the extra arithmetic operations induced by the method. Overall, the proposed
solver is up to 5.7 times faster than PETSc PCG for an elasticity matrix. Also,
as our implementation is based on BLAS 3 kernels only, it offers a good scaling
when increasing the number of threads per MPI process. Thus, it is scaling up
to 16, 384 threads, each one binded to a physical core, and it seems well adapted
for so-called manycore architectures.

Throughout this work, the only assumption we make is that the matrix is
symmetric positive definite. Hence the resulting methods are very generic and
completely algebraic. For instance, it is straightforward to use D-Odir for solving
linear systems with several right-hand sides. Similarly, ECG can be used with
any preconditioner that could be used with CG. Thus, it can be used as a black-
box solver that can be integrated very easily in any existing code. As it increases
the arithmetic intensity and reduces the communication, it is well suited for
modern and future architectures that exhibit massive parallelism. According
to the theoretical study and the numerical experiments, it is particularly well
adapted for matrices with a small number of low eigenvalues.
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