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Abstract

We take up on recent work on the Riemannian geometry of generative networks to
propose a new approach for learning both a manifold structure and a Riemannian
metric from data. It allows the derivation of statistical analysis on manifolds
without the need for the user to design new Riemannian structure for each specific
problem. In high-dimensional data, it can learn non diagonal metrics, whereas
manual design is often limited to the diagonal case. We illustrate how the method
allows the construction of a meaningful low-dimensional representation of data and
exhibit the geometry of the space of brain images during Alzheimer’s progression.

1 Introduction

There has been a lot of interest into statistical methods for the analysis of manifold-valued data.
These methods aim at proposing nonlinear alternatives to usual linear models when the data lies on a
Riemannian manifold: the Fréchet mean [13] is an extension of the linear mean, principal geodesic
analysis (PGA) [8] is an extension of Principal Component Analysis (PCA), geodesic regression [9]
is an extension of linear regression and [25] proposes unsupervised clustering of manifold-valued
data. In these approaches, the Riemannian manifold and its metric are fixed and typically encode the
known constraints on the data, such as positive constraints or positive-definite matrices. These known
constraints do not preclude an even more constrained structure of a particular distribution of points
on this manifold, that we would like to estimate.

Consequently, a number of works [26, 17, 12, 19] offer unsupervised methods to perform manifold
learning from data. However, only a few of these methods do obtain a parametrization of a subman-
ifold of the space of observations –most of them do it implicitly such as [26, 17, 19]– and almost
none of them do estimate a Riemannian metric on the learned manifold: they often use the geometry
induced by a standard metric on the space of observations. We argue here that the estimation of a
Riemannian metric is an important part of the learning process which complements the manifold
learning part. Indeed, there is no reason for the geometry induced by an usual metric on the data to
be particularly relevant for machine learning tasks.

To gain a better understanding of the geometry of learning, there has been recent work on deep
generative networks and on the geometry of the associated latent spaces [2, 24, 11, 5]. Deep
generative models -such as auto-encoders [12] or generative adversarial networks [10]- learn an
immersed submanifold of the observation space and a system of coordinates on this submanifold. In
these papers, the geometry of the latent space is inferred a posteriori by pulling back the geometry of
the observations onto the latent space. In [24] the authors notice, experimentally, that the latent space
is approximately flat and linear with this geometry.

Consequently, we propose in this paper to reverse the mechanic. Given a mixed-effect model with
a Euclidean structure, we reformulate it on a low-dimensional Euclidean space and use a deep
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generative network to learn a mapping from this latent space to the observation space. The image of
the network is a low-dimensional immersed submanifold that we equip with the push-forward of the
Euclidean metric. We illustrate this procedure on two examples:

• An extension of Probabilistic Principal Component Analysis (PPCA) [27]: we formulate a
nonlinear generalization. We show how this formulation is close to Probabilistic Principal
Geodesic Analysis (PPGA) [28].

• An unsupervised longitudinal model: we generalize the formulation proposed in [23] to
allow inference of a submanifold of the space of observations and of a Riemannian metric
on this manifold adapted to the unsupervised task.

In Section 2, we describe the construction of a latent space and of the push-forward of its Euclidean
geometry onto the space of observations and we apply it to PPCA and to a longitudinal model. In
Section 3, we describe the inference procedure used in the experiments presented in Section 4.

2 Geometrical model

2.1 Geometry of generative networks

We describe a generative neural network as a parametric function Ψw : U → V where U is an open
subset of Rd, V is an open subset of RD where d,D ∈ N with typically d� D and w are the neural
network weights. In [24], the authors show that Ψw(U) is a d-dimensional immersed submanifold of
RD if the activation functions of each layer are smooth and monotonic and if the weight matrix of
each layer has maximal rank. The first condition is easy to enforce and we check the second condition
after training. Note that an immersed submanifold is not a submanifold in general, but it is locally a
submanifold.

A Riemannian metric on a smooth manifoldM is a smoothly varying inner product on the tangent
bundle TM. In [24, 5], the authors illustrate how to pull-back a metric on RD to the latent space
Rd. They note, experimentally, that the induced metric on the latent space is almost flat. Based on
this empirical observation, we postulate that there exists a latent space where the pull-back of the
Riemannian structure describing the data is Euclidean.

As a consequence, we propose to go the opposite way by pushing-forward the Euclidean metric of
a latent space onto a submanifold of the observation space. Doing so enforces by construction the
flatness of the latent space during learning. Let g be the Euclidean metric on U , we can define the
push-forward of g on Ψw(V ). For any smooth vector fields X,Y on Ψw(U), it is defined as:

Ψ∗w(g)(X,Y ) = g((Ψw)∗(X), (Ψw)∗(Y ))

where (Ψw)∗(X) and (Ψw)∗(Y ) are the pull-back of X and Y on U defined by (Ψw)∗(X)(f) =
X(f ◦ Ψ−1

w ) for any smooth function f : U → R. If γ : [0, 1] → U is a geodesic on (U, g), then
Ψw ◦ γ : [0, 1] → V is a geodesic on (Ψw(U),Ψ∗w(g)). Finally, for any p on a manifoldM, we
recall that the Riemannian exponential map Expp is defined on a neighborhood of 0 in TpM by
Expp(v) = γ(1) where γ is the unique geodesic with γ(0) = p and γ̇(0) = v.

Note that the function Ψw parametrizes:

• A submanifold Ψw(U) of the space of observations
• A metric Ψ∗w(g) on this submanifold

We show in the next section how to adapt mixed-effect models which assume a linear structure of the
observation space into models which consider a similar structure on a submanifold of the observation
space described by a latent space and a neural network Ψw.

2.2 Generalizing mixed-effect models to Riemannian manifolds.

We consider generative models of the form:

yi = Fxi +Gui + εi (1)

where yi ∈ RD is an observation, xi ∈ Rf is known, ui is a latent random variable in Rg, F and G
are unknown matrices, and ε ∼ N (0,Σε) is a Gaussian noise. We also suppose a normal prior on the
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latent variable: u ∼ N (0,Σu). We propose nonlinear generalizations of two different models of the
form (1): PPCA and a longitudinal model.

Generalizing PPCA. As shown in [27], PCA is the Maximum Likelihood (ML) estimate of the
PPCA model which writes yi = Gui + εi where u is the latent position with prior u ∼ N (0, Id), G
is a D × d matrix containing the principal directions and ε ∼ N (0, σ2ID). This is a model of the
form (1) with no covariates xi. We propose to generalize the model to:

yi = Ψw(ui) + εi. (2)

where Ψw is a parametric family of C1 immersions. PPCA describes each observation as a point on a
linear subspace with coordinates ui while the proposed formulation (2) describes each observation
as a point on a submanifold of RD with coordinates ui. G has been removed on the new model, as
the neural network is flexible enough to convert the isotropic unit normal distribution of the latent
variable u into a distribution on the submanifold Ψ(Rd) which is close to the data distribution.

To illustrate the similarity with PPGA, we denote J = Jac Ψw(0) the Jacobian of Ψw and write, for
any observation yi close to Ψw(0):

yi = Ψw(ui) + εi = ExpΨw(0)((Ψw)∗(ui)) + εi = ExpΨw(0)(Jui) + εi. (3)

where the first step is by construction of the Euclidean latent space Rd and the second is by definition
of (Ψw)∗. If Ψw was fixed –which amounts to fixing the manifold structure– the estimation of J
by ML in (3) is almost equivalent to the PPGA proposed in [28] (to the detail of the structure of
the noise, which we assume isotropic Gaussian in RD when it is assumed isotropic Gaussian onM
for the PPGA). One can also note the proximity with a variationnal auto-encoder as described in
[15]. Finally, model (2) should be compared to the Locally Adaptive Normal Distribution (LAND)
proposed in [1], which proposes to learn a Riemannian metric so that the observations are distributed
along a normal distribution for this Riemannian metric. Indeed, after inference of the model (2), the
Riemannian metric will have been learned so that the observations are approximately distributed
according to a normal distribution on the manifold (Ψw(U),Ψ∗w(g)), as is the case for LAND. But
our model goes beyond LAND by learning a submanifold of the space of observations and a metric
which is not necessarily diagonal, while staying computationally efficient in high dimension.

Generalizing a model for the analysis of longitudinal data. In [23], the authors propose a frame-
work for the analysis of manifold-valued trajectories. They assume an a priori Riemannian geometry
on the space of observations. We denote (yij)j=1,...,ni

∈ RD the observations of the subject i,
measured at times (tij)j=1,...,ni . In the case of a linear manifold, the model writes:

yij = v0Φi(tij) +Asi + εij (4)

where v0 ∈ RD, Φi(t) = exp(ηi)(t− τi) is the time reparametrization of the individual trajectory:
for disease modelling, exp(ηi) > 0 controls the pace of progression of the subject and τi ∈ R
controls the time-shift for the subject progression. A is a D × d matrix with d ≤ D − 1 which
contains directions orthogonal to v0, which allow to take into account different positions of the
trajectories for different subjects. The latent variables are ui = (ηi, τi, si) with priors ηi ∼ N (0, ση),
τi ∼ N (0, στ ) and si ∼ N (0, Id−1). στ and ση are initialized from the data and fixed during the
estimation. Ignoring the time reparametrization Φi, the model (4) is of the form (1). We use a similar
generalization procedure as for (2) and write the new generative model:

yij = Ψw

(
e1Φi(tij) +

d∑
l=2

silel

)
+ εij (5)

where (e1, . . . , ed) is the canonical basis of Rd. t 7→ Ψw(e1t) should be interpreted as the geodesic
of mean progression, while the directions (Ψw)∗(ei) for i ∈ {2, . . . , d} capture variability between
subjects. As for PPCA, v0 and A have been removed from the new model since the neural network is
flexible enough to send e1 onto a main direction of progression and (e2, . . . , ed) onto vector fields
which are orthogonal to this direction of projection. Figure 1 summarizes the construction. Note that
as in [23], the subject trajectories are obtained by a parallel shift of a mean geodesic in the directions
e2, . . . , en on the manifold described by Ψw. This can be interpreted as the Riemannian analog of
linear translation.

Both generalizations share the similar idea of keeping the structure of the initial model in a low-
dimensional space Rd and using a neural network to transport this structure onto a submanifold of
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Figure 1: Transporting the Euclidean geometry onto a submanifold of the observation space using the
neural network Ψw. t 7→ Ψ(e1t) is the geodesic of mean progression.

the space of observations. This general principle of converting the linear structure into an equivalent
nonlinear structure can be adapted to numerous models such as Probabilistic Linear Discriminant
Analysis [21], Random slopes/intercepts models or linear regression.

Finally, in both cases, Ψw being an isometry between (Rd, g) and (Ψw(Rd),Ψ∗w(g)), any computation
of Riemannian exponential, logarithm or parallel transport can be done in Rd before being push-
forward to the observation space. Thus, these operations, which can be costly in a Riemannian setting,
are inexpensive in our setting. Besides, the analysis of the data can be done directly in the latent
space Rd whose Euclidean structure is faithful to the nonlinear geometry of the data.

3 Inference

We describe here the inference procedure for models (2) and (5). The inference consists in find-
ing the Maximum A Posteriori (MAP) of a directed probabilistic model with latent variables u.
A possibility is to use variationnal Bayes approaches such as [15]. An alternative is to use the
Expectation-Maximization (EM) algorithm. The E step requires the computation of integrals of the
form

∫
u

log (p(y|u, θ)) p(u, θk)du which are intractable in our case, so we resort the the Stochastic
Approximation EM (SAEM) [6] which alternates:

• Simulation. For each observation yi, generate ui, a realization of the hidden variable under
the posterior density p(u|yi, θk).

• Approximation. Update Qk(θ) = Qk−1(θ) + γk(
∑
i p(yi|ui, θ)−Qk−1(θ))

• Maximization. Set θk+1 = argmaxθQ(θ).

where during L burn-in iterations γk = 1 and then for all k > L, 0 ≤ γk ≤ 1,
∑∞
i=1 γk = ∞ and∑∞

i=1 γ
2
k < ∞. Once again, this procedure is intractable in our case, since the maximization step

cannot be computed at a reasonnable cost. We therefore replace the Approximation step by simply
setting Q(θ) =

∑
i p(yi|ui, θ), which can be optimized by stochastic gradient descent. This amounts

to keeping only the burn-in phase of the SAEM (γk = 1) which is, as we noted empirically, the most
important phase with respect to space exploration of the individual variables ui.

Simulation-Expectation To perform the Simulation step, we use the symmetric Hasting-Metropolis
sampler [20], a Markov Chain Monte Carlo method. We run 25 iterations of the Markov Chain for
each simulation, to limit samples correlation.

Maximization The maximization can be performed by stochastic gradient descent on Q with respect
to the neural network weights w. We run ten epochs of gradient descent at each maximization, using
Adam [14]. The noise variance σε can be updated using a closed-form expression derived from the
log-likelihood for both models (2) and (5). Performing the gradient descent repeatedly with slightly
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changing latent variables seems to have a stabilizing effect on the neural network learning: it fills the
latent space around each subjects and can be interpreted as a data augmentation procedure.

Algorithm 1 Inference procedure for models (2) and (5)
input :Observations (yi)i, fixed effects (βi)i, initial parameters θ0 = (w0, σ0

ε) and samples u0
i .

output :Estimation of θMAP and of samples ui distributed following p(u | (yi), θMAP)i.
1 repeat
2 Simulation-Expectation: Draw a candidate uci from the proposal distribution pb(.|uki , yi) for all i

3 Compute the acceptance ratio τ =
p(yi|θk,uc

i )p(uc
i |θ

k)

p(yi|θk,uk
i )p(uk

i |θk)
and accept uci with probability min(τ, 1).

4 Maximization: Update σε using the closed form expression.
5 Update wk by stochastic gradient descent:
6 for epoch← 0 to 10 do
7 for batch b in (yi, ui)i do
8 Compute Q =

∑
y,u∈b p(y|u, θk)

9 Update w by stochastic gradient descent w = w − α · ∇wQ or using Adam.
10 end
11 end
12 until convergence;

4 Experiments

The network architectures used in the experiments which follow are standard and given in the
supplementary materials. We only use C1 transfer functions to obtain a family of C1 functions.

A python code for the experiments and the data sets will be made available upon publication of the
paper. Note that both the E and the M steps are massively parallelisable: the samples for each subjects
are independent and the neural network training can easily be performed on multiple CPUs or GPUs.
200 iterations of the proposed method take an average of 1h30 on 4 CPUs for the longitudinal model,
and 10 minutes for the generalized PPCA on a subset of 1000 digits from MNIST.

4.1 Generalized PPCA on MNIST

We estimate the model (2) on 1000 randomly selected digits from MNIST [18]. The mean squared
error (MSE) for different dimensions d are shown on Figure 3. The proposed approach consistently
beats PCA on both train and held-out sets. To analyze the effect of the Riemannian metric learning,
we compare four dimension reduction methods: the first two PCA components, Isomap [26] on
the raw images, t-SNE [19] and MDS [17] performed on the latent positions u of the images after
estimation. MDS uses the Euclidean distances on the latent positions u of the observations, which
amounts by construction to using the geodesic distances between the observations. It is therefore
a direct representation of the learned Riemannian manifold structure. Figure 2 shows the results.
All methods are run with default parameters. Interestingly, although the learning is unsupervised,
the manifold geometry did capture class distributions in a much more clustered way than the other
methods. This underlines the importance of estimating a metric on the manifold and of not relying on
usual metrics which may not be adapted to the geometry of the data set.

4.2 Generalized longitudinal model

4.2.1 Recovering a synthetic geometry

We perform experiments of model (5) on a synthetic data set. Each observation is a 64×64 gray-level
image of a cross fully described by 3 parameters: the angles of the right and left arm and the length of
the arms. The arm angles are drawn along a zero-centered normal distribution. A mean progression
scenario is prescribed for the arm lengths. Figure 5 shows synthetic subjects. Note that each image is
defined by a finite number of parameters with respect to which it varies smoothly: hence the generated
set of images belongs to a 3-dimensional submanifold of the set of 64× 64 grey level images.
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Figure 2: PCA, Isomap, t-SNE and
Riemannian geometry learning on
MNIST. Colors indicate labels.
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Figure 3: MSE with standard PCA and
model (2) for varying dimension d.

We generate thirty different data sets with 200 subjects and 7 observations per subject according to
this distribution, 25% of the subjects are kept in a test set. We add a white noise on the images with
standard deviation of 0.025, 0.05 or 0.075. We estimate the model with d = 3 on the train set. Figure
6 show the obtained geodesic progression and two different patterns Ψw(v0t+ ei)i=2,...,3. Figure 4
(left) shows the estimation of the noise variance, averaged over the ten folds for each noise level.

We then fit the test observations onto the obtained model by gradient descent on the individual
parameters u. We compare the MSE of reconstruction between train and test set, to check if it
generalizes well. We also compute the MSE between the reconstructed images and the original
images without the added noise to see that the generative network has a denoising effect. The results
are given on Figure 4 (right). Interestingly, for all the noise levels, the model, which was trained on
the noisy images, recovers equally well the original images without noise, suggesting a resilience of
the model with respect to noise component outside of the data manifold. These experiments indicate
the ability of the model to capture the synthetic submanifold and its Riemannian structure.

4.2.2 Cognitive scores

We use the cognitive scores grading the subjects memory, praxis, language and concentration
extracted from the ADNI database as in [23] and run the model to estimate the geometry adapted to
the progression of the cognitive scores. We emphasize that in [23], and in its derivations for other
types of data [4, 16], the authors consider user-defined metrics specifically manufactured for the data
set. Here, we propose a generic way to learn both the manifold and metric regardless of the kind
of data considered. We do recover a geometry which is similar to the one postulated in [23] with
logistic-like geodesics, as shown on Figure 7, although this geometry was not prescribed a priori.
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Figure 4: Left: Noise vari-
ance and standard deviation
vs number of iterations for
each noise level 0.025, 0.05
and 0.075, averaged over ten
folds. Dashed line are the
simulation noises. Right:
MSE of the model with train
and test, noised or denoised,
images.
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Figure 5: Each row is a synthetic
subject.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 6: Top row is t 7→ Ψw(e0t). Following rows are
t 7→ Ψw(e0t+ ei) for i ∈ {2, 3}.

In addition, our generalization allows more flexibility with different behaviors for each score and
non-parallel geodesics. The estimation of a non-diagonal matrix allows a more complicated form of
the parallel curves t 7→ Ψw(e1t+ ei) and different shapes of these parallel curves for the different
bio-markers as visible for memory and language on Figure 7.

4.2.3 Disease model progression
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Figure 7: Learned main progression of the
cognitive scores. Dashed curves are t 7→
Ψw(e0t± e1): the first estimated parallel di-
rection.

We use Magnetic Resonance Images from the
ADNI database. We select the images from sub-
jects which ultimately develop the Alzheimer’s
disease and are at least observed twice. A com-
mon 128×128 slice is extracted from all rigidly
aligned images, chosen so as to contain the Hip-
pocampi and the Amygdala, which are partic-
ularly affected during Alzheimer’s progression.
We perform a 10-fold cross-validation on the
subjects. After estimation, the test set of sub-
jects is fitted onto the model by gradient descent
on the individual parameters ui.

A mean trajectory and the patterns of progres-
sions Ψw(v0t+ ei)i=2,...,d are given on Figure
8. Those different patterns correspond to paral-
lel trajectories to the reference geodesic on the
learned submanifold as shown on Figure 1. The
mean trajectory recovers grey matter loss dur-
ing the disease progression, and especially grey
matter loss near the Hippocampi and ventricles.
The different patterns of progression on Figure 8
illustrate slight differences in the global pattern,
which correct for the different individual anatomies as well as for different progression patterns.

Reconstructing observations. To illustrate the reconstruction of the images by the generative
model, we provide on Figure 9 the original images for a subject as well as its reconstructions. The
reconstructed images are smoother and blurrier than the original images, since the model discarded
what it sees as noise in the manifold estimation and since the cost is an `2 distance. To check whether
the model generalizes to unseen observations, we fit, for each fold, the test set of observations to the
model by gradient descent on the latent variables ui. The MSE on the train set is of 0.087± 0.0008
while it is of 0.088± 0.003 on the test set, which shows that the model did not overfit.

Changing the latent space dimension.To analyze the effect of the dimension d of the latent space,
we repeat the estimation of the model with d varying between 2 and 22. Figure 10 shows the results.
The model MSE decreases steadily until d ∼ 18, where it stagnates. This may indicate that the MRI
data lies on a 18-dimensional submanifold of the whole space of observations.
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Figure 8: Top row is the reference geodesic t 7→ Ψw(e0t). Following rows are t 7→ Ψw(e0t+ ei)−
Ψw(e0t) for i ∈ {2, . . . , d}. Grey matter loss is visible in the main progression, with some variations
in the parallel curves.

Analyzing the model output. We compare the distributions of the latent variables between sub-
populations having different ages of diagnosis, alleles of the APOE gene -which indicates strong
predisposition to Alzheimer’s disease- or gender. For all the folds, we found a negative correlation
between the pace of progression of the disease and the age of diagnosis, as observed in the literature
[3], a pace of progression higher when at least one allele of the APOE gene is present, as described in
[22], and a higher pace of progression for female subjects than for male subjects [7]. This shows that
the Riemannian modelling proposed in the paper does yield informative results on real data.

5 Discussion

We show how to generalize two linear mixed-effect models to learn a Riemannian manifold of the
space of observations and a Riemannian metric on this manifold which optimize the likelihood of the
model. We show the importance of learning a Riemannian metric that is adapted to the model on top
of learning a submanifold of the space of observations. This generalization procedure may be applied
to a variety of generative linear models. The generalization of the mixed-effect model for longitudinal
data is promising in the perspective of unsupervised disease progression model, since it identifies a
geometry of progression for the images and a metric which may be of relevance for tasks such as
early diagnosis. Further analysis of the obtained geometry such as classification with the learned
metric are natural continuations of this work. Because of the huge parametric family of considered
manifolds and metrics parametrized by the neural network, the identifiability of the parameters of the
proposed models remains an open question, shared by all current deep learning methods.
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Figure 9: Top row: original trajectory. Bot-
tom row: reconstruction by the model.
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