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Controllable QoS for Imprecise Computation Tasks
on DVFS Multicores with Time and Energy

Constraints
Lei Mo, Member, IEEE, Angeliki Kritikakou, and Olivier Sentieys, Member, IEEE

Abstract—Multicore architectures have been used to enhance
computing capabilities, but the energy consumption is still an im-
portant concern. Embedded application domains usually require
less accurate, but always in-time, results. Imprecise Computation
(IC) can be used to divide a task into a mandatory subtask
providing a baseline QoS and an optional subtask that further
increases the baseline QoS. This work aims at maximizing the
system QoS by solving task mapping and DVFS for dependent
IC-tasks under real-time and energy constraints. Compared with
existing approaches, we consider the joint-design problem, where
task-to-processor allocation, frequency-to-task assignment, task
scheduling and task adjustment are optimized simultaneously. The
joint-design problem is formulated as an NP-hard Mixed-Integer
Non-Linear Programming and it is safely transformed to a Mixed-
Integer Linear Programming (MILP) without performance degra-
dation. Two methods (basic and accelerated version) are proposed
to find the optimal solution to MILP problem. They are based on
problem decomposition and provide a controllable way to trade-
off the quality of the solution and the computational complexity.
The optimality of the proposed methods is proved rigorously, and
the experimental results show reduced computation time (23.7%
in average) compared with existing optimal methods.

Keywords—Multicore architectures, task mapping, real-time and
energy constraints, QoS, MILP, problem decomposition

I. INTRODUCTION

In several application domains, less accurate results calcu-
lated in time are better solutions than accurate results calculated
very late. Such domains include image and speech processing
in multimedia applications, mobile target tracking, control
system design etc. For instance, in control system design, the
eigenvalues of the system state transfer matrix are of major
importance, as they are related to the stability of system and
the quality of control output. A minimum calculation accuracy
is necessary. However, if increasing accuracy is possible, then
the quality of the controller will be improved as well. This
type of applications can be modeled as Imprecise Computation
(IC) tasks [1], where a task is logically decomposed into a
mandatory subtask and an optional subtask. The mandatory
subtask must be completed before the deadline to have an
acceptable result. The additional Quality of Service (QoS) is
provided by the intermediate results of the optional subtask
execution. The longer the execution of the optional subtasks,
the higher the QoS. However, the optional subtask can be left
incomplete at the cost of reduced quality.

The chip market has moved towards multi/many-core plat-
forms [2]. It is due to the increase in system requirements,
and the bottleneck of single-core systems. Such systems
provide massive computing power and can thus execute a
higher volume of applications in parallel. However, energy
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consumption has become an important concern, especially for
systems with limited energy budget, such as battery-powered
or energy-harvesting devices. Hence, multicore platforms have
been enhanced with the capability of scaling their voltage and
frequency during execution to balance system performance and
energy saving. To fully exploit the features of multicore sys-
tems, mechanisms are required to decide the efficient execution
of the tasks on the considered multicores, while meeting system
specifications.

However, the way the IC tasks are executed on a platform is
decided by several factors. The first factor is the task mapping,
which refers to both the task allocation (on which core each
task is executed) and the task scheduling (when each task starts
execution). The second factor is the decision of the voltage and
frequency of the core when it runs a specific task. The third
factor is the adjustment of the optional part of each task. State-
of-the-art task mapping approaches focus on how to minimize
energy consumption under real-time constraints (energy-aware
task mapping). Usually they are based on Dynamic Voltage and
Frequency Scaling (DVFS) techniques, whereas the task model
does not consider imprecise computation. Other approaches
focus on how to maximize the QoS under energy and real-time
constraints (QoS-aware task mapping). However, they focus on
single core and multicore platforms without DVFS capabilities,
whereas the task model is simplified considering independent
tasks. The QoS-aware task mapping for multicore platforms is
still an open issue, since there is no optimal polynomial-time
solution [3].

In this work, we combine task mapping, DVFS and task
adjustment for tasks with dependences under the IC model in
order to: 1) maximize QoS by determining how many optional
subtasks should be executed, and 2) satisfy the energy and real-
time constraints by allocating and scheduling the tasks onto the
cores and deciding the voltage/frequency among different tasks.

A. Related Work

1) Energy-aware Task Mapping: Several previous research
contributions have addressed the energy-aware task mapping
based on DVFS. When considering the independent real-
time tasks and the multicore platforms, task allocation with
DVFS is formulated as an Integer Linear Programming (ILP)
problem in [4], as the frequency assigned to each processor is
fixed. Therefore, a Linear Programming (LP)-based relaxation
algorithm is proposed to solve this problem. Combining DVFS
and Dynamic Power Management (DPM), a Mixed-Integer
Linear Programming (MILP)-based task mapping problem is
formulated in [5]. The number of variables is further reduced
by problem refinement, and then the refined MILP problem is
optimally solved by the CPLEX solver.

Considering dependent real-time tasks adds another dimen-
sion to be optimized in the problem under study (i.e., the
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sequence between the tasks). In [6]–[8], ILP is used to for-
mulate the voltage selection/task allocation problem. To solve
the ILP problem, an LP-based heuristic method is proposed
in [6], a hybrid Genetic Algorithm (GA) is designed in [7], and
an optimal Benders decomposition-based method is presented
in [8]. The work in [9] considers an MILP-based task mapping
problem and this problem is optimally solved by the CPLEX
solver. The Mixed-Integer Non-Linear Programming (MINLP)-
based task mapping problem in [10] is first relaxed to an MILP
by linear approximation and then is solved by the Branch and
Bound (B&B) method.

Besides minimizing computation energy, the communication
energy is also taken into account in [11]. The related problem is
formulated by a Convex Non-Linear Programming (NLP) and
an ILP-based algorithm is proposed as a solution. Some works
also consider bi-objective optimization, e.g., minimizing the
energy consumption/makespan (overall execution time of the
tasks) and maximizing the reliability of system [12], [13]. As
long as the constraints (e.g., deadline) of the tasks allows it, the
aforementioned methods achieve significant energy reductions
compared to the reference scenario where no DVFS is applied.
However, they do not focus on QoS related issues.

2) QoS-aware Task Mapping: Other approaches aim at
maximizing QoS for IC-tasks under energy supply and real-
time constraints. Note that the aim of DPM is to explore the
idle intervals of a processor and switch the processor to a
sleep mode when the idle interval exceeds a certain level [5].
The approaches that focus on QoS-aware task mapping are
extensions of DVFS. Several works have been presented for
single processors. Hence, they focus on task scheduling and
optional subtasks adjustment, as there is no need to consider
task allocation. For instance, the work in [14] considers the de-
pendent task model. It formulates the task scheduling problem
with DVFS as an NLP, and a quasi-static approach is proposed
as a solving method. A similar problem is considered in [15],
[16], but tasks are considered independent.

For multicore platforms, most of the related work is on
independent task model. In [17], [18], the task mapping
of independent tasks is considered, but each processor has
decided its own frequency upfront, whereas task allocation
and optional subtasks adjustment sub-problems are solved in
sequence. Previous work in [19] considers independent tasks
and no DVFS capabilities. The work in [20] focuses on the
task scheduling and optional subtasks adjustment of dependent
tasks, since the task-processor binding is given upfront. Except
single objective optimization, other existing approaches focus
on bi-objective optimization, e.g., minimizing the energy con-
sumption and maximizing the QoS but without restrictions on
the energy supply [3], [21]. All the aforementioned QoS-aware
task mapping methods, except [14], [19], employ heuristics to
find the near-optimal solutions. Although heuristics can provide
feasible solutions in a short amount of time, they do not provide
any bounds on solution quality, and are sensitive to changes in
the problem structure and parameters.

B. Contributions
Our goal is to solve the joint-design problem of QoS-

aware task mapping and DVFS for real-time dependent IC-
tasks on multicore platforms. We determine on which processor
should the task be executed (task-to-processor allocation), its
frequency (frequency-to-task assignment), the start time (task
scheduling), and the end time (task adjustment) of each task,
such that the system QoS is maximized while meeting the

energy supply and the deadline of each task. The two main
differences of this work with the state-of-the-art are that: i)
task-to-processor allocation, frequency-to-task assignment, task
scheduling and task adjustment are optimized simultaneously
(joint-design problem). Solving these correlated sub-problems
separately may lead to non-optimal solutions; ii) although the
joint-design problem is complex, we propose a method to
solve it using polynomial-time algorithms, and we can thus
obtain an optimal solution while avoiding high computational
complexity. To achieve that, the joint-design problem is initially
formulated as an NP-hard MINLP and then it is safely
transformed to an MILP without performance degradation.
Further, the MILP problem is optimally solved by iterating
Linear Programming (LP)-based subproblems.

Compared with previous work in [19], this paper considers
dependent tasks (each task has its own deadline) and DVFS-
enabled multicore platforms. First, the problem formulation
is different, as the joint-design problem (task-to-processor
allocation, frequency-to-task assignment, task scheduling and
task adjustment) is more complex than the previously pub-
lished work. The previous work in [19] only considers task-
to-processor allocation and task adjustment, and the related
problem is formulated as an MILP. In contrast, the joint-design
problem considered in this paper is an MINLP. Second, based
on this new formulation, two algorithms are proposed in this
paper which are able to find an optimal solution. Besides the
basic method which is proposed in the previously published
work, this paper also presents a way to accelerate the basic
method.

Our main contributions are summarized as follows:
1) The joint-design problem to maximize system QoS,

while the real-time and energy consumption constraints are not
violated, is formulated as an MINLP problem.

2) We prove that by introducing the auxiliary variables
and the additional constraints, the nonlinear items, which are
introduced by the coupling of frequency-to-task assignment and
task adjustment, can be linearized. As this linearization does
not change the objective function and the feasible region of
the problem, the MINLP problem is safely transformed to an
MILP problem.

3) A novel Joint DVFS-QoS-aware Task mapping (JDQT)
algorithm is proposed to optimally solve the MILP problem.
The basic idea of JDQT algorithm is similar to closed-loop
control and it is based on Benders decomposition. The MILP
problem is decomposed into two smaller sub-problems with
fewer variables and constraints: an ILP-based Master Problem
(MP) for task-to-processor allocation and frequency-to-task
assignment decisions, and an LP-based Slave Problem (SP)
for task scheduling and task adjustment decisions. We prove
that: i) at each iteration a lower bound and an upper bound
are obtained by solving the SP and the MP, respectively, and
ii) adding a proper constraint, which is constructed by the
solution of the SP at previous iteration, into the MP at current
iteration and solving the updated MP and the SP iteratively,
the gap between the lower and the upper bounds converges to
a predefined threshold within a finite number of iterations.

4) A novel Accelerated JDQT (AJDQT) algorithm is pro-
posed to further reduce the computing time of JDQT algorithm,
without violating optimality of the solution. The AJDQT algo-
rithm is based on the fact that the computational complexity of
JDQT algorithm is dominated by the cost of solving the ILP-
based MP. Hence, we relax the MP to an LP to find a feasible
solution. We prove that by replacing the optimal solution of
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MP with the feasible solution during the iteration between the
MP and the SP, the optimality of the solution is guaranteed,
since the additional constraints added into the MP only exclude
the non-optimal and infeasible solutions. Moreover, based on
the structure of the relaxed MP and SP, we design a two-
layer subgradient-based algorithm to solve these problems in a
distributed manner. We prove that this method is able to find
an optimal solution and can further reduce the computing time
of the obtained solution due to its distributed structure.

5) As the proposed JDQT and AJDQT algorithms run in
an iterative way, the stopping criteria of JDQT and AJDQT
algorithms can serve as the controllable parameters to trade-
off the quality of the solution (i.e., system QoS) and the
computational complexity (i.e., computing time).

6) Finally, we provide extensive experimental results to
analyze the quality of the solution, the computing time and
the scalability of the proposed JDQT and AJDQT algorithms
and compare it with stochastic methods, optimal methods
and heuristics. The obtained results show that the proposed
methods achieve optimal solution with reduced computing time
compared to state-of-the-art optimal methods. In addition, we
present how we can further reduce the computing time by
controlling the solution quality.

C. Paper Organization
The paper is organized as follows: Section II presents the

system model and problem formulation. In Section III, we
present and formulate the JDQT and AJDQT algorithms. Sec-
tion IV evaluates the performance of the proposed algorithms
through several experimental results. Finally, we conclude this
study in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
1) Task Model: We consider a set of dependent real-time

tasks T , {τ1, . . . , τN}. The task set is modeled by a Directed
Acyclic Graph (DAG) called G(V,E), where vertexes V denote
the set of tasks to be executed, while edges E describe the data
dependencies between the tasks. Without loss of generality, it
is assumed that all tasks are released at the same time 0. A
task starts its execution when all its preceding tasks have been
completed. Each task is executed by only one processor with
no preemption, such that multiple tasks can be executed on the
same processor in non-overlapped time slots.

τ1 

τ5 τ3 

τ4 

τ2

τ6

Fig. 1. Task graph of illustration example.

Task τi is described by a tuple {oi,Mi, Oi, t
s
i , di, Ti}, where

Mi is the mandatory subtask, oi is the optional subtask that can
be executed to improve the result of mandatory subtask. The
optional subtask has an upper bound Oi (i.e., 0 ≤ oi ≤ Oi).
Mi and Oi are measured in Worst Case Execution Cycles
(WCECs) [16]. tsi and di represent the start time and the
deadline of task τi, respectively. Note that tsi is an unknown

variable, which is determined by task mapping decision. Ti
is the period of task τi. H is the hyper-period of the task
set T (i.e. the least common multiple of {T1, . . . , TN}). The
sequences between the tasks in one hyper-period H can be
formulated by an N × N binary matrix S. Denote sij as the
(i, j)th element of matrix S. If task τi precedes task τj (i.e.,
τj starts after the end time of τi), sij = 1, otherwise, sij = 0
(i 6= j). Fig. 1 shows the DAG of an illustration example. The
task sequence matrix associated with this DAG is given by

S =


0 1 1 1 1 1
0 0 0 0 0 1
0 1 0 1 0 1
0 1 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

 .
2) Platform Model: We consider a multicore platform with

M homogeneous DVFS-enabled processors {θ1, . . . , θM}.
Each processor θk has L different Voltage/Frequency (V/F)
levels {(v1, f1), . . . , (vL, fL)}. The power of the processor
under the given V/F level (vl, fl) is computed as

P cl = P sl + P dl , (1)

where P sl is the static power, and P dl is the dynamic power. The
dynamic power P dl is related to the clock frequency fl and sup-
ply voltage vl of the processor, expressed as P dl = Ceffv

2
l fl,

where Ceff is the average effective switching capacitance. For
the static power P sl , we adopt P sl = vlK1e

K2vleK3vbs +|vbs|Ij
from [22]. The constants K1, K2 and K3 are technology
dependent. Ij is the approximately constant junction leakage
current. vbs is a reverse bias voltage used to reduce the leakage
power and can be treated as constant [23]. The energy model
described by (1) is widely adopted by similarly published
works [5], [17], [20].

We focus on inter-task DVFS [5], [16] where the frequency
of the processor stays constant during the execution of a task.
It is assumed that when a processor does not execute a task, it
goes to the idle state. This transition time and energy overhead
is very small compared to the time and energy required to
complete a task, and it is assumed to be incorporated into
the execution time and energy of the task [4]. The system
is energy-constrained in the sense that it has a fixed energy
budget Es which cannot be replenished during the hyper-
period H [17]. Taking the available energy Es into account, the
system operation can be divided into three states: i) Low: the
supplied energy Es is insufficient to execute all the mandatory
subtasks {M1, . . . ,MN}, ii) High: the supplied energy Es is
sufficient to execute all the mandatory and optional subtasks
{M1+O1, . . . ,MN+ON}, and iii) Medium: all the mandatory
subtasks are ensured to finish, while not all the optional
subtasks have enough energy to complete their executions. This
work focuses on the medium state.

B. Problem Formulation
The problem consists of an objective function to maximize

the QoS of the system subject to a set of real-time and energy
constraints. In this context, we determine i) on which processor
should the task be executed (task-to-processor allocation),
ii) what V/F should be used for the task (frequency-to-task
assignment), iii) when should the task starts (task scheduling),
and iv) how many and how long are the optional subtasks
(task adjustment). Therefore, we define the following variables:



2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2852005, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

4

i) binary variable qik = 1 if task τi runs on processor θk,
otherwise, qik = 0, ii) binary variable cil = 1 if task τi executes
with frequency fl, otherwise, cil = 0, iii) continuous variable
tsi denotes the start time of task τi, and iv) continuous variable
oi represents the optional subtask of task τi.

We consider oi as continuous variables, and then we round
the result down. This impact of one cycle is negligible since the
tasks execute typically hundreds of thousands of cycles [14]. In
order to formulate the joint-design problem, we have to cope
with the constraints of i) task non-preemption, ii) task depen-
dency, iii) task deadline, and iv) energy supply, simultaneously.
Let N , {1, . . . , N}, M , {1, . . . ,M} and L , {1, . . . , L}.
We present our problem formulation as follows.

1) Task-to-Processor Allocation and Frequency-to-Task As-
signment Constraints: Since i) each task can be assigned only
one V/F, and ii) each task is executed on only one processor,
the task allocation and frequency assignment variables cil and
qik must satisfy: ∑L

l=1
cil = 1, ∀i ∈ N , (2)∑M

k=1
qik = 1, ∀i ∈ N . (3)

2) Task Non-Preemption Constraints: Since each processor
executes no more than one task at the same time, the non-
preemptive constraint requires that no task executed in the same
processor can overlap with each other. Hence, we have

tei ≤ tsj + (2− qik − qjk)H + (1− sij)H,
∀i, j ∈ N , i 6= j, ∀k ∈M, (4)

tej ≤ tsi + (2− qik − qjk)H + sijH,

∀i, j ∈ N , i 6= j, ∀k ∈M, (5)

where tei = tsi +
∑L
l=1 cil(wil + oi

fl
) is the end time of task τi,

and wil = Mi

fl
is the execution time of mandatory subtask Mi

with frequency fl.
Constraint (4) guarantees that task τj starts running only

after task τi is finished. Whereas constraint (5) describes the
other case (i.e., task τj should be finished before the start of
task τi). If tasks τi and τj are executed on the same processor
(i.e., qik = qjk = 1), constraints (4) and (5) are meaningful,
else, constraints (4) and (5) are always satisfied. Assume that
qik = qjk = 1 right now. If task τi precedes task τj (i.e.,
sij = 1), we have constraint tei ≤ tsj , and, thus, the constraint
tej ≤ tsi +H is always satisfied. On the other hand, if sij = 0,
the constraint tej ≤ tsi is sufficient, as the constraint tei ≤ tsj+H
is always satisfied. Note that if task set T exists independent
tasks, constraint (5) can be removed.

3) Task Dependency Constraints: One challenge to deter-
mine the number of cycles assigned to optional subtasks
{o1, . . . , oN} is that the interval of two adjacent tasks is
unknown, since the start time of the tasks is the variable.
To illustrate this challenge, we use our illustration example in
Fig. 1, where the tasks are allocated to four cores. Fig. 2 shows
the corresponding task execution sequence. We can see that τ5
is the closest task after task τ1. Hence, the start time of tasks τ1
and τ5 and the execution time of task τ1 are highly correlated
with each other. To determine the execution sequences between
the tasks, based on the task sequence matrix S, we introduce
an Execution Order Decision (EOD) matrix P [5]. Denote pij
as the (i, j)th element of matrix P . If task τi precedes task τj

θ1

θ2

θ3

θ4

τ1 τ2 

τ3 

τ4 

τ5 τ6 

M1 o1

Hyper-period H

Fig. 2. Task execution sequence example corresponding to task sequence S
defined in Fig. 1.

and task τj is the closest task to task τi, pij = 1, otherwise,
pij = 0.

The EOD matrix associated with the illustration example in
Fig. 1 is given by

P =


0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 .
According to the non-zero elements in matrix P , we obtain

a task execution sequence
{
τ1 →

{τ3 → τ4 → τ2
τ5

}
→ τ6

}
.

Therefore, tasks τ5 and {τ3, τ4, τ2} can be executed in different
cores simultaneously since they are independent.

Based on the EOD matrix P , the constraints on the start
time and the end time of tasks τi and τj are

tsj + (1− pij)H ≥ tsi + pij
∑L

l=1
cil

(
wil +

oi
fl

)
,

∀i, j ∈ N , i 6= j, (6)

tsj − (1− pij)H ≤ tsi + pij
∑L

l=1
cil

(
wil +

oi
fl

)
,

∀i, j ∈ N , i 6= j. (7)

If pij = 1, task τi precedes task τj and τj is the closest task
of task τi. Constraints (6) and (7) will be meaningful for task
start time tsi and tsj (i.e., tsj = tsi +

∑L
l=1 cil(wil + oi

fl
)). While

for pij = 0, constraints (6) and (7) can be ignored since the
inequalities tsj +H ≥ tsi and tsj −H ≤ tsi are always true.

4) Task Deadline Constraints: Since task τi should be ex-
ecuted within a time threshold di (0 ≤ di ≤ H), the task
real-time constraint is given by

tsi +
∑L

l=1
cil

(
wil +

oi
fl

)
≤ di, ∀i ∈ N . (8)

5) Energy Supply Constraint: Based on the energy model
described by (1), the total energy consumed by M processors
during the hyper-period H is bounded by∑N

i=1

∑L

l=1
cil

(
wil +

oi
fl

)
(P sl + P dl )

+
[
MH −

∑N

i=1

∑L

l=1
cil

(
wil +

oi
fl

)]
P s0 ≤ Es, (9)

where P s0 is the static power of idle state, and MH −∑N
i=1

∑L
l=1 cil(wil+

oi
fl

) is the time of M processors being in
the idle state during the hyper-period H .
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Since the system QoS derives from executing the optional
subtasks {o1, . . . , oN}, we introduce a QoS function [17], [18],
defined as

∑N
i=1 oi, and our aim is to maximize it (or to

minimize its negative). Based on this objective function and
the aforementioned constraints, the Primal Problem (PP) is
formulated as

PP : min
c,q,o,ts

Φ = −
∑N

i=1
oi (10)

s.t.
{

(2)− (9), cil, qik ∈ {0, 1}, 0 ≤ tsi ≤ H,
0 ≤ oi ≤ Oi, ∀i ∈ N , ∀l ∈ L, ∀k ∈M.

Due to the product ciloi of the optimization variables in the
constraints (4) – (9), the PP (10) is an MINLP problem.

Theorem 2.1: The QoS-aware IC-task mapping problem
based on DVFS (i.e., PP (10)) is NP-hard.

Proof: Please refer to [24] for the details.

III. MILP-BASED APPROACH

This section presents the proposed MILP formulation to
linearize the MINLP problem and the two proposed algorithms,
i.e. the optimal JDQT and the Accelerated JDQT algorithms.

A. MINLP linearization
Note that as the PP (10) is an MINLP problem, solving

it is much more time consuming than solving an MILP
problem [10]. In this section, we adopt the idea of variable
replacement [5], [25] to eliminate the nonlinear item ciloi. By
doing so, the MINLP can be safely transformed to an MILP
without performance degradation.

Lemma 3.1: Given constants s1, s2 > 0 and two constraint
spaces S1 = {[h, b, x]|h = bx,−s1 ≤ x ≤ s2, b ∈ {0, 1}}
and S2 = {[h, b, x]| − bs1 ≤ h ≤ bs2, h + bs1 − x − s1 ≤
0, h− bs2 − x+ s2 ≥ 0, b ∈ {0, 1}}, then S1 � S2.

Proof: Based on h = bx and −s1 ≤ x ≤ s2, we have
−bs1 ≤ h ≤ bs2. And further, we obtain (b− 1)(x+ s1) ≤ 0
and (b− 1)(x− s2) ≥ 0 due to −s1 ≤ x ≤ s2 and b ∈ {0, 1}.
Hence, we have h+bs1−x−s1 ≤ 0 and h−bs2−x+s2 ≥ 0.
S1 ⇒ S2 holds.

If b = 0, based on −bs1 ≤ h ≤ bs2, h + bs1 − x − s1 ≤ 0
and h− bs2 − x+ s2 ≥ 0, we have h = 0 and −s1 ≤ x ≤ s2.
For the same reason, if b = 1, we have −s1 ≤ h = x ≤ s2.
S2 ⇒ S1 holds.

Since variables cil ∈ {0, 1} and 0 ≤ oi ≤ Oi, based on
Lemma 3.1, an auxiliary variable (continuous) hil is introduced
to replace the nonlinear item ciloi. Therefore, the constraints
(4) – (9) are safely replaced by the following constraints:

tsi +
∑L

l=1

(
cilwil +

hil
fl

)
≤ tsj + (2− qik − qjk)H

+ (1− sij)H, ∀i, j ∈ N , i 6= j, ∀k ∈M, (11)

tsj+
∑L

l=1

(
cjlwjl+

hjl
fl

)
≤ tsi +(2− qik − qjk)H+sijH,

∀i, j ∈ N , i 6= j, ∀k ∈M, (12)

tsj + (1− pij)H ≥ tsi + pij
∑L

l=1

(
cilwil +

hil
fl

)
,

∀i, j ∈ N , i 6= j, (13)

tsj − (1− pij)H ≤ tsi + pij
∑L

l=1

(
cilwil +

hil
fl

)
,

∀i, j ∈ N , i 6= j, (14)

tsi +
∑L

l=1

(
cilwil +

hil
fl

)
≤ di, ∀i ∈ N , (15)

∑N

i=1

∑L

l=1

(
cilwil +

hil
fl

)
(P dl + P sl − P s0 )

+MHP s0 ≤ Es, (16)

hil ≤ cilOi, ∀i ∈ N , ∀l ∈ L, (17)

hil ≤ oi, ∀i ∈ N , ∀l ∈ L, (18)

hil + (1− cil)Oi ≥ oi, ∀i ∈ N , ∀l ∈ L. (19)

where (17) – (19) are the additional constraints introduced by
the linearization. Consequently, the PP (10) is rewritten as

PP1 : min
c,q,o,
ts,h

Φ = −
∑N

i=1
oi (20)

s.t.
{

(2), (3), (11)− (19), cil, qik ∈ {0, 1}, 0 ≤ tsi ≤ H,
0 ≤ oi, hil ≤ Oi, ∀i ∈ N , ∀l ∈ L, ∀k ∈M.

The PP1 (20) is an MILP problem, as the binary and
continuous variables are coupled with each other linearly.
Hence, it is much easier to solve than the PP (10). Furthermore,
Lemma 3.1 implies that the variable replacement will not
change the feasible region of the problem (S1 � S2). Since the
objective functions of PP and PP1 are the same, solving PP1
is equivalent to solving PP (i.e., the optimal objective function
values of PP and PP1 are the same).

B. Basic Solution Method: JDQT
In this section, we propose a novel Joint DVFS QoS-

aware Task mapping (JDQT) algorithm, to efficiently solve the
PP1 (20). The structure of JDQT is shown in Fig. 3. To solve
the PP1, finding the optimal task-to-processor allocation and
frequency-to-task assignment decisions is the most important
step. This is because if binary variables c and q are determined,
the PP1 will reduce to an LP problem, which has a simpler
structure and is much easier to solve. Benders decomposi-
tion [26], [27] is an effective method for solving MILP with
guaranteed global optimality. Instead of considering all the
variables and the constraints of PP1 simultaneously, Benders
decomposition divides the PP1 into two smaller subproblems
with fewer variables and constraints (i.e. Master Problem (MP)
and Slave Problem (SP)). Then, it solves the subproblems
iteratively by utilizing the solution of one in the other.

Task-to-processor 
allocation

Frequency-to-task 
assignment

Task scheduling Task adjustment

Master problem (ILP)

Slave problem (LP)

New 
constraints

Optimal 
binary 

solution

MILP

Iteration m

Fig. 3. The structure of JDQT algorithm.

The MP involves all the binary variables {c, q} and the
corresponding part of the objective function, as well as the
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constraints of PP1. It also contains one auxiliary (continu-
ous) variable Φ̂ that is introduced to facilitate the interaction
between the MP and the SP. On the other hand, the SP
incorporates all the continuous variables {o, ts,h} and the
associated constraints of PP1. Initially, we solve the MP and
obtain a lower bound for PP1’s optimal objective function
value along with a set of values for the binary variables. We
then substitute these values into the SP and solve the dual
of the SP (DSP) to obtain an upper bound for PP1’s optimal
objective function value. Based on the solution of the DSP, a
new constraint called Benders cut is generated. This constraint
is added into the MP, and a new iteration is performed to solve
the updated MP and SP. The iteration process stops when the
gap between the upper and lower bounds is smaller than a
predefined threshold.

1) The MP and The SP: Based on the structure of PP1 (20),
the corresponding MP and SP are formulated as follows:

MP : Φl(m) = min
Φ̂,x

Φ̂ (21)

s.t.


(2), (3),
Φ̂ ≥ F(x,ω(ς)), ∀ς ∈ A,
0 ≥ F(x,ν(ϑ)), ∀ϑ ∈ B,
cil, qik ∈ {0, 1}, Φ̂ ≥ 0,∀i ∈ N ,∀l ∈ L,

where function F(x,ω) is given by

F(x,ω) =∑N

i=1,i6=j

∑N

j=1

{[∑M

k=1
(αkij + βkij) + (γij − δij)pij

]
·∑L

l=1
cilwil −

∑M

k=1
{(αkij + βkij)(2− qik − qjk)

+ [αkij(1− sij) + βkijsij ]}H − (γij + δij)(1− pij)H
}

+
∑N

i=1

∑L

l=1
{[cilwil(P dl + P sl − P s0 )

+MHP s0 − Es]ϕ− [(θil + τil)cil + τil]Oi}.

In MP (21), x , (c, q) are the binary variables, ω(m) ,
(α(m), β(m), γ(m), δ(m), ε(m), ϕ(m), θ(m), λ(m), τ (m))
is the solution of the DSP (27) at the mth iteration, and
ν(m) , (α̂(m), β̂(m), γ̂(m), δ̂(m), ε̂(m), ϕ̂(m), θ̂(m),
λ̂(m), τ̂ (m)) is the solution of the Dual Feasibility Check
Problem (DFCP) (33) at the mth iteration. Replacing ω in
F(x,ω) with ν, we obtain F(x,ν). Items Φ̂ ≥ F(x,ω(ς))
and 0 ≥ F(x,ν(ϑ)) are the feasibility and infeasibility
constraints (Benders cuts), respectively. They are generated
from the solution of the DSP. A and B are the sets of iterations
that the DSP has the bounded and unbounded solutions, respec-
tively. Since i) the objective function of PP1 is constructed
by the continuous variables o, and ii) the MP only considers
the binary variables x, we introduce an auxiliary variable
(continuous) Φ̂ for the MP as the objective function. Φ̂ is a
proxy of PP1’s objective function Φ, and both have the same
physical meaning. We explain the relationship between them
in the next section.

SP : Φu(m) = min
y�0

Φ (22)

s.t. (11)− (19) with x(m),

where y , (o, ts,h) are the continuous variables, and x(m) is
the solution of the MP at the mth iteration. In fact, the SP (22)
is “identical” to the PP1 (20). Their formulations are the same

except that the binary variables x(m) in the SP are fixed and
given in advance.

2) The Iterations Between The MP and The SP: Note that
the MP (21) only contains the task-to-processor allocation and
the frequency-to-task assignment decisions (i.e., x). Compared
with the PP1 (20), the task scheduling and adjustment related
constraints are relaxed, thus solving the MP yields a lower
bound Φl(m) (the proof is provided in Lemma 3.2). On the
other hand, since i) x(m) may be just a feasible solution, and
ii) the PP1 is a minimization problem, solving the SP with
the non-optimal decision x(m) yields an upper bound Φu(m).
Denote (x∗,y∗) as the optimal solution of PP1, and Φ∗ as
the corresponding optimal objective function value. Hence, we
have Φu(m) ≤ Φ∗ ≤ Φl(m).

Definition 3.1: (ε-optimal solution) Denote (x(m),y(m))
as an arbitrary solution of the PP1 (20), and Φ(m) as the
corresponding objective function value. If |Φ(m) − Φ∗| ≤ ε,
we say (x(m),y(m)) is an ε-optimal solution.

At each iteration, there is always a new feasibility con-
straint (31) or infeasibility constraint (34) added into the
MP (21) to raise the lower bound Φl(m) and reduce the upper
bound Φu(m). If |Φu(m) − Φl(m)| ≤ ε, (x(m),y(m)) is an
ε-optimal solution. And further, if ε is a small positive value,
the optimal solution (x∗,y∗) is found. The iteration process is
summarized as follows:

Step 1 – Initialization: Initialize the iteration counter m = 0,
the solution x(0) of the MP, the lower bound Φl(0) = −∞, and
the upper bound Φu(0) = ∞. The feasibility and infeasibility
constraints are set to null. The initial solution x(0) can be given
arbitrarily, as long as it satisfies the constraints (2) – (3).

Step 2 – Solving Slave Problem: In this paper, rather than
solving the SP (22) directly, we solve its dual problem. This
is because i) the SP is a LP problem and the optimal objective
function values of the SP and its dual problem are equivalent
due to the strong duality [28], ii) we can construct the feasi-
bility and infeasibility constraints through the solution of the
DSP, and iii) the dual problem has fewer number of constraints
than its primal problem.

To construct the dual problem of SP, we introduce the pos-
itive Lagrange multipliers α , [αk] (αk , [αkij ]), β , [βk]

(βk , [βkij ]), γ , [γij ], δ , [δij ], ε , [εi], ϕ, θ , [θil],
λ , [λil], τ , [τil] (∀i, j ∈ N , ∀l ∈ L, ∀k ∈ M) to the
constraints (11) – (19). The corresponding Lagrangian is

L(x(m),y,ω)

= −
∑N

i=1
oi +

∑N

i=1,i6=j

∑N

j=1

∑M

k=1

{
αkij

[
tsi − tsj

+
∑L

l=1

(
cil(m)wil +

hil
fl

)
− (2− qik(m)− qjk(m))H

− (1− sij)H
]

+ βkij

[
tsj +

∑L

l=1

(
cil(m)wil +

hil
fl

)
− tsi

− (2− qik(m)− qjk(m))H − sijH
]}

+
∑N

i=1,i6=j

∑N

j=1

{
γij

[
pij
∑L

l=1

(
cil(m)wil +

hil
fl

)
+ tsi − tsj − (1− pij)H

]
+ δij

[
tsj − (1− pij)H − tsi

− pij
∑L

l=1

(
cil(m)wil +

hil
fl

)]}
+
∑N

i=1
εi

[
tsi +

∑L

l=1

(
cil(m)wil +

hil
fl

)
− di

]
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+ ϕ
[∑N

i=1

∑L

l=1

(
cil(m)wil +

hil
fl

)
(P dl + P sl − P s0 )

+MHP s0 − Es
]

+
∑N

i=1

∑L

l=1
[θil(hil − cil(m)Oi)

+ λil(hil − oi) + τil(oi − hil − (1− cil(m))Oi)].

The dual function R(x(m),ω) is defined as the minimum
value of the Lagrangian L(x(m),y,ω) with respective to the
variables y [28], i.e., under the given ω,

R(x(m),ω) = min
y�0
L(x(m),y,ω)

= min
y

{
F(x(m),ω) +

∑N

i=1

[∑L

l=1
(τil − λil)− 1

]
oi

+
∑N

i=1,i6=j

∑N

j=1

[∑M

k=1
(αkij − βkij) + γij − δij

]
(tsi − tsj)

+
∑N

i=1
εit

s
i +

∑N

i=1,i6=j

∑L

l=1

∑N
j=1

∑M
k=1(αkij + βkij)

fl
hil

+
∑N

i=1,i6=j

∑L

l=1

∑N
j=1(γij − δij)pij

fl
hil

+
∑N

i=1

∑L

l=1

(εi + η

fl
+ θil + λil − τil

)
hil

}
.

For the dual function R(x(m),ω), since the continuous
variables oi, tsi and hil are positive, they are finite only when
following constraints hold:∑L

l=1
(τil − λil)− 1 ≥ 0, 1 ≤ i ≤ N, (23)∑M

k=1
(αkij − βkij) + γij − δij ≥ 0, 1 ≤ i, j ≤ N, i 6= j, (24)

∑N
j=1

[∑M
k=1(αkij + βkij) + (γij − δij)pij

]
fl

≥ 0,

1 ≤ i ≤ N, i 6= j, 1 ≤ l ≤ L, (25)

εi + η

fl
+ θil + λil − τil ≥ 0, 1 ≤ i ≤ N, 1 ≤ l ≤ L. (26)

Thus, the dual problem associated with the SP (22) is

DSP : max
ω�0

F(x(m),ω) (27)

s.t. (23), (24), (25), (26).

For convenience, the matrices and the vectors are used to
denote the constraints and the variables. Hence, the PP1 (20)
is reformulated as

PP1 : min
x,y

Φ(x,y) = f ′y (28)

s.t.
{
Ax � b1,

Cx+Dy � b2.

where {x,y} are the variables, x is a binary vector, and
y is a continuous vector. Vector f represents the objective
function coefficients and f ′ represents the transpose of vector
f . b1 and b2 are the u-dimensional and v-dimensional vectors,
respectively. Matrices A, C and D represent the coefficients
in the constraints with appropriate dimensions.

Therefore, the SP and the DSP associated with the PP1 (28)
are expressed as

SP : min
y�0

Φ(x(m),y) = f ′y (29)

s.t. Cx(m) +Dy � b2.

DSP : max
ω�0

F(x(m),ω) = (Cx(m)− b2)′ω (30)

s.t. f +D′ω � 0.

Since DSP (30) is an LP problem, it can be efficiently solved
using polynomial-time algorithms, such as simplex method or
interior point method [4].

Step 3 – Solving Master Problem: Based on the solution of
the DSP (30), two different types of constraints are generated
and are added into the MP (21).

a) If the DSP is infeasible: the SP (29) has an unbounded
solution. Hence, the PP1 (28) has no feasible solution.

b) If the DSP has a bounded solution ω(m): the SP (29)
is feasible due to the strong duality, and A ← {m} ∪ A.
Denote (Φ̂(m),x(m)) and y(m) as the solutions of the MP
and the SP at the mth iteration, respectively. Since i) x(m)
is a feasible solution (not optimal) of the PP1 (28), and ii)
f ′y(m) = (Cx(m)− b2)

′
ω(m) due to the strong duality,

the upper bound of Φ∗ at the mth iteration is updated by
Φu(m) = min{Φu(m − 1), (Cx(m)− b2)

′
ω(m)}. Since

Φ̂(m) and (Cx(m) − b2)′ω(m) are the lower bound and
the upper bound of Φ∗ at the mth iteration, respectively, we
have Φ̂(m) < (Cx(m) − b2)′ω(m). To avoid selecting the
non-optimal solution x(m) again at the next iteration, a new
feasibility constraint

Φ̂ ≥ (Cx− b2)′ω(m) = F(x,ω(m)) (31)

is generated and added into the MP at the (m+ 1)th iteration.
Note that i) the objective functions of the SP (29) and the

PP1 (28) are the same, and ii) the SP (29) and the DSP (30)
are equivalent due to the strong duality. From (31), we can see
that the auxiliary variable Φ̂ has the same physical meaning as
the objective function of the PP1 (28).

c) If the DSP has an unbounded solution: i.e., F(x(m),
ω(m)) = +∞, due to the strong duality, the SP (29) has no
feasible solution with x(m), and B ← {m}∪B. For the SP, its
feasibility is related to the constraints rather than the objective
function. This problem is feasible if the positive variables ξ ,
[ξi] (1 ≤ i ≤ v) are introduced to relax the constraints. Based
on this idea, we construct a Feasibility Check Problem (FCP)

FCP : min
ξ�0

1′ξ (32)

s.t. Cx(m) +Dy � b2 + ξ.

To develop the dual problem of FCP, we introduce the
positive Lagrange multipliers ν(m) = [νi(m)] (1 ≤ i ≤ v)
to the FCP. Hence, the dual problem associated with the FCP
(DFCP) is

DFCP : max
ν�0

F(x(m),ν) = (Cx(m)− b2)′ν (33)

s.t. 1− ν � 0.

Since FCP and DFCP are LP problems, they can be solved
by methods used to solve the DSP. Denote ξ(m) and ν(m)
as the solutions of FCP and DFCP at the mth iteration,
respectively. If the SP (29) exists infeasible constraints, the
related relax variables are non-zero, while the others are zero.
Hence, we have 1′ξ(m) > 0. Since the strong duality is
guaranteed between the FCP and its dual problem, we get
1′ξ(m) = (Cx(m) − b2)′ν(m) > 0. To avoid selecting the
infeasible solution x(m) again, a new infeasibility constraint

0 ≥ (Cx− b2)′ν(m) = F(x,ν(m)) (34)

is generated and added into the MP at the (m+ 1)th iteration.
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Note that in constraints (31) and (34), all the parameters are
constant except Φ̂ and x, which are the MP variables at the
(m + 1)th iteration. The reason we solve DFCB rather than
FCB is that the objective function of DFCB (i.e., F(x,ν)) is
a function with respect to the variables x, but not 1′ξ (i.e.,
the objective function of the FCB). In other word, 0 ≥ 1′ξ(m)
is a less useful constraint for the MP. With this new added
feasibility/infeasibility constraint, the MP is solved again to
obtain a new solution x(m + 1) for the next round iteration.
The iteration stops when |Φu(m)− Φl(m)| ≤ ε is satisfied.

C. Convergence Analysis
Although the MP (21) is composed of binary variables x

and of a continuous variable Φ̂, it can be solved by only
considering the binary variables [27], [29]. The reason is as
follow. From (21), we can see that the real constraints are
(2), (3) and 0 ≥ F(x,ν(ϑ)) (∀ς ∈ A). Items F(x,ω(ς))
(∀ϑ ∈ B) can be viewed as the objective functions. Comparing
the following ILP problem

MPi : Φ̂r(i) = min
x
F(x,ω(i)) (35)

s.t.


(2), (3),
0 ≥ F(x,ν(i)), ∀i ∈ B,
cil, qik ∈ {0, 1}, ∀i ∈ N , ∀l ∈ L.

with the MP, since the constraints of the MPi (∀i ∈ A) and the
MP are the same, we have Φ̂(m) = max∀i∈A{Φ̂r(i)}. Hence,
the MP is an ILP, which is an NP-complete problem [30].

Lemma 3.2: The lower bound Φl(m) (upper bound Φu(m))
on the optimal objective function value Φ∗ is derived from the
solution of the MP (21) (SP (22)) at the mth iteration.

Proof: First, we prove that Φ̂(m) is a lower bound of Φ∗,
where Φ̂(m) is the solution of the MP at the mth iteration.
Without loss of generality, we assume that Φ̂(m) = Φ̂r(ρ) =
max∀i∈A{Φ̂r(i)}, where ρ ∈ A. Hence, we get

Φ̂(m) = min
x
F(x,ω(ρ))

≤ F(x∗,ω(ρ)) (36a)
≤ max
ω�0
F(x∗,ω) = Φ∗, (36b)

where minx F(x,ω(ρ)) and maxω�0 F(x∗,ω) are the op-
timal objective function values of the MPρ (35) and the
DSP (30), respectively. (36a) holds since x∗ is not the optimal
solution of MPρ, and (36b) holds since by solving the DSP
with the optimal binary variables x∗ we can find the optimal
objective function value Φ∗. (36) shows that Φl(m) = Φ̂(m)
is a lower bound of Φ∗.

Next, we prove that Φu(m) = min{Φu(m − 1),F(x(m),
ω(m))} is an upper bound of Φ∗. Note that min{Φu(m −
1),F(x(m),ω(m))} = min1≤i≤m{F(x(i),ω(i))}, where
x(i) and ω(i) are the solutions of the MP (21) and the
DSP (30) at the ith iteration, respectively. Depending on the so-
lution of the DSP, F(x(i),ω(i)) can be either finite or infinite.
If the DSP has an unbounded solution (i.e., F(x(i),ω(i)) =
+∞), it is obvious that +∞ is an upper bound of Φ∗. Thus,
we focus on the case when the DSP has a bounded solution
(x(i),ω(i)). Due to the duality between the SP and the DSP,
we have

F(x(i),ω(i)) = min
y�0

Φ(x(i),y) ≥ min
y�0

Φ(x∗,y) = Φ∗,

(37)

where miny�0 Φ(x,y) is the optimal objective function value
of the SP under the given binary variables x. From (37), we
can see that Φu(m) = min1≤i≤m{F(x(i),ω(i))} is an upper
bound of Φ∗.

Lemma 3.3: The lower bound sequence {Φl(m)} is increas-
ing, while the upper bound sequence {Φu(m)} is decreasing.

Proof: Note that i) the aim of the MP is to minimize the
objective function, ii) the optimal objective function value of
the MP equals to the lower bound (i.e., Φl(m) = Φ̂(m)), iii)
the optimal objective function values of the MP at previous
m iterations (i.e., {Φ̂(0), . . . , Φ̂(m)}) have been excluded by
the constraints (31) and (34), and iv) with iteration number m
increasing, more constraints are added into the MP (i.e., the
feasible region of the MP shrinks). The lower bound at the
(m+1)th iteration (i.e., Φl(m+1)) is larger than the previous
lower bounds {Φl(0), . . . ,Φl(m)}. On the other hand, since
Φu(m) is achieved by Φu(m) = min{Φu(m− 1), (Cx(m)−
b2)′ω(m)}, the upper bound at the (m + 1)th iteration (i.e.,
Φu(m + 1)) is not larger than the previous upper bounds
{Φu(0), . . . ,Φu(m)}.

Theorem 3.1: At each iteration with a new feasibility con-
straint (31) or infeasibility constraint (34) added into the
MP (21), the solution obtained by JDQT converges to the global
optimal value within a finite number of iterations.

Proof: At each iteration m, by solving the MP and the SP,
we obtain a lower bound Φl(m) and an upper bound Φu(m) of
the optimal objective function value Φ∗. The bound sequence
{Φl(0), . . . ,Φl(m)} is increasing, while the upper bound se-
quence {Φu(0), . . . ,Φu(m)} is decreasing. In addition, at
each iteration, there is always one new constraint (feasibility
constraint (31) or infeasibility constraint (34)) added into the
MP to exclude these non-optimal or infeasible values of binary
variables x. Since the dimension of binary variables x is finite,
according to the Theorem 2.4 in [31], the solution converges
to the global optimal value within a finite number of iterations.

D. Accelerated Solution Method: AJDQT
Although the solution provided by JDQT is optimal, this

method cannot be used to efficiently solve large problem sizes.
This is due to the following reasons: i) as the MP (21) is an
ILP, this problem is still hard to solve directly, compared with
the SP, and ii) at each iteration, a new feasibility constraint (31)
or infeasibility constraint (34) is added into the MP. With an
increasing number of iterations, the computational complexity
and the size of MP both increase. In order to circumvent
these difficulties, we propose an accelerated JDQT (AJDQT)
algorithm to further reduce the computational complexity of
JDQT. This algorithm contains two parts and its structure is
shown in Fig. 4.

1) Relaxation of The MP: The computational complexity of
JDQT is dominated by the cost of solving the MP at each
iteration. In order to reduce the computing time of JDQT, we
relax the binary variables x to be continuous variables with
their ranges in [0, 1]. Hence, the relaxed MP is formulated as

MP1 : min
Φ̂,x

Φ̂ (38)

s.t.


(2), (3),
Φ̂ ≥ F(x,ω(ς)), ∀ς ∈ A,
0 ≥ F(x,ν(ϑ)), ∀ϑ ∈ B,
0 ≤ cil, qik ≤ 1, Φ̂ ≥ 0, ∀i ∈ N , ∀l ∈ L.
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Fig. 4. Structure of the Accelerated JDQT (AJDQT) algorithm.

Compared with MP, MP1 is an LP problem since all the
variables are continuous. Note that if the DSP (30) is solved
with x(m), where x(m) is the solution of the MP1, the DSP
may be infeasible since x(m) may not be a binary solution.
One way to solve this problem is to round the solution of MP1
(i.e., x(m)) to the nearest binary solution that is feasible to the
MP. Such a binary solution, denoted by x(m), can be found
by heuristics such as Feasibility Pump (FP) method [32].

Theorem 3.2: Assume that x(m) is an arbitrary feasible
solution of the MP. The feasibility and infeasibility constraints
generated by solving the DSP (30) with x(m) do not exclude
the optimal solution of PP1 (20).

Proof: If the DSP has a bounded solution ω(m) with
x(m), the feasibility constraint is

Φ̂ ≥ F(x,ω(m)). (39)

On the other hand, if the DSP has an unbounded solution with
x(m), the infeasibility constraint is

0 ≥ F(x,ν(m)). (40)

Note that (x∗,y∗) is the optimal solution of PP1, and Φ∗

is the optimal objective function value. In the following, we
prove that the optimal solution (x∗,y∗) does not violate the
constraints (39) and (40).

If the DSP has a bounded solution ω(m) with x(m),
suppose that x∗ and Φ∗ violate the feasibility constraint (i.e.,
Φ∗ < F(x∗,ω(m))). This contradicts the fact that Φ∗ is
the optimal objective function value of the DSP with x∗

(i.e., Φ∗ = maxω�0 F(x∗,ω) ≥ F(x∗,ω(m))). Hence, the
feasibility constraint (39) will not exclude the optimal solution
x∗. On the other hand, if the DSP has an unbounded solution
with x(m), this solution will be excluded by the infeasibility
constraint (40). Since x∗ 6= x(m), x∗ does not violate the
infeasibility constraint (40).

2) Distributed Solution: Two-layer Subgradient-based Algo-
rithm: Based on the structure of the MP1 (38) and the SP (29),
we design a distributed solution based on two-layer subgradient
algorithm to solve these problems. For convenience, the previ-
ous problem formulations of MP1 and SP are reformulated in
an abstract manner as follows:

min
z

g′z (41)

s.t.
{
b′iz ≤ ei, 1 ≤ i ≤ p,
zj ≤ zj ≤ zj , 1 ≤ j ≤ q,

where z is a vector of continuous variables, g is a vector
of objective function coefficients, B , [b1, . . . , bp]

′ and
e , [e1, . . . , ep]

′ are the constraints related matrix and vector,
respectively.

Lemma 3.4: The MP1 (38) and the SP (29) are convex.
Proof: Let R(z) , g′z and Gi(z) , b′iz−ei (1 ≤ i ≤ p).

Since

O =


∂2R(z)
∂z21

· · · ∂2R(z)
∂z1∂zq

...
. . .

...
∂2R(z)
∂zq∂z1

· · · ∂2R(z)
∂z2q

 = 0q×q,

Ci =


∂2Gi(z)
∂z21

· · · ∂2Gi(z)
∂z1∂zq

...
. . .

...
∂2Gi(z)
∂zq∂z1

· · · ∂2Gi(z)
∂z2q

 = 0q×q, 1 ≤ i ≤ p,

the Hessian matrices of functions R(z) and Gi(z) are positive
semi-definite. Thus, the objective function and the constraints
of the problem (41) are convex. According to the definition of
convex problem [28], the MP1 and the SP are convex.

By introducing the positive Lagrange multipliers ψ ,
[ψ1, . . . , ψp]

′ to the problem (41), the corresponding La-
grangian is H(z,ψ) = g′z + ψ′(Bz − e). Hence, the dual
function is D(ψ) = minz�z�zH(z,ψ), and the dual problem
associated with problem (41) is

max
ψ�0

D(ψ) = −ψ′e (42)

s.t. g +B′ψ � 0.

For simplicity and generality, we introduce indexes n and k
to count the outer-layer and inner-layer iterations, respectively.
The inner-layer iteration aims to update variables z under the
given Lagrange multipliers ψ, while the outer-layer iteration
aims to update Lagrange multipliers ψ under the given vari-
ables z. The details are as follows.

a) Inner-Layer Iteration: Assume that the current outer-
layer iteration is n. Based on the updated result of previous
outer-layer iteration (i.e., ψ(n)), the variable zi is iteratively
updated by

zi(n, k + 1) =

[
zi(n, k)− σ∂H(z(n),ψ(n))

∂zi(n)

]zi
zi

, 1 ≤ i ≤ q,

(43)
where [zi]

zi
zi

= max{zi,min{zi, zi}} and σ is a positive small
step-size.

Since i) the functions R(z) and Gi(z) are convex, and ii)
the sum operation preserves the convexity, H(z,ψ) is a convex
function. Denote ζ ≥ 0 as a small tolerance. The inner-layer
iteration can start from an arbitrary initial point z(n, 0), and
stops when ||z(n, k+ 1)− z(n, k)||2 ≤ ζ. Hence, by iterating
(43), we can obtain z(n) (i.e., the optimal solution of dual
function D(ψ) under the given ψ(n)).

b) Outer-Layer Iteration: Based on the updated results of
the previous inner-layer and outer-layer iterations (i.e., z(n)
and ψ(n)), the Lagrange multiplier ψj is iteratively updated
by

ψj(n+ 1) =

[
ψj(n) + σ

∂D(ψ(n))

∂ψj(n)

]+

, 1 ≤ j ≤ p, (44)

where [ψj ]
+ = max{0, ψj}.

Since the Lagrangian H(z,ψ) is convex, its dual function
D(ψ) is concave [28]. Hence, the outer-layer iteration can
start from the arbitrary initial points ψ(0), and stops when
||ψ(n + 1) − ψ(n)||2 ≤ ζ. Note that H(z,ψ) and D(ψ) are
the linear functions with respect to the variables z and the
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Lagrange multipliers ψ, respectively. The partial derivatives
∂H(z(n),ψ(n))

∂zi(n) and D(ψ(n))
∂ψj(n) are coefficients, which implies that

the variable zi(n, k) and the Lagrange multiplier ψj(n) are
updated individually (i.e., the SP (29) and the MP1 (38) can
be solved in a distributed manner).

c) Convergence Analysis: Note that problem (41) is con-
vex, there is no duality gap between this problem and its dual
problem (42) (i.e., solving the dual problem equals to solving
its primal problem). The following Theorem 3.3 proves the
convergence of the algorithm.

Definition 3.2: (Statistical convergence [33]) For an opti-
mization problem minχ S(χ) and an iterative solution with
step size σ, let χ∗ and χ̄ = 1

n

∑n
l=1 χ(l) be the optimal

solution and the average solution found by the nth iteration,
respectively. The statistical convergence means that for any φ ≥
0, there exists an σ such that lim supn→∞(S(χ̄)−S(χ∗)) ≤ φ.

Theorem 3.3: With the iterations between the outer-layer
and the inner-layer, the Lagrange multipliers ψ statistically
converge to the optimal values ψ∗ when step size σ is a small
enough value.

Proof: We construct a Lyapunov function V(ψ(n)) =∑p
j=1(ψ∗j − ψj(n))2, where ψ∗j is the optimal value of ψj .

Denote Mj(n) , D(ψ(n))
∂ψj(n) as the sub-gradient of the dual

function D(ψ(n)) at the point ψj(n). According to ψj(n +
1) = [ψj(n) + σMj(n)]+, we have ψj(n + 1) ≥ 0 and
ψj(n) ≥ 0. Since σ > 0 andMj(n) could be either positive or
negative, we get ψj(n+ 1) ≥ ψj(n) + σMj(n). And further,
(ψ∗j −ψj(n+1))2 ≤ (ψ∗j −ψj(n)−δMj(n))2 due to ψ∗j ≥ 0.
Hence, we have

V(ψ(n+ 1)) =
∑p

j=1
(ψ∗j − ψj(n+ 1))2

≤
∑p

j=1
(ψ∗j − ψj(n)− σMj(n))2

=V(ψ(n)) +
∑p

j=1
[2σ(ψj(n)− ψ∗j )Mj(n) + σ2Mj(n)2]

≤V(ψ(n)) + 2σ[D(ψ(n))−D(ψ∗)] +
∑p

j=1
σ2Mj(n)2

≤V(ψ(1)) +
∑n

l=1

{
2σ[D(ψ(l))−D(ψ∗)]

+
∑p

j=1
σ2Mj(l)

2
}
, (45)

where the second inequality holds since D(ψ) is a concave
function, and, thus, based on the definition of subgradient we
have

∑p
j=1(ψj(n)− ψ∗j )Mj(n) ≤ D(ψ(n))−D(ψ∗).

Let ψ(n) = 1
n

∑n
l=1ψ(l). Based on the concavity of dual

function D(ψ) and Jensen’s inequality [28], we get∑n

l=1
[D(ψ(l))−D(ψ∗)] ≤ n[D(ψ(n))−D(ψ∗)]. (46)

Assume that
∑p
j=1 ψj(l)

2 ≤ B since {ψj(l)} are bounded.
Substituting (46) into (45) and noting that V(ψ(n + 1)) ≥
0, we have D(ψ∗) − D(ψ(n)) ≤ T (ψ(1))+nσ2B

2nσ . From
lim supn→∞(D(ψ∗)) − D(ψ(n)) ≤ σB

2 , we can see that the
Lagrange multipliers ψ statistically converge to the optimal
values ψ∗ when step size σ is a small enough value.

Hence, by iterating the equations (43) and (44), we obtain
the optimal solutions of the MP1 (38) and the SP (29).

3) Run-Time Complexity: The MP1 (38) and the SP (29)
can be solved by either the interior point method or the
proposed distributed method. Using the interior point method,
the computational complexity is O(d3), where d is the number
of the variables [34]. Based on the structures of MP1 and SP,

we have d = N(2 + L) and d = 2NL, respectively. When
using the proposed distributed method, since the inter-layer and
the outer-layer iterations are based on the subgradient method,
the computational complexity is O(U2R2ζ−2) [35]. U is the
distance between an optimal solution and the initial point, and
R is a Lipschitz constant for the objective function. There-
fore, the proposed distributed method has lower computational
complexity.

IV. SIMULATION RESULTS

The multicore platform model used in the experiments is
based on 70 nm technology [5]. The processor operates at five
voltage levels in the range of [0.65 V, 0.85 V ] with a step
of 50 mV (i.e., L = 5). The power of the processor in the
idle state is set to P s0 = 80 µW , while the corresponding
frequency fl, the dynamic power P dl , and the static power P sl
under different voltage levels are shown in Table I. The number
of processors (i.e., M ) is tuned from 4 to 8 with a step of 2. We
generate task graphs with 10 to 50 tasks (i.e., the task number
N is tuned from 10 to 50 with a step of 5). The WCECs of
the mandatory part Mi and the maximum optional part Oi of
task τi (∀i ∈ N ) are assumed to be in the range [4× 107, 6×
108] [17]. To set the absolute deadline of task τi, we introduce
temporary start time t̂is and relative deadline ri for task τi.
Then, the absolute deadline di is calculated by di = t̂is + ri.
The relative deadline ri is assumed to be in the range [ri, ri],
where ri = min∀l∈L{Mi+Oi

fl
} and ri = max∀l∈L{Mi+Oi

fl
}

are the minimum time and the maximum time required to
execute {M1 + O1, . . . ,MN + ON} cycles, respectively. We
calculate the value of temporary start time t̂is through the EOD
matrix P . When pij = 1 (i.e., task τi precedes task τj and
τj is the closest task of τi), we set the temporary end time
of task τi equal to the temporary start time of task τj (i.e.,
t̂ie = t̂is+ri = t̂js). If τi is the first task in one hyper-period, we
set t̂is = 0. Moreover, we assume that the hyper-period of the
tasks is H = max∀i∈N {di}. Since system is in the medium
energy state, the energy supply is set to Es = ηEh, where
Eh = MHP s0 +

∑N
i=1[min∀l∈L

Mi+Oi

fl
(P sl +P dl −P s0 )] is the

minimum energy required to execute {M1 + O1, . . . ,MN +
ON} cycles. The energy efficiency factor η is tuned from
0.8 to 0.9 with a step of 0.05. Note that different multi-core
platforms and task graphs will lead to different parameters
{A,C,D,f , b1, b2} for the PP1 (28). However, the problem
structures under different parameters are the same, and, thus,
different algorithms can be compared under given system
parameters.

TABLE I. DYNAMIC POWER CONSUMPTION AND STATIC POWER
CONSUMPTION FOR 70 NM PROCESSOR

vl (V ) 0.65 0.7 0.75 0.8 0.85
fl (GHz) 1.01 1.26 1.53 1.81 2.10
P d
l (mW ) 184.9 266.7 370.4 498.9 655.5

P s
l (mW ) 246 290.1 340.3 397.6 462.7

Initially, we compare the behavior (system QoS and comput-
ing time) of the proposed JDQT with: i) optimal approaches,
i.e. Branch and Bound method (B&B) [36], [37] and Branch
and Cut method (B&C) [38], which are known to provide opti-
mal solution for the MILP problem – as far as we know no op-
timal algorithm exists for the problem formulation PP1 (20), ii)
stochastic approaches (i.e. Genetic Algorithm (GA) [39]), and
iii) heuristic (i.e., a two-step method that combines B&B and
LP relaxation provided by Matlab optimization toolbox [40]).
Then, we compare the computing time and the convergence
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iterations of JDQT and AJDQT and we explore the QoS and the
computing time under controlled solution degradation. Finally,
we compare the QoS and the energy consumption of applying
JDQT to solve the QoS-aware task mapping problem (QoS-
OPT, i.e., PP1 (20)), and the following energy-aware task
mapping problem (NRG-OPT):

min
c,q,o,
ts,h

∑N

i=1

∑L

l=1

(
cilwil +

hil
fl

)
(P ld + P ls − P 0

s )

s.t. (2), (3), (11), (12), (13), (14), (15), (17), (18), (19).

The simulations are performed on a laptop with quad-core 2.5
GHz Intel i7 processor and 16 GB RAM, and the algorithms
are implemented in Matlab 2016a.

A. Comparison with Existing Algorithms
The QoS achieved by JDQT for all tuned parameters (i.e.,

processor number M , task number N , and energy efficiency
factor η) is shown in Fig. 5. With M , N and η parameters
varying, 3 × 9 × 3 = 81 instances are generated. We observe
that the QoS i) increases with η under given M and N , and ii)
increases with N under given M and η (as the energy supply
Es increases with N and η). However, when we fix N and
η and change the value of M , the differences between the
achieved QoS are small, compared with changing N and η.
Although with M increasing, more tasks are allowed to be
executed on different processors simultaneously. As the energy
supply Es and the task deadline, which is determined by the
EOD matrix P , are fixed, the QoS improvement achieved
by increasing the value of M is limited. Moreover, the QoS
achieved by JDQT, B&B and B&C are the same for all tuned
M , N and η parameters, and, thus, JDQT also finds an optimal
solution.
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Fig. 5. QoS of JDQT with M , N and η varying.

We further compare the QoS gain of JDQT with GA
and heuristic. The statistical property of QoS gain is
shown in Fig. 6. The QoS gain between JDQT and GA
(JDQT and heuristic) is given by QJ (M,N,η)−QG(M,N,η)

QJ (M,N,η)

(QJ (M,N,η)−QH(M,N,η)
QJ (M,N,η) ), where QJ(M,N, η), QG(M,N, η)

and QH(M,N, η) are the QoS achieved by JDQT, GA and
heuristic under given M , N and η parameters, respectively.
The box plot of “JDQT vs GA” with η = 0.8 shows the
statistical property of data set {QJ (M,N,0.8)−QG(M,N,0.8)

QJ (M,N,0.8) } for
all tuned M and N parameters. On each box, the central mark
indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points that are not

considered outliers, and the outliers are plotted individually
using the ‘+’ symbol. Fig. 6 shows that i) JDQT achieves higher
QoS (6.8% and 17.9% in average, respectively) than GA and
heuristic, and ii) the gap between the upper and lower bounds
of “JDQT vs GA” is smaller than the gap between the upper
and lower bounds of “JDQT vs heuristic”, which implies that
the quality of the solution achieved by GA is more “stable”
than the heuristic. This is because i) the aim of heuristic is to
find feasible solution, and the searching process stops when an
arbitrary feasible solution is found, and ii) the quality of the
solution of GA can be improved through the iterations.

0.8 0.85 0.9 0.8 0.85 0.9

η

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

G
a
in

QoS gain

JDQT vs HeuristicJDQT vs GA

Fig. 6. QoS gain of JDQT, GA and heuristic.

Fig. 7 compares the computing time of JDQT, B&B, B&C,
GA and heuristic. Note that energy efficiency factor η does
not change the problem size (i.e., the number of variables
and constraints), and, thus, its influence on computing time
is limited. We set η = 0.8 and tune M and N parameters.
Fig. 7 shows the statistical property of computing time gain
between i) JDQT and B&B, ii) JDQT and B&C, iii) JDQT
and GA, and iv) JDQT and heuristic for all tuned M and N
parameters. Denote TJ(M,N, η), TB(M,N, η), TC(M,N, η),
TG(M,N, η) and TH(M,N, η) as the computing time of
JDQT, B&B, B&C, GA and heuristic under given M , N
and η parameters, respectively. The box plot of “B&B vs
JDQT” with η = 0.8 shows the statistical property of data set
{TB(M,N,0.8)−TJ (M,N,0.8)

TB(M,N,0.8) } for all tuned M and N parameters.
The simulation results show that when M and N increase, the
computing time of JDQT, B&B, B&C and GA grows, since
more variables and constraints are involved in the problem (i.e.
the problem size is enlarged). For the heuristic, since it is based
on a relaxed B&B method, the number of nodes still increases
with problem size. Thus, the change of M and N parameters
also influences the computing time of heuristic. However, the
computing time increase of heuristic is much smaller than other
algorithms.

As shown in Fig. 7, JDQT takes a shorter computing time
than B&B (27.8% in average), B&C (19.6% in average) and
GA (73.2% in average). The heuristic has a shorter computing
time (81.2% in average) than JDQT. However, the quality of
the solution is hard to control, as shown in Fig. 6. Although
GA can solve mixed non-linear programming problem such as
MINLP, the optimality of the solution is hard to guarantee.
Moreover, compared with JDQT, the architecture of GA is
more complex since at each iteration GA needs to generate
new populations through several procedures, such as selection,
reproduction, mutation and crossover. Therefore, the problem
transformation from MINLP-based PP (10) to MILP-based
PP1 (20) is necessary, since it can simplify the structure of
the problem, and, thus, the optimal solution is much easier to
find. Although B&B can optimally solve MILP problems for
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large problem sizes, B&B explores a large number of nodes to
find the optimal solution. B&C, which combines the benefits of
B&B and Gomory cutting scheme, can better explore optimal-
ity, efficiency and stability trade-off. Usually, B&C has a faster
convergence speed than B&B. For an optimization problem, its
computational complexity usually increases significantly with
the number of variables and constraints. Hence, solving the
smaller problems with less variables and constraints (i.e., MP
and SP) iteratively is more efficient than solving a single large
problem. This result is in line with the comparison of [38]
where the decomposition-based method is faster than B&B and
B&C for solving lager problem instances.
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Fig. 7. Computing time gain of JDQT, B&B, B&C, GA and heuristic.

B. Comparison between JDQT and AJDQT
In this section, we first explore the convergence of the pro-

posed two-layer subgradient-based algorithm used in AJDQT
to solve the MP1 (38) and the SP (29) with respect to the
outer-layer iterations, which are the most dominant ones as they
determining the convergence criteria, as shown in the proof of
Theorem 3.3. Fig. 8 shows the convergence of the objective
function to the optimal solution with respect to the number of
the outer-layer iterations for the MP1, with ζ = 0.01, σ = 0.1,
η = 0.8, M = 4 and N = 20. The results are similar then for
the SP. From the experimental results, the optimal solution is
found usually within 15 outer-layer iterations.
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Fig. 8. Convergence of two-layer subgradient-based algorithm.

The simulation results show that the solutions of PP1 (20)
achieved by JDQT and AJDQT are the same, for stopping
criteria ε = 0.01 and all tuned M , N and η parameters.
Therefore, AJDQT is also able to find an optimal solution. The
computing time of JDQT and AJDQT is compared in Fig. 9.
Since energy efficiency factor η does not change problem size,
we set η = 0.8 and tune M and N parameters. From it, we
can see that i) when increasing M and N , the computing time

of JDQT and AJDQT grows, and ii) under the same M and N
parameters, AJDQT has a shorter computing time than JDQT
(17.6% in average). This is because at each iteration the MP
of AJDQT is relaxed to an LP, but the MP of JDQT is still an
ILP. LP is much easier to solve than ILP, especially when the
problem size is large. We also observe that the computational
complexity of AJDQT is largely influenced by the algorithm
used to find the feasible solution to the MP (i.e., FP algorithm
in our case). When FP cannot find a feasible solution x(m)
for the first time, we need to repeat FP again until an arbitrary
feasible solution is found.

10 20 30 40 50

Task number (N)

0

500

1000

1500

2000

2500

3000

3500

4000

C
o
m

p
u
ti
n
g
 t
im

e
 (

s
)

JDQT

M=4

M=6

M=8

10 20 30 40 50

Task number (N)

0

200

400

600

800

1000

1200

1400

1600

1800

C
o
m

p
u
ti
n
g
 t
im

e
 (

s
)

AJDQT

M=4

M=6

M=8

Fig. 9. Computing time of JDQT and AJDQT with M and N varying.

The convergence iterations of JDQT and AJDQT are com-
pared in Fig. 10, where the convergence iteration is defined
as the number of iterations to achieve |Φu(m) − Φl(m)| ≤ ε.
We set ε = 0.01, η = 0.8 and tune M and N parameters.
From Fig. 10, we can see that i) the convergence iterations of
JDQT and AJDQT increase with M and N parameters. Since
more variables and constraints are added into the problem, the
feasible region of the problem becomes more complex, and,
thus, a higher number of iterations is required to search the
optimal solution; ii) under the same M and N parameters,
the difference of convergence iterations between JDQT and
AJDQT is small. Usually, the difference is within several
iterations, and this difference comes from twofold: i) the initial
solution x(0) of the MP is generated randomly (no matter
for JDQT or AJDQT), as long as it satisfies the constraints
(2) and (3) (the value of initial solution x(0) only influences
convergence iteration but not the convergence of the algorithm),
and ii) the feasible solution of the MP (i.e., x(m)), rather than
the optimal solution of the MP, is inserted into the iteration
between the MP and the SP of AJDQT, and, thus, the lower
bound sequence of AJDQT is not strictly increasing, compared
with the lower bound sequence of JDQT. Note that i) the upper
bound sequence of AJDQT is still decreasing (as the upper
bound update processes of JDQT and AJDQT are the same),
and ii) the feasibility or infeasibility constraints of AJDQT
exclude the non-optimal and the infeasible solutions rather than
the optimal solution. The optimality of the solution achieved
by AJDQT is guaranteed (see Theorem 3.2). The characteristics
of the lower and the upper bounds of JDQT and AJDQT imply
that the convergence iteration of AJDQT may be larger than
JDQT, but the computing time of AJDQT at each iteration is
smaller than JDQT, since AJDQT has a simpler structure.

In Fig. 11, we explore the behavior (i.e., computing time,
convergence iteration and QoS) achieved by JDQT and AJDQT
with stopping criteria ε varying, where we set M = 4, N = 20
and η = 0.8. To better evaluate the influence of ε exerts on
algorithm performance, the gap between the lower and the
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Fig. 10. Convergence iterations of JDQT and AJDQT with M and N varying.

upper bounds at the mth iteration is calculated by Φu(m)
Φl(m) , and

ε is tuned from 1 to 2.5 with a step of 0.5. From Fig. 11,
we can see that the computing time, convergence iteration
and QoS decrease when ε increases. Note that except ε = 1,
the solutions found by JDQT and AJDQT are non-optimal.
In the non-optimal cases, the QoS achieved by JDQT is not
always larger than AJDQT under the same ε, but it is always
within the upper and lower bounds. If we just want to find
a feasible solution, we can run JDQT (AJDQT) and stop the
iteration when the fist time that the DSP has a bounded solution
(assume that at the mth iteration). This means the optimal
task scheduling and adjustment decisions y(m) are found
under the given task-to-processor allocation and frequency-
to-task assignment decisions x(m). Since x(m) is not the
optimal solution, (x(m),y(m)) is a feasible solution of the
PP1 (20). Based on the lower bound Φl(m) and the upper
bound Φu(m) under given solution (x(m),y(m)), we can say
that this solution is |Φu(m)−Φl(m)|-optimal. Similarly, if an
ε is given in advance, we can find the corresponding solution
by iteratively solving the MP and SP of JDQT (AJDQT) until
i) the gap between the upper and the lower bounds of JDQT
(AJDQT) is smaller than ε, and ii) the DSP is feasible under
the temporary solution given by the MP.
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Fig. 11. Quality of solution achieved by JDQT and AJDQT with ε varying.

C. QoS-Aware vs Energy-Aware Task Mapping
Fig. 12 compares the QoS gain and the energy consump-

tion gain of QoS-OPT with NRG-OPT for all tuned M , N
and η parameters. Denote QE(M,N, η), EJ(M,N, η) and
EE(M,N, η) as the QoS achieved by NRG-OPT, and the
consumed energy of QoS-OPT and NRG-OPT under given
M , N and η parameters, respectively. The box plot of

“QoS-OPT vs NRG-OPT” with title “QoS gain” (“Energy
consumption gain”) shows the statistical property of data
set {QJ (M,N,η)−QE(M,N,η)

QJ (M,N,η) } ({EJ (M,N,η)−EE(M,N,η)
EJ (M,N,η) }) for all

tuned M , N and η parameters. From Fig. 12, we can see that
when using NRG-OPT to perform IC-task mapping, the QoS
is always equal to 0, which is obviously lower than the QoS
achieved by QoS-OPT. This is normal since, if the mandatory
subtask of a task is fixed and given in advance, the smaller the
optional subtask, the lower the energy consumed to execute
this task. On the other hand, Fig. 12 also shows that QoS-OPT
consumes more energy than NRG-OPT (60.3% in average),
since QoS-OPT maximizes QoS and therefore executes more
optional subtasks than NRG-OPT. However, the consumed
energy of QoS-OPT is always no more than the supplied energy
Es, as the energy supply constraint (9) must be satisfied. Hence,
using QoS-OPT to perform IC-task mapping can provide a
better balance between QoS-enhancing and energy-utilizing. In
fact, when the system is in the low energy state, QoS-OPT is
equal to NRG-OPT since only mandatory subtasks can be used
to perform task mapping.
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Fig. 12. QoS and energy consumption gains of QoS-OPT and NRG-OPT.

V. CONCLUSION

In this paper, we address the problem of IC-tasks mapping
on DVFS-enabled homogeneous multicore platforms, with the
goal of maximizing system QoS without violating the real-
time and energy constraints. We first develop an MINLP
model to describe this joint-design problem. And then, we
propose an MILP description of this model without perfor-
mance degradation. By doing so, we avoid high computational
complexity and we use a simpler model to find an optimal
solution. To optimally solve the MILP problem, we propose a
JDQT algorithm. It reduces the computational complexity by
iterating two smaller, but highly correlated, subproblems: an
MP problem for task-to-processor allocation and frequency-to-
task assignment, and a SP problem for task scheduling and
task adjustment. We prove that the proposed JDQT algorithm
converges to the optimal solution through finite number of
iterations. To further reduce the computational complexity of
JDQT algorithm, we propose an AJDQT algorithm. We prove
that by relaxing the MP problem of JDQT algorithm to an LP
problem, the computing time can be reduced but the optimality
of solution is still guaranteed. The results show that the desired
system performance can be achieved by the proposed JDQT
and AJDQT algorithms. Moreover, we have shown that the
stopping criteria of JDQT and AJDQT algorithms can be
used as a control parameter to trade-off QoS and algorithm
computing time.
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