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Abstract

This paper introduces a measure of significance on a curve skeleton of a 3D piecewise linear shape mesh, allowing the
computation of both the shape’s parts and their saliency. We begin by reformulating three existing pruning measures
into a non-linear PCA along the skeleton. From this PCA, we then derive a volume-based salience measure, the
3D WEDF, that determines the relative importance to the global shape of the shape part associated to a point of the
skeleton. First, we provide robust algorithms for computing the 3D WEDF on a curve skeleton, independent on the
number of skeleton branches. Then, we cluster the WEDF values to partition the curve skeleton, and coherently map
the decomposition to the associated surface mesh. Thus, we develop an unsupervised hierarchical decomposition of
the mesh faces into visually meaningful shape regions that are ordered according to their degree of perceptual salience.
The shape analysis tools introduced in this paper are important for many applications including shape comparison,
editing, and compression.
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1. Introduction a decomposition of the shape), or similarity detection in
a 3D shape, as required by [4].

A key observation is the fact that, despite a repu-
tation for instability, a skeleton can provide a reliable
basis for shape analysis when it is complemented with
measures defined along it. Below, we introduce such
a measure, called Weighted Extended Distance Func-
tion (WEDF), which is defined on a curve skeleton cen-
tered within a 3D shape. WEDF has been introduced re-
cently for 2D shape contours [5] and successfully used
for defining a salience measure and decomposition of
2D curves [6]. Generalizing to the 3D setting takes
two steps: first defining WEDF on a 3D skeleton and
deducing a partition, second, mapping the measure on
the surface mesh. The second step assesses salience of
surface mesh parts: it establishes an injective mapping
between surface mesh vertices and the skeleton points
while ensuring simultaneously that the inverse mapping
produces coherent shape parts. In 2D, a straightforward
association of boundary points to the WEDF values of
the corresponding skeletal points generates a good par-
tition of a shape [6], but the 3D setting is more chal-
lenging: a direct extension of the 2D approach to 3D
generates a poor partition (see Figure 10, where the

Many 3D applications make use of 3D shape decom-
positions in various forms, whether for shape compar-
ison and compression, for editing purposes, or for ani-
mation. While much work has studied how to produce 
meaningful parts, there has been little focus on provid-
ing additional information on parts, such as their relative 
importance. In [1], the authors show that decomposi-
tion into a hierarchy of part and subparts is memorized 
by user, and such structure is relevant for shape recogni-
tion. Such a measure has been formalized by Hoffman 
and Singh [2] and called salience of parts. This measure 
reveals how important a part is to understand the shape 
as a whole. In this paper, we propose a shape decom-
position method that naturally provides insights about 
parts salience.

The present work makes a first step towards auto-
matic similarity-based shape decomposition by intro-
ducing a new salience measure for 3D shape decom-
position and subparts classification. In particular, the 
proposed decomposition provides an automatic pre-
processing for applications such as structuring a 3D 
shape (e.g. like [3] whose semantic descriptors relies on
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legs run into the body of the ant). Accordingly, we
propose a robust algorithm for appropriately transfer-
ring the salience measure on the skeleton to the surface
mesh, enabling a decomposition into a consistent set of
subparts that can be clustered according to their salience
levels.

Given a WEDF measure coherently transferred to a
surface mesh, we use unsupervised methods for de-
composing a 3D shape into subparts and for classify-
ing those parts according to their visual salience. This
allows us to determine a primary supporting shape
and features with decreasing saliency. In contrast to
classical shape segmentation algorithms, our method
provides a graded salience-based parts decomposition,
where each part is labeled with a value characterizing
its importance to the overall shape. Figure 1 shows an
example: our method not only segments the body parts
from the body, but additionally labels each body part
with an importance value so that parts with the same
importance value belong to the same level in the impor-
tance hierarchy. All rose mesh parts belong to the main
body, all green parts to the lowest hierarchy level, all
yellow parts to a parent hierarchy level, and so on.

Our hierarchy labels inherit the following two fea-
tures from the relationship to the curve skeleton:

• the connectivity of sub-parts including a parent-
child relationship starting from the main shape
and decreasing monotonically along parts moving
away from the main shape is provided, and

• the partition and salience measure is stable un-
der volume preserving shape deformation (with no
topology change).

Both features allow for a straightforward classification
of the extracted sub-shapes into visual salience clusters,
which then aids any subsequent computations such as
correspondences or local symmetries (see Figure 14).

After presenting related work and giving background
in Section 2, we define WEDF on 1D skeletons em-
bedded in 3D shapes in Section 4, describe its use for
skeletal decomposition in Section 5, and introduce the
mapping of the WEDF to the surrounding 3D mesh in
Section 6. We then demonstrate the applications of the
method for 3D shape decomposition and salience-based
evaluation of sub-parts.

2. Related work

2.1. 3D shape salience
Salience, or saliency, is a concept that has been

widely studied in the literature. Borji and Itti, in their

important state-of-the-art review [7] define saliency as
a characterization of parts of a scene – which could be
objects or regions – that appear to an observer to stand
out relative to their neighboring parts. Most of the algo-
rithms that characterize saliency in images use bottom-
up approaches, determining what stands out using low-
level cues such as color contrast [8].

A similar approach has been adopted in studies of 3D
objects saliency. In their pioneer work, Lee et al. [9]
define a mesh saliency measure based on local surface
curvature at multiple scales. Many more methods have
then be devised following this local approach. Song et
al. [10] exploit the apparent correlation between the log-
spectrum of 3D mesh geometric Laplacian. They later
extended their work, introducing a pooling scheme to
introduce a more global saliency [11]. Nouri et al. com-
pute local descriptors on each vertex and then a mea-
sure of saliency based on a weighted average at differ-
ent scales [12]. These methods usually compare their
results with outcome of user studies, that either cap-
tured eye fixations of users watching 3d objects [13],
or matched manually designated interest points [14].

In our work, we do not aim at computing a local mea-
sure of saliency that would characterize the shape at the
vertex level, but rather try to define the relative impor-
tance of parts of the shape relative to the whole, thus
following Hoffman and Singh’s footsteps [2]. These au-
thors emphasize the need for a measure of the salience
of visual parts, especially in the context of object recog-
nition. A part salience is, according to the authors, cor-
related to how much recognizing this part helps recog-
nizing the object. The authors propose three features to
compute parts salience: relative size of the part, degree
of protrusion and boundary strength. As a consequence,
for the matter of shape understanding, it is important
to be able to discriminate a shape into parts and get a
sense of the relative importance of those parts. This is a
natural outcome of the work we propose in this paper.

2.2. 3D shape decomposition

3D shape segmentation, or decomposing a shape in
sub-parts, is an important research topic offering a wide
range of methods emerging from its numerous applica-
tions such as compression, reverse engineering, editing,
and comparison (see [15] for a recent survey). Super-
vised methods are based on user-segmented data and
learning methods, offering a perceptually coherent seg-
mentation as in [16] or [17]. Unsupervised methods
make use of other tools, such as clustering methods or
region-growing based on various shape characteristics
(e.g. [18, 19], or see [15] for a comparison), spectral
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Figure 1: Pipeline of our hierarchical decomposition. Starting from a 3D shape and its curve skeleton, we compute a new measure called WEDF
on the curve skeleton (a) and, by clustering WEDF values, we decompose the skeleton into hierarchical parts (b). To each connected part on the
skeleton –shown with a different color (c)– a connected region of the surface mesh is assigned (d). Then, a salience value according to the hierarchy
is assigned to each corresponding surface part (e) –parts of same importance get a similar color.

analysis (e.g. [20]), spatial subdivision methods or ex-
plicit boundary extraction (e.g. [13, 21]), or probabilis-
tic models [22, 23]. Other segmentation methods are
based on topological information, like Reeb graphs [24]
but depend on the function chosen for defining the graph
[25]. Skeletons have been applied for segmentation on
point clouds, where either the resulting skeletons are
not connected [26, 27] or do not provide a consistent
segmentation [28], and on surface meshes [29], using
the skeleton to define a dense set of possible segmen-
tation cuts from which a subset will be chosen based
on boundary geometry [30]. Very few of these segmen-
tation methods explicitly profit from the innate parent-
child relation between sub-parts, or measure for the rel-
ative saliency over the parts they obtain.

While most of the 3D methods described above do
not make use of skeletons, in part because of their per-
ceived instability and difficult to compute, recent meth-
ods for 2D shape analysis, decomposition and cluster-
ing [31, 5, 6] successfully exploit the geometry of the
Blum medial axis for various shape tasks. These meth-
ods have shown that the use of the skeletons can be com-
plemented with properly chosen functions that provide
robustness and stability. One example of such a function
is EDF [31] (Extended Distance Function) on 2D shapes
which is a useful measure for pruning and has already
been generalized to 3D, enabling improved 3D skele-
ton computations [32]. Another example is WEDF [5]
(Weighted Extended Distance Function), which defines
a measure for 2D sub-parts saliency. It has recently
been validated through perceptual studies about cogni-
tively meaningful shape importance [33] and used for

2D shape decomposition and similarity detection [6].
Our work builds on these 2D structures. We general-

ize WEDF to curve-skeletons on the medial axis of a 3D
shape, develop an efficient algorithm and provide a per-
ceptually consistent, graded salience-based shape de-
composition based on the variation of the WEDF along
the curve-skeleton (see Figure 2).

(a) (b)

(c) (d)

max

0

Figure 2: Shape center. 3D EDF (a) and 3D WEDF (b) and their as-
sociated decomposition (c,d) on a 3D shape. The maximum WEDF
value (b, red dot) is centered inside the handle, while the maximum
EDF value lies in the tail (a). Our decomposition of the shape into
hierarchical salience levels based on each of the two measures given
in second row, highlights the fact that considering length, like EDF
(c), for measuring salience does not align with perception, whereas
considering salience based on WEDF does (d).

2.3. Depth functions in 3D

In 3D, the medial axis of a surface, which consists of
the loci of centers of all enclosed maximal balls of the
surface, is no longer simply a curve skeleton but gener-
ically includes two-dimensional components called me-
dial surfaces that intersect transversally creating non-
manifold regions. Each point on the medial axis is still
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associated to a radius function whose value is the short-
est distance to the shape boundary, namely the radius of
the corresponding medial ball. A direct extension to 3D
of a depth function like EDF is not obvious as there is
no single medial axis endpoint associated to a medial
component. For this reason, it is more convenient to de-
fine functions on some kind of medial skeleton rather
than on the full medial axis. Dey and Sun [34] are the
first to introduce a mathematical definition and an algo-
rithm to compute a medial curve skeleton based on sin-
gularities of a so-called medial geodesic function. Yan
et al. [32] propose another definition and algorithm of a
medial curve skeleton for 3D, based on ET and a burn-
ing process over the medial axis. They generalize their
work in 2D to define the following functions for 3D on
piecewise linear medial axes such as those generated by
discrete surface meshes: medial burn time (MBT), ero-
sion thickness (ET) and curve burn time (CBT).

In [32], these functions are meant to aid in pruning
the medial axis to obtain a simpler version that is more
useful in applications, and to obtain a 1D skeletal shape
representation. In contrast, our paper aims to provide a
new function on the skeleton, similar to WEDF in 2D,
able to measure part saliency. To this end, we build
on MBT and CBT and derive an efficient algorithm not
only for calculating a 3D WEDF along the skeleton but
also for returning the function back to the surface mesh
in order to determine a salience-based shape decompo-
sition and to structure the shape hierarchically.

3. Local analysis of the shape around the axis

Before presenting our algorithms in Section 4, let
us briefly recall the existing depth functions relevant
for our work and introduce an original interpretation of
these three measures as a non-linear PCA.

The first two functions are defined on the full medial
axis, and are used to extract a curve skeleton. The third
is then defined on the extracted skeleton.

• The medial burn time (MBT) is defined as the
geodesic distance of a medial axis point to the
shape boundary associated to the closest extrem-
ity of the widest medial axis sheet containing this
point [32].

• The erosion thickness ET is defined as the differ-
ence between the width and the height: at a point x
in a medial axis M, ET (x) = MBT (x) − R(x). ET
is used in [32] to determine the scale at which to
extract the curve skeleton.

• The curve burn time (CBT) is defined only for
skeletal points, and measures the distance to the
closest extremity of the shape on the longest skele-
ton curve containing the given medial skeleton
curve point. CBT thus corresponds to a length
computation, and models the direction in which the
shape extends the most. Yan et al.[32] use CBT as
a way to prune the medial skeleton to obtain a sim-
plified version.

While these measures were intended for simplifica-
tion of the medial axis, we show that they can be used
as a powerful tool for shape understanding. In partic-
ular, the three functions R(x), MBT (x), CBT (x) along
a curve skeleton (Fig. 5), when taken together with the
paths through the medial axis whose lengths they rep-
resent, provide a non-linear version of a PCA decom-
position of the shape: at a point x on the curve skele-
ton, CBT gives length, MBT gives width and R gives
height, and the accompanying curves give the principal
directions through the shape starting at x. Note that, un-
like in PCA, the directions considered are not linear but
follow the curvature of the medial axis along each im-
portant direction. Moreover, integrating these quantities
(width and height) over the principal direction provides
our volume-based saliency measure, the 3D WEDF as
introduced in the next section.

4. 3D Weighted Extended Distance Function

We now develop a definition for the weighted ex-
tended distance function (WEDF) in 3D for piecewise-
linear medial surfaces.

The customary challenge in working with discrete
medial surfaces is that, in practice, the connectivity of
a discrete 3D medial axis is often not consistent with
the theory, as noise in the surface mesh propagates to
the medial axis sheet by generating regions where the
connectivity is rarely manifold even when the underly-
ing continuous model would be smooth. This prevents
finding a direct, continuous path to the boundary on a
medial axis sheet generated from a surface mesh. Such
a path is however essential to define a partial order on
the medial axis points. The next section introduces the
tools necessary to overcome this difficulty.

4.1. Preliminaries
The input of our algorithm is a closed, manifold trian-

gle mesh representing the surface of a 3D object. From
the mesh, we can compute a discrete version of the me-
dial axis (e.g. [36, 37]), and for each medial point x its
burn time, MBT (x), as computed in [32]. Note that each
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Figure 3: Medial axis (dark gray) and a curve skeleton (yellow) of a
3D shape. The medial axis is obtained using [35] and curve skeleton
using [32]. This curve skeleton preserves the topology of the shape
(light gray) and captures its features (ears, head, legs, tail).

point x in the medial axis is also the circumcenter of an
associated tetrahedron given by a Delaunay tetrahedral-
ization. The set of all tetrahedra associated to all medial
axis points provides a partition of the volume within the
mesh.

We extract a curve skeleton that is a subset of the me-
dial axis, a connected curve network capturing the struc-
ture of the shape. We assume the curve skeleton has the
same topology as the shape, and is as centered as pos-
sible. In particular, the curve skeleton will be properly
contained in the interior of the shape since it lies on the
medial axis, see Fig. 3. Our method also works for non-
centered skeletons, but the result may be less precise (a
comparison is shown in Sect. 7.2). In our implementa-
tion, we use the method from [32] to compute the curve-
skeleton, but we also consider mean curvature skeletons
from [38, 39] extracted via mean curvature flow, and
curve-skeletons from [40, 41]. Our methods are consis-
tent for all types of curve-skeletons tested. Note, that we
present results for surfaces of genus 0 generating curve
skeletons with tree structures. In this case, there exists
a single path on a curve skeleton between any of its two
points. In other words, the path between an extremity of
the curve skeleton and a skeleton point is unique.

4.2. Defining 3D WEDF on a curve skeleton

We now define 3D WEDF values on a curve skele-
ton in order to provide a salience measure of subparts.
In the discrete setting, where the shape is a polygonal
curve and the medial axis a piecewise linear curve skele-
ton, WEDF is computed as the areas of the shape parts
transversed along the WEDF path from the extremity y
to the medial axis point x. An extension to a discrete 3D
setting would be to sum up the volume traversing the
medial axis from a part extremity until skeleton point.

(a) (b) (c)

Figure 4: Volume contribution of a skeleton point. The point s is
a point on the curve skeleton. In red, the medial axis points (or tetra-
hedra circumcenters) associated to the point s thanks to the distance
D (eq. 1) (a). In green, the tetrahedra whose circumcenter is one of
the medial axis points previously marked in red (b). T (s) is the sum
of the volume of these green tetrahedra. WEDF(s) is the volume of
the subshape whose curve skeleton starts at s and goes towards clos-
est extremities of the curve skeleton, here the volume of the ankle and
foot below s (c). The tetrahedra whose volume contributes to WEDF
of previous points (WEDFprev in eq. 2) are in light blue.

The direction of medial axis traversal is not well de-
fined, however, because of the lack of correspondence
between a curve skeleton point and points on a medial
sheet (and also on the surface mesh). This prevents us
from extending the 2D WEDF definition to 3D directly.

We pause to summarize the two main challenges we
face and how we propose to solve them, before defining
WEDF in more detail:

1. Skeleton traversal. Since the discrete medial axis
contains two-dimensional sheets so the medial axis
cannot be used for an EDF-like path traversal of the
3D shape. Our solution is to base our computations
on a one-dimensional skeleton inside the 3D shape.
The CBT values can then be extended to CBT val-
ues for medial points on the manifesting path for
the medial burn time (MBT) of the skeletal points.

2. Volumetric shape partition. While in 3D, as in
2D, there is a correspondence between points on
the medial axis and the points on the surface mesh,
namely those on the circumcircle of the Delau-
nay tetrahedralisation of the volume, smoothing
the non-manifold noise on the medial axis often
breaks the correspondence. As is true for the De-
launay triangulation and area in 2D, the theoret-
ical Delaunay tetrahedralisation in 3D partitions
the volume of the shape into regions associated to
a medial point. In removing the noise from the
medial axis, however, the correspondence between
medial points and tetrahedra may be broken, and so
we must establish a new correspondence between
points on the medial axis and tetrahedra. Our so-
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lution depends on the skeleton traversal described
above: we associate tetrahedra for multiple medial
points to a single skeletal point so that summing
volumes over all skeletal points results in the vol-
ume of the entire shape.

Let us explain our solution to these challenges in more
detail now. In the following, m denotes a point on the
medial axis M and s denotes a skeletal point, a point on
the curve skeleton (and also on the medial axis, as the
curve skeleton lies on the medial axis). As the curve
skeleton is traversed, the WEDF must account for the
volume of the entire shape part between a skeletal point
and the surface boundary, not just the volume of the
shape associated to the tetrahedra of the curve skele-
tal points. For each skeletal point s, we obtain the me-
dial burn time (MBT), which is the time required for a
unit-speed grass-fire lit on the boundary of the medial
axis to completely expose a medial point, and consider
its burn path bs. See [32] for a detailed description of
the algorithm and rigorous definition in the discrete set-
ting. The burn path is the path of length MBT (s) ex-
tending from the point s to a boundary point that repre-
sents the path of the fire front that exposed s, see Figure
5. Let T (s) be the volume that is assigned to a skele-
ton point s: the sum of volumes of the tetrahedra of the
medial points along the burn path of s (green tetrahe-
dra in Fig.4). Then the WEDF-volume assigned to s,
WEDF(s) = T (s) +

∑
z∈Skeleton path T (z), is the volume

T (s) plus the volumes T (z) associated to all preceding
skeletal points z that are closer to the skeleton extremity
than s along the CBT path to s. Then WEDF(s) can
be thought of as the integral along the path along which
CBT is computed within the curve skeleton, of the other
two PCA-like values: radius and MBT. These volumes
form the basis of the 3D WEDF computation.

We now formally define WEDF in the piecewise lin-
ear case. Let s be a point on a curve skeleton C of the
medial axis M associated to a surface mesh S . Then the
value of WEDF(s) is given by one of the following:

• If s is a skeleton extremity, WEDF(s) is the vol-
ume of the cap between s and the corresponding
points on S .

• If s is a junction point where multiple branches of
C come together, then WEDF(s) corresponds to
the sum of the volumes of all incoming branches,
namely those branches that are closer to an skeletal
extremity than s, together with the volumes of the
tetrahedra assigned to s.

• If s is a generic branch point of a branch b (nei-
ther an extremity nor a junction), then WEDF(s)

Figure 5: Depth functions at 3D curve skeleton point s: curve
burn time CBT (s), medial burn time MBT (s) and radius R(s). To-
gether they provide a global analysis of the shape around s, respec-
tively depth, width and height (R(s) towards us).

Figure 6: The distance function D. In gray, two intersecting medial
axis sheets belonging to the medial axis M. We distinguish the point
m ∈ M and s1 and s2 as two points on the skeleton C. The skeleton
lies on the medial axis. Despite s1 being closer to m than s2 in Eu-
clidean distance, (i.e., d(m, s1) < d(m, s2)), m will be associated to s2
because D(m, s2) < D(m, s1) (since MBT (m) − MBT (s2) ≈ d(m, s2)
and MBT (m) − MBT (s1) , d(m, s1)).

is the sum of the volumes assigned to the neigh-
boring point in b that is closer to an extremity than
s, together with the volumes of the tetrahedra as-
signed to s.

Note that because MBT is not defined in the continuous
setting [32], we cannot provide a continuous definition
for WEDF.

4.3. Computing WEDF on the 3D curve skeleton

In practice, 3D WEDF is computed for an input sur-
face mesh, on a curve-skeleton consisting of points on
the medial axis of the surface mesh. The sampling den-
sity of the medial axis or skeleton points may affect
the smoothness of the WEDF, but not its actual value.
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Above, we discuss the volume T (s) assigned to a skele-
tal point s. More precisely, T (s) is the sum of the vol-
umes of the Delaunay tetrahedra whose circumcenters
m ∈ M are closest to s according to the following dis-
tance function:

D(m, s) =
∣∣∣ |MBT (m) − MBT (s)| − d(m, s)

∣∣∣ (1)

where d is the Euclidean 3D distance and MBT the me-
dial burn time. Note that because MBT is defined only
for discrete medial axes, we can define WEDF only in
the discrete setting as well. Figure 4 shows the tetra-
hedra and their circumcenters associated to a skeleton
point s. Note that the proposed distance function D en-
sures that a medial point m is necessarily contributing
to a skeleton point s that lies on the same sheet of the
medial axis, as illustrated in Figure 6.

The definition of T (s) ensures that points m associ-
ated with s are lying along the burn path bs ⊂ M reach-
ing the closest border of the medial axis according to
the medial burning time. T (s) therefore measures the
volume associated to all points on the burn path of s
to the shape boundary, see Figure 4. By construction,
each medial point m is associated to a unique skeleton
point s. Taking Delaunay tetrahedra across all m ∈ M
gives the volume of the entire shape, therefore taking
T (s) across all s ∈ C partitions the shape volume into
tetrahedra sets associated to each s ∈ C.

To compute WEDF values along the skeleton, we be-
gin at a skeletal extremity and progress inward. Dur-
ing the skeleton traversal, the WEDF value at a point
is then computed from the value at the previous point:

WEDF(s) = T (s) + WEDFprev (2)

WEDFprev =



0 at extremities;
WEDF(y) if s is a regular point,

and y its neighbor with
computed WEDF;∑

i≥1
WEDF(yi) if s is a junction, and

all neighbors yi but one
y0 have a WEDF value.

Here in equation (2), we define a summed WEDF,
since at a junction s of the curve-skeleton the volume
WEDF(s) is here the sum of values from all incoming
skeleton branches. This differs from the 2D WEDF def-
inition [5], where max values at branch junctions are
taken. We use the summed WEDF because it is neces-
sary to insure its robustness to surface noise. Indeed,
with a 3D max-version of WEDF, small branches of the

skeleton originating from noise would capture the vol-
ume erroneously around them (by catching tetrahedra
volume previously assigned to a main branch) and thus
diminish the WEDF on the global shape. An illustration
of the change in WEDF due to small branches is given
by Figure 7. Conversely, in the summed version the vol-
ume captured by the small branch is still contributing to
the volume of the main branch, and therefore, WEDF
values on main branches are stable.

(a) (b)

(c) (d)

max
WEDF

0

Figure 7: Robustness of the summed WEDF. Two different curve
skeletons for the same 3D shape, one with many branches (a,c) and a
more filtered version with only main branches (b,d).
Top row (a,b): WEDF is computed by taking the max value of in-
coming branches at intersections [6]. we observe a lack of robustness;
the distribution of WEDF is different on the main branches of the two
skeletons. In particular, the branch containing the greatest WEDF
value is not the same.
Bottom row (c,d): our proposed summed WEDF computed by sum-
ming WEDF values of incoming branches at junctions. The distribu-
tion of WEDF remains the same along the main branches of the skele-
tons since the volume counted on small branches also contributes to
the main branch value.

Figure 8 shows a color-coding of the WEDF function
on curve skeletons for 3D objects. When the object and
its curve skeleton have some symmetries, the WEDF re-
mains symmetric. The WEDF value is maximum at a
point whose value is the total volume within the surface
of the object, and then decreases on any path towards
curve skeleton extremities. As in 2D, WEDF along a
skeleton path between two extremities is unimodal.
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max
WEDF

0

Figure 8: WEDF of 3D shapes. Low values are colored in dark blue
high values in dark red. We can see that the WEDF grows slowly
along branches that are surrounded by a limited volume (such as legs,
arms, tail or finger) and grows faster on branches surrounded by an
higher volume (belly or palm for instance).

5. Clustering the skeleton into parts according to
salience

To demonstrate one avenue for application of our
WEDF computation, we use the WEDF values defined
on the skeleton to develop a salience measure for each
point on the surface mesh. Examples of part salience on
some well-known 3D shapes are shown in Section 7.

5.1. Partitioning skeleton points into salience levels

We perform unsupervised clustering on the WEDF
values in order to identify parts at similar salience lev-
els. The clustering we propose is a two-step process,
where the first step determines the main shape of the
skeleton and the second step identifies features with de-
creasing saliency values. For a genus 0 surface mesh,
the skeleton has a tree-like connectivity, where the root
corresponds to the highest 3D WEDF value. Moving
away from the root, the salience values monotonically
decreases along the branches of the skeleton.

Identifying the main shape. We select main skeletal
points as a subset of the skeletal points in two steps.
On the 3D WEDF values, we perform a seeded k-means
clustering with two clusters where the seeds are the min-
imum and the maximum WEDF values of the junction
skeletal points being clustered. We then associate all re-
maining skeleton points to these two clusters based on
their WEDF values. All skeletal points belonging to the

cluster with the centroid of largest WEDF value are se-
lected as the main shape points.

Identifying features. The other 3D WEDF clusters are
determined among those WEDF values of junction
points and neighbors which are not in the main shape
cluster: we again apply a k-means clustering with k in
a given interval (in practice, we take k ∈ {2, 3, ..., 20}).
An estimation of the best number of classes k is given
by gap analysis [42]. Each cluster represents a salience
level relevant for the shape. The level value L is cho-
sen as the median WEDF value of the cluster: larger
3D WEDF values correspond to higher salience levels,
i.e. closest to main shape, while lower values are less
significant, corresponding to lower salience levels.

Clustering skeleton points. The curve skeleton is par-
titioned into clusters according to the clustering of its
3D WEDF values. We thus obtain a partition of the
curve-skeleton into salience levels. Note that any path
on the curve skeleton going from a point belonging to
the main shape to an extremity point will traverse levels
of salience in decreasing order, see Figure 9. This par-
tial ordering of points of the curve skeleton, coherent
with the tree topology of the medial axis, is the basis
for the graded salience-based parts decomposition de-
scribed in the next section.

This process allows cross-parts comparison of
salience for all parts, and is therefore not restricted to
those with junctions: for example, the thumb in the hand
of Figure 9 is identified as a feature even if there is no
junction in the curve skeleton, because its salience level
matches the salience level of the other fingers.

6. Saliency measure for 3D shape surface decompo-
sition and hierarchy

After having decomposed the skeleton into graded
skeletal sub-parts (Fig.1-d), the second step of our
method is transfer the parts decomposition to the
shape’s surface, in order to partition the mesh into
graded parts labeled by their salience (Fig.1-f).

This transfer is a challenging process. A naive
method would map the cluster level of curve skele-
ton points onto medial axis points using the distance
function introduced for the computation of WEDF (see
Equation (1) in Section 4.3). And, since each medial
axis point is the circumcenter of a tetrahedra, assign-
ing the cluster level value to its tetrahedra would di-
rectly lead to a partition of the volume of the shape into
cluster levels (Figure 4). However, it can be observed
that lower level clusters, corresponding to features of
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Figure 9: Decomposition of the curve-skeleton into graded
salience levels, from main shape (dark red) to less significant parts
(dark blue).

max
WEDF

0(a) (b)

Figure 10: The naive tetrahedra clustering (a) and our proposed clus-
tering (b). We can see that the naive clustering gives a decomposition
where sub-parts of lower saliency (like antennae or legs) are indeed
entering into the parent shape of higher salience (here head or body).
The naive tetrahedra clustering is therefore not sufficient.

lower salience, carve holes along the branches inside the
parent shape: Delaunay tetrahedra whose circumcenters
are medial points close to the center of the main shape
may be associated to a curve skeleton point belonging to
a lower level branch (we see this effect on the left image
of Figure 10 where green triangles emerge from inside
the main shape near attachment area of legs).

We therefore propose a two-step process to extend
transfer salience levels from the skeletal points to the
surface, using vertices instead of tetrahedra. We first as-
sign each vertex of the surface a saliency level by con-
sidering all medial points whose tetrahedra contain the
vertex, and then determine a level value for the triangu-
lar faces from the levels of the associated vertices.

6.1. Assigning salience levels to mesh vertices
We start with a surface mesh S and a curve skeleton

C, where each skeletal point s is attributed a salience
level L(s). Each s belongs to a cluster cluster(s), and

its associated level L = L(s), the median of the WEDF
values within the cluster cluster(s). For each mesh ver-
tex v ∈ S , we compute the skeleton point s, which is the
closest to v using the following distance function:

F(v, s) =
d(v, s)
L(s)

(3)

with d(v, s) the Euclidean distance between v and s.
This function warps the space to favor clusters of

higher value: skeleton points belonging to high-level
clusters have an F-distance smaller than the Euclidean
distance to the mesh vertices, while skeleton points be-
longing to clusters with lower value have an F−distance
distance greater then the Euclidean distance to the mesh
vertices. This way, curve-skeleton points belonging to
higher salience-level clusters attract boundary points to
the more significant part in terms of salience (body)
rather than attaching to a less significant feature. See
Fig.10, where mesh vertices are wrongly attached to the
leg using the Euclidean distance (left), but correctly la-
beled with a salience attached to the body (right).

6.2. Assigning salience levels to mesh faces

After this first step of assigning mesh vertices to
salience levels of skeleton points, we label the mesh
faces using the levels assigned to the three vertices be-
longing to a face. If all vertices are assigned to the same
level, we assign the face to this level, that is, the face
salience value is the cluster salience. In salience tran-
sition zones, where vertices of a face are assigned to
different levels, we subdivide the face (1-4 subdivision)
using points linearly interpolated on the three edges ac-
cording to salience levels of the vertices, and assign lev-
els to subregions accordingly. This generates a smooth
transition between parts of the shape belonging to dif-
ferent levels, as shown in the following experiments.

7. Experiments

7.1. Validation

First, Figure 11 shows the partition of different
meshes created by considering each cluster on the skele-
ton as a different part, without grouping by salience
value. Note that the decomposition is coherent, and
when the shape is close to symmetric, the decomposi-
tion preserves this symmetry. Also observe that differ-
ent parts, like the fingers of the hand, or the arms of the
octopus, are well separated (thanks to the topology of
the curve medial axis).

9



Figure 11: Shape segmentations based on our hierarchical decompo-
sition; here each connected cluster on the curve skeleton generates a
different part of the mesh partition.

In Figure 12, we have now grouped parts according to
salience, so each part with the same color has been de-
termined to be at the same salience level. Moreover, be-
cause the skeleton has a tree structure, the salience lev-
els are monotonically decreasing from the main shape
to the extremities of the shape, leading to a graded par-
tition into subparts. We can see in all these results that
the core of the shape is well-centered, while shape de-
tails are localized at extremities. Also, the shape parts
that are similar (legs, fins or antennas) are assigned to
the same hierarchy level. The proposed segmentation
then gives not only a partition of the shape, but also as-
signs a level of salience to each feature that is global on
the shape, and known to be consistent with perception
in 2D [5, 33].

7.2. Robustness of the graded partition
We also recall that the proposed graded segmenta-

tion is robust. First, computing the salience level on
the curve skeleton reduces the instability of the medial
axis to boundary noise. A curve skeleton may have a
lot of small branches, or be simplified. We have seen in
Figure 7 that the proposed computation of WEDF (sum-
ming the incoming values at junctions) provides stable
WEDF values on the main branches, and thus insures a
consistent segmentation.

(a) (b)

(c) (d)

(e) (f)

max
WEDF

0

Figure 12: Shape decompositions on several shapes, with saliency-
based partial ordering of the extracted sub-parts. The color of a part
represents its centroid value. The main shape is often centered
in the shape (a,b,c,e,f) or located at the part with greatest volume
(d). Details and part of lowest saliency are at the extremities of
the shapes (wings, ears, legs, fingers). While (a) and (e) are being
decomposed in four levels, (b) is cut in three levels and (c), (d)
and (f) only need two levels. Note the capacity of our approach
to model shape with a medial axis close to the curve skeleton (e)
but also shapes with no tubular parts (f) having a two dimensional
medial sheet.

We also experiment with different curve skeletons as
input. Curve skeletons are not uniquely defined for 3D
objects, and the computation of a curve skeleton is not
part of our work. Even though our method works suc-
cessfully for different curve skeleton types, the qual-
ity of the curve skeleton plays an important role, see
Fig. 13. A good curve skeleton is well-centered and
captures all small protrusions with branches associated
to each feature (left) whereas a coarser skeleton leads to
a coarser graded decomposition (right).

Figure 14 shows that our segmentation is naturally
stable under constant volume shape deformation, since
the WEDF measure generating the salience levels is vol-
umetric. In other words, the salience levels stay consis-
tent as moving parts articulate. The coloring between
the two human figures remains consistent for the legs
and arms, with only slight changes on the shoulders.
Similarly, in Figure 15 the decomposition is very con-
sistent across the different poses (a) to (d).
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(c) (d)

Figure 13: Comparison between two segmentations (a,b) using dif-
ferent curve skeletons (c,d). The (a) decomposition uses the skeleton
from [32], which is better centered and which correctly captures small
protrusions (such as ears), while the first decomposition (b), uses the
mean curvature skeleton (d) from [38], and is neither well-centered
(see the tail) nor capturing correctly the small protrusions (such as
ears). The (a) segmentation gives better results as small protrusions
create smaller parts and as parts (legs, tail) are more finely cut, con-
firming our preference for the skeleton (c).

8. Discussion and conclusion

We have produced a graded, salience-based parts par-
tition from a importance measure on a curve skeleton
of the shape integrating local PCA-like representation
of a shape on the skeleton. Our method determines a
level of relative importance for each sub-part, and la-
bels features of the same salience level as belonging to
a group with the same perceptual importance. More-
over, because the decomposition respects the topology
of the skeleton, it produces a parent-child relationship
between parts in a given shape. At the highest level, the
main shape contains the barycenter of the shape. Mov-
ing away from the center, parts decrease in salience as
a parent level gives way to a child. For genus 0 shapes,
having a skeleton with tree structure, the parent of each
part will be unique. As a result, the connectivity pro-
duced by the skeleton allows for ordered parts relation-
ships in a way that connectivity induced by cluster ad-
jacency computed directly on the surface does not: for
example, the ears of the horse on Fig. 12 have two adja-
cent regions on the head, themselves neighbors, which
would lead to a triangle connection (loop) between the
three adjacent regions when using surface connectivity:
skeletal connectivity results in two ears each connected

max
WEDF

0

Figure 14: Stability of the segmentation relative to pose variation
without change of topology.

to a head. Thus our decomposition is enriched by both
a topological relationship between subparts, and an im-
portance value attached to each subpart.

While our decomposition has consistent results on
different curve skeletons, it still depends on the quality
of the curve skeleton used to capture the shape. Indeed,
as shown in Figs. 3 and 13, the results may vary depend-
ing on the skeleton’s geometry and topology. However,
for volume preserving deformation, the proposed de-
composition is robust and gives a consistent labeling of
the shape parts as long as the topology is preserved. As
expected, the generalization of WEDF to 3D leads to an
analysis of the shape that seems consistent with percep-
tion, as shown in 2D in [5, 33]. Future work will include
a user study to confirm the perceptual coherence.

In future work, we also plan to extend the present
work in order to analyze the similarity between seg-
mented parts belonging to the same salience level, by
using for example a combination of PCA-like measures
on the skeleton. This would enable to produce inputs to
recent methods, such as SimSelect [4] or Pattern-Driven
Colorization [43], where the user is required to annotate
candidate similarities by hand.

Like in the 2D setting [33], our decomposition and
salience could be validated by a user study asking to
differentiate the different parts of a 3D object and tag the
main shape, and the importance of each different part.
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