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Abstract. Dynamic Time Warping (DTW) is a very popular similarity
measure used for time series classification, retrieval or clustering. DTW is,
however, a costly measure, and its application on numerous and/or very
long time series is difficult in practice. This paper proposes a new approach
for time series retrieval: time series are embedded into another space
where the search procedure is less computationally demanding, while still
accurate. This approach is based on transforming time series into high-
dimensional vectors using DTW-preserving shapelets. That transform
is such that the relative distance between the vectors in the Euclidean
transformed space well reflects the corresponding DTW measurements
in the original space. We also propose strategies for selecting a subset
of shapelets in the transformed space, resulting in a trade-off between
the complexity of the transformation and the accuracy of the retrieval.
Experimental results using the well known UCR time series demonstrate
the importance of this trade-off.

1 Introduction

Time series data is massively produced 24*7 by millions of users, worldwide, in
domains such as finance, agronomy, health, earth monitoring, weather forecasting,
multimedia, etc. Due to the advances in sensor technology and its proliferation,
applications may produce millions to trillions of time series per day, making time
series data-mining further challenging.

Most time series data-mining algorithms rely on the Dynamic Time Warping
(DTW) [16] measure at their core, which proves to return high-quality results,
but which is also very costly to compute [3]. Many researchers have attempted to
reduce its cost in order to run it at scale. Numerous mart optimizations, diverse
lower bounds and other techniques have been applied [4], however, the quest for
processing extremely large collections of time series is still active.

This paper focuses on the task of time series retrieval according to the DTW
measure. The classical scenario for this task is the following: let 𝜏 be a test time
series (query), retrieval is about finding a time series in a dataset 𝒯 which is the
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closest one to 𝜏 with respect to the DTW measure. In other words, it is finding
𝑇 *, such that:

𝑇 * = arg min
𝑇𝑖∈𝒯

𝐷𝑇𝑊 (𝜏, 𝑇𝑖) (1)

A traditional way to identify 𝑇 * relies on the brute force DTW computation
between 𝜏 and all series of 𝒯 . This approach is not tractable when dealing with
long time series or huge data sets. Hence, approximated methods are preferred,
aiming at reducing the retrieval costs while being as accurate as possible.

We propose here an approximate time series retrieval approach based on the
shapelet transform. The basic idea of the proposed approach is to transform the
time series of the dataset into vectorial representations such that a Euclidean
search can then be efficiently applied to retrieve the nearest neighbour of the
transformed query. Of course, the transformation needs to be carefully designed
so that the approximate search is accurate enough. Another crucial point is
related to the computing cost of the transformation. At test time, the query
needs to be first transformed before being compared with transformed time series
of the dataset. Hence, the transformation should not be too costly.

In this paper, DTW-preserving shapelets [11] are used to transform time series
to a vectorial representation. This transform is such that the relative Euclidean
distance in the transformed space well reflects the original DTW measurements.
They are hence well adapted to our task. Transforming time series has a cost, but
it can be traded-off against the accuracy of the retrieval by selecting a varying
number of shapelets for computing the vectorial representations. Three shapelet
selection strategies are proposed in this paper.

In addition, we propose a shapelet selection procedure in order to identify
and rank shapelets that are more suited to the retrieval task (via a dedicated
measure). This step has two purposes: reducing the number of shapelet for the
transformation of the query (to save computing time), while keeping a good
trade-off with accuracy of the retrieval.

The remainder of this paper is organized as follows: Section 2 presents
related work. The proposed Learning DTW-Preserving Shapelet Retrieval (DPSR)
method is presented in Section 3. Section 4 presents experimental results and
conclusions and future work are presented in Section 5.

2 Related work

Various similarity measures have been used for time series retrieval, and excellent
surveys provide a good coverage of their pros and cons [4,20]. In a nutshell, the
straightforward Euclidean distance is not robust to distortions and time shifts,
and is hence not very appropriate for time series. Approaches based on the DTW
are much preferred because it is able to find the optimal alignment between two
given time series, thus coping with local distortions along the time-line. DTW,
however, is costly to calculate because of its quadratic time complexity.

Several approaches have therefore been proposed in order to speed up the
computation of DTW, including restricting to the diagonal of the distance
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matrix [7, 16] or the design of lower bounds. The most popular lower bound
is the LB_Keogh lower bound (LB_Keogh) [8]. It first needs to rescale each
time series to the same length and then it builds their envelopes by accounting
for their maximum and minimum values inside a sliding window. The distance
between two time series returned by LB_Keogh corresponds to the areas of
their envelopes that do not overlap. In [14], Rakthanmanon et al. proposed the
UCR Suite framework which includes several acceleration approaches that can
be combined in order to index time series under the DTW measure. Recently,
Tan et al. in [18] proposed an adaptation of Priority Search K-means to index
time series embedded in a space induced by DTW. Interested readers should read
three comprehensive reviews [3,4, 13].

The Piecewise Aggregate Approximation (PAA) [9, 22] has been used to
build iSAX [17], one of the most famous time series indexing system. PAA
is a transformation that divides time series into smaller pieces and create an
approximation of each piece. This transformation is at the core of iSAX, which
was shown to be very accurate and fast for retrieving time series. However, it is
based on the euclidean distance and not the DTW.

We propose a retrieval scheme based on a transformation preserving the DTW.
This transformation makes use of shapelets. Shapelets were introduced by Ye
and Keogh in [21] for time series classification. The underlying intuition behind
shapelets is that time series belonging to one class are likely to share some common
subsequences. Shapelets were therefore originally defined as existing subsequences
of time series that best discriminate classes. Hills et al. then build on the idea of
shapelets by proposing the Shapelet Transform [6]. In this approach, each time
series is transformed into a vector whose components represent the distances
between the time series and the shapelets. Transforming a time series into its
vectorial representation requires to slide each shapelet against that time series in
order to find the best matching locations and then compute the corresponding
distances. The cost of shapelet transform is therefore highly dependant on the
number of shapelets that are used to create vectorial representations. Instead of
using existing subsequences as shapelets, Grabocka et al. in [5] propose to rather
forge the shapelets by learning the subsequences that minimize a classification
loss. Shapelets have also been used for unsupervised tasks and not only for
classification. In [11], Lods et al. learn shapelets such that the resulting vectorial
representation preserves as well as possible the DTW distance between raw time
series, targeting time series clustering. In [23], Zakaria et al. extract the shapelets
dividing the set of time series into well separated groups.

3 Time series retrieval with DTW-preserving shapelets

In this section, we detail our approach for time series retrieval under DTW.
This approach builds on (i) the shapelet transform paradigm and (ii) the DTW-
preserving shapelets that are proposed in [11]. We first quickly review these
building blocks before presenting the design of our retrieval scheme.
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3.1 Background on shapelets and shapelet transform

A shapelet 𝑆 = 𝑠1, . . . , 𝑠𝑙 is a temporal sequence (that can be extracted from
existing time series, or learned). The distance between 𝑆 and a time series
𝑇 = 𝑡1, . . . , 𝑡𝐿 is defined as:

𝑑(𝑇, 𝑆) = min
1≤𝑗≤𝐿−𝑙+1

⎯⎸⎸⎷ 𝑙∑︁
𝑖=1

(𝑠𝑖 − 𝑡𝑖+𝑗−1)2 (2)

In other words, Euclidean distances between 𝑆 and every subsequence of 𝑇 (of
length 𝑙) are computed and only the best match (minimum distance) is kept.
The shapelet transform of a time series was proposed in [6] for time series
classification. It is a two step process: (i) selecting an appropriate set of shapelets
𝒮 = {𝑆1, . . . , 𝑆𝐾} and (ii) transforming time series into Euclidean vectors. During
the second step, each time series 𝑇 is transformed into a vector 𝑣1, . . . , 𝑣𝐾 such
that 𝑣𝑖 = 𝑑(𝑇, 𝑆𝑖), 1 ≤ 𝑖 ≤ 𝐾, where 𝑆1, . . . , 𝑆𝐾 are the shapelets that were
selected during the first step. The dimensions of 𝑣 represent the distance between
𝑇 and the shapelets of 𝒮. Such representations of time series are then used to
feed a classifier, when the targeted application is classification.

3.2 Learning DTW-preserving shapelets

In [11], Lods et al. propose to learn a set of shapelets such that the shapelet-
transform representation preserves as well as possible the original DTW measure.
The shapelets are learned such that Euclidean distance in the transformed space
approximates the DTW. Such shapelets can hence be used for unsupervised tasks,
that is, where no labels are available.

The approach proposed by Lods et al. relies on minimizing the loss:

ℒ(𝑇𝑖, 𝑇𝑗) = 1
2

(︀
DTW(𝑇𝑖, 𝑇𝑗) − 𝛽

⃦⃦
𝑇 𝑖 − 𝑇 𝑗

⃦⃦
2

)︀2
, (3)

where 𝛽 is a scale parameter, learned. The overall loss for a dataset 𝒯 of 𝑁 time
series is given by:

ℒ(𝒯 ) = 2
𝑁(𝑁 − 1)

𝑁∑︁
𝑖=1

𝑁−1∑︁
𝑗=𝑖+1

ℒ(𝑇𝑖, 𝑇𝑗). (4)

The minimization of this loss is done via a stochastic gradient descent with
respect to 𝛽 and 𝒮. Once the shapelets and the parameter 𝛽 are learned, they
can be used to transform every time series in a Euclidean vector.

3.3 Transforming times series for retrieval under DTW

In this paper, we propose a retrieval scheme based on transforming time series
into high-dimensional vectors. Its offline step transforms all time series of the data
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set into their vectorial representation, as explained above. Its online step uses a
query to probe the dataset. To do so, the vectorial representation of the query is
first determined. Then, Euclidean distances to the transformed times series of
the dataset are computed. This results in a list of transformed time series that
are ranked according to their proximity to the transformed query. The nature
of the transformation that is using DTW-preserving shapelets is such that this
ranking in the transformed space is an approximation of the ranking that would
be produced in the original space according to the DTW measure. However, this
approximate ranking is obtained much faster, as Euclidean measurements are
cheaper to obtain compared to DTW measurements.

Two ways to process that ranked list of time series in the transformed space
can be designed: (a) the original time series associated to the top-ranked in this
list is considered to be the nearest neighbour of the query, or (b) the true DTW
is computed between the original untransformed query and the original version
of the first few elements of that list in order to refine the search. (a) puts a lot of
pressure on the quality of the shapelet transform because the nearest time series
under DTW has also to be the closest in the Euclidean space, and this for any
time series in the dataset and any query. Odds of degrading quality in comparison
to what the true DTW would determine are high, but this method is extremely
fast. In contrast, (b) is more demanding because more DTW are computed, but
it is also returns better quality results as more time series are scrutinized. In this
case, it matters that the closest time series under DTW belongs to these first
few elements, instead of being ranked first.

Overall, two properties are important for an approximate retrieval scheme:
(i) the complexity of the transformation should be small to reduce the overhead
induced by transforming the query and (ii) the true nearest neighbour has to
be as close as possible to the first element of the list of approximate nearest
neighbours. In other words, the transformation should preserve the ranking.

The retrieval scheme proposed in this paper focuses on these two important
properties. The use of DTW-preserving shapelets ensures that the Euclidean
search in the transformed space mimics the search in the original space.

3.4 Ranking and selecting shapelets

The transformation of the query before searching in the transformed space is
costly. Indeed, the computation of one coordinate of the transformed vector
requires sliding a shapelet over the query 𝜏 and finding the best match. It is a
costly operation for long time series and when the number of learned shapelets is
high. We hence focus in this section on selecting and ranking a subset of shapelets
most suited to the retrieval task.

General considerations about high-dimensional representations suggest that
components of vectors might not all be equally useful. This well known observation
led to designing dimensionality reduction methods performing feature selection.
Feature selection algorithms typically use (i) an evaluation metric to compare
different feature subsets, (ii) a strategy for building consecutive subsets and (iii)
a stopping criterion [1, 10, 12, 15]. The characteristics that we use to design our
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shapelet selection algorithm are described hereafter. Selecting a few appropriate
shapelets saves computations at transform time without degrading significantly
the quality of the approximation. Algorithm 1 is the corresponding pseudo-code.

Evaluation metric to compare shapelet subsets To compare the perfor-
mance of different shapelet subsets, we need a groundtruth based on the true
DTW between time series. To build that groundtruth, the DTW between all
time series pairs in the training set is computed and we record for each time
series the identifier of its nearest-neighbour. This is done once only, off-line.

We use a 10-fold validation setup in order to evaluate the performance of a
subset. For one transformed time series in the validation set (query), we rank
all the transformed time series in the training set according to their Euclidean
distance to the query. It is therefore possible to determine at which rank the true
1-nearest neighbor time series is. Repeating this operation for all the validation
time series and for all the folds amounts to building an histogram of the rank at
which the true nearest-neighbour appear. This histogram can also be interpreted
as the empirical probability of observing the true 1-nearest neighbor time series
at any particular rank after the transform. This histogram can therefore be
considered to be a probability density function (after a proper normalization
though). From this PDF, it is straightforward to construct its natural counterpart
which is the CDF, the cumulative distribution function, and to compute the
associated area under the curve (AUC). We consider this AUC value as the
performance measure to evaluate the quality of a shapelet subset. The higher
that AUC, the better the shapelet subset. This metric is well adapted to the
task of nearest-neighbour retrieval as it favors high ranking of the true nearest
neighbor in the approximated list.

Shapelet subset selection To select the best subset of shapelets, an exhaustive
selection method can be applied. However, in this case, the computational cost
is prohibitively high. We have chosen a greedy-based forward selection method,
that is classically used in the feature selection domain.

Our procedure to select the best shapelet subset begins with an empty list.
Then it iteratively adds shapelets that best improve the quality of the subset (by
measuring the resulting AUC), one by one, until a stopping criterion is met (the
different stopping criterion we used are described in the following).

Stopping criterion We define three different stopping criterion, that determine
when to stop adding shapelets to the current set of selected shapelets:
1. Global maximum (𝐷𝑃𝑆𝑅𝑔): Shapelets are added one by one until no more

shapelets are available. At the end, the subset that leads to the best overall
AUC is selected.

2. 𝑡𝑎𝑛(𝑥) < 1 (𝐷𝑃𝑆𝑅𝑡): We compute the normalized slope between the AUC
value of the current selected subset and the one obtained by adding the
shapelet that best improves the AUC. If this slope is less than 1, then the
shapelet selection is stopped.
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3. Local maximum (𝐷𝑃𝑆𝑅𝑙): The shapelet selection is stopped as soon as
adding a shapelet does not improve the AUC value.

Algorithm 1 Shapelet ranking and selection
1: input: 𝒮 {Set of learned shapelets}, 𝒯 {Time series train set}
2: output: 𝒮𝑠 {Ranked list of selected shapelets}
3: 𝒮𝑎 ← 𝒮 {Shapelets available to evaluate, initially all}
4: 𝒮𝑠 ← ∅ {Shapelets selected, initially empty}
5: 𝑠𝑡𝑜𝑝← FALSE
6: repeat
7: 𝑠𝑐𝑜𝑟𝑒𝑏 ← −1
8: for all 𝑆 ∈ 𝒮𝑎 do
9: 𝒮𝑡 ← 𝒮𝑠 ∪ 𝑆, 𝑠𝑐𝑜𝑟𝑒← AUC value of the set 𝒮𝑡

10: if 𝑠𝑐𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑏 then 𝑠𝑐𝑜𝑟𝑒𝑏 ← 𝑠𝑐𝑜𝑟𝑒, 𝑆𝑏 ← 𝑆
11: end for
12: 𝒮𝑠 ← 𝒮𝑠 ∪ 𝑆𝑏, 𝒮𝑎 ← 𝒮𝑎 ∖ 𝑆𝑏

13: if Stopping criterion is met then 𝑠𝑡𝑜𝑝← TRUE
14: until 𝑠𝑡𝑜𝑝 = TRUE

Figure 1 shows the AUC values at each iteration of the shapelet selection algorithm
on the Ham dataset (from the UCR-UEA archive [2]). For this dataset, it has
been learned 170 shapelets using Lods et al. approach (𝐷𝑃𝑆𝑅𝑓 ). We can see
on this figure the impact of the 3 different criteria. If the tangent criterion
(𝐷𝑃𝑆𝑅𝑡) is used, then the selection process would end with 7 shapelets (Fig. 1b,
which zooms on the first 30 dimensions), while 27 would be selected by the local
maximum criterion (𝐷𝑃𝑆𝑅𝑙) and 103 by the global maximum one (𝐷𝑃𝑆𝑅𝑔).
Note that for the global maximum criterion the selection process cannot be
stopped before having ranked and selected all shapelets one by one, contrary to
the two other criteria for which the process can be stopped as soon as the criterion
is reached. We illustrate in the experiments the trade-off between dimensionality
and accuracy induced by these criteria.

4 Experiments

This section presents an experimental evaluation of our DPSR approach. The
trade-off between accuracy and computation complexity is discussed. Performance
of DPSR is compared to Piecewise Aggregate Approximation (PAA) [9,22] and
LB_Keogh lower bound (LB_Keogh) [8]. We start with our experimental setup.

4.1 Experimental setup

We consider the 85 datasets from the well known UCR-UEA Time Series
Archive [2]. For all these datasets, we use test sets series as queries.
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Fig. 1: (a) Impact of the three different stopping criterion in terms of number of
selected shapelets for the Ham dataset. (b) Zoom on the first dimensions of (a).

Before running any experiment, we built a full DTW-based groundtruth. The
true DTW measurements between all time series pairs in each of the 85 families
are determined. From these measurements, it is straightforward to derive the
nearest-neighbour of each time series.

The feature selection algorithm for DTW-preserving Shapelets that is pre-
sented in this paper is evaluated against two solid competitors that are (i) the
LB_Keogh lower-bound used to accelerate the computation of the true DTW
(used in the UCR Suite framework) and (ii) the PAA approach (on which iSAX
is based).

Our experiments are performed on a 24-core 2.8 GHz Intel Xeon ES-2630 with
64 GB of memory. All algorithms and structures are implemented in Python3,
Cython and NumPy. Although the machine has 24 cores, the only operations
using parallelism are the distance computations handled by NumPy during the
course of each experiment – no other parallelism is enforced. The tslearn [19]
toolkit was used for the computation of PAA and LB_Keogh.

For each family in the UCR archive, a set of DTW-preserving shapelets is
learned using the algorithm proposed in [11], with default parameters. To learn
high-quality shapelets, 500,000 iterations of the gradient descent algorithm are
performed. In addition, two sets of shapelets are learned for each family of time
series, and the one with the smallest overall loss is selected.

4.2 Dimensionality versus accuracy: reaching a plateau

This first experiment aims at comparing the performance of PAA and DPSR for
time series retrieval. This comparison is performed in terms of trade-off between
AUC and the dimensionality of the transformation. Transformations range from
very rough approximations (few shapelets, few pieces for PAA) to finer grain
representations. For consistency, we compared PAA and DPSR for the same
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Fig.2: Comparing DPSR and PAA for two specific time series. The ability
to retrieve the correct time series from the groundtruth is represented by the
resulting AUC.

Dimensionality 5 10 20 30
# DPSR wins 70 69 73 72
# PAA wins 15 16 12 13

Average AUC for PAA 0.838 0.847 0.844 0.841
Average AUC for DPSR 0.906 0.921 0.929 0.932

Table 1: Comparing DPSR and PAA for the full UCR Archive at different
dimensionalities. Number of times each method outperforms the other in terms
of AUC is reported together with the average AUC values over the 85 datasets.

dimensionality. Figure 2 illustrates the resulting AUC values for two specific data
sets, Gun_Point and Beef. With Gun_Point, DPSR outperforms PAA for all
dimensionalities. The results for Beef are more contrasted: when the time series
is split into more than 5 pieces, PAA outperforms the shapelet based approach.
Please note that these figures show quality measures for the first 30 dimensions
only. Considering more than 30 dimensions does not provide any useful extra
information for these datasets.

Table 1 compiles the comparison of PAA and the approach based on DPSR for
all 85 time series by counting the number of times each method performs better
than the other, for dimensionalities 5, 10, 20 and 30. We also report the average
AUC values at these dimensionalities for the two different approaches. Overall,
this table shows that DPSR consistently outperforms PAA for all dimensionalities.
We can also observe that both methods seem to reach an AUC plateau, sooner
for PAA than it is for DPSR.

For DPSR, this plateau highlights the importance of selecting shapelets. It
indicates that the original approach by Lods et al. creates far too many shapelets,
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DPSR𝑡 DPSR𝑙 DPSR𝑔 DPSR𝑓

Avg. AUC 0.906 0.928 0.935 0.934
Avg. Dim. 4.4 27.3 54.0 156.1

Table 2: Average AUC and dimensionalities for feature subset selection strategies.

and that a lot of them do not contribute significantly to enhancing the resulting
vectorial representation. Generating so many shapelets is wasting computing
resources at transform time because many shapelets have to be slid, some in
pure waste. This is particularly important at query time, as reducing the cost of
transforming the query time series is paramount.

4.3 Shapelet selection strategies for DPSR

In Section 3.4, three strategies for stopping aggregating selected features were
presented. We now evaluate their effectiveness, which is a trade-off between their
accuracy in terms of AUC and the transformation cost they cause. Typically,
small subsets allow for very fast transforms (just a few shapelets need to be
slid at test time) but quality is typically low, whereas in contrast larger subsets
improves AUC performance but cause more expensive transform operations.

To observe this trade-off, we selected by cross-validation on the training
sets of each dataset the best shapelet subset for the three different stopping
criterion. We then used these subsets at test time for approximate retrieval. The
AUC performance of the three stopping strategies has been computed on the 85
considered datasets. The average AUC value is given in Table 2, together with
the average number of selected shapelets. The last column of Table 2 (DPSR𝑓 )
corresponds to the case where no shapelet selection is performed (i. e., the whole
shapelet set learned beforehand is used).

We can observe that the three proposed criteria generate a trade off between
accuracy of the retrieval (AUC) and computational time of the transform (linear
with the number of shapelets). DPSR𝑡, the most aggressive strategy, selects very
few shapelets (a little bit more than 4, on average) for an average AUC of 0.906.
DPSR𝑔, the most conservative strategy uses on average 54 shapelets, but the
corresponding quality improvement is quite small: it goes from 0.906 to 0.935.
This is a clear illustration of the trade off, also exemplified by the DPSR𝑙 strategy,
which is in between these two strategies.

We can also observe the importance of the feature selection itself: when no
selection is made (DPSR𝑓 ), the average AUC is slightly lower than for DPSR𝑔

and the corresponding average number of shapelets used is almost tripled.

4.4 Feature selection versus constrained feature learning

The previous experiment demonstrated that only a small fraction of the learned
shapelets are truly useful because they significantly contribute to the quality of
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DPSR vs. PAA DPSR vs. LB_Keogh
# wins for DPSR # wins for PAA # wins for DPSR # wins for LB_Keogh

DPSR𝑡 54 31 33 52
DPSR𝑙 63 22 62 23
DPSR𝑔 70 15 64 21

Table 3: Comparing DPSR, PAA and LB_Keogh with their best parameters
(learned by cross-validation). We report here the number of times each method
outperforms the other in terms of AUC.

the retrieval. We show here that it is the combination of the learning stage and
the feature selection strategy that leads to such behaviour. For that purpose, we
compare the AUC performance of the proposed retrieval scheme (DPSR𝑡 and
DPSR𝑙) with a method where the same number of shapelets is directly learned
using the algorithm presented in [11].

We used the previous experiment to record for each dataset how many
shapelets the DPSR𝑡 and DPSR𝑙 selected. Then, we ran the shapelet learning
algorithm of [11] using that number of shapelets (for each dataset and for each
DPSR strategy). We know from the previous experiments that the average AUC
for DPSR𝑡 over all the datasets is 0.906, with using 4.4 shapelets on average.
When directly learning that same number of shapelets, then the average AUC
over all datasets is 0.866. Furthermore, considering individually the 85 families
of time series, the DPSR𝑡 strategy performs better than the one directly learning
the appropriate number of shapelets in 74 cases (out of 85). Same conclusions
can be drawn with DPSR𝑙. The average AUC of DPSR𝑙 is 0.928, whereas the
AUC obtained when directly learning the same number of shapelets is equal to
0.905. The DPSR𝑙 strategy wins 71 times out of 85 in that case.

These results indicate that it is worth spending more time offline to learn a
huge set of shapelets and then selecting the more appropriate. This is better than
trying to save computational time by learning less shapelets. Also, our feature
selection strategy allows to decide on the number of shapelets in a data driven
fashion, contrary to a purely heuristic approach.

4.5 Comparing methods at their best

In this experiment, we compare the respective performance of DPSR, PAA and
LB_Keogh when their parameters (number of segments for PAA, subset of
shapelets for DPSR and window length for LB_Keogh) are cross-validated on the
train set. The results comparing the performance of (i) DPSR and PAA methods
and (ii) DPSR and LB_Keogh are given in the Table 3. This table gives the
number of times each method wins over the other. Overall, DPSR outperforms
PAA even for the DPSR𝑡 criterion. Interestingly, comparing the dimensionalities
when DPSR or PAA are winning provides insightful results. Consider for example
the DPSR𝑡 strategy. That strategy wins over PAA 54 times. Among these 54
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Fig.3: Average Search Times for two specific time series and for the full UCR
Archive. Varying dimensionality.

wins, in 45 cases, DPSR needs fewer dimensions than PAA. It means that in 9
cases, DPSR needs more dimensions than PAA to provide better results. The dual
point of view is also insightful: PAA outperforms the DPSR𝑡 method in 31 cases,
but all PAA transformations need more pieces than DPSR𝑡. Not only DPSR wins
more frequently than PAA, but when it wins, it is with shorter representations.
This is also true for DPSR𝑙 and DPSR𝑔. The average AUC value for PAA is equal
to 0.866 which is worse than the average AUC value of the 3 DPSR approaches.
Against LB_Keogh, DPSR is only worse for the DPSR𝑡 criterion which leads to
a very small representation. The average value of AUC for LB_Keogh is 0.908.
It is better than DPSR𝑡, but not than DPSR𝑙 and DPSR𝑔.

An important observation is that, unlike LB_Keogh and PAA, DPSR allows
comparison between time series of different lengths.

4.6 Search costs

So far, only quality comparisons have been done. We observe now the compu-
tational costs of the approaches discussed here. Additional experiments were
performed for recording search times when the dimensionality of the representa-
tions for DPSR and PAA gradually increase. Search times for Gun_Point and
Beef are plot on Figure 3 (the plots show only results for their first 60 dimensions),
and the average search times for the full UCR archive is on Figure 3c.

These figures also show the time it takes to compute only the envelopes of time
series for LB_Keogh. That process, coupling LB_Keogh and DTW is guaranteed
to find the same time series as the one indicated in the groundtruth. The quality
of any approximate search scheme can only be equal or lower. But the time for
solely computing the LB_Keogh value on all time series is the absolute minimal
cost the real LB_Keogh+DTW could have.

These figures show that the time for computing envelopes with LB_Keogh
is fixed, which is normal. They also show that PAA is the fastest approach. Its
underlying principles are simple and cause light computations, the search times
increasing slightly with the dimensionality. The time taken per search for DPSR is
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also increasing with the number of dimensions: there are more and more shapelets
to slide, and distance computations are more demanding. Three remarkable signs
are placed on the search time plot for the DPSR approach. They refer to the
search times observed when the number of shapelets in use correspond to what
DPSR𝑡, DPSR𝑙 and DPSR𝑔 determined.

5 Conclusions and future work

In this work, we have presented an approach for time series retrieval based on
learning DTW-preserving shapelets (DPSR). This approach first transforms time
series into high dimensional vectors such that the Euclidean distance between
the vectors in the transformed space well reflects the DTW measurements in
the original space. This targets preserving the quality of time series retrieval
compared to the DTW. Relying on Euclidean distances is more efficient than
computing the costly DTW measures. This targets computational efficiency,
facilitating time series retrieval at scale.

In order to cope with with larger scales, we also propose different shapelet
selection strategies to trade complexity of the retrieval against accuracy. Even
the most aggressive strategy (that select very few shapelets) provides reasonable
accuracy. Experimental results show the importance of this feature selection.

This work is a first step into the design of a time series indexing system. At
very large scale, the many high dimensional vectors representing time series could
be inserted into an index, avoiding the exhaustive Euclidean distance calculations,
further improving performance. Such an approach can be advantageously used
for anytime indexing of time series.
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