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DDFV method for Navier-Stokes problem with outflow
boundary conditions

Thierry Goudon, Stella Krell, Giulia Lissoni

Abstract

We propose a Discrete Duality Finite Volume scheme (DDFV for short) for the unsteady incom-
pressible Navier-Stokes problem with outflow boundary conditions. As in the continuous case, those
conditions are derived from a weak formulation of the equations and they provide an energy estimate
of the solution. We prove wellposedness of the scheme and a discrete energy estimate. Finally we
perform some numerical tests simulating the flow behind a cylinder inside a long channel to show the
robustness of such conditions in the DDFV framework.

1 Introduction

The problem we are interested in is the computation of a flow whose velocity is prescribed at one part of
the boundary and it flows freely on the other one. In this framework, we are often required to truncate
the physical domain to obtain a reduced computational domain, either because we want to save compu-
tational ressources or because the physical domain is unbounded.

The aim of this paper is to design and analyze a finite volume approximation of the 2D unsteady incom-
pressible Navier-Stokes problem:

∂tu + (u · ∇)u− div(σ(u, p)) = 0; in ΩT = Ω× [0, T ]

div(u) = 0 in ΩT ,

u = g1 on Γ1 × (0, T ),

σ(u, p) · ~n +
1

2
(u · ~n)−(u− uref ) = σref · ~n on Γ2 × (0, T ),

u(0) = uinit in Ω

(1)

with 0 < T < ∞, Ω an open bounded polygonal domain of R2, whose boundary is ∂Ω = Γ1 ∪ Γ2 and
whose outern normal is ~n, uinit ∈ (L∞(Ω))2, g1 ∈ (H

1
2 (∂Ω))2 and where u : ΩT → R2 is the velocity,

p : ΩT → R is the pressure and σ(u, p) =
2

Re
Du − pId is the stress tensor, with Re > 0. In particular,

the strain rate tensor is defined by the symmetric part of the velocity gradient Du =
1

2
(∇u + t∇u).

On the physical part of the boundary Γ1 we impose Dirichlet boundary conditions. On the "non-physical"
part, Γ2, we impose the artificial boundary condition

σ(u, p) · ~n +
1

2
(u · ~n)−(u− uref ) = σref · ~n (2)

that was first introduced in [10] and then further studied in [9] and [4]. We use the notation (a)− =
−min(a, 0). In order to build it, we need to choose some reference flow uref , which is any uref ∈ (H1(Ω))2

such that uref = g1 on Γ1, chosen so as to be a reasonable approximation of the expected flow near Γ2,
and a reference stress tensor σref such that σref ·~n ∈ (H−

1
2 (Ω))2. This nonlinear condition is physically

meaningful: if the flow is outward, we impose the constraint coming from the selected reference flow; if
it is inward, we need to control the increase of energy, so we add a term that is quadratic with respect
to velocity. Other techniques to model artificial boundaries have been studied during the years. For
instance, in [16] an artificial boundary condition is designed for the Navier-Stokes equations under the
hypothesis of small viscosity. The method consists into the approximation of the transparent boundary
conditions, since they are non-local. The technique was then generalized to parabolic perturbations of
hyperbolic systems in [15] and to compressible flows in [21]. We choose to work with the condition (2)
of [10] since it is defined locally and it does not add hypothesis on the viscosity. It has been derived by
a particular weak formulation of Navier-Stokes equation that ensures an energy estimate: we would like
to reproduce the same property at a discrete level with the DDFV formalism.

1



The DDFV method has been developed to approximate anisotropic diffusion problems on general meshes.
More precisely, it has been first introduced and studied in [1, 12] to approximate the Laplace equation
with Dirichlet boundary conditions or homogeneous Neumann boundary conditions on a large class of 2D
meshes including non-conformal and distorted meshes. Such schemes require unknowns on both vertices
and centers of primal control volumes and allow us to build two-dimensional discrete gradient and diver-
gence operators being in duality in a discrete sense. The DDFV scheme is extended in [1] to the case of
the approximation of solutions to general linear and nonlinear elliptic problems with non homogeneous
Dirichlet boundary conditions, including the case of anisotropic elliptic problems.

The analysis of problem (1) is done in [9] and [3] from the continuous point of view and simulations
are performed in [10] by the use of Finite Differences schemes in the case of cartesian meshes. Thanks to
DDFV method, we are able to reproduce those simulations by extending to the case of general meshes and
to make a complete analysis of the discrete problem, perspective that was never addressed in the literature.

To approximate problem (1), we start from the theory developed in [17] and [19] for the Navier-Stokes
equations in the case of Dirichlet boundary conditions. We modify the convection term presented in [19]
on the boundary, since we want to preserve an energy estimate at the discrete level. For this reason, we
also have to prove a Korn inequality, in order to control the norm of the gradient with the norm of the
strain rate tensor, and a trace theorem, useful to estimate the boundary terms.
Our wellposedness result relies on a uniform discrete inf-sup condition, see [5] and Section 4.1. In the case
of Stokes problem [14, 18] and of Navier-Stokes with Dirichlet boundary conditions [19], this difficulty
was overcome by adding a stabilization term in the equation of conservation of mass. This stabilization
term is inspired by the Brezzi-Pitkäranta method [7] in the finite element framework. We could have
used the same technique in order to generalize the result of wellposedness to general meshes, but since
our proof for Korn’s inequality requires the hypothesis of inf-sup stability, we decided not to stabilize the
equation.
We finally validate our theoretical results by numerical simulations, by first showing convergence results
and then by reproducing the test cases proposed in [10] and [22].

Outline. This paper is organized as follows. In Section 2, we recall the DDFV framework and we
show how we approximate the nonlinear convection term. In Section 3, we introduce the DDFV scheme
for the Navier-Stokes problem (1) and we prove its well-posedness in Section 4 (see Theorem (4.2)). In
Section 5 we show an estimate of the convection term. In Section 6, we prove a discrete Korn inequality,
useful for the discrete energy estimate that we prove in Section 7. Finally, in Section 8, theoretical results
are illustrated with numerical simulations. Conclusions are given in Section 9.

2 DDFV framework

Here and below, we adopt the main definitions and notation introduced in [1] and [17].

2.1 Meshes

A DDFV mesh T is constituted by a primal mesh M and a dual mesh M∗ ∪ ∂M∗ , see Figure 1. We
consider a primal mesh M consisting of disjoints polygons K called primal cells, whose union covers Ω. We
denote ∂M the set of edges of the primal mesh included in ∂Ω, that are considered as degenerated primal
cells. We associate to each K a point xK, called center. For the volumes of the boundary, the point xK is
situated at the mid point of the edge. When K and L are neighboring volumes, we suppose that ∂K ∩ ∂L
is a segment that we denote σ = K|L, edge of the primal mesh M. We denote with E the set of all edges
and with Eint = E \ {σ ∈ E such that σ ⊂ ∂Ω}. The DDFV framework is free of further "admissibility
constraint", in particular we do not need to assume the orthogonality of the segment xK, xL with σ = K|L.
Here we suppose:

Hp 2.1 All control volumes K are star-shaped with respect to xK.

From this primal mesh, we build the associated dual mesh. A dual cell K∗ is associated to a vertex xK∗ of
the primal mesh. The dual cells are obtained by joining the centers of the primal control volumes that
have xK∗ as vertex. Then, the point xK∗ is called center of K∗. We will distinguish interior dual mesh, for
which xK∗ does not belong to ∂Ω, denoted by M∗ and the boundary dual mesh, for which xK∗ belongs to
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Vertex xK∗ on the boundary

Centers xK

Interior vertices xK∗

Figure 1: DDFV meshes.

∂Ω, denoted by ∂M∗. We denote with σ∗ = K∗|L∗ the edges of the dual mesh M∗ ∪ ∂M∗ and E∗ the set
of those edges. In what follows, we assume:

Hp 2.2 All control volumes K∗ are star-shaped with respect to xK∗ .

The diamond mesh is made of quadrilaterals with disjoint interiors (thanks to Hp 2.1), such that their
principal diagonals are a primal edge σ = K|L = [xK∗ , xL∗ ] and the dual edge σ∗ = [xK, xL]. Those quadri-
laterals are called diamonds and they are denoted with D or Dσ,σ∗ . Thus a diamond is a quadrilateral with
vertices xK, xL, xK∗ and xL∗ .
We remark that diamonds are the union of two disjoints triangles (xK, xK∗ , xL∗) and (xL, xK∗ , xL∗) and that
diamonds are not necessarily convexes.
Moreover, if σ ∈ E ∩ ∂Ω, the quadrilateral Dσ,σ∗ degenerates into a triangle.
The set of all diamonds is denoted with D and we have Ω =

⋃
D∈D

D. We distinguish the diamonds on the

interior and of the boundary:

Dext = {Dσ,σ∗ ∈ D, such that σ ⊂ ∂Ω}
Dint = D\Dext.

Remark 2.3 We have a bijection between the diamonds D ∈ D and the edges E of the primal mesh; also
between the diamonds D ∈ D and the edges E∗ of the dual mesh.

2.2 Notations

The following notation will be used throughout the paper. The reader familiar with DDFV may want to
skip this section.

For a volume V ∈M ∪ ∂M ∪M∗ ∪ ∂M∗ we define:

• mV the measure of the cell V,

• DV = {Dσ,σ∗ ∈ D, σ ∈ EV},

• dV the diameter of V

For a diamond Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗), we denote:

• xD the center of the diamond D

• mσ the length of the edge σ

• mσ∗ the length of σ∗

• mD the measure of the diamond Dσ,σ∗

• dD the diameter of the diamond Dσ,σ∗

• αD the angle between σ and σ∗

We introduce for every diamond two orthonormal basis (~τ K∗,L∗ ,~nσK) and (~nσ∗K∗ ,~τ K,L), where:

3



Dual edge σ∗ = K∗|L∗

Diamond D

Vertices
Centers
Primal edge σ = K|L

~τ K,L

xL

xK

xL∗

xK∗

xD

σ∗

xK∗

xL∗

xK

xL

σ∗

σ σ

αD

~τ K∗,L∗

~nσK

~nσ∗K∗

Figure 2: A diamond D = Dσ,σ∗ , on the interior (left) and on the boundary (right).

• ~nσK the unit normal to σ going out from K

• ~τ K,L the unit tangent vector to σ oriented from K∗ to L∗

• ~nσ∗K∗ the unit normal vector to σ∗ going out from K∗

• ~τ K∗,L∗ the unit tangent vector to σ∗ oriented from K to L.

We denote for each diamond:

• his sides s (for example s = [xK, xK∗ ])

• ED = {s, s ⊂ ∂D and s * ∂Ω} the set of all interior sides of the diamond

• ms the length of s

• ~nsD the unit normal to s going out from D

Remark 2.4 Every diamond is star-shaped with respect to xD.

2.3 Regularity of the mesh

Let size(T) be the maximum of the diameters of the diamonds cells in D. To measure the flattening of
the triangles we denote with αT the only real in ]0, π2 ] such that sin(αT) := min

D∈D
| sin(αD)|.

We introduce a positive number reg(T) that measures the regularity of the mesh. It is defined as:

reg(T) = max
( 1

sin(αT )
,N ,N ∗,max

D∈D
max
s∈ED

dD
ms

,max
K∈M

dK√
mK

, max
K∗∈M∗∪∂M∗

(
dK∗√
mK∗

)
,

max
K∈M

max
D∈DK

(
dK
dD

)
, max
K∗∈M∗∪∂M∗

max
D∈DK∗

(
dK∗

dD

))
. (3)

where N and N ∗ are the maximum of edges of each primal cell and the maximum of edges incident to
any vertex. The number reg(T) should be uniformly bounded when size(T) → 0 for the convergence to
hold.
From the definition of reg(T), the following geometrical result holds: there exist two constants C1 and
C2 depending on reg(T) such that ∀K ∈M,∀K∗ ∈M∗ ∪ ∂M∗ and ∀D ∈ D such that D∩ K 6= 0 and D∩ K∗ 6= 0
we have:

C1mK ≤ mD ≤ C2mK, C1mK∗ ≤ mD ≤ C2mK∗

and
C1 dK ≤ dD ≤ C2 dK, C1 dK∗ ≤ dD ≤ C2 dK∗ .

2.4 Unknown and meshes

The DDFV method for Navier-Stokes problem uses staggered unknowns. We associate to each primal
volume K ∈ M ∪ ∂M an unknown uK ∈ R2 for the velocity, to every dual volume K∗ ∈ M∗ ∪ ∂M∗ an
unknown uK∗ ∈ R2 for the velocity and to each diamond D ∈ D an unknown pD ∈ R for the pressure.
Those unknowns are collected in the families:

uT =
(
(uK)K∈(M∪∂M), (uK∗)K∗∈(M∗∪∂M∗)

)
∈ (R2)T and pD =

(
(pD)D∈D

)
∈ RD.
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We define two subspaces of the boundary mesh, where to impose Dirichlet and "outflow" boundary
conditions:

∂MD = {K ∈ ∂M : xK ∈ Γ1};
∂MO = {K ∈ ∂M : xK ∈ Γ2 \ Γ1};
∂M∗D = {K∗ ∈ ∂M∗ : xK∗ ∈ Γ1};
∂M∗O = {K∗ ∈ ∂M∗ : xK∗ ∈ Γ2 \ Γ1};

We also define a discrete subspace of (R2)T useful to take in account Dirichlet boundary conditions:

EDg = {uT ∈ (R2)T, s. t. ∀K ∈ ∂MD, uK = g(xK) and ∀K∗ ∈ ∂M∗D, uK∗ = g(xK∗)}.

2.5 Discrete operators

In this section we define discrete operators that are necessary to write and to analyse the DDFV scheme.

Definition 2.5 We define the discrete gradient of a vector field of (R2)T as the operator

∇D : uT ∈ (R2)T 7→ (∇DuT)D∈D ∈ (M2(R))D,

such that for D ∈ D :

∇DuT =
1

sin(αD)

[
uL − uK

mσ∗
⊗ ~nσK +

uL∗ − uK∗

mσ

⊗ ~nσ∗K∗

]
, (4)

where ⊗ represents the tensor product. It can also be written in the following way:

∇DuT =
1

2mD

[mσ(uL − uK)⊗ ~nσK +mσ∗(uL − uK∗)⊗ ~nσ∗K∗ ] .

Definition 2.6 We define the discrete divergence of a discrete tensor field of (M2(R))D as the operator

divT : ξD ∈ (M2(R))D 7→ divTξD ∈ (R2)T.

Let ξD = (ξD)D∈D ∈ (M2(R))D, we set:

divTξD = (divMξD,div∂MξD,divM
∗
ξD,div∂M

∗
ξD),

where we define divMξD = (divKξD)K∈M, div∂MξD = 0, divM
∗
ξD = (divK∗ξD)K∈M∗ and div∂M

∗
ξD =

(divK∗ξD)K∗∈∂M∗ with:

divKξD =
1

mK

∑
Dσ,σ∗∈DK

mσξ
D~nσK, ∀K ∈M

divK∗ξD =
1

mK∗

∑
Dσ,σ∗∈DK∗

mσ∗ξD~nσ∗K∗ , ∀K∗ ∈M∗

divK∗ξD =
1

mK∗

( ∑
Dσ,σ∗∈DK∗

mσ∗ξD~nσ∗K∗ +
∑

Dσ,σ∗∈DK∗∩Dext

mσ

2
ξD~nσK

)
∀K∗ ∈ ∂M∗.

Definition 2.7 We define the discrete divergence of a vector field of (R2)T as the operator

divD : uT ∈ (R2)T 7→ (divDuT)D∈D ∈ RD

with
divDuT = Tr(∇DuT), ∀D ∈ D.

Definition 2.8 We define the discrete strain rate tensor of a vector field in (R2)T as the operator

DD : uT ∈ (R2)T 7→ (DDuT)D∈D ∈ (M2(R))D

such that for D ∈ D:

DDuT =
∇DuT + t(∇DuT)

2
. (5)
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Definition 2.9 We define the discrete curl of a vector field of (R2)T as the operator

curlD : uT ∈ (R2)T 7→ curlDuT ∈ (M2(R))D,

such that for D ∈ D:

curlDuT =
1

2mD

[mσ(uL − uK)⊗ ~τσ∗,K∗ −mσ∗(uL∗ − uK∗)⊗ ~τσ,K] .

Definition 2.10 We define the discrete rotational of a vector field of (R2)T as the operator

rotD : uT ∈ (R2)T 7→ rotDuT ∈ RD

with
rotDuT = −Tr(curlDuT), ∀D ∈ D.

2.6 Scalar products and norms

We define the trace operators on (R2)T and RD. Let γT : uT 7→ γT(uT) = (γσ(uT))σ∈∂M ∈ (R2)T, such
that:

γσ(uT) =
uK∗ + 2uL + uL∗

4
∀σ = [xK∗ , xL∗ ] ∈ ∂M.

We can also define γ̃T : uT 7→ γ̃T(uT) = (γ̃σ(uT))σ∈∂M ∈ (R2)T, such that:

γ̃σ(uT) =
uK∗ + 2uK + uL∗

4
∀σ = [xK∗ , xL∗ ] ∈ ∂M,

that will appear in the equations of the scheme and later in the proof of the property of the nonlinear
convection term.
On the diamond mesh, we define γD : ΦD ∈ (R2)D 7→ (ΦD)D∈Dext

∈ (R2)Dext , the operator of restriction
on Dext.
Now we define the scalar products on the approximation spaces:

[[vT,uT]]T =
1

2

(∑
K∈M

mK uK · vK +
∑

K∗∈M∗∪∂M∗

mK∗ uK∗ · vK∗

)
∀uT,vT ∈ (R2)T

(ΦD,vT)∂Ω =
∑

Dσ,σ∗∈Dext

mσΦD · vσ ∀ΦD ∈ (R2)Dext ,vT ∈ (R2)∂M

(ξD : ΦD)D =
∑
D∈D

mD

(
ξD : ΦD

)
∀ξD,ΦD ∈ (M2(R))D

(pD, qD)D =
∑
D∈D

mDp
DqD ∀pD, qD ∈ RD,

and the corresponding norms:

‖uT‖2 = [[uT,uT]]
1/2
T , ∀uT ∈ (R2)T,

‖ξD‖2 = (ξD : ξD)
1/2
D , ∀ξD ∈ (M2(R))D,

‖pD‖2 = (pD,pD)
1/2
D , ∀pD ∈ RD.

We can generalize ∀p ≥ 1 and we can define for any uT ∈ (R2)T and ξD ∈ (M2(R))D:

‖uT‖p =
1

2

(∑
K∈M

mK|uK|p +
∑

K∗∈M∗∪∂M∗

mK∗ |uK∗ |p
)1/p

=
1

2

(
‖uM‖pp + ‖uM∗∪∂M∗

‖pp
)1/p

,

‖ξD‖p =

(∑
D∈D

mD|ξD|p
)1/p

,

‖uT‖1,p = ‖uT‖p + ‖∇DuT‖p,

‖γT(uT)‖p,∂Ω =

( ∑
Dσ,σ∗∈Dext

mσ|γσ(uT)|p
)1/p

and ‖γ̃T(uT)‖p,∂Ω =

( ∑
Dσ,σ∗∈Dext

mσ|γ̃σ(uT)|p
)1/p

.
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2.7 Green’s formula

In [1], [12] the discrete gradient and discrete divergence for a scalar-valued function are linked by a
discrete Stokes formula. This is precisely the duality property that gives its name to the method.

Theorem 2.11 Discrete Green’s formula: (Thm. IV.9 in [17])
For all ξD ∈ (M2(R))D,uT ∈ (R2)T, we have:

[[divTξD,uT]]T = −(ξD : ∇DuT)D + (γD(ξD) · −→n , γT(uT))∂Ω,

where −→n is the unitary outer normal.

2.8 Approximation of the nonlinear convection term

We will consider the weak formulation of (1), thus we will need to discretize the nonlinear convection

term
∫

Ω

(u · ∇)u.

As in [17, 19], we construct a bilinear form bT(uT,vT) as an approximation of
∫

Ω

(u · ∇)v.

The form introduced in [17, 19] is built in order to take into account homogeneous Dirichlet boundary
conditions, so we need to modify it in order to handle boundary terms.

To obtain the approximation of the convection term, we need to integrate the equation over the pri-

mal and dual mesh; we approximate
∫
K

(u · ∇)v when K ∈M with mK b
K(uT,vT).

We remark that for u and v smooth functions:∫
K

(u · ∇)v =
∑

Dσ,σ∗∈DK

∫
σ

(u · ~nσK)v, ∀K ∈M.

Such as for the Dirichlet case [19], we look for an approximation of the fluxes:
∫
σ

(u · ~nσK)  Fσ,K(u
T).

We obtain them by calculating the fluxes on the sides s of diamonds for the interior edges (see Fig. 3).
For what concerns the boundary edges, the definition depends on the trace γσ(uT). So we impose:

Fσ,K(u
T) =


−

∑
s∈SK∩ED

Gs,D(u
T) if σ ∈ Eint

mσγ
σ(uT) · ~nσK if σ ∈ ∂Ω

(6)

and with an equivalent argument, we define for the dual edges:

Fσ∗,K∗(uT) =


−

∑
s∈SK∗∩ED

Gs,D(u
T) if K∗ ∈M∗ ∪ ∂M∗, σ∗ ∩ ∂Ω = ∅

−Gs,D(u
T)− 1

2
Fσ,K(u

T) if K∗ ∈ ∂M∗, σ∗ ∩ ∂Ω 6= ∅

(7)

where
Gs,D(u

T) = ms
uK + uK∗

2
· ~nsD, ∀s = [xK, xK∗ ].

Remark that we have conservativity of the fluxes Fσ,K and Fσ∗,K∗ :

Fσ,K(u
T) = −Fσ,L(uT), ∀σ = K|L and Fσ∗,K∗(uT) = −Fσ∗,L∗(uT), ∀σ∗ = K∗|L∗. (8)

Unlike in [17, 19], we do not stabilize the solenoidal constraint thus we do not need to add a stabilization
term in the flux Gs,D.
Consequently, we denote:

Dint
K

=
{
Dσ,σ∗ ∈ DK ∩Dint

}
, Dext

K
=
{
Dσ,σ∗ ∈ DK ∩Dext

}
,

Dint
K∗ =

{
Dσ,σ∗ ∈ DK∗ ∩Dint

}
, Dext

K∗ =
{
Dσ,σ∗ ∈ DK∗ ∩Dext

}
.
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Figure 3: A diamond D = Dσ,σ∗ with σ ⊂ Eint

We define our bilinear form on the primal mesh as:

mKb
K(uT,vT) =

∑
Dσ,σ∗∈Dint

K

Fσ,K(u
T)v+

σ +
∑

Dσ,σ∗∈Dext
K

Fσ,K(u
T)γσ(vT) ∀K ∈M

where
v+
σ =

{
vK if Fσ,K ≥ 0
vL otherwise ∀σ ∈ Eint,

and on the dual mesh as:

mK∗b
K∗(uT,vT) =

∑
Dσ,σ∗∈DK∗

Fσ∗,K∗(uT)v+
σ∗

∀K∗ ∈M∗

mK∗b
K∗(uT,vT) =

∑
Dσ,σ∗∈DK∗

Fσ∗,K∗(uT)v+
σ∗

+
1

2

∑
Dσ,σ∗∈Dext

K∗

Fσ,K(u
T)γσ(vT) ∀K∗ ∈ ∂M∗

where
v+
σ∗

=

{
vK∗ if Fσ∗,K∗ ≥ 0
vL∗ otherwise ∀σ∗ ∈ E∗.

We choose to do upwinding on the interior diamonds because we started from the analysis done in [17]
and [19]. In the case of Dirichlet boundary conditions in [17, 19], it is necessary to upwind in order to
get wellposedness of the scheme and an energy estimate, since it is the key to prove an inequality of the
type [[bT(uT,vT),wT]]T ≥ 0. In our case, in the weak formulation the convection term is symmetrized,
so the upwinding is not necessary. But since it does not introduce additional difficulties, we prefer to
keep the same definitions to show the continuity of the work. Passing to a centered scheme would not
impact the analysis; we would expect from it a better accuracy.

3 DDFV scheme

Let N ∈ N∗. We note δt = T
N and tn = nδt for n ∈ {0, . . . N}. To obtain our DDFV scheme, we choose

to use an implicit Euler time discretization, except for the nonlinear term, which is linearized by using a
semi-implicit approximation.
We look for uT,[0,T ] = (un)n∈{0,...N} ∈

(
EDg1

)N+1 and pD,[0,T ] = (pn)n∈{0,...N} ∈ (RD)N+1 , that we
initialize with:

u0 = PT
c u0 ∈ EDg1

(9)

where we define the centered projection on the mesh T as:

PT
c v = ((v(xK))K∈(M∪∂M), (v(xK∗))K∗∈(M∗∪∂M∗)), ∀v ∈ (H2(Ω))2.

We would like to write the system (1) in our setting.

For what concerns the equation of the momentum, we start by finding the discrete equivalent of

8



the variational formulation of the problem. For the continuous problem, as presented in [4], the velocity
u satisfies:∫

Ω

∂tu ·Ψ +
2

Re

∫
Ω

D(u) : D(Ψ) +
1

2

∫
Ω

(u · ∇)u ·Ψ− 1

2

∫
Ω

(u · ∇)Ψ · u

= −1

2

∫
Γ2

(u · ~n)+(u ·Ψ) +
1

2

∫
Γ2

(u · ~n)−(uref ·Ψ) +

∫
Γ2

σref · ~n ·Ψ (10)

where Ψ is a test function in the space

V = {Ψ ∈ (H1(Ω))2, Ψ|Γ1
= 0, div(Ψ) = 0}.

This weak formulation (10) can be rewritten in the DDFV framework (with the operators introduced in
section 2) as:

[[
un+1 − un

δt
,ΨT]]T +

2

Re
(DDun+1,DDΨT)D +

1

2
[[bT(un,un+1),ΨT]]T −

1

2
[[bT(un,ΨT),un+1]]T

= −1

2

∑
D∈Dext∩Γ2

(Fσ,K(u
n))+ γσ(un+1) · γσ(ΨT) +

1

2

∑
D∈Dext∩Γ2

(Fσ,K(u
n))−γσ(uref ) · γσ(ΨT)

+
∑

D∈Dext∩Γ2

mσ(σD
ref · ~nσK) · γσ(ΨT), (11)

where ΨT ∈ (R2)T is a test function in the discrete space that satisfies similar properties compared to
the continuous test function Ψ: {

ΨT ∈ ED0 ,

divD(ΨT) = 0.
(12)

To simplify the computations, as in the continuous case (see [4]), the reference flow (uT
ref , p

D
ref ) ∈ EDg1

×RD

is supposed to be a solution of the under-determined steady Stokes problem:−div
T

(
2

Re
DD(uT

ref )− pDId
)

= 0,

divD(uT
ref ) = 0.

From this formulation, we design our DDFV scheme as follows:

• For all K ∈M:

mK

un+1
K
− un

K

δt
−mKdiv

K(σD(un+1, pn+1)) +
1

2
mKb

K(un,un+1)

− 1

2

∑
D∈Dint

K

(
F+
σ,K(u

n)un+1
K
− F−σ,L(un)un+1

L

)
= 0; (13)

• For all K∗ ∈M∗ ∪ ∂M∗O:

mK∗
un+1

K∗ − un
K∗

δt
−mK∗div

K∗(σD(un+1, pn+1)) +
1

2
mK∗b

K∗(un,un+1)

− 1

2

∑
D∈DK∗

(
F+
σ∗,K∗(un)un+1

K∗ − F−σ∗,L∗(un)un+1
L∗

)
= 0; (14)

• For all σ ∈ ∂MO:

mσσ
D(un+1, pn+1))~nσL −

1

4
Fσ,L(u

n) (un+1
K
− un+1

L
)

= −1

2
(Fσ,L(u

n))−
(
γσ(un+1)− γσ(uref )

)
+mσ(σDref · ~nσK); (15)

• For all D ∈ D:

divD(un+1) = 0. (16)
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4 Well-posedness

We now prove the existence and uniqueness of the solution of our DDFV scheme.
The well-posedness result relies on a uniform discrete inf-sup condition. We could have add a stabilization
term to the equation of conservation of mass to generalize the result to general meshes, as done in [14, 18]
for Stokes and in [19] for Navier-Stokes, but since our proof for Korn’s inequality (that is crucial to prove
the energy estimate) requires the hypothesis of inf-sup stability, we decided not to stabilize the equation.
This hypothesis is not restrictive, and in the following section we recall the definition and the related
properties.

4.1 Inf-sup stability

Inf-sup stability for DDFV method was studied in [5].
It has been proven to hold unconditionally for conforming acute triangle meshes, non-conforming triangle
meshes and chechkerboard meshes. For some conforming or non-conforming Cartesian meshes, it holds
up to a single unstable pressure mode. Moreover, it has been proven numerically for many other families
of meshes and it has still not been found a mesh that does not satisfy it.

Theorem 4.1 A given DDFV mesh T is said to satisfy the Inf-Sup stability if the following condition
holds:

βT := inf
pD∈RD

(
sup

vT∈E0

aT(vT,pD)

‖∇DvT‖2‖pD −m(pD)‖2

)
> 0,

where aT(vT,pD) = (divDvT,pD)D and m(pD) =
∑
D∈D

mDp
D.

From this inequality, two important properties follow:

• There exists C > 0, depending on βT, such that ∀pD ∈ D, ∀vT ∈ E0:

‖pD −m(pD)‖2 ≤ C‖∇DvT‖2, (17)

• For every pD ∈ (R2)T such that m(pD) = 0, there exists wT ∈ E0 such that:

divD(wT) =pD

‖∇DwT‖2 ≤C‖pD‖2,
(18)

where E0 = {uT ∈ (R2)T, s t. ∀K ∈ ∂M, uK = 0 and ∀K∗ ∈ ∂M∗, uK∗ = 0}.

4.2 Existence and uniqueness

Theorem 4.2 (Well-posedness) Let T be a DDFV mesh associated to Ω that satisfies the inf-sup stability
condition. The scheme (9), (13)-(16) has a unique solution (uT,[0,T ], pD,[0,T ]) ∈

(
EDg1

)N+1 × (RD)N+1.

Proof The scheme issued from the equations (13)-(16) is a linear system Av = b with A square matrix
at each time step. We want to show that A is injective, thus we study the kernel of the matrix. Let
v = (un+1, pn+1) ∈ EDg1

× RD be in ker(A): we then obtain the system Av = 0. If we multiply this
relation by a test function ΨT that satisfies (12), this is equivalent to consider the discrete variational
formulation (11) in the form:

1

δt
[[un+1,ΨT]]T +

2

Re
(DDun+1,DDΨT)D +

1

2
[[bT(un,un+1),ΨT]]T −

1

2
[[bT(un,ΨT),un+1]]T

= −1

2

∑
D∈Dext∩Γ2

(Fσ,K(u
n))+ γσ(un+1) · γσ(ΨT).

The choice ΨT = un+1 leads to:

1

δt
||un+1||22 +

2

Re
||DDun+1||22 +

1

2

∑
D∈Dext

(Fσ,K(u
n))+

∣∣γσ(un+1)
∣∣2

︸ ︷︷ ︸
≥0

= 0,

that implies
1

δt
||un+1||22 +

2

Re
||DDun+1||22 ≤ 0

10



from which we deduce that un+1 = 0.
To conclude the proof, we need to show that pn+1 is equal to zero too. Thanks to the inequality
(17) ensured by inf-sup stability and to the fact that un+1 = 0, we can deduce that pn+1 is con-
stant. Then, the condition (15) on ∂MO implies that pn+1 = 0 on the boundary, since we recall that

mσσ
D(un+1,pn+1))~nσL = mσ

(
2

Re
DD(un+1)− pDId

)
~nσL, that uT

ref = σD
ref = 0 because we are studying

ker(A) and that un+1 = 0.
Thus, by putting together the fact that pn+1 is constant and it is zero on the boundary, we have pn+1 = 0
in all the domain.

�

Remark 4.3 Supposing inf-sup condition is not that restrictive; just in the case of Cartesian meshes the
stability is proved up to a checkerboard mode for the pressure, but thanks to the boundary conditions that
we impose even in this case we can deduce that pn+1 = 0. Moreover, lots of numerical tests have been
done and it still has not been found another mesh that does not satisfy the condition, see [5].

5 Property of the convection term

We need to prove the following estimate in order to establish a discrete energy estimate:

Proposition 5.1 Let T be a DDFV mesh associated to Ω. For all (uT,vT,wT) ∈ EDg1
×EDg1

×EDg1
, there

exists a constant C > 0 that depens only on Ω and reg(T) such that:

[[bT(uT,vT),wT]]T ≤C
(
‖uT‖3 + ‖γT(uT)‖3,∂Ω

)
‖vT‖6‖∇DwT‖2

+ C ‖γT(uT)‖ 8
3 ,∂Ω‖γT(vT)‖ 8

3 ,∂Ω‖γ̃T(wT)‖4,∂Ω

Before starting the proof, we recall the following Hölder’s inequality:

Theorem 5.2 (Hölder’s inequality) Let p, q, r ∈ (1,+∞) with 1/p+1/q+1/r = 1. For every (x1, . . . xn),
(y1, . . . yn), (z1, . . . zn) ∈ Rn it holds

n∑
i=1

|xi yi zi| ≤
( n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q( n∑

i=1

|zi|r
)1/r

Proof (of Proposition 5.1) By the definition of the scalar product [[·, ·]]T and of the convection term:

[[bT(uT,vT),wT]]T =
1

2

∑
K∈M

mKwK · bK(uT,vT) +
1

2

∑
K∗∈M∗∪∂M∗

mK∗wK∗ · bK∗(uT,vT)

=
1

2

∑
K∈M

wK ·
( ∑
Dσ,σ∗∈Dint

K

Fσ,K(u
T)v+

σ +
∑

Dσ,σ∗∈Dext
K

Fσ,K(u
T)γσ(vT)

)

+
1

2

∑
K∗∈M∗∪∂M∗

wK∗ ·
( ∑
Dσ,σ∗∈DK∗

Fσ∗,K∗(uT)v+
σ∗

+
1

2

∑
Dσ,σ∗∈Dext

K∗

Fσ,K(u
T)γσ(vT)

)
.

If we reorganize the sum over diamonds, since the fluxes are conservatives (see (8)) , we get:

[[bT(uT,vT),wT]]T =
1

2

( ∑
Dσ,σ∗∈Dint

Fσ,K(u
T)v+

σ · (wK −wL) + 2
∑

Dσ,σ∗∈Dext

Fσ,K(u
T)γσ(vT) · γ̃σ(wT)

+
∑

Dσ,σ∗∈D

Fσ∗,K∗(uT)v+
σ∗
· (wK∗ −wL∗)

)

:=
1

2
(T1 + 2T2 + T3).

Estimate of T1:

By the definition of v+
σ , we have:

|T1| =
∣∣∣∣ ∑
Dσ,σ∗∈Dint

Fσ,K(u
T)v+

σ · (wK −wL)

∣∣∣∣ =

∣∣∣∣ ∑
Dσ,σ∗∈Dint

(
F+
σ,K(u

T)vK − F−σ,K(uT)vL

)
· (wK −wL)

∣∣∣∣
≤

∑
Dσ,σ∗∈Dint

∣∣Fσ,K(uT)
∣∣|vK + vL||wK −wL|.
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If we look at the flux Fσ,K(uT), we remark that ∀D ∈ Dint
K

:

|Fσ,K(uT)| =
∣∣∣∣− ∑

s∈SK∩ED

ms
uK + uK∗

2
· ~nsD

∣∣∣∣ ≤ Cmσ

∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣,
where C depends on reg(T) (see (3)). We use this result in the estimate of T1 to obtain:

|T1| ≤ C
∑

Dσ,σ∗∈Dint

mσmσ∗ |vK + vL|
∣∣∣∣wK −wL

mσ∗

∣∣∣∣ ∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣.
We apply Hölder’s inequality with p = 6, q = 2, r = 3:

|T1| ≤ C
( ∑

Dσ,σ∗∈Dint

mσmσ∗ |vK + vL|6
)1/6( ∑

Dσ,σ∗∈Dint

mσmσ∗

∣∣∣∣wK −wL

mσ∗

∣∣∣∣2)1/2

( ∑
Dσ,σ∗∈Dint

mσmσ∗

∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣3)1/3

and thanks to the definition (4) of the gradient operator and (3), we can write:

|T1| ≤ C
(∑

K∈M

mK|vK|6
)1/6( ∑

Dσ,σ∗∈D

mD|∇DwT|2
)1/2(

1

2

∑
K∈M

mK|uK|3 +
1

2

∑
K∗∈M∗

mK∗ |uK∗ |3
)1/3

≤ C‖vT‖6 ‖∇DwT‖2 ‖uT‖3.

Estimate of T2:

For what concerns boundary terms, the definition of fluxes changes (see (6)), so we can estimate by:

|T2| =
∣∣∣∣ ∑
Dσ,σ∗∈Dext

Fσ,K(u
T)γσ(vT) · γ̃σ(wT)

∣∣∣∣ ≤ ∑
Dσ,σ∗∈Dext

mσ|γσ(uT)||γσ(vT)||γ̃σ(wT)|

By applying Hölder’s inequality with p = 8
3 , q = 8

3 , r = 4 we get

|T2| ≤
( ∑

Dσ,σ∗∈Dext

mσ|γσ(uT)|8/3
)3/8( ∑

Dσ,σ∗∈Dext

mσ|γσ(vT)|8/3
)3/8( ∑

Dσ,σ∗∈Dext

mσ|γ̃σ(wT)|4
)1/4

≤ ‖γT(uT)‖ 8
3 ,∂Ω ‖γT(vT)‖ 8

3 ,∂Ω ‖γ̃T(wT)‖4,∂Ω.

Estimate of T3:

As we did for T1, by the definition of v+
σ∗ , we have:

|T3| ≤
∑

Dσ,σ∗∈D

∣∣Fσ∗,K∗(uT)
∣∣|vK∗ + vL∗ ||wK∗ −wL∗ |.

By the definition of the flux (see (7)), this term can be split into two contributions:

|T3| ≤
∑

Dσ,σ∗∈D
σ∗∩∂Ω=∅

∣∣Fσ∗,K∗(uT)
∣∣|vK∗ +vL∗ ||wK∗ −wL∗ |+

∑
Dσ,σ∗∈D
σ∗∩∂Ω6=∅

∣∣Fσ∗,K∗(uT)
∣∣|vK∗ +vL∗ ||wK∗ −wL∗ | = T1

3 +T2
3.

For what concerns the estimate of T1
3, the definition of the flux Fσ∗,K∗(uT) is the same as the one of Fσ,K

when σ ∈ Eint.
Thus we can proceed as for the estimate of T1 and we get:

T1
3 ≤ C ‖vT‖6 ‖∇DwT‖2 ‖uT‖3.

For the term T2
3, the definition of the flux changes and we can estimate it by:

|Fσ∗,K∗(uT)| =
∣∣∣∣− ∑

s∈SK∩ED

ms
uK + uK∗

2
·~nsD−

1

2
mσγ

σ(uT) ·~nσK

∣∣∣∣ ≤ Cmσ

( ∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣+ |γσ(uT)|
)
.
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In this case, we can write:

|T2
3| ≤

∑
Dσ,σ∗∈Dext

m2
σ|vK∗ + vL∗ |

∣∣∣∣wK∗ −wL∗

mσ

∣∣∣∣( ∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣+
∣∣γσ(uT)

∣∣)

We split the right hand side into two terms. The first one is estimated exactly as T1:∑
Dσ,σ∗∈Dext

m2
σ|vK∗ + vL∗ |

∣∣∣∣wK∗ −wL∗

mσ

∣∣∣∣ ∑
s∈SK∩ED

∣∣∣∣uK + uK∗

2

∣∣∣∣ ≤ C ‖vT‖6 ‖∇DwT‖2 ‖uT‖3.

For the second one, we apply Hölder’s inequality with p = 6, q = 2, r = 3 and we obtain:∑
Dσ,σ∗∈Dext

m2
σ|vK∗ + vL∗ |

∣∣∣∣wK∗ −wL∗

mσ

∣∣∣∣∣∣γσ(uT)
∣∣

≤ C
( ∑

Dσ,σ∗∈Dext

m2
σ|vK∗ + vL∗ |6

) 1
6
( ∑

Dσ,σ∗∈Dext

m2
σ

∣∣∣∣wK∗ −wL∗

mσ

∣∣∣∣2) 1
2
( ∑

Dσ,σ∗∈Dext

mσ|γσ(uT)|3
) 1

3

≤ C
( ∑

K∈M∗

mK∗ |vK∗ |6
) 1

6
( ∑

Dσ,σ∗∈D

mD|∇DwT|2
) 1

2
( ∑

Dσ,σ∗∈Dext

mσ|γσ(uT)|3
) 1

3

≤ C‖vT‖6‖∇DwT‖2‖γT(uT)‖3,∂Ω.

By collecting the estimates we find the announced result:

T3 = T1
3 + T2

3 ≤ C ‖vT‖6 ‖∇DwT‖2 (‖uT‖3 + ‖γT(uT)‖3,∂Ω).

�

6 Korn inequality

The proof of the discrete Korn’s inequality is inspired by the continuous version in [6]. In DDFV setting
in the case of homogeneous Dirichlet boundary conditions, i.e. if uT ∈ E0, the theorem was proved in
[17]. In this case the proof relies on the definition of the operators and the constant of the estimate can
be measured. By adding a part of the boundary with non-zero data, we introduce some difficulties and
we are able to prove the result only by contradiction, just as in the continuous setting.

Theorem 6.1 (Korn’s inequality) Let T be a mesh that satisfies inf-sup stability condition. Then there
exists C > 0 such that :

‖∇DuT‖2 ≤ C‖DDuT‖2 ∀uT ∈ ED0

In order to prove this result, it is necessary to first consider the case in which rotDuT has zero mean.

Lemma 6.2 Let T be a mesh that satisfies inf-sup stability condition. Then there exists C > 0 such that
∀uT ∈ (R2)T that satisfies m(rotDuT) =

∑
D∈D

mDrotDuT = 0 it holds:

‖∇DuT‖2 ≤ C‖DDuT‖2

Proof (of Lemma 6.2) Let uT ∈ (R2)T such that m(rotDuT) = 0. If we consider the function

rotDuT =
∑
D∈D

rotDuT1D,

this is an L2 funcion with zero mean, by hypothesis. This means that, by infsup stability condition (18),
∃wT ∈ E0 such that:

divD(wT) =rotD(uT)

‖∇DwT‖2 ≤C‖∇DuT‖2.
(19)

Moreover, if we define the matrix χ =

(
0 1
−1 0

)
, we have the following property:

DDuT = ∇DuT +
1

2
rotD(uT)χ ∀uT ∈ (R2)D.
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If we compute:

(DDuT : ∇DuT − curlD(wT))D =(∇DuT +
1

2
rotD(uT)χ : ∇DuT − curlDwT)D

=‖∇DuT‖22 − (∇DuT : curlDwT)D +
1

2
(rotDuTχ : ∇DuT − curlDwT)D

=‖∇DuT‖22 + 0 +
1

2
(rotDuT,−rotDuT + divDwT︸ ︷︷ ︸

=0 by infsup

)D

=‖∇DuT‖22
(20)

where we use the fact that

(χ : ∇DuT)D = −rotDuT , (χ : curlDwT)D = −divDwT

and that
(∇DuT : curlDwT)D = 0.

This means that, if we apply the Cauchy-Schwarz inequality and triangle inequality to (20), we deduce:

‖∇DuT‖22 ≤‖DDuT‖2‖∇DuT − curlDwT‖2
≤‖DDuT‖2(‖∇DuT‖2 + ‖curlDwT‖2).

By applying the definition of curlD and (19) we get:

‖∇DuT‖22 ≤‖DDuT‖2(‖∇DuT‖2 + ‖∇DwT‖2)

≤C‖DDuT‖2‖∇DuT‖2

We conclude that:
‖∇DuT‖2 ≤ C‖DDuT‖2.

�

Thanks to this result, we give the proof of Korn’s inequality in the general case.

Proof (of Theorem 6.1) Let uT ∈ ED0 . We define zT ∈
(
R2
)T as:

zT = uT +
1

2
m(rotDuT)xT,

where xT = PT
c

(
y
−x

)
is a vector that satisfies for all D ∈ D: ∇DxT = χ =

(
0 1
−1 0

)
, DDxT = 0 and

rotDxT = −2.
As a consequence, we have that m(rotDzT) = 0 and DDuT = DDzT. By Theorem 6.2 to zT, there exists
a constant C > 0 such that:

‖∇DzT‖2 ≤ C‖DDzT‖2. (21)

If we compute ∇DuT, we obtain:

∇DuT = ∇DzT +
1

2
m(rotDuT)χ,

from which we deduce
‖∇DuT‖2 = C(‖∇DzT‖2 + |m(rotDuT)|).

By (21)
‖∇DuT‖2 ≤ C(‖DDzT‖2 + |m(rotDuT)|)

that by the definition of zT becomes:

‖∇DuT‖2 ≤ C(‖DDuT‖2 + |m(rotDuT)|). (22)

It remains to prove that ∃C̃ > 0 such that:

|m(rotDuT)| ≤ C̃‖DDuT‖2 ∀uT ∈ ED0 . (23)
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Let (hn)n∈N be a sequence such that hn → 0 as n → +∞, and let (Tn)n be a sequence of meshes such
that size(Tn) = hn while reg(Tn) is bounded. For every n, there exists a constant Cn such that:

|m(rotDuTn)| ≤ Cn‖DDuTn‖2 ∀uTn ∈ ED0 , (24)

with Cn := sup
uTn∈ED0

|m(rotDuTn)|
‖DDuTn‖2

. Inequality (24) is true because of Theorem 11.1, that ensures that

‖DDuTn‖2 is actually a norm.
Proving (23), it is equivalent to show that the bound (24) is a uniform bound. Thus we argue by
contradiction, and we suppose that:

∀k ∈ N, ∃nk with nk ≥ k such that Cnk ≥ k,

that is
∀k ∈ N, ∃ũTnk such that |m(rotDũTnk )| ≥ k ‖DDũTnk ‖2 ∀ũTn ∈ ED0 .

Let uTnk =
ũTnk

m(rotDũTnk )
, so that:

m(rotDuTnk ) = 1, ‖DDuTnk ‖2 ≤
1

k
. (25)

From (22), we can deduce that ∇DuTnk is bounded as k → +∞, since:

‖∇DuTnk ‖2 ≤ C
(

1

k
+ 1

)
.

We can thus apply the compactness result of [1, Lemma 3.6], which implies the existence of u ∈ H1
D(Ω)

such that, up to a subsequence:
uTnk → u in L2(Ω)

∇DuTnk ⇀ ∇u in L2(Ω).

From (25) and from the weak convergence of ∇DuTnk , it follows that m(rotu) = 1 and Du = 0, i.e. u
is a rigid motion. The only rigid motion that satisfies u|ΓD = 0 is u = 0 since meas(ΓD) > 0. We have
therefore a contradiction.

�

7 Discrete energy estimate

The open boundary condition (2) that we study is derived from a weak formulation of the Navier-Stokes
equation that ensures an energy estimate, presented in [9]. In this section we prove a discrete version of
the energy estimate.
In order to do so, we will need to consider the variational formulation (11) and select the solution as a
test function. Since the solution uT,[0,T ] is not zero on the Dirichlet boundary Γ1, it does not satisfy the
hypothesis (12). We decompose it as uT,[0,T ] = vT,[0,T ] + uT

ref and, thanks to the definition of uT
ref (see

(3)) , vT,[0,T ] will be a good candidate to be our test function.

Theorem 7.1 Let T be a DDFV mesh associated to Ω that satisfies inf-sup stability condition.
Let (uT,[0,T ], pD,[0,T ]) ∈

(
EDg1

)N+1× (RD)N+1 be the solution of the DDFV scheme (9), (13)-(16) , where
uT,[0,T ] = vT,[0,T ] + uT

ref .
For N > 1, there exists a constant C > 0, depending on Ω,uT

ref ,u0,Re and T such that:

N−1∑
j=0

‖vj+1 − vj‖22 ≤ C, ‖vN‖22 ≤ C,

N−1∑
j=0

δt
1

Re
‖DDvj+1‖22 ≤ C, δt

1

Re
‖DDvN‖22 ≤ C,

N−1∑
j=0

δt
∑

D∈Dext

(Fσ,K(vj + uT
ref ))+(γσ(vj+1))2 ≤ C.
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Proof The first step to obtain the energy inequality consists in rewriting the variational formulation (11)
for the unknown vn+1 = un+1 − uT

ref . Going back to the definition of uT
ref , it becomes:

[[
vn+1 − vn

δt
,ΨT]]T +

2

Re
(DDvn+1,DDΨT)D

+
1

2
[[bT(vn + uT

ref ,v
n+1 + uT

ref ),ΨT]]T −
1

2
[[bT(vn + uT

ref ,Ψ
T),vn+1 + uT

ref ]]T

+
1

2

∑
D∈Dext

(Fσ,K(v
n + uT

ref ))+γσ(vn+1 + uT
ref ) · γσ(ΨT)

= −1

2

∑
D∈Dext

Fσ,K(v
n + uT

ref )−γσ(uT
ref ) · γσ(ΨT).

The second step consists in selecting ΨT = (vn+1 + uT
ref )− uT

ref as a test function. It follows that:

E :=[[
vn+1 − vn

δt
,vn+1]]T +

2

Re
‖DDvn+1‖22 +

1

2

∑
D∈Dext

(Fσ,K(v
n + uT

ref ))+(γσ(vn+1))2

≤
∣∣∣∣12 [[bT(vn + uT

ref ,v
n+1),uT

ref ]]T −
1

2
[[bT(vn + uT

ref ,u
T
ref ),vn+1]]T

∣∣∣∣
+

∣∣∣∣12 ∑
D∈Dext

Fσ,K(v
n + uT

ref )−γσ(uT
ref ) · γσ(vn+1)

∣∣∣∣
We apply property of Thm. 5.1 to the convection terms [[bT(vn + uT

ref ,v
n+1),uT

ref ]]T and [[bT(vn +

uT
ref ,u

T
ref ),vn+1]]T; for what concerns the boundary term, thanks to the definition of Fσ,K for σ ∈ ∂Ω,

we have:∣∣∣∣ ∑
Dσ,σ∗∈Dext

Fσ,Kγ
σ(uT

ref ) · γσ(vn+1)

∣∣∣∣ ≤ ∑
Dσ,σ∗∈Dext

mσ|γσ(vn + uT
ref )||γσ(uT

ref )||γσ(vn+1)|

and by applying Hölder’s inequality with p = 8
3 , q = 8

3 , r = 4 we get:∣∣∣∣ ∑
Dσ,σ∗∈Dext

Fσ,Kγ
σ(uT

ref ) · γσ(vn+1)

∣∣∣∣ ≤ C‖γT(vn + uT
ref )‖ 8

3 ,∂Ω‖γT(vn+1)‖ 8
3 ,∂Ω‖γT(uT

ref )‖4,∂Ω.

Thus we are led to:

E ≤C
(
‖vn + uT

ref‖3 + ‖γT(vn + uT
ref )‖3,∂Ω

)(
‖vn+1‖6 ‖∇DuT

ref‖2 + ‖uT
ref‖6 ‖∇Dvn+1‖2

)
+ C‖γT(vn + uT

ref )‖ 8
3 ,∂Ω‖γT(vn+1)‖ 8

3 ,∂Ω‖γT(uT
ref )‖4,∂Ω.

By Sobolev inequalities of [2, Thm. 9], we bound ‖vn‖3 from above by C‖∇Dvn‖
1
3
2 ‖vn‖

2
3
2 and ‖vn+1‖6

by C‖∇Dvn+1‖
2
3
2 ‖vn+1‖

1
3
2 . Moreover, thanks to the trace Theorem 10.4 and to [2, Thm. 9], we bound

‖γT(vn+1)‖ 8
3 ,∂Ω and ‖γT(vn)‖3,∂Ω by C‖∇Dvn+1‖

5
8
2 ‖vn+1‖

3
8
2 and C‖∇Dvn‖

2
3
2 ‖vn‖

1
3
2 .

We then apply the discrete Poincaré inequality, Thm. 10.3, to get rid of the norms of vn+1.
Finally we recall that uT

ref is a fixed reference steady flow. Hence there exists a constant C > 0 that
depends only on Ω, reg(T) and uT

ref such that:

E ≤ C
(

2‖∇Dvn‖
1
3
2 ‖vn‖

2
3
2 ‖∇Dvn+1‖2 + 2‖∇Dvn‖

2
3
2 ‖vn‖

1
3
2 ‖∇Dvn+1‖2

+ 5‖∇Dvn+1‖2 + ‖∇Dvn‖
5
8
2 ‖vn‖

3
8
2 ‖∇Dvn+1‖2

)
.

We control the norm of the gradients with the norms of DDvn+1 and DDvn thanks to Korn’s inequality,
Thm. 6.1:

E ≤ C
(

2‖DDvn‖
1
3
2 ‖vn‖

2
3
2 ‖DDvn+1‖2 + 2‖DDvn‖

2
3
2 ‖vn‖

1
3
2 ‖DDvn+1‖2

+ 5‖DDvn+1‖2 + ‖DDvn‖
5
8
2 ‖vn‖

3
8
2 ‖DDvn+1‖2

)
.
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Hence, by suitable use of Young’s inequality (Lemma 10.1) we end up with:

[[
vn+1 − vn

δt
,vn+1]]T +

2

Re
‖DDvn+1‖22 +

1

2

∑
D∈Dext

(Fσ,K(v
n + uT

ref ))+(γσ(vn+1))2

≤ 16Re2C3‖vn‖22 +
1

2Re
‖DDvn‖22 +

1

Re
‖DDvn+1‖22 +

25

2
ReC2

We combine
1

Re
‖DDvn+1‖22 with the LHS, we multiply this relation by δt and we apply

2[[vn+1 − vn,vn+1]]T = ‖vn+1 − vn‖22 + ‖vn+1‖22 − ‖vn‖22.

We obtain:

‖vn+1 − vn‖22 + ‖vn+1‖22 + δt
2

Re
‖DDvn+1‖22 + δt

∑
D∈Dext

(Fσ,K(v
n + uT

ref ))+(γσ(vn+1))2

≤ ‖vn‖22 + 32Re2C3δt‖vn‖22 +
1

Re
δt‖DDvn‖22 + 25ReC2δt.

We sum over n = 0 . . .m− 1 with m ∈ {1 . . . N} to obtain:

m−1∑
n=0

‖vn+1 − vn‖22 + ‖vm‖22 +

m−1∑
n=0

δt
1

Re
‖DDvn+1‖22

+ δt
1

Re
‖DDvm‖22 +

m−1∑
n=0

δt
∑

D∈Dext

(Fσ,K(v
n + uT

ref ))+
∣∣γσ(vn+1)

∣∣2
≤ ‖v0‖22 +

1

Re
δt‖DDv0‖22 + 25ReC2T + 32Re2C3δt

m−1∑
n=0

‖vn‖22. (26)

We can now apply Grönwall’s lemma (Lemma 10.2), with:

a0 := ‖v0‖22 +
1

Re
δt‖DDv0‖22

am :=

m−1∑
j=0

‖vj+1 − vj‖22 + ‖vm‖22 +

m−1∑
j=0

δt
1

Re
‖DDvj+1‖22

+ δt
1

Re
‖DDvm‖22 +

m−1∑
j=0

δt
∑

D∈Dext

(Fσ,K(vj + uT
ref ))+

∣∣γσ(vj+1)
∣∣2

for m = {1 . . . N}. In fact, we deduce from (26) that

am ≤ a0 + 25ReC2T︸ ︷︷ ︸
:=A

+ 32Re2C3︸ ︷︷ ︸
:=B

δt

m−1∑
i=0

ai,

that implies:
max

m=1...N
am ≤ AeBT .

This proves our initial statement, since we can choose m = N and write:

N−1∑
j=0

‖vj+1 − vj‖22 + ‖vN‖22 +

N−1∑
j=0

δt
1

Re
‖DDvj+1‖22

+ δt
1

Re
‖DDvN‖22 +

N−1∑
j=0

δt
∑

D∈Dext

(Fσ,K(vj + uT
ref )+

∣∣γσ(vj+1)
∣∣2 ≤ C(T ).

�
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8 Numerical results

We validate the scheme through a series of numerical experiments. First, we study numerically the
consistency properties of the scheme. Second, we reproduce the simulations of a flow in a channel
presented in [10] and [22].

8.1 Convergence results

Test case 1. The computational domain is Ω = [0, 1]2, whose boundary is divided into ∂Ω = Γ1 ∪ Γ2.
We impose Dirichlet boundary conditions on Γ1, composed by the two orizontal boundaries and the left
vertical one. The open boundary condition (2) is imposed on Γ2, the right vertical boundary. We set the
viscosity to 1.
For the tests we give the expression of the exact solution (u,p), from which we deduce a source term f for
the momentum equation and the Dirichlet boundary condition g1. As a reference flow, we consider the
exact solution. We will compare the L2-norm of the error (difference between a centered projection of
the exact solution and the approximated solution obtained with DDFV scheme) for the velocity (denoted
Ervel), the velocity gradient (Ergradvel) and the pressure (Erpre). In particular we denote:

Ergradvel =

(
N∑
n=0

δt‖∇D(PT

cu)n −∇Dun‖22

)1/2

(
N∑
n=0

δt‖∇D (PT

cu)
n ‖22

)1/2
, Erpre =

(
N∑
n=0

δt‖(PD
c p)n − pn‖22

)1/2

(
N∑
n=0

δt‖
(
PD
c p
)n ‖22

)1/2
,

Ervel =
max

n=0...N
‖ (PT

cu)
n − un‖2

max
n=1...N

‖ (PT

cu)
n ‖2

,

where (PT
cu)

n and (PD
c p)n are the centered projections of u and p at the time step tn = nδt.

On Table 1 we give the number of primal cells (NbCell) and the convergence rates (Ratio). We remark
that, to discuss the error estimates, a family of meshes (Fig. 4) is obtained by refining successively and
uniformly the original mesh. The exact solutions is:

u(x, y) =

(
−2π cos(πx) sin(2πy) exp(−5ηtπ2),
π sin(πx) cos(2πy) exp(−5ηtπ2)

)
p(x, y) = −π

2

4
(4 cos(2πx) + cos(4πy)) exp(−10tηπ2)

Figure 4: Non conformal square mesh.

The final time is T = 0.03s and we set δt = 3 × 10−5s. As we can see in Table 1, we observe super
convergence in L2 norm of the velocity, that is a classical result for Finite Volume methods. For what
concerns the gradient of the velocity and the pressure, we remark that the non-conformity of the mesh
does not influence the good convergence of the method. We get a first order accuracy on the velocity
gradient, and an order of 1.5 for the pressure, that is better than what we expected. We tested many

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 1.424E-01 - 1.612E-01 - 6.127E+00 -
208 4.095E-02 1.80 7.316E-02 1.14 1.725E+00 1.83
736 1.019E-02 2.00 3.489E-02 1.07 5.836E-01 1.56
2752 2.559E-03 1.99 1.710E-02 1.03 1.947E-01 1.58
10624 6.493E-04 1.98 8.474E-03 1.01 6.189E-02 1.65

Table 1: Test case 1 on the non conformal square mesh Fig. 4.
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other meshes and the results do not change. The geometry of the mesh does not influence the accuracy
of the approximation.

8.2 Simulations of a flow in a pipe

Figure 5 describes the situation we are dealing with: we consider Ω, a bounded polygonal domain of
R2, whose boundary ∂Ω is split into Γ0, Γ1 and Γ2 and whose outer normal is denoted by ~n. We add
a cylindrical obstacle inside Ω. The Dirichlet part of the boundary is composed by Γ0 and Γ1: on the
physical boundary Γ0 we impose no slip boundary conditions and on the inflow boundary Γ1 the velocity
is prescribed. On the artificial boundary Γ2, that we wish to set as close as possible to the obstacle, we
impose the nonlinear boundary condition (2). We reproduce two different test cases, proposed in [10] and

physical domain

computational domain

Γ1 Γ2Γ0

Γ0

Γ0

in
flo

w

Figure 5: Domain and notations.

in [22]. In both cases, the simulations are performed on a triangular mesh, generated by GMSH, that is
locally refined around the cylinder.

Test case 2. We show that by adding an artificial boundary, thanks to condition (2), we do not
introduce any perturbation to the flow. For this purpose, we consider an original domain that we cut
into two smaller domains and we draw the streamlines of the respective solution.
We consider the symmetric domain Ω = [0, 5] × [0, 1] with a cylindrical obstacle of diameter L = 0.4m.
The smaller domains are obtained by cutting at the horizontal axis first in x = 3, then in x = 1.5.
The mesh for Ω is composed by 12118 cells, and we pass to Ω′ = [0, 3] × [0, 1] with 8636 cells and to
Ω′′ = [0, 1.5]× [0, 1] with 6534 cells. The time step is δt = 0.035s. The inflow on Γ1 is:

g1 = (6y(1− y), 0).

Since our simulations are performed with Re = 100, it makes sense to set as reference flow a Poiseuille
flow. Therefore we choose uref = g1 and σref (u,p) ·~n = (0, 6η(1− 2y)). As initial condition, we impose

uinit = g1 and the final time is T = 3.5s. The Reynold’s number is Re =
umoy L

η
=

0.4

η
, with average

velocity umoy = 1. If u = (u1, u2), the stream function Ψ is defined in the continuous setting as the
solution of

∂Ψ

∂y
= u1,

∂Ψ

∂x
= −u2,

in particular it has to satisfy the following system:{
∆Ψ = rot(u) in Ω

∇Ψ · ~n = u · ~τ on ∂Ω

where rot(u) = −∂u1

∂x
+
∂u1

∂y
, ~n is the outer normal to the domain and ~τ is the unitary tangent to the

boundary. In the DDFV setting, we look for ΨD ∈ RD solution of:{
divD∇TΨD = rotD(uT)

∇KΨD · ~nσK = γσ(uT) · ~τ K∗,L∗ ∀σ ∈ ∂Ω

where ∇TΨD = divT(ΨDId).
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Figure 6: Streamline of Test case 2 at T = 1.5s, Re = 100, η = 4× 10−3. On the top: Ω = [0, 5]× [0, 1],
NbCell= 12118. In the middle: Ω′ = [0, 3] × [0, 1], NbCell=8636. On the bottom: Ω′′ = [0, 1.5] × [0, 1],
NbCell=6534.

Figure 7: Streamline of Test case 2 at T = 3.5s, Re = 100, η = 4× 10−3. On the top: Ω = [0, 5]× [0, 1],
NbCell= 12118. In the middle: Ω′ = [0, 3] × [0, 1], NbCell=8636. On the bottom: Ω′′ = [0, 1.5] × [0, 1],
NbCell=6534.
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We observe by the streamlines in Fig. 6 and Fig. 7 that we can cut close to the obstacle without adding
any perturbation to the whole flow. The recirculations are well located and there is no presence of parasite
vortices. Clearly, the closer we cut, the more we loose in precision in the cells right before the artificial
boundary. This is due to the artificiality of the conditions and to the choice of the reference flow. But in
any case, the boundary can cut the recirculation right in the middle without affecting the whole flow.
The choice of the reference flow is crucial. In [10], it is proposed to use a Poiseuille flow as we repro-
duce in our numerical tests. In [8], since to write down the variational formulation (10) the reference
flow is assumed to be the solution of a steady Stokes problem with u = g1 on Γ1, the author chooses
the flow at infinity: uref = u∞, σref = σ∞. Nevertheless, when the flow is chaotic or turbulent such
a reference flow does not give a good equivalent of the traction. Thus for higher Reynold’s numbers,
other techniques can be envisaged for the choice of the reference flow; for example, it looks reasonable
to choose a reference flow that changes at each time step. We might think that a good approximation of
the solution at the boundary Γ2 is the solution computed at the previous time step (or even just before
the boundary at the same time step), but actually we numerically observed that this techniques lead to
strong instabilities. Remark that by replacing uT

ref with un, the energy stalibity is no longer guaranteed.
A way to overcome this difficulty could be to compute the flow on a strictly larger domain (with respect
to the smaller one) with a less refined mesh, and then take as reference flow the trace of the solution on Γ2.

Test case 3. To measure the quality of the solution we obtain on the shorter domain, as a second
experiment we computed the drag and the lift coefficient, whose reference values can be found in [22].
We consider a long channel Ω = [0, 2.2] × [0, 0.41], that we cut at x = 0.6m, with a cylindrical obstacle
S whose center is in (0.15, 0.15).
In [22], the coefficients are computed in the long domain with a Dirichlet type condition on the boundary
x = 2.2m. We perform the same computations by considering the smaller domain Ω′ = [0, 0.6]× [0, 0.41],
with the outflow boundary condition (2) on Γ2 (at x = 0.6m). The triangular mesh that we considered
on Ω′, obtained with GMSH, has 8020 cells and it is locally refined around the cylinder.

0.16m

0.15m

2.2m

0.6m

0.41mΓ2

Figure 8: Domains Ω = [0, 2.2]× [0, 0.41] and Ω′ = [0, 0.6]× [0, 0.41].

The viscosity of the fluid is set to η = 10−3m2s−1 and the final time is T = 8s. The time-dependent
inflow on Γ1 is:

g1 = 0.41−2 sin(πt/8)(6y(0.41− y), 0),

and as a reference flow on Γ2 we choose uref = g1 and σref · ~n = σ(uref , 0) · ~n, where ~n is the outer
normal to Ω. The initial condition is uinit = (0, 0). The density of the fluid is given by ρ = 1kgm−3, and
the maximum velocity is Umax = 1ms−1. The diameter of the cylinder is L = 0.1m, so that the Reynold’s
number is 0 ≤ Re(t) ≤ 100. We define the drag coefficient cd(t) and the lift coefficient cl(t) as:

cd(t) =
2

ρLU2
max

∫
S

(
ρη
∂utS (t)

∂n
ny − p(t)nx

)
,

cl(t) = − 2

ρLU2
max

∫
S

(
ρη
∂utS (t)

∂n
nx + p(t)ny

)
,

where here ~nS = (nx, ny) is the normal vector on S directing into Ω , tS = (ny,−nx) the tangential
vector and utS the tangential velocity.
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To corresponding formula in the DDFV setting is:

cnd =
2

ρLU2
max

∑
D∈Dext∩S

mσ (ρη∇D(un · ~τ K∗,L∗) · ~nσK ny − pnnx) ,

cnl = − 2

ρLU2
max

∑
D∈Dext∩S

mσ (ρη∇D(un · ~τ K∗,L∗) · ~nσK nx + pnny) ,

where
∇D(un · ~τ K∗,L∗) · ~nσK =

mσ

2mD

(un
L
− un

K
) · ~τ K∗,L∗ +

mσ∗

2mD

(un
L∗ − un

K∗) · ~τ K∗,L∗ ~nσ∗K∗ · ~nσK.

We study the evolution of the coefficients in Fig. 9 and their maximum value in Table 2, defined as:

cd,max = max
n∈{0...N}

cnd , cl,max = max
n∈{0...N}

cnl .

The results shown in Table 2 and in Fig. 9 prove that the boundary conditions are robust and the
solution we find is quantitatively correct. The small difference in the coefficients, with respect to the
reference values, is due to the level of refinement of the mesh and to the different kind of condition on
the boundary.
In Figure 9 we can also observe how the time step and the choice of the scheme influences the result for
the lift coefficient: for the reference values, [22] considers a time step δt = 0.0025s with a second order
scheme in time. We thus implement a second order backward difference formula in time to see if the
approximation improves. The first iteration of the scheme remains unchanged, and for n ∈ {1, . . . N} the
variational formulation (11) becomes:

[[
1

δt

(
3

2
un+1 − 2un +

1

2
un−1

)
,ΨT]]T +

2

Re
(DDun+1,DDΨT)D +

1

2
[[bT(2un − un−1,un+1),ΨT]]T

− 1

2
[[bT(2un − un−1,ΨT),un+1]]T = −1

2

∑
D∈Dext∩Γ2

(Fσ,K(2u
n − un−1))+ γσ(un+1) · γσ(ΨT)

+
1

2

∑
D∈Dext∩Γ2

(Fσ,K(2u
n − un−1))−γσ(uref ) · γσ(ΨT) +

∑
D∈Dext∩Γ2

mσ(σD
ref · ~nσK) · γσ(ΨT).

We observe in Fig. 9 that this technique actuallly improves the quality of the approximation of the lift
coefficient.

DDFV Reference
cd,max 2.9754 2.9509
cl,max 0.44902 0.47795

Table 2: Comparison between the values of cd,max, cl,max obtained with DDFV scheme (left) and the
reference values of [22] (right).

9 Conclusions

In this article, we propose DDFV schemes for the Navier-Stokes problem with outflow boundary con-
ditions. The DDFV scheme is proved to be well-posed and it satisfies a discrete energy estimate. We
numerically proved the good convergence of the scheme and we performed numerical tests that show the
accuracy of this condition. These results are proved in the case of a constant viscosity, but they could be
extended to the case of variable viscosity, by starting from the works of [3, 19].
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(a) Evolution of the drag coefficient cnd

(b) Evolution of the lift coefficient cnl

Figure 9: Comparison between the evolution of cnd , c
n
l on the time interval [0, 8] obtained with DDFV

scheme (left) and the reference values of [22] (right). We plot the results for the scheme of order 1 in
time, with respect to different time steps, and for the scheme of order 2.

10 Appendix A

Lemma 10.1 (Young’s inequality)
Let a, b, c be three non negative numbers. Let p1, p2 and p3 be positive real numbers such that 1

p1
+ 1
p2

+ 1
p3

=
1. Then, we have:

abc ≤ C1

p1
ap1 +

C2

p2
bp2 +

1

p3 C1C2
cp3

for some positive constants C1, C2,

We adapted the proof of Grönwall’s lemma, Lemma 16.I.6 in [20], to obtain the following:

Lemma 10.2 (Discrete Grönwall’s lemma)
If a sequence (an)n, n = 0 . . . N , satisfies

a0 ≤ A, an ≤ A+Bδt

n−1∑
i=0

ai ∀n ∈ 1, . . . N, δt =
T

N

where A and B are two positive constants independent of δt, then

max
n=1...N

an ≤ AeBT .

10.1 Trace theorem
10.1.1 Definitions

Given a vector uT = ((uK)K∈M∪∂M, (uK∗)K∗∈M∗∪∂M∗) defined on a DDFV mesh T, we associate the
approximate solution on the boundary in two different ways:

γ̃(uT) =
1

2

∑
K∈M

uK1K̄∩∂Ω +
1

2

∑
K∗∈∂M∗

uK∗1K̄∗∩∂Ω.

γ(uT) =
1

2

∑
L∈∂M

uL1L +
1

2

∑
K∗∈∂M∗

uK∗1K̄∗∩∂Ω.
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With this definition, we use simultaneously the values on the primal mesh and the values on the dual
mesh. We can also consider two different reconstructions based either on the primal values or the dual
values:

γ̃∂M(uT) =
∑
K∈M

uK1K̄∩∂Ω or γ∂M(uT) =
∑

L∈∂M

uL1L

γ̃∂M
∗
(uT) = γ∂M

∗
(uT) =

∑
K∗∈∂M∗

uK∗1K̄∗∩∂Ω(x).

We point out that, if we consider the object we want to estimate, we have for both cases (by Minkowski’s
inequality):

‖γ̃(uT)‖q,∂Ω ≤ ‖γ̃∂M(uT)‖q,∂Ω + ‖γ̃∂M
∗
(uT)‖q,∂Ω,

‖γ(uT)‖q,∂Ω ≤ ‖γ∂M(uT)‖q,∂Ω + ‖γ∂M
∗
(uT)‖q,∂Ω.

Before proving the trace theorem, we introduce a discrete Poincaré inequality.

Theorem 10.3 (Discrete Poincaré inequality)[2, Thm. 11] Let Ω be an open connected bounded polygonal
domain of R2 and Γ0 be a part of the boundary such that m(Γ0) > 0. Let T be a DDFV mesh associated
to Ω.

• If 1 ≤ p < 2, let 1 ≤ q ≤ p∗

• If p ≥ 2, let 1 ≤ q <∞.

There exists a constant C > 0, depending only on p,q, Γ0 and Ω such that ∀uT ∈ EΓ0
0 :

‖uT‖q ≤
C

sin(αT)
1
p reg(T)

p−1
p

‖∇DuT‖p.

Theorem 10.4 (Trace inequality) Let T be a DDFV mesh associated to Ω. For all p > 1 there exists a
constant C > 0, depending only on p, sin(αT), reg(T) and Ω such that ∀uT ∈ EΓ0

0 and ∀s ≥ 1:

‖γ̃(uT)‖ss,∂Ω ≤ C‖uT‖1,p‖uT‖s−1
p(s−1)
p−1

. (27)

The computations of the proof are similar to those present in [13] and [11]. In [13], the proof is given
for finite volume methods; in [11], the proof is given for DDFV method but in the case of L1 norm. Our
proof has been adapted to the vectorial case and to general Ls, Lp norms.

Proof
Boundary properties: By compactness of ∂Ω, there exists a finite number of open hyper-rectangles
{Ri, i = 1 . . . N}, and normalized vectors of R2, {ηi, i = 1, . . . , N}, such that:

Ri

x+ tηi

x

ν(x)

ηi

Γ = ∂Ω

Ri

Figure 10: Properties of the boundary ∂Ω.
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∂Ω ⊂

⋃N
i=1Ri

(ηi,
−→ν (x)) ≥ λ > 0 ∀x ∈ Ri ∩ ∂Ω, i ∈ {1 . . . N}

{x+ tηi, x ∈ Ri ∩ ∂Ω, t ∈ R+} ∩Ri ⊂ Ω,

where λ is a strictly positive number and −→ν (x) is the normal vector to ∂Ω at x, inward to Ω (see Figure

1). Let {λi, i = 1 . . . N} be a family of functions such that
N∑
i=1

λi(x) = 1, for all x ∈ ∂Ω, λi ∈ C∞c (R2,R+)

and λi = 0 outside of Ri, for all i = 1 . . . N . Let ∂Ωi = Ri ∩ ∂Ω; we shall prove that there exists Ci > 0
depending only on λ, reg(T) and λi such that∫

∂Ωi

λi(x)|γ̃∂M(uT)(x)|sdx+

∫
∂Ωi

λi(x)|γ̃∂M
∗
(uT)(x)|sdx ≤ Ci‖uT‖1,p‖uT‖s−1

p(s−1)
p−1

.

Then it will be sufficient to define C :=

N∑
i=1

Ci to get (27).

We study separately the two terms.

On the primal mesh: We introduce the functions to determine the successive neighbours of a cell
uK. Consider x, y ∈ Ω, then:

for σ ∈ E Ψσ(x, y) :=

{
1 if [x, y] ∩ σ 6= ∅
0 otherwise,

for K ∈M ΨK(x, y) :=

{
1 if [x, y] ∩ K 6= ∅
0 otherwise.

K0

L0

x = ξK0(x)

y(x) = ηL0(x)

ηK0(x) = ξL0(x) = zσ0
(x)

σ0 y(x) = ηK0(x) = ηL0(x) = zσ0
(x)

x = ξK0(x) = ξL0(x)

K0

L0

σ0

Figure 11: (Left) [x, y(x)]∩σ0 is reduced to a point zσ0
(x). (Right) [x, y(x)]∩σ0 is the segment [x, y(x)].

Now, we fix i ∈ {1 . . . N} and x ∈ ∂Ωi.
Then there exists a unique t > 0 such that x + tηi = y(x) ∈ ∂Ri. Then, for σ ∈ E , if [x, y(x)] ∩ σ 6= ∅,
then it is:

• either a point: zσ(x) := [x, y(x)] ∩ σ

• either a segment: [a(x), b(x)] := [x, y(x)] ∩ σ and let zσ(x) := b(x).

For K ∈M, if [x, y(x)] ∩ K 6= ∅ we have:

[ξK(x), ηK(x)] := [x, y(x)] ∩K.

Let us fix x ∈ K0 , with K0 ∈M such that y(x) ∈ L0, σ0 = K0|L0. We distinguish the following two cases:

1. For the left case (see Fig. 11):

λi(x)|uK0 |s =
(
λi(ξK0(x))− λi(ηK0(x))

)
|uK0 |s

+
(
λi(ξL0(x))− λi(ηL0(x))

)
|uL0 |s

+ λi(zσ0
(x))

(
|uK0 |s − |uL0 |s

)
,
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2. for the right case (see Fig. 11):

λi(x)|uK0 |s =
(
λi(ξK0(x))− λi(ηK0(x))

)
|uK0 |s.

In both cases:

λi(x)|uK0 |s ≤
∑
D∈D

Ψσ(x, y(x))λi(zσ(x))
∣∣|uK|s − |uL|s

∣∣
+
∑
K∈M

ΨK(x, y(x))|λi(ξK(x))− λi(ηK(x))||uK|s,

that we can write as
λi(x)|uK0 |s ≤ A(x) +B(x)

by defining
A(x) :=

∑
D∈D

Ψσ(x, y(x))λi(zσ(x))||uK|s − |uL|s|

B(x) :=
∑
K∈M

ΨK(x, y(x))|λi(ξK(x))− λi(ηK(x))||uK|s.

We proceed by estimating separately the two terms.

Estimate of A:
Since λi is bounded, we get:

A(x) ≤ ‖λi‖∞
∑
D∈D

Ψσ(x, y(x))

∣∣∣∣|uK|s − |uL|s
∣∣∣∣;

We now use the following estimate (with cσ = |(ηi,−→ν σ(x))|)∫
∂Ωi

Ψσ(x, y(x))dx ≤ cσ
λ
mσ,

that is proved in [13], to conclude:

A =

∫
∂Ωi

A(x)dx ≤ ‖λi‖∞
∑
D∈D

(∫
∂Ωi

Ψσ(x, y(x))dx
)∣∣∣∣|uK|s − |uL|s

∣∣∣∣
≤ Ci

∑
D∈D

mσ

∣∣∣∣|uK|s − |uL|s
∣∣∣∣

where in the 3rd inequality we used [17][Lemma I.19].
Now, as in [2], we use the inequality:∣∣∣∣|uK|s − |uL|s

∣∣∣∣ ≤ s(|uK|s−1 + |uL|s−1)|uK − uL|

that leads to:∑
D∈D

mσ

∣∣∣∣|uK|s − |uL|s
∣∣∣∣ ≤ s∑

D∈D

mσ(|uK|s−1 + |uL|s−1)|uK − uL|

≤ C
∑
D∈D

mσmσ∗(|uK|s−1 + |uL|s−1)

∣∣∣∣uK − uL

mσ∗

∣∣∣∣ (Int. by parts and Hölder)

≤ C
(∑
K∈M

∑
D∈DK

mσmσ∗ |uK|
(s−1)p
p−1

) p−1
p
(∑
D∈D

mσmσ∗

∣∣∣∣uK − uL

mσ∗

∣∣∣∣p) 1
p

.

By regularity hypothesis on the mesh and the definition of the discrete gradient we can write:

A ≤ C

sin(αT)
1
p reg(T)

p−1
p

‖uT‖s−1
(s−1)p
p−1

‖∇DuT‖p.

Estimate of B:
Since λi is C∞, we have, by Talylor’s formula:

B(x) ≤ ‖∇λi‖∞
∑
K∈M

ΨK(x, y(x))|ξK(x)− ηK(x)||uK|s
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and thanks to the inequality that can be found in [13, Lemma 3.10]∫
∂Ωi

ΨK(x, y(x))|ξK(x)− ηK(x)|dx ≤ mK

λ
,

we can conclude:

B =

∫
∂Ωi

B(x) ≤ ‖∇λi‖∞
∑
K∈M

(∫
∂Ωi

ΨK(x, y(x))|ξK(x)− ηK(x)|
)
|uK|s

≤ Ci
∑
K∈M

mK|uK|s.

Thus
B ≤ C‖uT‖ss.

Putting together the terms, we find:∫
∂Ωi

λi(x)|γ̃∂M(uT)|s ≤ Ci
(
‖uT‖s−1

(s−1)p
p−1

‖∇DuT‖p + ‖uT‖ss
)
.

By proceeding as in the proof of [2, Lemma 1], we use interpolation between Lp spaces and we write:

‖uT‖ss ≤ ‖uT‖s−1
(s−1)p
p−1

‖uT‖p

that leads to ∫
∂Ωi

λi(x)|γ̃∂M(uT)|s ≤ Ci‖uT‖s−1
(s−1)p
p−1

‖uT‖1,p

that proves our theorem.

On the dual mesh: the computations are exactly the same, exchanging K with K∗ and σ in σ∗ .

�

Corollary 10.5 Let T be a DDFV mesh associated to Ω.There exists a constant C > 0, depending only
on p,q, sin(αT), reg(T) and Ω such that ∀uT ∈ EΓ0

0 and for all s ≥ 1, p > 1:

‖γ(uT)‖ss,∂Ω ≤ C‖uT‖1,p‖uT‖s−1
p(s−1)
p−1

.

Proof The proof is almost the same as Theorem 10.4.
What changes is just that we now fix x ∈ L, L ∈ ∂M and K0 ∈M such that L ⊂ K0, y(x) ∈ K0, σ0 = K0|L.
The term that we want to study now is λi(x)|uL|s, since we are focusing on the boundary. It can be
written as:

λi(x)|uL|s = λi(x)(|uL|s − |uK0 |s) + λi(x)|uK0 |s (28)

that can be estimated by:

λi(x)|uL|s ≤ λi(x)

∣∣∣∣|uL|s − |uK0 |s
∣∣∣∣1L(x) + λi(x)|uK0 |s

:= Ab(x) + λi(x)|uK0 |s

Estimate of Ab:
Since λ is bounded, we have:

Ab =

∫
∂Ωi

Ab(x) ≤ ‖λi‖∞
∑
D∈D

mσ

∣∣∣∣|uL|s − |uK|s
∣∣∣∣.

We can proceed exactly as in the proof of Thm 10.4 for A, so we get:

Ab ≤
C

sin(αT)
1
p reg(T)

p−1
p

‖uT‖s−1
(s−1)p
p−1

‖∇DuT‖p.

Putting together all the terms, we find:(∫
∂Ωi

λi(x)|γ∂M(uT)|s
)
≤ Ab +

(∫
∂Ωi

λi(x)|γ̃∂M(uT)|s
)
.
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Thanks to the previous theorem, we conclude:∫
∂Ωi

λi(x)|γ∂M(uT)|s ≤ Ci‖uT‖s−1
(s−1)p
p−1

‖uT‖1,p

that proofs our statement.

On the dual mesh: the computations are the same as the previous theorem.

�
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11 Appendix B: Study of the kernel of DD

Theorem 11.1 Let Ω be an open connected bounded polygonal domain of R2 and Γ0 be a part of the
boundary such that m(Γ0) > 0.
Let T be a DDFV mesh associated to Ω that satisfies inf-sup stability condition. Then ∀uT ∈ EΓ0

0 such
that DDuT = 0 we have uT = 0 in Ω.

Proof Since we are not able to give a general proof of this theorem for all meshes, we focus on particular
families, namely Cartesian meshes and all the ones that are unconditionally inf-sup stable (see [5]), since
to prove Thm. 6.2 we need this last hypothesis.

Figure 12: Structures.
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When studying those meshes, we observe a propagation phe-
nomenon of the zero boundary data on Γ0 to the entire mesh.
In fact, it is important to remark that in DDFV meshes all bound-
ary diamonds are triangles (see Fig. 2). If we focus on one of those
diamonds, the condition on Γ0 implies that the velocity is zero on
the three vertices L, K∗ and L∗:

uL =

ux
L

uy
L

 = 0, uK∗ =

ux
K∗

uy
K∗

 = 0, uL∗ =

ux
L∗

uy
L∗

 = 0.

Since we are supposing DDuT = 0 for all D ∈ D, this is true in
particular for the boundary diamonds (the white ones in Fig. 12).
By the definition of the discrete strain rate tensor (5) we are led
to the following system:

mσ uxK n
x
σ,K = 0

mσ uyK n
y
σ,K = 0

mσ (ux
K
nyσ,K + uy

K
nxσ,K) = 0,

(29)

that implies uK =

ux
K

uy
K

 = 0, since the outer normal ~nσK =

nxσ,K

nyσ,K


cannot be zero.
This means that for all diamonds in Dext∩Γ0 the four components
of the velocity, uK,uL,uK∗ ,uL∗ , are zero.

We now look at the diamonds that are adjacent to ones
on the boundary: for the meshes under consideration, we
can distinguish two possible situations that we illustrate in
Fig. 12.

The first one is the case of the shaded diamond, for which
the situation is equivalent to the one of boundary dia-
monds. In fact, we know that the velocity is zero on
three of its vertices. So we can conclude, by solving a
system similar to (29) deduced by DDuT = 0, that even
the last component of the velocity is zero on that dia-
mond.

The second structure is described by the hatched diamonds. This
is the case of two neighbors, that we will denote with D

1,D2 which share a common vertex. Remark that
on that vertex the velocity is zero and both diamonds have one more vertex with zero velocity. Thus we
are considering a structure composed by 6 vertices, where the values of the velocity are zero on 3 among
them.
In this case, we denote the normal vectors of D

1, D2 with

~niσK
=

nx,iσ

ny,iσ

 , ~niσ∗K∗ =

nx,iσ∗

ny,iσ∗

 for i = 1, 2
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and we write the system of equations equivalent to the conditions DDiuT = 0 for i = 1, 2.
The 6× 6 matrix of that system has determinant

det = (nx,2σ∗ ny,2σ − nx,2σ ny,2σ∗ )(nx,1σ∗ ny,1σ − nx,1σ ny,1σ∗ )(nx,1σ ny,2σ − nx,2σ ny,1σ ) 6= 0

that is always different from zero, except in a degenerate case that we treat in the following section where
the normals of the two diamonds are parallel. Thus the matrix is invertible, that implies that all the six
components of the velocity on those two diamonds are zero: ui

K
= ui

L
= ui

K∗ = ui
L∗ = 0 for i = 1, 2.
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Figure 13: Degenerate case

D1 D2

D3

Degenerate case: checkerboard mesh

This is a particular case of the second structure, in which the normal
vectors of the two hatched diamonds are parallel. In order to have
an invertible system to solve, it is necessary to consider a third dia-
mond.
In particular, if we call D1, D2 the hatched diamonds and D3 the

white one, we have for instance: ~niσK
=

(
0
1

)
for i = 1, 2 and

~n3
σK

=

(
1
0

)
.

If, as we did in the previous cases, we write the system of equa-
tions equivalent to DDiuT = 0, but this time for i = 1, 2, 3, we get
again an invertible system, this time of size 8 × 8. As before, we
find that all the components of the velocity are zero on the three dia-
monds.

By proceeding step by step, we can prove that the velocity uT is zero
on the entire domain Ω.

�

Remark 11.2 We suppose that the mesh satisfies inf-sup stability condition because this hypothesis is
necessary to prove Theorem 6.2. Since the inf-sup constant it is not involved in the proof of Theorem
11.1, we could extend the technique of the proof to all geometries, considering one mesh at a time.
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