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Certain Query Answering on Compressed String
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1 Université de Lille, France
2 Inria Lille, France

Abstract. We study the problem of certain query answering (Cqa) on
compressed string patterns. These are incomplete singleton context-free
grammars, that can model systems of multiple streams with references
to others, called hyperstreams more recently. In order to capture regu-
lar path queries on strings, we consider nondeterministic finite automata
(Nfas) for query definition. It turns out that Cqa for Boolean Nfa
queries is equivalent to regular string pattern inclusion, i.e., whether
all strings completing a compressed string pattern belong to a regular
language. We prove that Cqa on compressed string patterns is PSpace-
complete for Nfa queries. The PSpace-hardness even applies to Boolean
queries defined by deterministic finite automata (Dfas) and without
compression. We also show that Cqa on compressed linear string pat-
terns can be solved in PTime for Dfa queries.

1 Introduction

A stream is a sequence of events that arrive incrementally one by one from the
left to the right. Most typically, streams are produced by social networks such as
Twitter, database systems as for producing financial transactions, information
systems, sensor systems, or more generally when communicating semi-structured
data over the internet. We are interested in the problem of monitoring streams in
a reactive manner [22,16,25,23]. The objective is to select the relevant events of a
stream as quickly as possible upon their arrival. This requires to decide whether
an event of the stream is a certain answer of the logical query that defines the
relevant events of the monitoring task. Lowering the latency of this decision
process increases the reactivity of the stream processing system and reduces its
memory costs. A limitation to constant memory may seem ideal in theory, but is
too restrictive for many monitoring tasks in practice. A less restrictive objective
is thus to minimize the latency and the memory consumption.

In the present paper we study a generalization of streams to multiple streams
with references as introduced by Maneth, Pereira and Seidl [21]. The references
point to unknown parts in the middle of a stream. The same reference may be
used multiple times, allowing to share unknown parts. Streams with similar ref-
erences were named hyperstreams in own previous work [20]. Here, we propose
to formalize hyperstream containing words (rather than linearizations of trees
or nested words) as incomplete versions of singleton context-free grammars [24]
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Fig. 1: Hyperstream G1.
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⊇ ⊇

string patterns ⊆ compressed string patterns = hyperstreams

Fig. 2: Landscape from streams to hyperstreams.

(also termed straight line programs [3]), where the rules of some nonterminals
may be missing. The hyperstream G1 illustrated graphically in Fig. 1 has the ter-
minals in {a, b, c}, the nonterminals in {S,X, Y, Z}, and the rules S → aXbbY aX
and X → Y cZa. The nonterminals are called the references of the hyperstream.
For some of these references there exists a rule in the grammar, and if so, this
rule is unique. For any grammar rule, the reference on its left is said to refer
to the string pattern on its right. The hyperstream G1 has a rule for S and X,
while it misses those of Y and Z. The missing rules for these references may be
added in the future one by one by the hyperstream’s environment.

Alternatively, hyperstreams can be identified with compressed string patterns.
The hyperstream G1 for instance represents the string pattern

p1 = aYcZabbYaYcZa,

while sharing the underlined factors substituted for the two occurrences of X.
Streams are a special case of string patterns that have a unique occurrence of
a variable in their last position. The landscape from streams to hyperstreams,
over linear string patterns, string patterns, and compressed string patterns is
illustrated in Fig. 2.

In this paper, we study the decision problem of certain query answering
(Cqa) on compressed string patterns, i.e., whether a tuple of positions is a
certain answer of a query on a compressed string pattern. Here we consider the
positions of the string pattern after decompression rather than the positions of
the grammar. Intuitively, a tuple of positions is a certain query answer on a
compressed string pattern G if it is an answer to the query on all completions
of G, up to the offsets raised by the completion of G on its decompression. We
will also consider the symmetric problem for certain query non-answers.
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Motivated by regular path queries [1], we consider nondeterministic finite
automata (Nfas) for defining such queries. For instance, the query Q1 on strings
over Σ = {a, b, c} that selects all a-positions that are followed eventually by bb
can be defined by the following regular path in XPath-like notation:

Q1 = successor∗::a[successor∗::b/successor::b].

It can also be defined by the x-pointed regular expressionΣ∗axΣ∗bbΣ∗ where x is
a variable for the position that is to be selected. Now, consider the case, where the
string is not given explicitly but only described partially by some (compressed)
string pattern. On the string pattern p1, for instance, the a-positions 1 and 5
are certain query answers for Q1, while the a-positions 9 and 13 are not. The
position 13 is even a certain non-answer.

When restricted to Boolean Nfa queries, Cqa becomes equivalent to the
problem of whether all strings described by the completions of a compressed
string pattern are accepted by the Nfa. For the string pattern Y (for some vari-
able Y ), this problem clearly generalizes on the universality problem of Nfas,
which is well-known to be PSpace-complete [17]. The following questions, how-
ever, are open to the best of our knowledge, even in the case of string patterns
without compression: Is Cqa on (compressed) string patterns decidable for Nfa-
defined queries, and if yes, what is the complexity? Does Cqa on (compressed)
string patterns remain hard for queries defined by deterministic finite automata
(Dfas)? For which restrictions of (compressed) string patterns is Cqa in PTime?
And what about the symmetric questions concerning certain query non-answers?
The objective of the present paper is to answer these questions in all possible
cases.

Our first contribution is that Cqa on string patterns is PSpace-complete,
both for Nfa queries and Dfa queries, with and without compression, Boolean
or not, see Fig. 3. This upper bound is not fully obvious, as the set of strings
defined by a string pattern may be non-regular and even non-context-free. Fur-
thermore, the lower bound may be surprising in that Cqa for Dfa queries on
string patterns is more complex than on streams, where it is in PTime (The-
orem 1 of [13]), and also more complex than string pattern matching, which is
np-complete (Theorem 3.6 of [2]) even with compression (Theorem 4.10 of [11]).

Our second contribution is that Cqa for Dfa queries can be decided in
PTime on compressed linear string patterns, see Fig. 4. The linearity restriction
matches with the worst case complexity for streams, even though linear com-
pressed string patterns allow for unknown factors and compression in addition.
This result (Corollary 2) is based on a novel algorithm for partial decompression
of compressed string patterns that we present (Lemma 6), followed by a test of
a reachability property (Theorem 3).

Our third contribution is that the certainty of query non-answers on com-
pressed string patterns is PSpace-complete, both for Boolean and non-Boolean
queries, and independently of whether they are defined by Dfas or Nfas. In the
Boolean case, the problem is equivalent to whether a compressed string pattern
does not match the regular language accepted by the automaton. This problem
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Dfas Nfas

Answers PSpace-c PSpace-c

Non-answers PSpace-c PSpace-c

Fig. 3: Query certainty on (compressed)
string patterns or hyperstreams.

Dfas Nfas

Answers PTime PSpace-c

Non-answers PTime PTime

Fig. 4: Query certainty on (compressed)
linear string patterns or streams.

generalizes on the complement of compressed string pattern matching, and thus
is coNP-hard. So while certain query non-answering can be solved in PTime
on streams, the complexity increases to PSpace on compressed string patterns.
Finally, we show that the restriction of the problem to compressed linear string
patterns – that is, regular compressed linear string pattern matching – can also
be solved in PTime even for queries defined by Nfas.
Outline. In Section 2 we start with some preliminaries on finite automata the-
ory. Section 3 recalls the notion of compressed string patterns and in Section 4
we study the problems of regular compressed pattern inclusion and matching.
Section 5 recalls how to define non-Boolean queries on strings by automata. In
Sections 6 and 7 we generalize the notions of certain query answers and non-
answers to (compressed) string patterns and study their complexity.
Related Work. The notion of certain query answers for incomplete relational
structures is standard in databases research [9]. In the context of stream pro-
cessing, certain query answers were called answers that are safe for selection
and certain query non-answers were called safe for rejection [12]. Certain query
non-answers were studied for fast failure [4] and for reducing the memory con-
sumption of streaming systems. The problem of certain query answering and
non-answering on streams has been shown to be computationally hard even for
queries defined in tiny fragments of first-order logic [12]. Certain query non-
answering was shown to be hard in the context of online verification [4,19].

As shown by [12], those classes of queries on strings for which the problem of
certain query answering on streams is known to be feasible, are either such that
certainty is always determined with 0-delay [22,4,14]) or such that the queries
in the class can be compiled to Dfas in PTime.

Algorithms for processing Xml streams or complex event streams raised
much interest in the literature [16,25,15] and motivated the work on hyper-
streams. Xml streams contain nested words [22,18] rather than strings with-
out bracket structure. The best existing algorithms for answering navigational
XPath queries (i.e. first-order logic queries) on Xml streams are based on com-
pilation to nested word automata [10,23]. Low but not lowest latency is achieved
with high efficiency by approximating certain answers for queries defined by
nondeterministic nested word automata.

2 Preliminaries

Words. The set of natural numbers with 0 is denoted by N. For any set Σ, a
word over Σ is a tuple (a1, . . . , an) ∈ Σn where n ∈ N. We denote such words
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by a1 . . . an and by ε if n = 0. We denote the ith letter of a word u = a1...an by
u[i] =def ai. The set of all words over Σ is denoted by Σ∗. The concatenation of
two words u1, u2 ∈ Σ∗ is denoted by u1 ·u2 ∈ Σ∗. For instance, if Σ = {a, b} then
aba ·a = abaa. The set of positions of a word u = a1 . . . an is pos(u) = {1, . . . , n}.
For any subset Σ′ ⊆ Σ the set posΣ′(u) is the subset of positions i of u such
that ai ∈ Σ′. Given a word w = a1 . . . an and a second word u = b1 . . . bn of the
same length possibly on a different alphabet, we define the zipped word over the
product alphabet by w∗u = (a1, b1) . . . (an, bn). As a convention throughout the
paper, we use the term string for words over the default alphabet Σ, as opposed
to words over other alphabets such as Σ ∪ Y for string patterns, and ΣV for
V-annotated strings, that will be introduced later on.
Monoids. A monoid is a triple (M, ·M , 1M ) where M is a set, ·M : M×M →M
is an associative binary operation and 1M ∈ M is the neutral element, i.e.
1M ·M m = m ·M 1M = m for all m ∈M . Given a word u = m1 . . .mn ∈M∗ we
define its evaluation by uM = m1 ·M . . . ·M mn where εM = 1M .

Most typically, we will consider the monoid of words (Σ∗, ·, ε) on some al-
phabet Σ, with the concatenation operation · : Σ∗ ×Σ∗ → Σ∗, and the empty
word ε as neutral element. Alternatively, given another set Q, we will consider
the transition monoid (TQ, ◦, id), where TQ = 2Q×Q is the set of binary relations
over Q, ◦ : TQ × TQ → TQ is the composition operation of binary relations on
Q, and id = {(q, q) | q ∈ Q} is the identity transition.
Finite Automata. A nondeterministic finite-state automaton (Nfa) is a tuple
A = (Q,Σ, δ, I, F ) where Q and Σ are finite sets, δ ⊆ Q×Σ×Q, and I, F ⊆ Q.
We call Q the state set, Σ the alphabet, δ the transition relation, I the set
of initial states, and F the set of final states of the automaton. An Nfa A is
deterministic, or a Dfa, if it has exactly one initial state and the transition
relation δ forms a partial function from Q × Σ to Q. The elements of TQ are
called the transitions of A. Any transition relation δ : Q×Σ×Q can be extended
homomorphically to a transition function δ : Σ∗ → TQ that assigns to any string
a transition of A. Here we overload the symbol δ to stand for the transition
relation and the transition function. The transition δ(a) of a letter a ∈ Σ is
{(q, q′) | (q, a, q′) ∈ δ} and the transition δ(w) of a string w = a1 . . . an ∈ Σ∗
is δ(w) = (δ(a1) . . . δ(an))TQ . This is the composition of the transitions of all
letters of w based on the operations of the transition monoid TQ, and its neutral
element for the empty word. Note that if A is a Dfa then all transitions δ(w)
are partial functions. A transition τ is called I,F -successful if τ ∩ (I × F ) 6= ∅.
The language of an Nfa A = (Q,Σ, δ, I, F ) is the set L(A) = {w ∈ Σ∗ |
δ(w) is I,F -successful}. The size of an automaton is |A| = |Q|+ |δ|.

Example 1. Nfas can be used to define Boolean queries on strings such as query
Q2 which tests whether some position will be selected by query Q1, i.e., whether
a string contains an a-letter followed eventually by a factor bb. The language of
all such strings is defined by the automaton on Fig. 5.

A transition τ is called δ-inhabited if there exists a word w ∈ Σ∗ such that
δ(w) = τ . Transition inhabitation InhΣ is the decision problem that receives
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Fig. 5: Automaton A2 defining the Boolean query Q2 with alphabet Σ = {a, b, c}

as input a finite set Q, a transition relation δ ⊆ Q × Σ × Q and a transition
τ ∈ TQ, and outputs whether τ is δ-inhabited. InhΣ is also called the membership
problem of the transition monoid δ(Σ∗) ⊆ TQ [7].

Theorem 1 (Kozen [17]). For any set Σ with at least 2 elements, the transi-
tion inhabitation problem InhΣ is PSpace-complete.

The PSpace hardness proof can be done by reduction from the problem of
non-emptiness of the intersection of sequences of Dfas, which was shown to be
PSpace-complete in [17] too.

3 Compressed String Patterns

We fix an infinite set Y of string variables for the rest of the paper. A string
pattern over a finite alphabet Σ is a word in (Σ ∪ Y)∗. The set of all string
patterns over Σ is denoted by PatΣ . The set of variables that occur in a string
pattern p is denoted by fv(p). An instance of a string pattern p ∈ PatΣ is
a string that can be obtained by substituting the variables of p by strings in
Σ∗. Any substitution σ : Y → Σ∗ can be lifted to a substitution on string
patterns σ̂ : PatΣ → Σ∗ such that for all p, p′ ∈ PatΣ , a ∈ Σ, and Y ∈ Y:
σ̂(pp′) = σ̂(p) · σ̂(p′), σ̂(ε) = ε, σ̂(a) = a, and σ̂(Y ) = σ(Y ). We define the set of
instances of a string pattern p ∈ PatΣ as:

Inst(p) = {σ̂(p) | σ : Y → Σ∗}.

For example, the string acbcbabbcba is an instance of the pattern aY cZabbY a,
obtained with the substitution [Y/cb, Z/b]. A string pattern is called linear, if
all its variables occur at most once. The set of all linear string patterns over Σ
is denoted LinPatΣ .

Definition 1 (Compressed string pattern). A compressed string pattern is
an acyclic CFG G = (N,Σ,R, S) where N ⊆ Y is a finite set of nonterminals,
Σ is an alphabet of terminal symbols disjoint from Y, the ruling function R is
a partial function that maps some of the nonterminals in N to string patterns
in (N ∪ Σ)∗, and S ∈ N is the start symbol. The set of all compressed string
patterns over Σ is denoted by cPatΣ.
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We recall that a CFG G is acyclic if the binary relation >G= {(Y,Z) |
Y ∈ dom(R), Z ∈ fv(R(Y ))} is acyclic. The compressed string pattern from the
introduction for instance has the rules R(S) = aXbbY aX,R(X) = Y cZa. These
rules induce the binary relation {(S,X), (S, Y ), (X,Y ), (X,Z)} which is acyclic.
The size of G is |G| = |N | +

∑
Y ∈dom(R) |R(Y )|. The set of free variables of

G is fv(G) = N \ dom(R). A compressed string pattern G is called a singleton
context-free grammar (sCFG) if it has no free variables, that is fv(G) = ∅. It is
well-known that any sCFG defines a single string in Σ∗. The object of interest
here is the set of strings that can be obtained by completing a compressed string
pattern G to a sCFG, or equivalently, the set of instances of the string pattern
of G defined as follows. For any compressed string pattern G = (N,Σ,R, S), the
grammar G′ = (N\fv(G), Σ∪fv(G), R, S) is a sCFG. We define the string pattern
pat(G) ∈ PatΣ∪fv(G) as the unique word in the language of G′. Formally, for
every Y ∈ dom(R), let GY be the compressed string pattern GY = (N,Σ,R, Y ).
If S ∈ dom(R) then pat(G) = σ̂(R(S)) where σ(Y ) = pat(GY ) for all Y ∈
dom(R) \ {S}. This recursive definition is well-founded because G is an acyclic
CFG. Otherwise, if S ∈ fv(G), then pat(G) = S. For instance, if G1 is the
hyperstream from the introduction, then pat(G1) = p1.

A compressed string pattern G is called a compressed linear string pattern if
pat(G) is linear. The set of all compressed linear string patterns overΣ is denoted
cLinPatΣ . Finally for any string pattern p ∈ PatΣ there exists a compressed
string pattern Gp having p as pattern, namely Gp = ({S} ∪ fv(p), Σ,R, S) with
dom(R) = {S} and R(S) = p. Clearly pat(Gp) = p. Therefore we will identify p
with Gp, so that PatΣ ⊆ cPatΣ .

4 Regular Pattern Inclusion and Matching

We consider the problems of regular compressed pattern inclusion, i.e. testing
whether all strings described by a completion of a compressed string pattern to
a sCFG are accepted by a finite automaton, and of regular compressed pattern
matching, whether some string described by a completion of a compressed string
pattern is accepted by a finite automaton.

A class of compressed string patterns G is a function from finite sets Σ to
subsets GΣ ⊆ cPatΣ such as for instance G ∈ {Pat, cPat,LinPat, cLinPat}. A
class of Nfas A is a function from finite sets Σ to subsets AΣ ⊆ NfaΣ , where
NfaΣ is the set of Nfas with alphabet Σ. Most typically, A ∈ {Dfa,Nfa}. For
any class G of compressed string patterns, any class A of Nfas, and any finite
set Σ we define the following two decision problems.

Regular compressed pattern inclusion InclΣ(G,A). Input: A compressed
string pattern G ∈ GΣ and a finite automaton A ∈ AΣ .
Output: The truth value of whether Inst(pat(G)) ⊆ L(A).

Regular compressed pattern matching MatchΣ(G,A). Input: A compressed
string pattern G ∈ GΣ and a finite automaton A ∈ AΣ .
Output: The truth value of whether Inst(pat(G)) ∩ L(A) 6= ∅.
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The problem coMatchΣ(G,A) is the complement of the problem MatchΣ(G,A),
and thus outputs for a given compressed string pattern G ∈ GΣ and a finite au-
tomaton A ∈ AΣ whether Inst(pat(G)) ∩ L(A) = ∅.

Example 2. Any instance of pat(G1) = aYcZabbYaYcZa answers the Boolean
query Q2 = [successor∗::a/successor∗::b/successor::b] from Example 1,
i.e., the instance set of pat(G1) is included in the language of Nfa A2 in Fig. 5.

Let sDfa be the subclass of Dfas that recognize a singleton language. Note
that the well-known problem of string pattern matching is MatchΣ(Pat, sDfa),
and MatchΣ(cPat, sDfa) is its extension with compression. We recall from [11]
that string pattern matching with and without compression respectively are np-
complete for all alphabets Σ with at least 2 letters, but in PTime when restricted
to linear string patterns even with compression.

Our first main contribution is the following complexity result for regular
compressed pattern matching and inclusion (see Fig. 3).

Theorem 2 (Non-linear patterns). For any G ∈ {Pat, cPat} and A ∈ {Dfa,
Nfa} and for any finite alphabet Σ with at least 2 letters, the problems of regu-
lar compressed pattern inclusion InclΣ(G,A) and matching MatchΣ(G,A) are
PSpace-complete.

This shows that these problems are decidable even though the instance
sets of nonlinear patterns like Inst(Y Y Y ) are neither regular nor context-free.
The theorem also shows that regular pattern matching MatchΣ(Pat,Dfa) is
PSpace-complete and thus harder than compressed string pattern matching
MatchΣ(Pat, sDfa) which is np-complete.

Proof. We will present a sequence of PSpace reductions from Lemma 1 until
Lemma 4 that imply the theorem when composed as in Fig. 6.

We introduce the notations A ≤p B (resp. A =p B) where A and B are
decision problems to denote that A reduces polynomially to B (resp. A reduces
polynomially to B and B reduces polynomially to A).

Lemma 1. InclΣ(LinPat,Nfa) is PSpace-hard if |Σ| ≥ 2.

Proof. For the linear pattern Y with Y ∈ Y, the regular compressed pattern
inclusion problem Inst(Y ) ⊆ L(A) is equivalent to Σ∗ = L(A), and universality
of Nfas is well-known to be PSpace-complete if |Σ| ≥ 2.

We now show the PSpace upper bound for InclΣ(cPat,Nfa). For any tran-
sition relation δ ⊆ Q × Σ × Q and any substitution into the transition monoid
σ : Y → TQ, we define δσ to be the function that takes a string pattern in PatΣ
as input, and returns a transition, such that for all p, p′ ∈ PatΣ , w ∈ Σ∗, and
Y ∈ Y:

δσ(w) = δ(w), δσ(y) = σ(y), δσ(pp′) = δσ(p) ◦ δσ(p′).
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PSpace-hard PSpace-complete PSpace-hard

∈ Lem. 1 ∈ Lem. 3 ∈ Prop. 3

InclΣ(Pat,Nfa) ⊇ InclΣ(Pat,Dfa)
Lem. 4

=p coMatchΣ(Pat,Dfa) MatchΣ(Pat,Dfa) ⊆ MatchΣ(Pat,Nfa)

⊇ ⊇ ⊇ ⊇ ⊇

InclΣ(cPat,Nfa) ⊇ InclΣ(cPat,Dfa)
Lem. 4

=p coMatchΣ(cPat,Dfa) MatchΣ(cPat,Dfa) ⊆ MatchΣ(cPat,Nfa)

∈ Prop. 1 ∈ Prop. 1b

PSpace PSpace

Fig. 6: Regular inclusion and matching problems relationship and complexity
classes

Lemma 2. Given a transition relation δ ⊆ Q×Σ ×Q of some Nfa, a substi-
tution σ : Y → TQ and a compressed string pattern G ∈ cPatΣ, the transition
δσ(pat(G)) ∈ TQ can be computed in time O(|Q|3|G|).

Proof. We represent transitions in TQ as |Q|×|Q|-matrices. We first precompute
the transition matrices δ(a) for all letters a ∈ Σ in time O(|δ|+ |Σ||Q|2) which
is in O(|Q|2) for fixed Σ. Suppose G = (N,Σ,R, S). Let dom(R) = {Y1, . . . , Yn}
such that if Yi >

+
G Yj for some 1 ≤ i, j ≤ n then i < j. For all 1 ≤ i ≤ n+ 1 we

define:

σn+1 = σ

σi = σi+1[Yi/δ
σi+1(R(Yi))]

Claim. σi(Yi) = δσ(pat(GYi)) and σi can be computed in timeO(|Q|3|
∑n
j=i |R(Yj)|)

for all 1 ≤ i ≤ n.

This claim will imply the Lemma as follows: If S ∈ dom(R) then S = Yi for
some 1 ≤ i ≤ n, so that δσ(pat(G)) = σi(Yi). Otherwise, δσ(pat(G)) = S. In
both cases, δσ(pat(G)) can be computed in time O(|Q|3|G|) by the claim.

We finally prove the claim by a complete induction on i backwards from n
to 1.

If i = n , then there exists no Y ′ ∈ dom(R) such that Yn >G Y ′. This means
that R(Yn) contains no occurrence of an element of dom(R) and by definition,
pat(GYn) = R(Yn). On the other hand, σn = σn+1[Yn/δ

σn+1(R(Yn))] which
implies that σn(Yn) = δσn+1(R(Yn)) = δσ(pat(GYn)). Furthermore, comput-
ing σn requires |R(Yn)| multiplications of matrixes, and so |Q|3||R(Yn)| steps
and time O(|Q|3||G|).

If 1 ≤ i < n , then σi = σi+1[Yi/δ
σi+1(R(Yi))], and we can write σi(Yi) as

σi(Yi) = δσ(R(Yi))[Yj/σj(Yj) | i < j ≤ n]. By the inductive hypothesis,
we have that for all i < j ≤ n, σj(Yj) = δσ(pat(GYj )) and σj is computed
in time O(|Q|3|

∑n
k=j |R(Yk)|). So σi(Yi) = δσ(R(Yi))[Yj/pat(GYj

) | i < j ≤
n] = pat(GYi) and σi is computed in |Q|3|

∑n
j=i+1 |R(Yj)|+|Q|3|R(Yi)| steps,

that is in time O(|Q|3|G|) as required.

Proposition 1. InclΣ(cPat,Nfa) is in PSpace.
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Proof. Given an Nfa A, a compressed string pattern G over Σ, we have to
check whether Inst(pat(G)) ⊆ L(A). By definition, this is equivalent to check-
ing whether δ(ŝ(pat(G))) is I,F -successful for every substitution s : fv(G) →
Σ∗. The latter is equivalent to checking whether δσ(pat(G)) is I,F -successful
for all substitution σ : fv(G) → TQ that maps the free variables of G to δ-
inhabited transitions. A decision procedure can thus enumerate all substitu-
tions σ : fv(G)→ TQ to δ-inhabited transitions, compute δσ(pat(G)) and check
whether it is I,F -successful. The number of substitutions σ that is to be checked
is exponential, but they can be enumerated in PSpace. Whether σ maps only
to δ-inhabited transition can be tested in PSpace by Theorem 1. Computing
δσ(pat(G)) can be done in PTime by Lemma 2.

So far we have shown that InclΣ(cPat,Nfa) is PSpace-complete. We next
consider regular matching. This will permit us to show that InclΣ(cPat,Dfa)
is PSpace-hard too.

Proposition 2. MatchΣ(cPat,Nfa) is in PSpace.

Proof. The proof for MatchΣ(cPat,Nfa) is similar to that for InclΣ(cPat,Nfa)
in Proposition 1. It is sufficient to check whether there exists some substitution
σ : fv(G)→ TQ to δ-inhabited transitions such that δσ(pat(G)) is I,F -successful.

Proposition 3. MatchΣ(Pat,Dfa) is PSpace-hard.

Proof. This follows by reduction from the non-emptiness problem of the inter-
section of a sequence of Dfas, which is well-known to be PSpace-complete [17].
Consider a sequence of Dfas A1, . . . , An with alphabet Σ for some n ≥ 0 and
# a fresh symbol not in Σ. Let A = (Q,Σ, δ, I, F ) be a Dfa that recognizes the
language {u1# . . .#un | ui ∈ L(Ai) for all 1 ≤ i ≤ n}. Note that such a Dfa
A can be constructed in linear time from the sequence A1 . . . An. Let p be the
pattern p = y# . . .#y with n occurrences of the pattern variable y. We then
have Inst(p) ∩ L(A) 6= ∅ if and only if L(A1) ∩ . . . ∩ L(An) 6= ∅.

Lemma 3. The problem coMatchΣ(Pat,Dfa) is PSpace-complete.

Proof. Proposition 2 and 3 show the PSpace-completeness of MatchΣ(G,A)
for all G ∈ {Pat, cPat} and A ∈ {Dfa,Nfa}. Since the complexity class PSpace
is closed by complement, the complemented problems coMatchΣ(G,A) are
PSpace-complete too.

In order to complete the proof of Theorem 2 it remains to relate regular inclusion
and matching in the case of Dfas.

Lemma 4. coMatchΣ(G,Dfa) =p InclΣ(G,Dfa) for all G up to PTime re-
ductions.
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Proof. This follows from Inst(pat(G)) ∩ L(A) = ∅ ⇔ Inst(pat(G)) ⊆ L(A) and
the fact that any Dfa A can be complemented in PTime to some Dfa A such
that L(A) = L(A).

The complexity of inclusion and matching decreases for linear string patterns,
with or without compression. We indeed obtain the same complexity as known
for streams (see Fig. 4), even though unknown factors and compression are per-
mitted in addition.

Theorem 3 (Linear patterns). Restricted to linear string patterns, regular
compressed pattern inclusion and matching have the following complexities:

1. InclΣ(LinPat,Nfa) and InclΣ(cLinPat,Nfa) are PSpace-complete if |Σ| ≥
2 while the problem InclΣ(cLinPat,Dfa) can be solved in PTime.

2. MatchΣ(cLinPat,Nfa) is in PTime.

Proof. 1. The PSpace-hardness of InclΣ(LinPat,Nfa) follows from Lemma 1.
The problem InclΣ(cLinPat,Nfa) is in PSpace by Theorem 2. Hence both
problems are PSpace-complete. By Lemma 4, it is sufficient to demonstrate that
MatchΣ(cLinPat,Dfa) is in PTime in order to show that InclΣ(cLinPat,Dfa)
is in PTime, which will follow from point 2 below.
2. We next show that MatchΣ(cLinPat,Nfa) is in PTime. In the case with-
out compression this follows from the fact that for any pattern p ∈ LinPatΣ
one can compute in linear time a Dfa that recognizes Inst(p). In the case with
compression, this argument does not work any more: for compressed string pat-
terns G ∈ cLinPat, the instance set remains regular, but due to compression it
may not be possible to represent it by a finite automaton of polynomial size.
However, as G is linear, all its string variables can be instantiated indepen-
dently. So let A = (Q,Σ, δ, I, F ) be an Nfa. We consider the set of edges of
the graph of the transition relation Eδ = ∪a∈Σδ(a) and the accessibility relation
of this graph acc = Eδ

∗. Note that acc is a transition in TQ. Let σacc be the
substitution that maps all string variables in fv(G) to acc. It then holds that
Inst(pat(G)) ∩ L(A) 6= ∅ iff the transition δσacc (pat(G)) is I,F -successful. This
transition can be computed in PTime by Lemma 2.

5 Defining Queries by Automata

We now recall the notion of queries on strings over some alphabet Σ with vari-
ables in some finite set V and relate them to languages of V-annotated strings
called V-structures in [26]. We fix two disjoint finite sets Σ and V.

Definition 2 (Query). A query with variables in V on strings over Σ, or a
Σ,V-query for short, is a function Q that maps any string w ∈ Σ∗ to a set Q(w)
of total assignments from V to pos(w). A Boolean query is a Σ,∅-query.

Example 3. Let V = {x, x′}. The query Q1 selects all pairs of letters (x, x′)
such that position x is labeled by a, position x′ immediately follows x and is
labeled by b. This query then satisfies Q1(aa) = ∅, Q1(ab) = {[x/1, x′/2]},
Q1(abab) = {[x/1, x′/2], [x/3, x′/4]}, etc.
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We next show how a Σ,V-query can be identified with a language of V-
annotated strings, i.e., of words over the alphabet ΣV = Σ × 2V . A (query
variable) assignment α to positions of a string w ∈ Σ∗ is a partial function from
V to pos(w). We will identify such variable assignments with words whose letters
are sets of variables. For any partial function α from V to pos(w) where w ∈ Σn,
we define a corresponding word in (2V)n by word(α) = α−1(1) . . . α−1(n). That
is, word(α)[i] is the set of variables x ∈ dom(α) s.t. α(x) = i. Furthermore, for
any string w ∈ Σ∗ and variable assignment α into positions of w, we define the
V-annotated string w∗α as a word over ΣV by w∗α = w∗word(α). In examples
we will write aV instead of letters (a, V ) ∈ ΣV . For instance, ab∗[x/1, x′/2] is
written as a{x}b{x

′}.

Definition 3 (V-structure [26]). The set of V-structures over Σ is the fol-
lowing set of V-annotated strings, i.e., of words over ΣV :

StructV = {w∗α ∈ (ΣV)∗ | w ∈ Σ∗, α : V → pos(w)}.

We note that all the assignments α in the definition of V-structures are total
functions. For instance for V = {x, x′} and Σ = {a, b}, the words a∅b{x

′,x}

and a{x
′}b{x} are V-structures while the words a∅b{x

′} and a{x
′}b{x

′,x} are not.
Essentially, V-structures represent total variable assignments to the positions of
a string without naming the positions.

Definition 4 (Language of V-structures of a query). For any Σ,V-query
Q, the language of V-structures of Q is L(Q) = {w∗α | w ∈ Σ∗, α ∈ Q(w)}.

We will be interested in queries whose languages are definable by Nfas.

Definition 5 (Query automata). An Σ,V-query automaton is an Nfa A such
that L(A) is a language of V-structures over Σ. The unique Σ,V-query such that
L(Q) = L(A) is called the query defined by A and is denoted by Q(A) = Q.

6 Certain Query Answers and Non-Answers

We next formalize the notions of certain query answers and non-answers on string
patterns. For streams, these definitions coincide with the notions of earliest query
answers from [12] and fast-failure from [4], respectively.

A Σ-assignment for V on p ∈ PatΣ is a partial function α from V to posΣ(p),
the Σ-positions of the pattern p. For any Σ-assignment α on p, the word p∗α
is a string pattern over ΣV , still with string variables in Y. Therefore, the set
Inst(p∗α) is a well-defined set of words over ΣV . Note, however, that some of
these V-annotated strings may not be V-structures. For instance, if x ∈ V, a ∈ Σ,
and Y ∈ Y, then a{x}a{x} ∈ Inst(Y ∗[]) is not a V-structure since x occurs twice
(where [] is the empty Σ-assignment).

Definition 6 (Certain query answers and non-answers). Let Q be a Σ,V-
query, and let p ∈ PatΣ be a string pattern. A Σ-assignment α for V on p is:
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– a certain answer for query Q on p if α is total and Inst(p∗α) ∩ StructV ⊆
L(Q),

– and a certain non-answer for query Q on p if Inst(p∗α) ∩ L(Q) = ∅.

Given an instance w ∈ Inst(p), each Σ-assignment α on p defines a set of
total Σ-assignments on w, where all variables not in dom(α) must be mapped
to some Σ-positions ”created” by the instantiation. More formally:

Cp,w(α) = {α′ | α′ is a total Σ-assignment on w, w∗α′ ∈ Inst(p∗α)}.

The offsets of positions of query variables due to the instantiation of pattern
variables raise two issues that we illustrate in the following example: 1. even a
total Σ-assignment α of p might have several completions for the same string w,
and 2. it might be the case that α 6∈ Cp,w(α).

Example 4. Consider the string pattern p = ay1ay2, the string w = aaba in
Inst(p), V = {x}, and the total Σ-assignment α = [x/3] on p. In order to make p
match w, the second a-letter of p matches either the second or the fourth position
in w. Therefore, there are exactly two substitutions that make p match w, which
are σ1 = [y1/ε, y2/ba] and σ2 = [y1/ab, y2/ε]. Now, σ̂1(p∗α) = σ̂1(ay1a

{x}y2) =
aa{x}ba = w∗[x/2], thus [x/2] ∈ Cp,w(α). Also, σ̂2(p∗α) = σ̂1(ay1a

{x}y2) =
aaba{x} = w∗[x/4], thus [x/4] ∈ Cp,w(α). Given that there is no further way to
match p with w, there is no further completion. That is, Cp,w(α) = {[x/2], [x/4]},
and α 6∈ Cp,w(α).

The next proposition relates certain query answers (resp. non-answers) on a
pattern p to query answers (resp. non-answers) on its instances.

Proposition 4. Let α be a Σ-assignment on string pattern p and Q be a Σ,V-
query. It then holds for all instances w ∈ Inst(p):

– If α is a certain answer for query Q on p then Cp,w(α) ⊆ Q(w).
– If α is a certain non-answer for query Q on p then Cp,w(α) ∩Q(w) = ∅.

Proof. For all α′ ∈ Cp,w(α), the definition of completion yields that w∗α′ ∈
Inst(p∗α). Furthermore, w∗α′ ∈ StructV holds trivially, since it holds for any
partial function α′.

– If α is a certain answer for query Q on p then Inst(p∗α) ∩ StructV ⊆ L(Q),
so α′ ∈ L(Q) which is equivalent to α′ ∈ Q(w).

– If α is a certain non-answer for query Q then Inst(p∗α) ∩ L(Q) = ∅, so
w∗α′ 6∈ L(Q), which is equivalent to α′ 6∈ Q(w).

7 Certain Query Answering and Non-Answering

We introduce the problems of certain query answering and non-answering for
classes of compressed string patterns G and of query Nfas A:
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Certain query answering Certans
Σ,V(G,A). Input: a compressed string pat-

tern G ∈ GΣ , a Σ-assignment α for V on pat(G), and a query Nfa A ∈ AΣV .
Output: whether α is a certain answer for query Q(A) on pat(G).

Certain query non-answering Cert¬ansΣ,V (G,A). Input: as above
Output: whether α is a certain non-answer for query Q(A) on pat(G).

Note that α is an assignment to positions of pat(G) and not to positions of G.
This is necessary because due to compression, a position of G might correspond
to several positions of the underlying word which need to be distinguished. In-
deed, considering G to be the compressed string pattern in the introduction, the
a-letter in the rule for X corresponds to positions 5 and 13 in the decompressed
pattern aYcZabbYaYcZa, and position 5 is a certain answer for query Q1, while
position 13 is a certain non-answer.

The following lemma relates certain query answering to regular inclusion
and certain query non-answering to regular matching.

Lemma 5 (Boolean Queries). For any classes G and A, InclΣ(G,A) =p

Certans
Σ,∅(G,A) and coMatchΣ(G,A) =p Cert¬ansΣ,∅ (G,A).

Proof. Straightforward from the definitions.

Since PSpace-complete problems are closed by complement, Lemma 5 implies
together with Theorem 2 that Certans

Σ,∅(Pat,Dfa) and Cert¬ansΣ,∅ (Pat,Dfa) are
PSpace-complete, even though these problems are restricted to Dfas, with-
out compression, and for Boolean queries. Therefore, all certainty problems
CertBΣ,∅(G,A) where B ∈ {¬ans, ans}, G ∈ {Pat, cPat}, and A ∈ {Dfa,Nfa}
are PSpace-hard. In the sequel we show that all these problems can be solved
in PSpace for arbitrary finite sets Σ and V. Basically, these results will be
corollaries of Theorem 2, Lemma 5 on Boolean queries, and the following partial
decompression lemma. This result is new to the best of our knowledge, even
though its proof relies on similar techniques as used for instance in [5] for com-
puting in PTime the letter at the n-th position of pat(G) for a singleton grammar
G.

Lemma 6 (Partial Decompression). For any G ∈ cPatΣ and any Σ-assign-
ment α for V on pat(G), we can compute in PTime some G′ ∈ cPatΣV such that
pat(G)∗α = pat(G′). In particular, if pat(G) was linear then pat(G′) is linear.

Let Σ and V be finite sets, G = (N,Σ,R, S) be a compressed string pattern
and α be a Σ-assignment for V on pat(G), fixed in this section. We show that
we can compute in PTime a compressed string pattern G′ over ΣV such that
pat(G)∗α = pat(G′). We assume that S ∈ dom(R) as otherwise the lemma is
trivial.

The main ingredients of the proof will be illustrated on the example com-
pressed string pattern G = ({S, Y1, Y2}, {a, b}, R, S) in Fig. 7, where R(S) =
aY1aY1Y1 and R(Y1) = bY2. We also use for the example V = {x} and α = [x/5].
Note that pat(G) = abY2abY2bY2 and pat(G)∗α = a∅b∅Y2a

∅b{x}Y2b
∅Y2.
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S

a a Y1

b Y2

Fig. 7: G with red thick path to the shared position 5.

S

a a Y1

b Y2

S′

a a Y ′
1

b

Fig. 8: Partially uncompressing
G at position 5.

S

a∅ a∅ Y1

b∅ Y2

S′

a∅ a∅ Y ′
1

b{x}

Fig. 9: G′ on ΣV with pat(G′) =
pat(G)∗[x/5].

First we define the addresses ofG that are non-empty words over the alphabet
N of natural numbers, defined similarly to the standard Dewey notation for trees
but applied to the acyclic graph structure ofG. We define Addr = Addr(S) where
for any Y ∈ dom(R), denoting s = R(Y ):

Addr(Y ) = pos(s) ∪
{

(Y, i) · d | i ∈ posdom(R)(s) and d ∈ Addr(s[i])
}
.

On the example, d1 = 22, d2 = 41 and d3 = 51 are addresses. With any ad-
dress d we associate its path that is a word whose letters are pairs of the form
(Y, i) for Y ∈ dom(R) and i ∈ pos(R(Y )): path(k1 . . . kn) = (Y1, k1), . . . , (Yn, kn)
where Y1 = S and Yi = R(Yi−1)[ki] for any 2 ≤ i ≤ n. On the example,
path(d1) = (S, 2)(Y1, 2), path(d2) = (S, 4)(Y1, 1) (the thick red arrows) and
path(d3) = (S, 5)(Y1, 1). Note that path is injective, therefore path−1 is defined.
Let AddrΣ be the set of addresses of G that lead to a letter in Σ. That is, an
address d · (Y, i) is in AddrΣ if R(Y )[i] ∈ Σ.

We first establish that there is a one-to-one correspondence between AddrΣ
and posΣ(pat(G)), the Σ-positions of pat(G).
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Claim. There is a bijection addr : posΣ(pat(G)) → AddrΣ s.t. for any m ∈
posΣ(pat(G)), addr(m) can be computed in PTime in the size of G.

Proof. For any U ∈ Σ ∪ N , we define patsize(U) that is, intuitively, the size
of the pattern produced by G starting at U . Formally, patsize(a) = 1 for any
a ∈ Σ, patsize(Y ) = 0 for any Y ∈ fv(G), and patsize(Y ) = |pat(GU )| for any
U ∈ dom(R). Now for any (Y, i) s.t. Y ∈ dom(R) and i ∈ pos(R(Y )), we define
offset(Y, i) =

∑
j<i patsize(R(Y )[j]), that intuitively is the size of the pattern of

GY if R(Y ) was truncated just before its ith position. Finally, for any d ∈ Addr ,
we define offset(d) =

∑
i∈pos(d) offset(d[i]).

Now we define and show how to compute addr ′ that with anym ∈ pos(pat(G))
and Y ∈ dom(R) associates a maximal address among the addresses ofGY . An
address is maximal if it is not the prefix of any other address. First, for any
(Y, i) s.t. i ∈ pos(R(Y )) we compute and memorize offset(Y, i). This can be
done in time O(|G|) using the acyclic relation >G. Then addr ′(m,Y ) is com-
puted recursively by descending the tree structure induced by the addresses of
GY :

– addr ′(m,Y ) = (Y, i) if dom(R) ∩ fv(R(Y )) = ∅, where i is the least value
among pos(R(Y )) s.t. offset(Y, i) > m;

– addr ′(m,Y ) = (Y, i) · addr ′(m′, Y ′) otherwise, where i is as in the previous
case and m′ = m− offset(Y, i).

We define addr(m) = addr ′(m,S) for anym ∈ posΣ(pat(G)). From the definition
it is easy to see that addr(m) can be computed in PTime in the size of G. We
claim that addr(m) is a bijection such that offset(addr(m)) = m− 1.

On the example, addr(5) = d2 and addr(7) = d3.
The next ingredient for the proof of the partial decompression lemma is to

show that given some address, G can be transformed into G′ having the same
pattern, but in which this address is sharing free. An address d · U ∈ Addr is
called sharing-free if there does not exist a different address d′ · U ∈ Addr s.t.
path(d) and path(d′) have the same symbol in their last position.

Claim. For any address d ∈ NumAddr we can compute in PTime in the sizes of
G and d a compressed string pattern G′′ such that pat(G′′) = pat(G) and d is
sharing-free in G′′.

Proof. Let Yd ⊆ Y be the set of variables {Y1, . . . , Yn} such that path(d) =
(Y1, k1) · · · (Yn, kn) for some naturals k1, . . . , kn. Let Y ′′ be a set with same car-
dinality as Yd and disjoint from N , and let copy : Yd → Y ′′ be a bijection.
We define the compressed string pattern G′′ = (N ∪ Y ′′, Σ,R′′, copy(S)) with
dom(R′′) = dom(R) ∪ Y ′′ and:

– if Y ∈ dom(R), then R′′(Y ) = R(Y ),
– otherwise, let s = R(copy−1(Y )) = (s1, . . . , sm), i.e. s is the word over Σ∪N

that is the definition of copy−1(Y ) in G. Then R′′(Y ) =def (s′1, . . . , s
′
m) is of

same length as s and its ith position is s′i = copy(si) if si ∈ Yd and (Y, i) is
a letter in path(d), and s′i = si otherwise.
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Then it is not hard to see that path(d) in the compressed string pattern G′′

is equal to (copy(Y1), k1) · · · (copy(Yn), kn). Thus d is sharing-free in G′′ as any
variable copy(Y ) for Yi ∈ Yd for 2 ≤ i ≤ n is used only once in R′′ in R′′(Yi−1).
It is also not hard to show that for any Y ∈ Yd, pat(G′′copy(Y )) = pat(G′′Y ) =

pat(GY ), thus pat(G) = pat(G′′).

Reconsider Fig. 7. Partial decompression of G for unsharing position 5 at address
d2 = 41 (the red path) yields the compressed string pattern in Fig. 8. Finally,
as last ingredient of the proof of the partial decompression lemma, we show how
for a given Σ-assignment α, a compressed string pattern Σ is transformed to a
compressed string pattern on ΣV in which the positions associated with query
variables by α are sharing-free.

Using the bijection addr : posΣ(pat(G))→ Addr defined in Claim 7:

Claim. If all addresses in addr(α(V)) are sharing-free in G, we can compute in
PTime a compressed string pattern G′ over ΣV such that pat(G′) = pat(G)∗α.

Proof. For all m ∈ posΣ(G), let last(addr(m)) be the symbol from N × N at
the last position in path(addr(m)). We define G′ = (N,ΣV , R′, S) by dom(R′) =
dom(R), and for any Y in dom(R), R′(Y ) has the same length as R(Y ) and for
any j ∈ pos(R(Y )) we set

R′(Y )[j] =

a
S if R(Y )[j] = a ∈ Σ,

where S = {x ∈ dom(α) | last(addr(α(x))) = (Y, j)}
R(Y ) otherwise

Since all positions in addr(α(V)), we have that pat(G′) is a correct V-structure.
It is also tedious but not hard to prove that pat(G′) = pat(G)∗α.

On the example, the compressed string pattern in Figure 8 satisfies the hy-
pothesis of the latter claim, and its corresponding pattern on G′ on ΣV is de-
picted in Figure 9.
Proof of Lemma 6. We first compute the set of addresses D = addr(α(V))
in PTime by Claim 7. Note that the cardinality of D is at most |V|, so it is of
constant size. Then we compute a compressed string pattern G′′ with pat(G) =
pat(G′′) such that all addresses in num(D) are sharing-free in G′′. Since there are
constantly many such addresses, this can be done in PTime by iterating Claim 7
a constant number of times. Then using Claim 7 we compute the compressed
string pattern G′ over ΣV such that pat(G′) = pat(G′′)∗α = pat(G)∗α.

Proposition 5. For all B in {ans,¬ans}, all G in {Pat, cPat,LinPat, cLinPat},
and all A in {Dfa,Nfa}, there is a PTime reduction from CertBΣ,V(G,A) to

CertBΣV ,∅(G,A).

Proof. Let G ∈ GΣ be a compressed string pattern and α a Σ-assignment from V
to positions of pat(G). If G ∈ {cPat, cLinPat}, then by Lemma 6 we can compute
in PTime a compressed string pattern G′ ∈ GΣV such that pat(G)∗α = pat(G′).
If G ∈ {Pat,LinPat}, then the same property holds trivially.
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We start with B = ans. Let A ∈ AΣV be a query automaton, B ∈ DfaΣV

such that L(B) = ΣV
∗ \ StructV , and C ∈ AΣV such that L(C) = L(A)∪L(B).

In the case of G = Nfa we can chose C to be the union of A and B and in the
case of G = Dfa, C can be chosen as the product of A and B. The automaton B
can be constructed in time time O(2|V|) which is constant since V is a parameter
of the certainty problem rather than being part of its input. Then α is a certain
answer ofQ(A) on G iff Inst(G∗α)∩StructV ⊆ L(A) iff Inst(G′)∩StructV ⊆ L(A)
iff Inst(G′) ⊆ L(A) ∪ L(B) iff Inst(G′) ⊆ L(C) iff the empty Σ-assignment
is a certain answer of Q(C) on G′. Based on this fact, the PTime reduction
Certans

Σ,V(G,A) ≤p Certans
ΣV ,∅(G,A) is obvious. Also, α is a certain non-answer

of Q(A) on G iff Inst(G∗α) ∩ L(A) = ∅ iff Inst(G′) ∩ L(A) = ∅ iff the empty
Σ-assignment is a certain non-answer of Q(A). This yields the PTime reduction
showing Cert¬ansΣ,V (G,A) ≤p Cert¬ansΣV ,∅(G,A).

Corollary 1 (Non-linear patterns). For all B ∈ {ans,¬ans}, G ∈ {Pat, cPat}
and A ∈ {Dfa,Nfa}, the problem CertBΣ,V(G,A) is PSpace-complete.

Proof. Let A ∈ {Dfa,Nfa} and G ∈ {Pat, cPat}. We have that InclΣ(G,A) =p

Certans
Σ,∅(G,A) ⊆ Certans

Σ,V(G,A) ≤p Certans
ΣV ,∅(G,A) ≤p InclΣV (G,A). Since

InclΣ(G,A) and InclΣV (G,A) are PSpace-complete by Theorem 2, the prob-
lem Certans

Σ,V(G,A) is also PSpace-complete. On the other hand, we have that
coMatchΣ(G,A) =p Cert¬ansΣ,∅ (G,A) ⊆ Cert¬ansΣ,V (G,A) ≤p coMatchΣV (G,A)
by Lemma 5 and Proposition 5. Then by Theorem 2, coMatchΣ(G,A) and
coMatchΣV (G,A) are PSpace-complete (since PSpace is closed by comple-
mentation), and thus Cert¬ansΣ,V (G,A) is PSpace-complete. This completes the
proof.

Our next objective is to study the complexity of the four certainty problems
but restricted to compressed linear string patterns.

Corollary 2 (Linear patterns). For all A ∈ {Dfa,Nfa}, the certainty prob-
lems Cert¬ansΣ,V (cLinPat,A) (1) and Certans

Σ,V(cLinPat,Dfa) (2) can be solved
in PTime. The problem Certans

Σ,V(G,Nfa) is PSpace-complete for all G ∈
{LinPat, cLinPat} (3).

Proof. The statements are proved respectively in (1), (2) and (3):

(1) For all A ∈ {Dfa,Nfa}, we have that Cert¬ansΣ,V (cLinPat,A) ≤p
Cert¬ansΣV ,∅(cLinPat,A) ≤p coMatchΣV (cLinPat,A) ∈ PTime, so
Cert¬ansΣ,V (cLinPat,A) ∈ PTime.

(2) follows Theorem 3 and the reductions Certans
Σ,V(cLinPat,Dfa) ≤p

Certans
ΣV ,∅(cLinPat,Dfa) ≤p InclΣV (cLinPat,Nfa) ∈ PTime.

(3) For all G ∈ {LinPat, cLinPat}, InclΣ(G,Nfa) =p Certans
Σ,∅(G,Nfa) ⊆

Certans
Σ,V(G,Nfa) ≤p Certans

ΣV ,∅(G,Nfa) ≤p InclΣV (G,Nfa). Since for all
G ∈ {LinPat, cLinPat}, InclΣ(G,Nfa) and InclΣV (G,Nfa) are PSpace-
complete by Theorem 3, we have that Certans

Σ,V(G,Nfa) is PSpace-complete.
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8 Conclusion

There exist highly efficient streaming algorithms for answering queries defined
by Nfas [10] on complex event streams with low latency, but not with lowest
latency, since they approximate the sets of certain query answers at any event.
The positive results presented here yield good hope that similar algorithms could
be developed for hyperstreams when approximated by compressed linear string
patterns. As shown by the authors in a follow-up paper, the linearity restric-
tion is not sufficient. But with a further restriction it is possible to approximate
certain query answers efficiently and with decent precision [8]. However, this
still requires more research. First, one needs to understand how such algorithms
may deal with unknown factors incrementally, without requiring cubic time per
step such as previous algorithms on incremental evaluation of queries defined
by Nfas [6]. Second, one has to understand how to deal with nested word au-
tomata rather than Nfas for dealing with regular path queries on complex event
streams. Another point is to develop streaming algorithms for hyperstreams with
data values from an infinite signature. Finally, the feasibility of hyperstreaming
algorithms needs to be proven in practice.
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