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7 Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
8 Univ. Rouen / LITIS, Rouen, France
9 Univ. Paris-Dauphine, PSL Research Univ. / CNRS, LAMSADE, Paris, France
10 Nicolaus Copernicus University, Torun, Poland

E-mail: fabien.lotte@inria.fr

Abstract.

Objective: Most current Electroencephalography (EEG)-based Brain-Computer

Interfaces (BCIs) are based on machine learning algorithms. There is a large diversity

of classifier types that are used in this field, as described in our 2007 review paper.

Now, approximately 10 years after this review publication, many new algorithms have

been developed and tested to classify EEG signals in BCIs. The time is therefore ripe

for an updated review of EEG classification algorithms for BCIs.

Approach: We surveyed the BCI and machine learning literature from 2007 to 2017

to identify the new classification approaches that have been investigated to design BCIs.

We synthesize these studies in order to present such algorithms, to report how they

were used for BCIs, what were the outcomes, and to identify their pros and cons.

Main results: We found that the recently designed classification algorithms for

EEG-based BCIs can be divided into four main categories: adaptive classifiers,

matrix and tensor classifiers, transfer learning and deep learning, plus a few other

miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be

generally superior to static ones, even with unsupervised adaptation. Transfer learning

can also prove useful although the benefits of transfer learning remain unpredictable.

Riemannian geometry-based methods have reached state-of-the-art performances on

multiple BCI problems and deserve to be explored more thoroughly, along with tensor-

based methods. Shrinkage linear discriminant analysis and random forests also appear

particularly useful for small training samples settings. On the other hand, deep

learning methods have not yet shown convincing improvement over state-of-the-art

BCI methods.

Significance: This paper provides a comprehensive overview of the modern

classification algorithms used in EEG-based BCIs, presents the principles of these
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methods and guidelines on when and how to use them. It also identifies a number of

challenges to further advance EEG classification in BCI.

Keywords: Brain-Computer Interfaces, BCI, EEG, Electroencephalography, signal pro-

cessing, spatial filtering, machine learning, feature extraction, classification, adaptive

classifiers, deep learning, Riemannian geometry, transfer learning, tensors.

Submitted to: J. Neural Eng.

1. Introduction

A Brain-Computer Interface (BCI) can be defined as a system that translates the brain

activity patterns of a user into messages or commands for an interactive application,

this activity being measured and processed by the system [229, 139, 44]. A BCI user’s

brain activity is typically measured using Electroencephalography (EEG). For instance,

a BCI can enable a user to move a cursor to the left or to the right of a computer screen

by imagining left or right hand movements, respectively [230]. As they make computer

control possible without any physical activity, EEG-based BCIs promise to revolutionize

many applications areas, notably to enable severely motor-impaired users to control

assistive technologies, e.g., text input systems or wheelchairs [181], as rehabilitation

devices for stroke patients [8], as new gaming input devices [52], or to design adaptive

human-computer interfaces that can react to the user’s mental states [237], to name a

few [216, 45].

In order to use a BCI, two phases are generally required: 1) an offline training phase

during which the system is calibrated and 2) the operational online phase in which

the system can recognize brain activity patterns and translate them into commands

for a computer [136]. An online BCI system is a closed-loop, starting with the user

producing a specific EEG pattern (e.g., using motor imagery) and these EEG signals

being measured. Then, EEG signals are typically pre-processed using various spatial and

spectral filters [23], and features are extracted from these signals in order to represent

them in a compact form [140]. Finally, these EEG features are classified [141] before

being translated into a command for an application [45] and before feedback is provided

to users to inform them whether a specific mental command was recognized or not [170].

Although much effort is currently under way towards calibration-free modes of

operation, an off-line calibration is currently used and is necessary in most BCIs to

obtain a reliable system. In this stage, the classification algorithm is calibrated and

the optimal features from multiple EEG channels are selected. For this calibration, a

training data set needs to be pre-recorded from the user. EEG signals are highly user-

specific, and as such, most current BCI systems are calibrated specifically for each user.
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This training data set contains EEG signals recorded while the user performed each

mental task of interest several times, according to given instructions.

There are various key elements in the BCI closed-loop, one being the classification

algorithms a.k.a classifiers used to recognize the users’ EEG patterns based on EEG

features. There was, and still is, a large diversity of classifier types that are used and

have been explored to design BCIs, as presented in our 2007 review of classifiers for EEG-

based BCIs [141]. Now, approximately 10 years after this initial review was published,

many new algorithms have been designed and explored in order to classify EEG signals

in BCI, and BCIs are more popular than ever. We therefore believe that the time is

ripe to update this review of EEG classifiers. Consequently, in this paper, we survey

the literature on BCI and machine learning from 2007 to 2017 in order to identify

which new EEG classification algorithms have been investigated to design BCI, and

which appear to be the most efficient‡. Note that we also include in the present review

machine learning methods for EEG feature extraction, notably to optimize spatial filters,

which have become a key component of BCI classification approaches. We synthesize

these readings in order to present these algorithms, to report how they were used for

BCIs and what were the outcomes. We also identify their pros and cons in order to

provide guidelines regarding how and when to use a specific classification method, and

propose some challenges that must be solved to enable further progress in EEG signal

classification.

This paper is organized as follows. Section 2 briefly presents the typically used

EEG feature extraction and selection techniques, as these features are usually the input

to classifiers. It also summarizes the classifier performance evaluation metrics. Then,

Section 3.1 provides a summary of the classifiers that were used for EEG-based BCIs

up to 2007, many of which are still in use today, as well as the challenges faced by

current EEG classification methods. Section 4 describes the core of the paper, as it

reviews the classification algorithms for BCI that have been explored since 2007 to

address these various challenges. These algorithms are discussed in Section 5, where

we also propose guidelines on how and when to use them, and identify some remaining

challenges. Finally, Section 6 concludes the paper.

2. Feature extraction and selection, and performance measures in brief

The present paper is dedicated to classification methods for BCI. However, most pattern

recognition/machine learning pipelines, and BCIs are no exception, not only use a

classifier, but also apply feature extraction/selection techniques to represent EEG signals

in a compact and relevant manner. In particular for BCI, EEG signals are typically

filtered both in the time domain (band-pass filter), and spatial domain (spatial filter)

‡ This updated review describes more advanced classification concepts and algorithms than the ones

presented in the initial review in [141]. We thus advise our readers new to the EEG classification field

to start by reading [141], as that paper is more accessible, and the concepts it presented will not be

explained again in the current manuscript.
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before features are extracted from the resulting signals. The best subsets of features are

then identified using feature selection algorithms, and these features are used to train a

classifier. This process is illustrated in Figure 1. In this chapter, we briefly discuss which

features are typically used in BCI, how to select the most relevant features amongst these

and how to evaluate the resulting pattern recognition pipeline.

Figure 1. Typical classification process in EEG-based BCI systems. The oblique

arrow denotes algorithms that can be or have to be optimized from data. A training

phase is typically necessary to identify the best filters and features and to train the

classifier. The resulting filters, features and classifier are then used online to operate

the BCI.

2.1. Feature Extraction

While there are many ways in which EEG signals can be represented (e.g. [16, 136, 155]),

the two most common types of features used to represent EEG signals are frequency

band power features and time point features.

Band power features represent the power (energy) of EEG signals for a given

frequency band in a given channel, averaged over a given time window (typically 1

second for many BCI paradigms). Band power features can be computed in various ways

[28, 87], and are extensively used for BCIs exploiting oscillatory activity, i.e. changes in

EEG rhythm amplitudes. As such, band power features are the gold standard features

for BCI based on motor and mental imagery for many passive BCI aiming at decoding

mental states such as mental workload or emotions, or for Steady State Visual Evoked

Potential (SSVEP)-based BCIs.

Time point features are a concatenation of EEG samples from all channels.

Typically, such features are extracted after some pre-processing, notably band-pass

or low-pass filtering and down-sampling. They are the typical features used to

classify Event Related Potentials (ERP), which are temporal variations in EEG signals

amplitudes time-locked to a given event/stimulus [22, 136]. These are the features used

in most P300-based BCI.
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Both types of features benefit from being extracted after spatial filtering [22, 188,

185, 136]. Spatial filtering consists of combining the original sensor signals, usually

linearly, which can result in a signal with a higher signal-to-noise ratio than that of

individual sensors. Spatial filtering can be data independent, e.g., based on physical

consideration regarding how EEG signals travel through the skin and skull, leading to

spatial filters such as the well-known Laplacian filter [160] or inverse solution based

spatial filtering [101, 18, 173, 124]. Spatial filters can also be obtained in a data-

driven and unsupervised manner with methods such as Principal Component Analysis

(PCA) or Independent Component Analysis (ICA) [98]. Finally, spatial filters can be

obtained in a data-driven manner, with supervised learning, which is currently one of

the most popular approaches. Supervised spatial filters include the well-known Common

Spatial Patterns (CSP) [185, 23], dedicated to band-power features and oscillatory

activity BCI, and spatial filters such as xDAWN [188] or Fisher spatial filters [92]

for ERP classification based on time point features. Owing to the good classification

performances obtained by such supervised spatial filters in practice, many variants of

such algorithms have been developed that are more robust to noise or non-stationary

signals, using regularization approaches, robust data averaging, and/or new divergence

measures, (e.g. [194, 143, 187, 211, 233]). Similarly, extensions of these approaches

have been proposed to optimize spectral and spatial filters simultaneously (e.g. the

popular Filter Bank CSP (FBCSP) method [7] and others [61, 88, 161]). Finally, some

approaches have combined both physically-driven spatial filters based on inverse models

with data-driven spatial filters (e.g. [49, 148]).

While spatial filtering followed by either band power or time points feature

extraction are by far the most common features used in current EEG-based BCIs, it

should be mentioned that other feature types have been explored and used. Firstly, an

increasingly used type is connectivity features. Such features measure the correlation

or synchronization between signals from different sensors and/or frequency bands. This

can be measured using features such as spectral coherence, phase locking values or

directed transfer functions, among many others [31, 79, 167, 110, 225, 240]. Researchers

have also explored various EEG signal complexity measures or higher order statistics as

features of EEG signals (e.g. [29, 135, 11, 248]). Finally, rather than using vectors of

features, recent research has also explored how to represent EEG signals by covariance

matrices or by tensors (i.e. arrays and multi-way arrays, with two or more dimensions),

and how to classify these matrices or tensors directly [232, 47, 38]. Such approaches

are discussed in Section 4.2. It should be mentioned that when using matrix or tensor

decompositions, the resulting features are linear combinations of various sensors data,

time points or frequencies (among others). As such they may not have an obvious

physical/physiological interpretation, but nonetheless prove useful for BCI design.

Finally, it is interesting to note that several BCI studies have reported that

combining various types of features, e.g. time points with band powers or band powers

with connectivity features, generally leads to higher classification accuracies as compared

to using a single feature type (e.g. [60, 29, 70, 166, 191, 93]). Combining multiple feature
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types typically increases dimensionality; hence it requires the selection of the most

relevant features to avoid the curse-of-dimensionality. Methods to reduce dimensionality

are described in the following section.

2.2. Feature Selection

A feature selection step can be applied after the feature extraction step to select a subset

of features with various potential benefits [82]. Firstly, among the various features that

one may extract from EEG signals, some may be redundant or may not be related to

the mental states targeted by the BCI. Secondly, the number of parameters that the

classifier has to optimize is positively correlated with the number of features. Reducing

the number of features thus leads to fewer parameters to be optimized by the classifier.

It also reduces possible overtraining effects and can thus improve performance, especially

if the number of training samples is small. Thirdly, from a knowledge extraction point

of view, if only a few features are selected and/or ranked, it is easier to observe which

features are actually related to the targeted mental states. Fourthly, a model with fewer

features and consequently fewer parameters can produce faster predictions for a new

sample, as it should be computationally more efficient. Fifthly, collection and storage

of data will be reduced. Three feature selection approaches have been identified [106]:

the filter, wrapper and embedded approaches. Many alternative methods have been

proposed for each approach.

Filter methods rely on measures of relationship between each feature and the target

class, independently of the classifier to be used. The coefficient of determination, which

is the square of the estimation of the Pearson correlation coefficient, can be used as a

feature ranking criterion [85]. The coefficient of determination can also be used for a

two-class problem, labelling classes as -1 or +1. The correlation coefficient can only

detect linear dependencies between features and classes though. To exploit non-linear

relationships, a simple solution is to apply non-linear pre-processing, such as taking the

square or the log of the features. Ranking criteria based on information theory can

also be used e.g. the mutual information between each feature and the target variable

[82, 180]. Many filter feature selection approaches require estimations of the probability

densities and the joint density of the feature and class label from the data. One solution

is to discretize the features and class labels. Another solution is to approximate their

densities with a non-parametric method such as Parzen windows [179]. If the densities

are estimated by a normal distribution, the result obtained by the mutual information

will be similar to the one obtained by the correlation coefficient. Filter approaches have

a linear complexity with respect to the number of features. However, this may lead to

a selection of redundant features [106].

Wrapper and embedded approaches solve this problem at the cost of a longer com-

putation time. These approaches use a classifier to obtain a subset of features. Wrapper

methods select a subset of features, present it as input to a classifier for training, ob-

serve the resulting performance and stop the search according to a stopping criterion or
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propose a new subset if the criterion is not satisfied. Embedded methods integrate the

features selection and the evaluation in a unique process, e.g. in a decision tree [27, 184]

or a multilayer perceptron with optimal cell damage [37].

Feature selection has provided important improvements in BCI, e.g., the stepwise

Linear Discriminant Analysis (embedded method) for P300-BCI [111] and frequency

bands selection for motor imagery using maximal mutual information (filtering methods)

[7]. Let us also mention the Support Vector Machine for channel selection [115],

linear regressor for knowledge extraction [123], genetic algorithms for spectral feature

selection [50] and P300-based feature selection [201], or evolutionary algorithms for

feature selection based on multiresolution analysis [176] (all being wrapper methods).

Indeed, metaheuristic techniques (also including ant colony, swarm search, tabu search

and simulated annealing) [152] are becoming more and more frequently used for feature

selection in BCI [174] in order to avoid the curse-of-dimensionality.

Other popular methods used in EEG-based BCIs notably include filter methods

such as maximum Relevance Minimum Redundancy (mRMR) feature selection [180, 166]

or R2 feature selection [217, 169]. It should be mentioned that five feature selection

methods, namely information gain ranking, correlation-based feature selection, Relief

(an instance-based feature ranking method for multiclass problems), consistency-based

feature selection and 1R Ranking (one-rule classification) have been evaluated on the

BCI competition III data sets [107]. Amongst 10 classifiers, the top three feature

selection methods were correlation-based feature selection, information gain and 1R

ranking, respectively.

2.3. Performance Measures

To evaluate BCI performance, one must bear in mind that different components of the

BCI loop are at stake [212]. Regarding the classifier alone, the most basic performance

measure is the classification accuracy. This is valid only if the classes are balanced [66],

i.e. with the same number of samples per class and if the classifier is unbiased, i.e. it has

the same performance for each class [199]. If these conditions are not met, the Kappa

metric or the confusion matrix are more informative performance measures [66]. The

sensitivity-specificity pair, or precision, can be computed from the confusion matrix.

When the classification depends on a continuous parameter (e.g. a threshold), the

Receiver Operating Characteristic (ROC) curve, and the Area Under the Curve (AUC)

are often used.

Classifier performance is generally computed offline on pre-recorded data, using a

hold-out strategy: some datasets are set aside to be used for the evaluation, and are

not part of the training dataset. However, some authors also report cross-validation

measures estimated on training data, which may over-rate the performance.

The contribution of classifier performance to overall BCI performance strongly

depends on the orchestration of the BCI subcomponents. This orchestration is highly
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variable given the variety of BCI systems (co-adaptive, hybrid, passive, self- or system-

paced). The reader is referred to [212] for a comprehensive review of evaluation strategies

in such BCI contexts.

3. Past methods and current challenges

3.1. A brief overview of methods used 10 years ago

In our original review of classification algorithms for EEG-based BCIs published ten

years ago, we identified five main families of classifiers that had been explored: linear

classifiers, neural networks, non-linear Bayesian classifiers, nearest neighbour classifiers

and classifier combinations [141].

Linear classifiers gather discriminant classifiers that use linear decision boundaries

between the feature vectors of each class. They include Linear Discriminant Analysis

(LDA), regularized LDA and Support Vector Machines (SVMs). Both LDA and SVM

were, and still are, the most popular types of classifiers for EEG based-BCIs, particularly

for online and real-time BCIs. The previous review highlighted that in terms of

performances, SVM often outperformed other classifiers.

Neural Networks (NN) are assemblies of artificial neurons, arranged in layers,

which can be used to approximate any non-linear decision boundary. The most

common type of NN used for BCI at that time was the Multi-Layer Perceptron (MLP),

typically employing only one or two hidden layers. Other NN types were explored more

marginally, such as the Gaussian classifier NN or Learning Vector Quantization (LVQ)

NN.

Non-linear Bayesian classifiers are classifiers modeling the probability distributions

of each class and use Bayes rule to select the class to assign to the current feature vector.

Such classifiers notably include Bayes quadratic classifiers and Hidden Markov Models

(HMMs).

Nearest neighbour classifiers assign a class to the current feature vector according

to its nearest neighbours. Such neighbours could be training feature vectors or class

prototypes. Such classifiers include the k-Nearest Neighbour (kNN) algorithm or

Mahalanobis distance classifiers.

Finally, classifier combinations are algorithms combining multiple classifiers, either

by combining their outputs and/or by training them in ways that maximize their

complementarity. Classifier combinations used for BCI at the time included boosting,

voting or stacking combination algorithms. Classifier combination appeared to be

amongst the best performing classifiers for EEG based BCIs, at least in offline

evaluations.

3.2. Challenges faced by current EEG signal classification methods

Ten years ago, most classifiers explored for BCI were rather standard classifiers used

in multiple machine learning problems. Since then, research efforts have focused on
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identifying and designing classification methods dedicated to the specificities of EEG-

based BCIs. In particular, the main challenges faced by classification methods for BCI

are the low signal-to-noise ratio of EEG signals [172, 228], their non-stationarity over

time, within or between users, where same-user EEG signals varying between or even

within runs [202, 80, 109, 164, 145, 56], the limited amount of training data that is

generally available to calibrate the classifiers [108, 137], and the overall low reliability

and performance of current BCIs [139, 138, 229, 109].

Therefore, most of the algorithms studied these past 10 years aimed at addressing

one or more of these challenges. More precisely, adaptive classifiers whose parameters

are incrementally updated online were developed to deal with EEG non-stationarity in

order to track changes in EEG properties over time. Adaptive classifiers can also be used

to deal with limited training data by learning online, thus requiring fewer offline training

data. Transfer learning techniques aim at transferring features or classifiers from one

domain, e.g., BCI subjects or sessions, to another domain, e.g., other subjects or other

sessions from the same subject. As such they also aim at addressing within or between-

subjects non-stationarity and limited training data by complementing the few training

data available with data transferred from other domains. Finally in order to compensate

for the low EEG signal-to-noise ratio and the poor reliability of current BCIs, new

methods were explored to process and classify signals in a single step by merging

feature extraction, feature selection and classification. This was achieved by using

matrix (notably Riemannian methods) and tensor classifiers as well as deep learning.

Additional methods explored were targeted specifically at learning from limited amount

of data and at dealing with multiple class problems. We describe these new families of

methods in the following.

4. New EEG classification methods since 2007

4.1. Adaptive classifiers

4.1.1. Principles

Adaptive classifiers are classifiers whose parameters, e.g. the weights attributed

to each feature in a linear discriminant hyperplane, are incrementally re-estimated and

updated over time as new EEG data become available [202, 200]. This enables the

classifier to track possibly changing feature distribution, and thus to remain effective

even with non-stationary signals such as an EEG. Adaptive classifiers for BCI were

first proposed in the mid-2000’s, e.g., in [72, 202, 30, 209, 163], and were shown to be

promising in offline analysis. Since then, more advanced adaptation techniques have

been proposed and tested, including online experiments.

Adaptive classifiers can employ both supervised and unsupervised adaptation, i.e.

with or without knowledge of the true class labels of the incoming data, respectively.

With supervised adaptation, the true class labels of the incoming EEG signals is known
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and the classifier is retrained on the available training data augmented with these new,

labelled incoming data, or is updated based on this new data only [202, 200]. Supervised

BCI adaptation requires guided user training, for which the users’ commands are

imposed and thus the corresponding EEG class labels are known. Supervised adaptation

is not possible with free BCI use, as the incoming EEG data true label is unknown.

With unsupervised adaptation, the label of the incoming EEG data is unknown. As

such, unsupervised adaptation is based on an estimation of the data class labels for

retraining/updating, as discussed in [104], or is based on class-unspecific adaptation,

e.g. the general all classesEEG data mean [219, 24] or a covariance matrix [238] is

updated in the classifier model. A third type of adaptation, in between supervised and

unsupervised methods, has also been explored: semi-supervised adaptation [122, 121].

Semi-supervised adaptation consists of using both initial labelled data and incoming

unlabelled data to adapt the classifier. For BCI, semi-supervised adaptation is typically

performed by 1) initially training a supervised classifier on available labelled training

data, then 2) by estimating the labels of incoming unlabelled data with this classifier,

and 3) by adapting/retraining the classifier using these initially unlabelled data assigned

to their estimated labels combined with the known available labelled training data. This

process is repeated as new batches of unlabelled incoming EEG data become available.

4.1.2. State-of-the-art

So far, the majority of the work on adaptive classifiers for BCI has been based on

supervised adaptation. Multiple adaptive classifiers were explored offline, such as LDA

or Quadratic Discriminant Analysis (QDA) [200] for motor imagery-based BCI. An

adaptive LDA was also proposed based on Kalman Filtering to track the distribution of

each class [96]. In order to deal with possibly imperfect labels in supervised adaptation,

[236] proposed and evaluated offline an adaptive Bayesian classifier based on Sequential

Monte Carlo sampling that explicitly models uncertainty in the observed labels. For

ERP-based BCI, [227] explored an offline adaptive Support Vector Machine (SVM),

adaptive LDA, a stochastic gradient-based adaptive linear classifier, and online Passive-

Aggressive (PA) algorithms. Interestingly, McFarland and colleagues demonstrated

in offline analysis of EEG data over multiple sessions that continuously retraining

the weights of linear classifiers in a supervised manner improved the performance of

Sensori-Motor Rhythms (SMR)-based BCI, but not of the P300-based BCI speller [159].

However, results presented in [197] suggested that continuous adaption was beneficial

for the asynchronous P300-BCI speller, and [227] suggested the same for passive BCI

based on the P300.

Online, still using supervised adaptation, both adaptive LDA and QDA have been

explored successfully in [222]. In [86], an adaptive probabilistic Neural Network was

also used for online adaptation with a motor imagery-BCI. Such a classifier models

the feature distributions of each class in non-parametric fashion, and updates them as

new trials become available. Classifier ensembles were also explored to create adaptive
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classifiers. In [119], a dynamic ensemble of five SVM classifiers was created by training a

new SVM for each batch of new incoming labelled EEG trials, adding it to the ensemble

and removing the oldest SVM. Classification was performed using a weighted sum of

each SVM output. This approach was shown online to be superior to a static classifier.

Regarding supervised adaptation, it should be mentioned that adaptive spatial

filters were also proposed, notably several variants of adaptive CSP [247, 204], but also

adaptive xDAWN [227].

Unsupervised adaptation of classifiers is obviously much more difficult, as the class

labels, hence the class-specific variability, is unknown. Thus, unsupervised methods have

been proposed to estimate the class labels of new incoming samples before adapting the

classifier based on this estimation. This technique was explored offline in [24] and [129],

and online in [83] for an LDA classifier and Gaussian Mixture Model (GMM) estimation

of the incoming class labels, with motor imagery data. Offline, Fuzzy C-means (FCM)

were also explored instead of GMM to track the class means and covariance for an

LDA classifier [130]. Similarly, a non-linear Bayesian classifier was adapted using either

unsupervised or semi-supervised learning (i.e. only some of the incoming trials were

labelled) using extended Kalman filtering to track the changes in the class distribution

parameters with Auto-Regressive (AR) features [149]. Another simple unsupervised

adaptation of the LDA classifier for motor imagery data was proposed and evaluated for

both offline and online data [219]. The idea was to not incrementally adapt all of the

LDA parameters, but only its bias, which can be estimated without knowing the class

labels if we know that the data is balanced, i.e. with the same number of trials per class

on average. This approach was extended to the multiclass LDA case, and evaluated in

an offline scenario in [132].

Adaptation can be performed according to reinforcement signals (RS), indicating

whether a trial was erroneously classified by the BCI. Such reinforcement signals can be

deduced from Error-related Potentials (ErrP), potentials appearing following a perceived

error which may have been committed by either the user or the machine [68]. In

[133], an incremental logistic regression classifier was proposed, which was updated

along the error gradient when a trial was judged to be misclassified according to the

detection of an ErrP. The strength of the classifier update was also proportional to the

probability of this ErrP. A Gaussian probabilistic classifier incorporating an RS was later

proposed in [131], in which the update rules of the mean and covariance of each class

depend on the probability of the RS. This classifier could thus incorporate a supervised,

unsupervised or semi-supervised adaptation mode, according to whether the probability

of the RS is always correct as either 0 or 1 (supervised case), uniform, i.e. uninformative

(unsupervised case) or with a continuous probability with some uncertainty (partially

supervised case). Using simulated supervised RS, this method was shown to be superior

to static LDA and the other supervised and unsupervised adaptive LDA discussed

above [131]. Evaluations with real-world data remain to be performed. Also using

ErrP in offline simulations of an adaptive movement-related potential (MRP)-BCI, [9]

augmented the training set with incoming trials, but only with those that were classified
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correctly, as determined by the absence of an ErrP following feedback to the user. They

also removed the oldest trials from the training set as new trials became available.

Then, the parameters of the classifier, an incremental SVM, were updated based on the

updated training set. ErrP-based classifier adaptation was explored online for code-

modulated visual evoked potential (c-VEP) classification in [206]. In this work, the

label of the incoming trial was estimated as the one decided by the classifier if no ErrP

was detected, the opposite label otherwise (for binary classification). Then, this newly

labelled trial was added to the training set, and the classifier and spatial filter, a one-

class SVM and Canonical Correlation Analysis (CCA), respectively, were retrained on

the new data. Finally, [239] demonstrated that classifier adaptation based on RS could

also be performed using classifier confidence, and that such adaptation was beneficial

to P300-BCI.

For ERP-based BCI, semi-supervised adaptation was explored with SVM and

enabled the calibration of a P300-speller with less data as compared to a fixed, non-

adaptive classifier [122, 151]. This method was later tested and validated online in [81].

For P300-BCI, a co-training semi-supervised adaptation was performed in [178]. In this

work, two classifiers were used: a Bayesian LDA and a standard LDA. Each was initially

trained on training labelled data, and then used to estimate the labels of unlabelled

incoming data. The latter were labelled with their estimated class label and used as

additional training data to retrain the other classifier, hence the co-training. This semi-

supervised approach was shown offline to lead to higher bit-rates than a fully supervised

method, which requires more supervised training data. On the other hand, offline semi-

supervised adaptation with an LDA as classifier failed on mental imagery data, probably

owing to the poor robustness of the LDA to mislabelling [137]. Finally, both for offline

and online data, [104, 105] proposed a probabilistic method to adaptively estimate the

parameters of a linear classifier in P300-based spellers, which led to a drastic reduction

in calibration time, essentially removing the need for the initial calibration. This method

exploited the specific structure of the P300-speller, and notably the frequency of samples

from each class at each time, to estimate the probability of the most likely class label.

In a related work, [78] proposed a generic method to adaptively estimate the parameters

of the classifier without knowing the true class labels by exploiting any structure that

the application may have. Semi-supervised adaptation was also used offline for multi-

class motor imagery with a Kernel Discriminant Analysis (KDA) classifier in [171]. This

method has shown its superiority over non-adaptive methods, as well as over adaptive

unsupervised LDA methods.

Vidaurre et al., also explored co-adaptive training, where both the machine and

the user are continuously learning, by using adaptive features and an adaptive LDA

classifier [221, 220]. This enabled some users who were initially unable to control the

BCI to achieve better than chance classification performances. This work was later

refined in [64] by using a simpler but fully adaptive setup with auto-calibration, which

proved to be effective both for healthy users and for users with disabilities [63]. Co-

adaptive training, using adaptive CSP patches, proved to be even more efficient [196].
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Adaptive classification approaches used in BCI are summarized in Tables 1 and 2,

for supervised and unsupervised methods, respectively.

4.1.3. Pros and cons Adaptive classifiers were repeatedly shown to be superior to

non-adaptive ones for multiple types of BCI, notably motor-imagery BCI, but also

for some ERP-based BCI. To the best of our knowledge, adaptive classifiers have

apparently not been explored for SSVEP-BCI. Naturally, supervised adaptation is the

most efficient type of adaptation, as it has access to the real labels. Nonetheless

unsupervised adaptation has been shown to be superior to static classifiers in multiple

studies [24, 130, 149, 219, 132]. It can also be used to shorten or even remove the need

for calibration [122, 151, 81, 105, 78]. There is a need for more robust unsupervised

adaptation methods, as the majority of actual BCI applications do not provide labels,

and thus can only rely on unsupervised methods.

For unsupervised adaptation, reward signals, and notably ErrP, have been exploited

in multiple papers (e.g. [206, 239, 9]). Note however, that ErrP decoding from EEG

signals may be a difficult task. Indeed, [157] demonstrated that the decoding accuracy

of ErrP was positively correlated with the P300 decoding accuracy. This means that

people who make errors in the initial BCI task (here a P300), for whom error correction

and ErrP-based adaptation would be the most useful, have a lesser chance that the ErrP

will be correctly decoded. There is thus a need to identify robust reward signals.

Only a few of the proposed methods were actually used online. For unsupervised

methods, a simple and effective one that demonstrated its value online in several studies

is adaptive LDA, proposed by Vidaurre et al. [219]. This and other methods that are

based on incremental adaptation (i.e., updating the algorithms parameters rather than

fully re-optimizing them) generally have a computational complexity that is low enough

to be used online. Adaptive methods that require fully retraining the classifier with new

incoming data generally have a much higher computationnal complexity (e.g., regularly

retraining an SVM from scratch in real-time requires a lot of computing power) which

might prevent them from being actually used online.

However, more online studies are clearly necessary to determine how adaptation

should be performed in practice, with a user in the loop. This is particularly important

for mental imagery BCI in which human-learning is involved [170, 147]. Indeed, because

the user is adapting to the BCI by learning how to perform mental imagery tasks so that

they are recognized by the classifier, adaptation may not always help and may even be

confusing to the user, as it may lead to continuously-changing feedback. Both machine

and human learning may not necessarily converge to a suitable and stable solution. A

recent theoretical model of this two-learner problem was proposed in [168], and indicated

that adaptation that is either too fast or too slow can actually be detrimental to user

learning. There is thus a need to design adaptive classifiers that ensure and favour

human learning.
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Table 1. Summary of adaptive supervised classification methods explored offline

EEG Pattern Features Classifier References

Motor Imagery band power adaptive LDA/QDA [200]

Motor Imagery Fractal Dimension adaptive LDA [96]

Motor Imagery band power adaptive LDA/QDA [222]

Motor Imagery band power adaptive probabilistic NN [86]

Motor Imagery CSP dynamic SVM ensemble [119]

Motor Imagery adaptive CSP SVM [247, 204]

Motor execution AR parameters adaptive Gaussian classifier [236]

P300 Time points adaptive LDA/SVM [227]

with adaptive xDAWN online PA classifier

Table 2. Summary of adaptive unsupervised classification methods explored

EEG Pattern Features Classifier References

Motor Imagery band power adaptive LDA with GMM [24, 129, 83]

Motor Imagery band power adaptive LDA with FCM [130]

Motor Execution AR parameters adaptive Gaussian classifier [149]

Motor Imagery Band Power adaptive LDA [219][132]

Motor Imagery Band Power Adaptive Gaussian classifier [131]

Motor Imagery Band Power semi-supervised CSP+LDA [137]

Motor Imagery adaptive Band Power adaptive LDA [221, 220, 64, 63]

Motor Imagery adaptive CSP patches adaptive LDA [196]

Covert Attention Band Power incremental logistic regression [133]

MRP Band Power incremental SVM [9]

c-VEP CCA adaptive One-class SVM [206]

P300 Time Points SWLDA [239]

P300 Time Points semi-supervised SVM [122, 151, 81]

P300 Time Points co-training LDA [178]

P300 Time Points unsupervised Linear classifier [104, 105]

ErrP Time Points unsupervised Linear classifier [78]

4.2. Classifying EEG matrices and tensors

4.2.1. Riemannian geometry-based classification

Principles:

The introduction of Riemannian geometry in the field of BCI has challenged some

of the conventions adopted in the classic classification approaches; instead of estimating

spatial filters and/or select features, the idea of a Riemannian geometry classifier (RGC)

is to map the data directly onto a geometrical space equipped with a suitable metric.
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In such a space, data can be easily manipulated for several purposes, such as averaging,

smoothing, interpolating, extrapolating and classifying. For example, in the case of

EEG data, mapping entails computing some form of covariance matrix of the data.

The principle of this mapping is based on the assumption that the power and the

spatial distribution of EEG sources can be considered fixed for a given mental state and

such information can be coded by a covariance matrix. Riemannian geometry studies

smooth curved spaces that can be locally and linearly approximated. The curved space

is named a manifold and its linear approximation at each point is the tangent space. In

a Riemannian manifold the tangent space is equipped with an inner product (metric)

smoothly varying from point to point. This results in a non-Euclidean notion of distance

between any two points (e.g. each point may be a trial) and a consequent notion of

centre of mass of any number of points (Fig. 2). Therefore, instead of using the Euclidean

distance, called the extrinsic distance, an intrinsic distance is used, which is adapted

to the geometry of the manifold, and thus to the manner in which the data have been

mapped [47, 232].

Amongst the most common matrix manifolds used for BCI applications,

we encountered the manifold of Hermitian or symmetric positive definite (SPD)

matrices [19] when dealing with covariance matrices estimated from EEG trials, and

the Stiefel and Grassmann manifolds [62] when dealing with subspaces or orthogonal

matrices. Several machine learning problems can be readily extended to those manifolds

by taking advantage of their geometrical constraints (i.e. learning on manifold).

Furthermore, optimization problems can be formulated specifically on such spaces, which

is leading to several new optimization methods and to the solution of new problems [2].

Although related, manifold learning, which consists of empirically attempting to locate

the non-linear subspace in which a dataset is defined, is different in concept and will

not be covered in this paper. To illustrate these notions, consider the case of SPD

Figure 2. Schematic representation of a Riemannian manifold. EEG trials are

represented by points. Left: Representation of the tangent space at point G. The

shortest path on the manifold relying on two points C1 and C2 is named the

geodesic and its length is the Riemannian distance between them. Curves on the

manifolds through a point are mapped on the tangent space as straight lines (local

approximation). Right: G represents the centre of mass (mean) of points C1, C2, C3

and C4. It is defined as the point minimizing the sum of the squared distance between

itself and the four points. The centre of mass is often used in RGCs as a representative

for a given class.
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matrices. The square of the intrinsic distance between two SPD matrices C1 and C2

has a closed-form expression given by

δ2 (C1,C2) =
∑
n

log2λn
(
C−1

1 C2

)
, (1)

where λn(M) denotes the nth eigenvalue of matrix M. For C1 and C2 SPDs, this distance

is non-negative, symmetric and is equal to zero if and only if C1 = C2. Interestingly,

when C1 and C2 are the means of two classes, the eigenvectors of matrix (C−1
1 C2) are

used to define CSP filters, while its eigenvalues are used for computing their Riemannian

distance [47]. Using the distance in Eq. 1, the centre of mass G of a set {C1, ...,CK} of

K SPD matrices (Fig. 3), also called the geometric mean, is the unique solution to the

following optimization problem

argmin
G

∑
k

δ2(Ck,G). (2)

As discussed thoroughly in [47], this definition is analogous to the definition of the

arithmetic mean 1/K
∑

k Ck, which is the solution of the optimization problem (2)

when the Euclidean distance is used instead of the Riemannian one. In contrast to

the arithmetic mean, the geometric mean does not have a closed-form solution. A fast

and robust iterative algorithm for computing the geometric mean has been presented in

[48]. The simplest RGC methods allow immediate classification of trials (mapped via

Figure 3. Schematic of the Riemannian minimum distance to mean (RMDM) classifier

for a two-class problem. From training data a centre of mass for each class is computed

(G1 and G1). An unlabelled trial (question mark) is then assigned to the class whose

centre of mass is the closest, G1 in this example. The RMDM works in the same

manner for any dimension of the data, any number of classes and any BCI paradigm.

It does not require any spatial filtering and feature selection, nor any parameter tuning

(see text).

some form of covariance matrix) by simple nearest neighbour methods, using exclusively

the notion of Riemannian distance (Eq. 1), and possibly with the notion of geometric

mean (2). For instance, the Riemannian minimum distance to mean (RMDM) classifier

[13, 15] computes a geometric mean for each class using training data and then assigns

an unlabelled trial to the class corresponding to the closest mean (Fig. 3). Another class

of RGCs consists of methods projecting the data points to a tangent space followed by a

classification, thereafter using standard classifiers such as LDA, SVM, logistic regression,

etc. [13, 14]. These methods take advantage of both the Riemannian geometry and
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the possibility of executing complex decision functions using dedicated classifiers. An

alternative approach is to project the data in the tangent space, filter the data there

(for example by LDA), and map the data back onto the manifold to finally carry out

the RMDM.

State-of-the-art:

As described above, Riemannian classifiers either operate directly on the manifold

(e.g., the RMDM) or by the projection of the data in the tangent space. Simple RGCs on

the manifold have been shown to be competitive as compared to previous state-of-the-

art classifiers used in BCI as long as the number of electrodes is not very large, providing

better robustness to noise and better generalization capabilities, both on healthy users

[13, 46, 100] and clinical populations [158]. RGCs based on tangent space projection

clearly outperformed the other state-of-the-art methods in terms of accuracy [13, 14], as

demonstrated by the first place they have been awarded in five recent international BCI

predictive modelling data competitions, as reported in [47]. For a comprehensive review

of the Riemannian approaches in BCI, the reader can refer to [47, 232]. The various

approaches using Riemannian Geometry classifiers for EEG-based BCIs are summarized

in Table 3.

Pros and cons:

As highlighted in [232], the processing procedures of Riemannian approaches such

as RMDM is simpler and involves fewer stages than more classic approaches. Also,

Riemannian classifiers apply equally well to all BCI paradigms (e.g. BCIs based on

mental imagery, ERPs and SSVEP); only the manner in which data points are mapped

in the SPD manifold differs (see [47] for details). Furthermore, in contrast to most

classification methods, the RMDM approach is parameter-free, that is, it does not

require any parameter tuning, for example by cross-validation. Hence, Riemannian

geometry provides new tools for building simple, more robust and accurate prediction

models.

Several reasons have been proposed to advocate the use of the Riemannian

geometry. Due to its logarithmic nature the Riemannian distance is robust to extreme

values, that is, noise. Also, the intrinsic Riemannian distance for SPD matrices is

invariant both to matrix inversion and to any linear invertible transformation of the

data, e.g. any mixing applied to the EEG sources does not change the distances among

the observed covariance matrices. These properties in part explain why Riemannian

classification methods provide a good generalization capability [238, 224], which enabled

researchers to set up calibration-free adaptive ERP-BCIs using simple subject-to-subject

and session-to-session transfer learning strategies [6].

Interestingly, as illustrated in [94], it is possible to not only interpolate along

geodesics (Fig. 2) on the SPD manifolds, but also to extrapolate (e.g. forecast) without
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leaving the manifold and respecting the geometrical constraints. For example, in [99]

interpolation has been used for data augmentation by generating artificial covariance

matrices along geodesics but extrapolation could also have been used. Often, the

Riemannian interpolation is more relevant than its Euclidean counterpart as it does

not suffer from the so-called swelling effect [232]. This effect describes the fact that a

Euclidean interpolation between two SPD matrices does not involve the determinant of

the matrix as it should (i.e. the determinant of the Euclidean interpolation can exceed

the determinant of the interpolated matrices). In the spirit of [231], the determinant

of a covariance matrix can be considered as the volume of the polytope described by

the column of the matrix. Thus, a distance that is immune to the swelling effect will

respect the shape of the polytope along geodesics.

As Eq. 1 indicates, computing the Riemannian distance between two SPD matrices

involves adding squared logarithms, which may cause numerical problems; the smallest

eigenvalues of matrix (C−1
1 C2) tend towards zero as the number of electrodes increases

and/or the window size for estimating C1 and C2 decreases, making the logarithm

operation ill-conditioned and numerically unstable. Further, note that the larger the

dimensions, the more the distance is prone to noise. Moreover, Riemannian approaches

usually have high computational complexities (e.g. growing cubically with the number

of electrodes for computing both the geometric mean and the Riemannian distance). For

these reasons, when the number of electrodes is large with respect to the window size,

it is advocated to reduce the dimensions of the input matrices. Classical unsupervised

methods such as PCA or supervised methods such as CSP can be used for this purpose.

Recently, Riemannian-inspired dimensionality reduction methods have been investigated

as well [94, 95, 189].

Interestingly, some approaches have tried to bridge the gap between Riemannian

approaches and more classical paradigms by incorporating some Riemannian geometry

in approaches such as CSP [233, 12]. CSP was the previous golden standard and is

based on a different paradigm than Riemannian geometry. Taking the best of those two

paradigms is expected to gain better robustness while compressing the information.

Table 3. Summary of Riemannian Geometry classifiers for EEG-based BCI

EEG Pattern Features Classifier References

Motor Imagery Band-Pass Covariance RMDM [46, 13]

Motor Imagery Band-Pass Covariance Tangent Space + LDA [13, 231]

Motor Imagery Band-Pass Covariance SVM Riemannian Kernel [14]

P300 Special Covariance RMDM [46]

P300 Special Covariance RMDM [15]

P300 Special Covariance RMDM [158]

SSVEP Band-Pass Covariance RMDM [100, 34]

4.2.2. Other matrix classifiers
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Principles:

As mentioned previously, the classification pipeline in BCI typically involves spatial

filtering of the EEG signals followed by classification of the filtered data. This results in

the independent optimization of several sets of parameters, namely for the spatial filters

and for the final classifier. For instance, the typical linear classifier decision function for

an oscillatory activity BCI would be the following:

f(X,w,S) =
∑
i

wilog(var(sTi X)) + w0 (3)

where X is the EEG signals matrix, w = [w0, w1, . . . , wN ] is the linear classifier weight

vector, and S = [s1, s2, . . . , sN ] is a matrix of spatial filter si. Optimizing w and si
separately may thus lead to suboptimal solutions, as the spatial filters do not consider

the objective function of the classifier. Therefore, in addition to RGC, several authors

have shown that it is possible to formulate this dual optimization problem as a single

one, where the parameters of the spatial filters and the linear classifier are optimized

simultaneously, with the potential to obtain improved performance. The key principle of

these approaches is to learn classifiers (either linear vector classifiers or matrix classifiers)

that directly use covariance matrices as input, or their vectorised version. We briefly

present these approaches below.

State-of-the-art:

In [214], the EEG data were represented as an augmented covariance matrix A,

containing as block diagonal terms both the first order term X, i.e. the signal time

course, and as second order terms the covariance matrices of EEG trials band-pass

filtered in various frequency bands. The learned classifier is thus a matrix of weights

W (rather than a vector), with the decision function f(A,W) =< A,W > +b . Due

to the large dimensionality of the augmented covariance matrix, a matrix regularization

term is necessary with such classifiers, e.g., to obtain sparse temporal or spatial weights.

Note that this approach can be applied to both ERP and oscillatory-based BCI, as the

first order terms capture the temporal variation, and the covariance matrices capture

the EEG signals band power variations.

Following similar ideas in parallel, [65] represented this learning problem in tensor

space by constructing tensors of frequency-band specific covariance matrices, which can

then be classified using a linear classifier as well, provided appropriate regularization is

used.

Finally, [190] demonstrated that equation 3 can be rewritten as follows, if we drop

the log-transform:

f(Σ,wΣ) = vec(Σ)TwΣ + w0 (4)

with wΣ =
∑

iwivec(sis
T
i ), Σ = XTX being the EEG covariance matrix, and vec(M)

being the vectorisation of matrix M. Thus, equation 3 can be optimized directly in
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the space of vectorised covariance matrices by optimizing the weights wΣ. Here as

well, owing to the usually large dimensionality of vec(σ), appropriate regularization is

necessary, and [190] explored different approaches to do so.

These different approaches all demonstrated higher performance than the basic

CSP+LDA methods on motor imagery data sets [65, 214, 190]. This suggests that such

formulations can be worthy alternatives to the standard CSP+LDA pipelines.

Pros and cons:

By simultaneously optimizing spatial filters and classifiers, such formulations

usually achieve better solutions than the independent optimization of individual sets

of components. Their main advantage is thus increased classification performance. This

formulation nonetheless comes at the expense of a larger number of classifier weights

due to the high increase in dimensionality of the input features (covariance matrix

with (Nc ∗ (Nc + 1))/2 unique values versus Nc values when using only the channels

band power). Appropriate regularization is thus necessary. It remains to be evaluated

how such methods perform for various amounts of training data, as they are bound

to suffer more severely from the curse of dimensionality than simpler methods with

fewer parameters. These methods have also not been used online to date. From

a computational complexity point of view, such methods are more demanding than

traditionnal methods given their increased number of parameters, as mentioned above.

They also generally require heavy regularization, which can make their calibration

longer. However, their decision functions being linear, they should be easily applicable

in online scenarios. However, it remains to be seen whether they can be calibrated

quickly enough for online use, and what their performance will be for online data.

4.2.3. Feature extraction and classification using tensors

Principles:

Tensors (i.e., multi-way arrays) provide a natural representation for EEG data,

and higher order tensor decompositions and factorizations are emerging as promising

(but not yet very well established and not yet fully explored) tools for analysis of

EEG data; particularly for feature extraction, clustering and classification tasks in BCI

[42, 43, 38, 40, 39].

The concept of tensorization refers to the generation of higher-order structured

tensors (multiway arrays) from lower-order data formats, especially time series EEG

data represented as vectors or organized as matrices. This is an essential step prior to

tensor (multiway) feature extraction and classification [42, 41, 182].

The order of a tensor is the number of modes, also known as ways or dimensions

(e.g. for EEG BCI data: space (channels), time, frequency, subjects, trials, groups,

conditions, wavelets, dictionaries). In the simplest scenario, multichannel EEG signals
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can be represented as a 3rd-order tensor that has three physical modes: space (channel)

x time x frequency. In other words, S channels of EEG which are recorded over T time

samples, can produce S matrices of F × T dimensional time-frequency spectrograms

stacked together into an F × T × S dimensional third-order tensor. For multiple trials

and multiple subjects, the EEG data sets can be naturally represented by higher-order

tensors: e.g., for a 5th-order tensor: space x time x frequency x trial x subject.

It should be noted that almost all basic vector- and matrix-based machine learning

algorithms for feature extraction and classification have been or can be extended or

generalized to tensors. For example, the SVM for classification has been naturally

generalized to the Tensor Support Machine (TSM), Kernel TSM and Higher Rank

TSM. Furthermore, the standard LDA method has been generalized to Tensor Fisher

Discriminant Analysis (TFDA) and/or Higher Order Discriminant Analysis (HODA)

[183, 41]. Moreover Tensor representations of BCI data are often very useful in

mitigating the small sample size problem in discriminative subspace selection, because

the information about the structure of data is often inherent in tensors and is a

natural constraint which helps reduce the number of unknown feature parameters in

the description of a learning model. In other words, when the number of EEG training

measurements is limited, tensor-based learning machines are expected often to perform

better than the corresponding vector- or matrix-based learning machines, as vector

representations are associated with problems such as loss of information for structured

data and over-fitting for high-dimensional data.

State-of-the-art:

To ensure that the reduced data sets contain maximum information about input

EEG data, we may apply constrained tensor decomposition methods. For example,

this could be achieved on the basis of orthogonal or non-negative tensor (multi-array)

decompositions, or Higher Order (multilinear) Discriminant Analysis (HODA), whereby

input data are considered as tensors instead of more conventional vector or matrix

representations. In fact, tensor decomposition models, especially PARAFAC (also

called CP decomposition), TUCKER, Hierarchical Tucker (HT) and Tensor Train

(TT) are alternative sophisticated tools for feature extraction problems by capturing

multi-linear and multi-aspect structures in large-scale higher-order data-sets [183, 39].

Using this type of approach, we first decompose multi-way data using TUCKER or

CP decompositions, usually by imposing specific constraints (smoothness, sparseness,

non-negativity), in order to retrieve basis factors and significant features from factor

(component) matrices. For example, wavelets/dictionaries allow us to represent the

data often in a more efficient way, i.e. a sparse manner with different sparsity profiles

[43, 183].

Moreover, in order to increase performance of BCI classification, we can apply two

or more time-frequency representations or the same frequency transform but with two or

more different parameter settings. Different frequency transforms (or different mother
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wavelets) allow us to obtain different sparse tensor representations with various sparsity

profiles and some complimentary information. For multichannel EEG signals we can

generate a block of at least two tensors, which can be concatenated as a single data

tensor: space x time x frequency x trial [183, 43, 182].

The key problem in tensor representation is the choice of a suitable Time-Frequency

Representation (TFR) or frequency transform and the selection of optimal, or close

to optimal, corresponding transformation parameters. By exploiting various TFRs,

possibly with suitably selected different parameter settings for the same data, we

may potentially improve the classification accuracy of BCI due to additional (partially

redundant) information. Such approaches have been implemented e.g. for motor

imagery (MI) BCI by employing different complex Morlet (Gabor) wavelets for EEG

data sets with 62 channels [183]. For such data sets, the authors selected different

complex Morlet wavelets with two different bandwidth frequency parameters fb = 1

Hz and fb = 6 Hz for the same centre frequency fc = 1 Hz. For each mother wavelet

the authors constructed a 4th-order tensor: 62-channels x 23-frequency bins x 50-time

frames x 120-trials for both training and test EEG data. The block of training tensor

data can be concatenated as the 5th-order tensor: 62-channels x 23-frequency bins x

50-time frames x 2-wavelets x 120-trials.

The HODA algorithm was used to estimate discriminant bases. The four most

significant features were selected to classify the data, and led to an improved accuracy

higher than 95%. Thus, it appears that by applying tensor decomposition for suitably

constructed data tensors, considerable performance improvement in comparison to the

standard approaches can be achieved for both motor-imagery BCI [183, 223] and P300

paradigms [175].

In this approach, transformation of data with a dictionary aims to un-correlate the

raw data and express them in a sparse domain. Different dictionaries (transformations)

contribute to obtaining different sparse representations with various sparsity profiles.

Moreover, augmentation of dimensionality to create samples with additional modes

improved the performance.

To summarize, tensor decompositions with nonnegative, orthonormal or

discriminant bases improved the classification accuracy for the BCI dataset by almost

10%. A comparison of all methods mentioned is provided in Table 4.

From the time-frequency analysis perspective, tensor decompositions are very

attractive, even for a single channel, because they simultaneously take into account

temporal and spectral information and variability and/or consistency of Time Frequency

Representations (TFRs) for trials and/or subjects. Furthermore, they provide

links among various latent (hidden) variables (e.g., temporal, spectral and spatial

components) often with physical or physiological meanings and interpretations [40, 183].

Furthermore, standard Canonical Correlation analysis (CCA) was generalized to

tensor CCA and multiset CCA and was successfully applied to the classification of

SSVEP for BCI [246, 242, 243, 245]. Tensor Canonical correlation analysis (TCCA)

and its modification multiset canonical correlation analysis (MsetCCA) have been
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one of the most efficient methods for frequency recognition in SSVEP-BCIs. The

MsetCCA method learns multiple linear transforms that implement joint spatial filtering

to maximize the overall correlation amongst canonical variates, and hence extracts

SSVEP common features from multiple sets of EEG data recorded at the same stimulus

frequency. The optimized reference signals are formed by combination of the common

features and are completely based on training data. Extensive experimental study with

EEG data demonstrated that the tensor and MsetCCA method improve the recognition

accuracy of SSVEP frequency in comparison with the standard CCA method and

other existing methods, especially for a small number of channels and a short time

window length. The superior results indicate that the tensor MsetCCA method is a

very promising candidate for frequency recognition in SSVEP-based BCIs [243].

Pros and cons:

In summary, the recent advances in BCI technologies have generated massive

amounts of brain data exhibiting high dimensionality, multiple modality (e.g., physical

modes such as frequency or time, multiple brain imaging techniques or conditions), and

multiple couplings as functional connectivity data. By virtue of their multi-way nature,

tensors provide powerful and promising tools for BCI analysis and fusion of massive

data combined with a mathematical backbone for the discovery of underlying hidden

complex (space-time-frequency) data structures [42, 183].

Another of their advantages is that, using tensorization and low-rank tensor

decomposition, they can efficiently compress large multidimensional data into low-

order factor matrices and/or core tensors which usually represent reduced features.

Tensor methods can also analyze linked (coupled) blocks of trials represented as large-

scale matrices into the form of tensors in order to separate common/correlated from

independent/uncorrelated components in the observed raw EEG data.

Finally, it is worth mentioning that tensor decompositions are emerging techniques

not only for feature extraction/selection and BCI classification, but also for pattern

recognition, multiway clustering, sparse representation, data fusion, dimensionality

reduction, coding, and multilinear blind brain source separation (MBSS). They can

potentially provide convenient multi-channel and multi-subject space-time-frequency

sparse representations, artefact rejection, feature extraction, multi-way clustering and

coherence tracking [40, 39].

On the cons side, the complexity of tensor methods is usually much higher than

standard matrix and vector machine learning methods. Moreover, since tensor methods

are just emerging as potential tools for feature extraction and classification, existing

algorithms are not always mature and are still not fully optimized. Thus, some efforts

are still needed to optimize and test them for real-life large scale data sets.
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Table 4. Summary of Tensor Classifiers for EEG-based BCI

EEG Pattern Features/Methods Classifier References

Motor Imagery Topographic map, TFR, Connect. LDA/HODA [183]

P300 Multilinear PCA SVM/TSM [223]

P300 Tine-Space-Freq. HODA [175]

SSVEP TCCA, MsetCCA, Bayesian LDA [246, 243, 245, 244]

4.3. Transfer learning

4.3.1. Principles

One of the major hypotheses in machine learning is that training data, on which the

classifier is trained, and test data, on which the classifier is evaluated, belong to the same

feature space and follow the same probability distribution. In many applications such as

computer vision, biomedical engineering or brain-computer interfaces, this hypothesis

is often violated. For BCI, a change in data distribution typically occurs when data are

acquired from different subjects and across various time sessions.

Transfer learning aims at coping with data that violates this hypothesis by

exploiting knowledge acquired while learning a given task for solving a different but

related task. In other words, transfer learning is a set of methodologies considered

for enhancing performance of a learned classifier trained on one task (also denoted as

a domain) based on information gained while learning another task. Naturally, the

effectiveness of transfer learning strongly depends on how well-related the two tasks are.

For instance, it is more relevant to perform transfer learning between two P300 speller

tasks performed by two different subjects than between one P300 speller task and a

motor-imagery task performed by the same subject.

Transfer learning is of importance especially in situations where there exists

abundant labelled data for one given task, denoted as a source domain, whilst data

are scarce or expensive to acquire for the second task, denoted as a target domain.

Indeed, in such cases, transferring knowledge from the source domain to the target

domain acts as a bias or as a regularizer for solving the target task. We provide a more

formal description of transfer learning based on the survey of Pan et al. [177]

More formally, a domain is defined by a feature space X and a marginal probability

distribution P (X) where the random variable X takes value X . The feature space

is associated with a label space Y and they are linked through a joint probability

distribution P (X,Y) with Y = y ∈ Y . A task is defined by a label space Y and

a predictive function f(·) which depends on the unknown probability distribution

P (X,Y). For a given task, the objective is to learn the function f(·) based on pairs of

examples {xi, yi}`i=1 where xi ∈ X and yi ∈ Y .

Define the source and target domains as respectively DS = {XS, PS(X)} and DT =

{XT , PT (X)} and the source and target tasks as TS = {YS, fS(·)} TT = {YT , fT (·)},
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Figure 4. Illustrating the objective of domain adaptation. (left) source domain with

labelled samples. (middle) target domain (with labels and decision function for the

sake of clarity). A classifier trained on the source domain will perform poorly. (right)

a domain adaptation technique will seek a common representation transformation or

a mapping of domains so as to match the source and target domain distributions.

respectively. Hence, given the estimation of fT (·) trained based solely on information

from the target task, the goal of transfer learning is to improve on this estimation by

exploiting knowledge obtained from DS and TS with DS 6= DT or TS 6= TT . Note that

DS 6= DT occurs when either the feature spaces XS and XT are different or when the

marginal distributions PS(X) and PT (X) are not equal. Similarly, TS 6= TT indicates

that either the label spaces are different or the predictive functions are different. For

the latter situation, this reduces to situations where the two conditional probabilities

differ: PS(yS|XS) 6= PT (yT |XT ).

Based on the learning setting and domains and tasks, there exist several situations

applicable to transfer learning. For instance, homogeneous transfer learning refers to

cases where XS = XT , and domain adaptation refers to situations where the marginal

probability distributions or the conditional probability distributions do not match in the

source and target domain. Settings in which labelled data are available in both source

and target domains, and TS 6= TT , are referred to as inductive transfer learning. In BCI,

this may be the case when the source domain and task are related to visual P300 evoked

potentials whilst the target domain and task involve auditory P300-evoked potentials.

In contrast, transductive transfer learning refers to situations in which tasks are similar

but domains are different. A particular case is the domain adaptation problem when

mismatch in domains is caused by mismatch in the marginal or conditional probability

distributions. In BCI, transductive transfer learning is the most frequent situation,

as inter-subject variability or session-to-session variability usually occurs. For more

categorizations in transfer learning, we refer the reader to the survey of Pan et al. [177].

There exists a flurry of methods and implementations for solving a transfer learning

problem, which depend on specific situations and the application of a domain. For

homogeneous transfer learning, which is the most frequent situation encountered in

brain-computer interfaces, there exist essentially three main strategies. If domain
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distributions do not match, one possible strategy is to learn the transformation of

source or target domain data so as to correct the distribution mismatch [203, 134].

If the type of mismatch occurs on the marginal distribution, then a possible method for

compensating the change in distribution is to consider a reweighting scheme [208]. Many

transfer learning approaches are also based on finding a common feature representation

for the two (or more) domains. As the representation, or the retrieved latent space, is

common to all domains, labelled samples from the source and target domain can be used

to train a general classifier [53, 177]. A classic strategy is to consider approaches whose

goal is to locate representations in which domains match. Another trend for transfer

learning is to consider methods that learn a transformation of the data so that their

distributions match. These transformations can either be linear, based for instance on

kernel methods [241, 76] or non-linear, through the use of an optimal transport strategy

[51].

Note that transfer learning may not always yield enhanced performance on a specific

task TT . Theoretical results [55] in domain adaptation and transfer learning show that

gain in performance on TT may be achieved only if the source and target tasks are not

too dissimilar. Hence, a careful analysis of how well tasks relate has to be carried out

before considering transfer learning methods.

4.3.2. State-of-the-art

In recent years, transfer learning has gained much attention for improving Brain-

Computer Interface classification. BCI research has focused on transductive transfer

learning, in which tasks are identical between source and target. Motor Imagery has

been the most-used paradigm to test transfer learning methods, probably owing to the

availability of datasets from BCI Competitions [103, 67, 4, 143, 10, 102, 35, 97]. A few

studies considered other paradigms such as the P300-speller [151, 74, 218], and Visual

and Spatial attention paradigms [165]. A transfer learning challenge was also recently

organized on an Error Potential dataset [1].

Instead of considering source and target domains one-to-one, a widespread strategy

is to perform ensemble analyses, in which many pre-recorded sessions, from possibly

different subjects, are jointly analysed. This addresses a well-known problem in data

scarcity, especially involving labelled data, prone to overfitting.

There are many methods for combining the features and classifiers within

ensembles [205]. A first concern when considering ensembles is to guarantee the quality

of the features and classifiers from the source domain. Feature selection is also relevant

in this context (see Section 2.2) to eliminate outliers. Many methods have been used

to select relevant features from the ensemble, for instance Mutual Information [186],

classification accuracy [143] or sparsity-inducing methods.

A second major challenge is to cope with the variability of data across subjects

or sessions. Methods from adaptive classification are sometimes applicable in the

context of transfer learning. Although the goal of adaptive classification, as explained
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in section 4.1, is to update classifiers and not to transfer data, transfer learning can

benefit from adaptive classification to update classifiers whose initialization is subject-

independent. This approach has been proposed for P300 classification by Lu et al [151].

Riemannian geometry can also increase robustness with respect to inter-subject and

inter-session variability, as demonstrated in several studies [46, 238].

A particularly fruitful strand of research has focused on building spatial filters based

on ensemble data. Common Spatial Patterns (CSP) and spatial filters in general are

able to learn quickly on appropriate training data, but do not perform well with a large

quantity of heterogeneous data recorded from other subjects or other sessions [46]. A

regularization strategy in this case is effective [103]. A more relevant approach is to

directly regularize the CSP objective function rather than the covariance matrices [143].

In this vein, Blankertz et al. [21] have proposed an invariant CSP (iCSP), which

regularizes the CSP objective function in a manner that diminishes the influence of

noise and artefacts. Fazli et al. [67] built a subject-independent classifier for movement

imagination detection. They first extracted an ensemble of features (spatial and

frequency filters) and then applied LDA classifiers across all subjects. They compared

various ways of combining these classifiers to classify a new subject’s data: simply

averaging their outcomes (bagging) performs adequately, but is outperformed by a sparse

selection of relevant features.

Sparse representations are indeed relevant when applied to ensemble datasets

coming from multiple sessions or subjects. The dictionary of waveforms / topographies

/ time-frequency representations, from which the sparse representations are derived,

can be built in a manner to span a space that naturally handles the session- or

subject-variability. Sparsity-inducing methods fall in the category of ”invariant feature

representation”. Dictionaries can be predefined, but to better represent the data under

study, they can be computed using data-driven methods. Dictionary Learning is a data-

driven method which alternatively adapts the dictionary of representative functions and

the coefficients of the data representation with the dictionary. Dictionary Learning has

been used to reveal inter-trial variability in neurophysiological signals [91]. Morioka et

al. [165] proposed to learn a dictionary of spatial filters which is then adapted to the

target subject. This method has the benefit of taking into account the target subject’s

specificities, through their resting state EEG. Cho et al. [35] also exploit target session

data by constructing spatiotemporal filters which minimally overlap with noise patterns,

an extension of Blankertz’s iCSP [21].

An even more sophisticated method to address the domain adaptation of features is

to model their variability across sessions of subjects. Bayesian models capture variability

through their model parameters. These models are generally implemented in a multitask

learning context, where an ensemble of tasks TS = {YS, fS(·)} is jointly learned from the

source (labelled) domain. For BCIs, ”a task” is typically a distinct recording session,

either for a single or multiple subjects. Bayesian models have hence been built for

features in spectral [4], spatial [102], and recently in combined spatial and spectral

domains [97]. Combining a Bayesian model and learning from label proportion (LLP)
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has recently been proposed in [218].

Another interesting domain adaptation method is to actually transport the features

of the target data onto the source domain. Once transported to the source domain,

the target data can then be classified with the existing classifier trained on the

source data. Arvaneh et al [10] apply this approach to session-to-session transfer

for Motor Imagery BCI, by estimating a linear transformation of the target data

which minimizes the Kullback-Leibler distance between source and transformed target

distributions. Recently, session-to-session transfer of P300 data has been accomplished

using a nonlinear transform obtained by solving an Optimal Transport problem [74].

Optimal transport is well-suited for domain adaptation as its algorithms can be used

for transporting probability distributions from one domain onto another [51].

4.3.3. Pros and cons

As reported in the above cited studies, transfer learning is instrumental in session-

to-session and subject-to-subject decoding performance. This is essential to be able to

achieve a true calibration-free BCI mode of operation in the future, which in turn would

improve BCI usability and acceptance. In fact, it is well recognized in the community

that the calibration session may be unduly tiring for clinical users, whose cognitive

resources are limited, and annoying in general for healthy users. As discussed by Sanelli

et al. [195], receiving feedback from the very beginning of their BCI experience is highly

motivating and engaging for novice users. Transfer learning can then provide users

with an adequately-performing BCI, before applying co-adaptive strategies. In this

spirit, transfer learning may be used to initialize a BCI using data from other subjects

for a naive user and data from other sessions for a known user. In any case such an

initialization is suboptimal, thus such an approach entails adapting the classifier during

the session, a topic that we have discussed in Section 4.1. Therefore, transfer learning

and adaptivity must come arm in arm to achieve the final goal of a calibration-free mode

of operation [46].

Although suboptimal in general, transfer learning is robust by definition. For

instance, subject-to-subject transfer learning can produce better results as compared

to subject-specific calibration if the latter is of low quality [15]. This is particularly

useful in clinical settings, where obtaining a good calibration is sometimes prohibitive

[158].

As we have seen, the approach of seeking invariant spaces for performing

classification in transfer learning settings is appealing theoretically and has shown

promising results by exploiting Riemannian geometry; however it comes at the risk

of throwing away some of the information that is relevant for decoding. In fact, instead

of coping with the variability of data across sessions, as we formulated above, it may

be wiser to strive to benefit from the variability in the ensemble to better classify the

target session. The idea would be to design classifiers able to represent multiple sessions

or subjects.



Review of Classification Algorithms for EEG-based BCI 29

The combination of transfer learning and adaptive classifiers represents a topic at

the forefront of current research in BCI. It is expected to receive increasing attention

in the upcoming years, leading to a much-sought new generation of calibration-free

brain-computer interfaces.

Very few of the transfer learning presented methods have yet been used online, but

computational power is not a limitation, because these methods do not require extensive

computational ressources, and can be run on simple desktop computers. For methods

whose learning phases may take a long time (such as sparsity-inducing methods, or

dictionary learning), this learning should be performed in advance so that the adaptation

to a new subject or session is time-efficient [165].

Table 5. Summary of transfer learning methods for BCI

EEG Pattern Features / Classifier / References

Method Transfer

Motor Imagery CSP + band power linear SVM [103, 143]

subject-to-subject

Motor Imagery sparse feature set LDA [67]

Motor Imagery CSP Fisher LDA [35]

session-to-session

Motor Imagery Surface Laplacian LDA, Bayesian multitask [4, 97]

subject-to-subject

Motor Imagery PCSP LDA, Bayesian model [102]

multisubject

Motor Imagery CSP + band power LDA [10]

session-to-session

Visual, Dictionary learning linear SVM [165]

Spatial attention of spatial filters subject-to-subject

P300 time points mixture of bayesian classifiers [218]

P300 time points Fisher LDA [151]

multisubject

P300 xDAWN LDA, optimal transport [74]

session-to-session

4.4. Deep Learning

Deep learning is a specific machine learning algorithm in which features and the classifier

are jointly learned directly from data. The term deep learning is coined by the

architecture of the model, which is based on a cascade of trainable feature extractor

modules and nonlinearities. Owing to such a cascade, learned features are usually related

to increasing levels of concepts. We discuss in this section the two most popular deep

learning approaches for BCI: convolutional neural networks and restricted Boltzmann
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machines.

4.4.1. Principles

A short introduction on Restricted Boltzmann machines:

A restricted Boltzmann machine (RBM) is a Markov Random Field (MRF) [120]

associated with a bipartite undirected graph. It is composed of two sets of units:

m visible ones V = (V1, · · · , Vm) and n hidden ones H = (H1, · · · , Hn). The visible

units are used for representing observable data whereas the hidden ones capture some

dependencies between observed variables. For the usual type of RBM such as those

discussed in this paper, units are considered as random variables that take binary

values (v,h) and W is a matrix whose entries wi,j are the weights associated with

the connection between unit vi and hj. The joint probability of a given configuration

(v,h) can be modelled according to the probability p(v,h) = 1
Z
e−E(v,h) with the energy

function E(v,h) being

E(v,h) = a>v − b>h− v>Wh

where a and b are bias weight vectors. Note Z is a normalizing factor in order that

p(v,h) sums to one for all possible configurations. Owing to the undirected bipartite

graph property, hidden (respective to the visible) variables are independent given the

visible (hidden) ones leading to:

p(v|h) = Πm
i=1p(vi|h) p(h|v) = Πn

j=1p(hj|v)

and marginal distributions over the visible variables can be easily obtained as [69]:

p(v) =
1

Z

∑
h

e−E(v,h)

Hence, by optimizing all model parameters (W,b, a), it is possible to model the

probability distribution of the observable variables. Other properties of RBMS as well

as connections of RBMs with stochastic neural networks are detailed in [90, 69]

To learn the probability distribution of the input data, RBMs are usually trained

according to a procedure denoted as contrastive divergence learning [89]. This learning

procedure is based on a gradient ascent of the log-likelihood of the training data. The

derivative of the log-likelihood of an input v can be easily derived [69] and the mean of

this derivative over the training set leads to the rule:∑
v

∂L(W|v)

∂wi,j

∝ 〈vihj〉data − 〈vihj〉model

with the two brackets respectively denoting expectation over p(h|v)q(v) and over the

model (p(v,h)) with q being the empirical distribution of the inputs. While the first term

of this gradient is tractable, the second one has exponential complexity. Contrastive
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Figure 5. Example architectures of two deep learning frameworks. (left) convolutional

neural networks. The blue blocks refer to results of convolving input signal with several

different filters. (right) stacked restricted Boltzmann machines. Hidden layers are

trained layer-wise and the full network can be fine-tuned according to the task at

hand.

divergence aims at approximating this gradient using a Gibbs chain procedure that

computes the binary state of h using p(h|v) and then obtaining an estimation of v

using p(v|h) [89]. There exist other methods for approximating the gradient of RBMs

log-likelihood that may lead to better solutions as well as methods for learning with

continuous variables [213, 17].

The above procedure allows one to learn a generative model of the inputs using a

simple layer of RBMs. A deep learning strategy can be obtained by stacking several

RBMs with the hidden units of one layer used as inputs of the subsequent layers.

Each layer is usually trained in a greedy fashion [90] and fine-tuning can be performed

depending on the final objective of the model.

Short introduction on convolutional neural networks:

A Convolutional Neural Network (ConvNet or CNN) is a feedforward neural

network (a network in which information flows uni-directionally from the input to the

hidden layers to the output) which has at least one convolutional layer [71, 117, 117].

Such a convolutional layer maps its input to an output through a convolution operator.

Suppose that the input is a 1D signal {xn} with N samples, its convolution through a

1D filter {hm} of size M is given by:

y(n) =
M−1∑
i=0

hixn−i ∀n = 0, · · · , N − 1
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This equation can be extended to higher dimensions by augmenting the number of

summations in accordance with the dimensions. Several filters can also be independently

used in convolution operations leading to an increased number of channels in the output.

This convolutional layer is usually followed by nonlinearities [75] and possibly by a

pooling layer that aggregate the local information of the output into a single value,

typically through an average or a max operator [25]. Standard ConvNet architectures

usually stack several of these layers (convolution + non-linearity (+ pooling)) followed

by other layers, typically fully connected, that act as a classification layer. Note however

that some architectures use all convolutional layers as classification layers. Given some

architectures, the parameters of the models are the weights of all the filters used for

convolution and the weights of the fully connected layers.

ConvNets are usually trained in a supervised fashion by solving an empirical risk

minimization problem of the form:

ŵ = arg min
w

1

`

∑
i

L(yi, fw(xi)) + Ω(w)

where {xi, yi}`i=1 are the training data, fw is the prediction function related to the

ConvNet, L(·, ·) is a loss function that measures any discrepancy between the true

labels of xi and fw(x)i, and Ω is a regularization function for the parameters of the

ConvNet. Owing to the specific form of the global loss (average loss over the individual

samples), stochastic gradient descent and its variants are the most popular means for

optimizing deep ConvNets. Furthermore, the feedforward architecture of fw(·) allows

the computation of the gradient at any given layer using the chain rule. This can be

performed efficiently using the back-propagation algorithm [193].

In several domain applications, ConvNets have been very successful because

they are able to learn the most relevant features for the task at hand. However,

their performances strongly depend on their architectures and their learning hyper-

parameters.

4.4.2. State-of-the-art

Deep Neural Networks (DNNs) have been explored for all major types of EEG-

based BCI systems; that is P300, SSVEP, Motor Imagery and passive BCI (for

emotions and workload detection). They have also been studied for less commonly used

EEG patterns such as Slow Cortical Potentials (SCP) or Motion-onset Visual Evoked

Potential (MVEP). It is worth mentioning that all these studies were performed offline.

Regarding P300-based BCI, Cecotti et al. published the very first paper which

explored CNN for BCI [32]. Their network comprised two convolutional layers,

one to learn spatial filters and the other to learn temporal filters, followed by a

fully connected layer. They also explored ensembles of such CNNs. This network

outperformed the BCI competition winners on the P300-speller data set used for

evaluation. However, an ensemble of SVMs obtained slightly better performances than
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the CNN approach. Remaining with P300 classification, but this time in the context

of the Rapid Serial Visualization Paradigm (RSVP), [156] explored another CNN with

one spatial convolution layer, two temporal convolution layers and two dense fully-

connected layers. They also used Rectifying Linear Units, Dropout and spatio-temporal

regularization on the convolution layers. This network was reported as more accurate

than a spatially Weighted LDA-PCA classifier, by 2%. It was not compared to any

other classifier though. It should be mentioned that in this paper, as in most BCI

papers on Deep Learning, the architecture is not justified and not compared to different

architectures, apart from the fact that the architecture was reported to perform well.

For SSVEP, [113] also explored a CNN with a spatial convolutional layer and a

temporal one that used band power features from two EEG channels. This CNN

obtained performance similar to that of a 3-layer MLP or that of a classifier based

on Canonical Correlation Analysis (CCA) with kNN data recorded from static users.

However, it outperformed both on noisy EEG data recorded from a moving user.

However, the classifiers that were compared to the CNN were not the state-of-the-art

for SSVEP classification (e.g. CCA was not used with any harmonics of the SSVEP

stimulus known to improve performance nor with more channels).

For SCP classification, [59] explored a Deep Extreme Learning Machine (DELM),

which is a multilayer ELM with the last layer being a Kernel ELM. The structure of

the network, its number of units, the input features and hyper-parameters were not

justified. Such network obtained lower performance than the BCI competition winners

for the data set used, and was not significantly better than a standard ELM or multilayer

ELM.

For MVEP, [153] used a Deep Belief Network (DBN) composed of three RBMs. The

dimensionality of the input features, EEG time points, was reduced using compressed

sensing (CS). This DBN+CS approach outperformed a SVM approach which used

neither DBN nor CS.

Regarding passive BCIs, Yin et al. explored DNNs for both workload and emotions

classifications [235, 234]. In [234], they used adaptive DBN, composed of several

stacked Auto-Encoders (AE), for workload classification. Adaptation was performed by

retraining the first layer of the network using incoming data labelled with their estimated

class. Compared to kNN, MLP or SVM, the proposed network outperformed all without

channel selection, but obtained similar performance with feature selection. As is too

often the case in DNN papers for BCI, the proposed approach was not compared to the

state-of-the-art, e.g. to methods based on FBCSP. In [235], another DBN composed

of stacked AE was studied. This DNN was however a multimodal one, with separate

AEs for EEG signals and other physiological signals. Additional layers merged the

two feature types. This approach appeared to outperform competing classifiers and

published results using the same database. However, the data used to perform model

selection of the proposed DNN and determine its structure was all data, that is, it

included the test data, which biased the results.

Several studies have explored DNN for motor imagery classification with both
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DBN and CNN [150, 198, 207, 210]. A DBN was explored in [150] to classify BP

features from two EEG channels. The network outperformed FBCSP and the BCI

competition winner but only when using an arbitrary structure whose selection was

not justified. When removing or adding a single neuron, this network exhibited lower

performance than FBCSP or the competition winner, hence casting doubts on its

reliability and its initial structure choice. Another DBN was used in [207] for motor

imagery classification, but was outperformed by a simple CSP+LDA classifier. However,

the authors proposed a method to interpret what the network has learned and its

decisions, which provided useful insights on the possible neurophysiological causes of

misclassifications. A combination of CNN and DBN was explored in [210]. They used

a CNN whose output was used as input to a 6-layer SAE. Compared to only a CNN,

a DBN or a SVM, the CNN+DBN approach appeared to be the most effective. It was

not compared to the BCI competition winners on this data set, or to other state-of-

the-art methods such as Riemannian geometry and FBCSP. The last study to explore

DNN for motor imagery is that of Schirrmeister et al. [198]. This study should be

particularly commended as, contrary to most previously mentioned papers, various DNN

structures are explored and presented, all carefully justified and not arbitrary, and the

networks are rigorously compared to state-of-the-art methods. They explored Shallow

CNN (one temporal convolution, one spatial convolution, squaring and mean pooling, a

softmax layer), Deep CNN (temporal convolution, spatial convolution, then three layers

of standard convolution and a softmax layer), an hybrid Shallow+Deep CNN (i.e., their

concatenation), and Residual NN (temporal convolution, spatial convolution, 34 residual

layers, and softmax layer). Both the Deep and Shallow CNN significantly outperformed

FBCSP, whereas the Hybrid CNN and the residual NN did not. The shallow CNN was

the most effective with +3.3% of classification accuracy over FBCSP. The authors also

proposed methods to interpret what the network has learned, which can provide useful

neurophysiological insights.

Finally, a study explored a generic CNN, a compact one with few layers and

parameters, for the classification of multiple EEG patterns, namely P300, Movement

Related Cortical Potentials (MRCP), ErrP and Motor Imagery. This network

outperformed another CNN (that of [156] mentioned above), and XDAWN+BDA as

well as RCSP+LDA for subject-to-subject classification. The parameters (number of

filters and the pass-band used) for xDAWN and RCSP are not specified though but

would be suboptimal if they used the same band as for the CNN. The method is also

not compared to the state-of-the-art (FBCSP or Riemannian) methods. Comparison to

existing methods is thus again unconvincing.

A summary of the methods using Deep Learning for EEG classification in BCI are

listed in Table 6.

4.4.3. Pros and cons

DNNs have the potential to learn both effective features and classifiers
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simultaneously from raw EEG data. Given their effectiveness in other fields, DNNs

certainly seem promising to lead to better features and classifiers, and thus to much

more robust EEG classification. However, so far, the vast majority of published studies

on DNNs for EEG-based BCIs have been rather unconvincing in demonstrating their

actual relevance and superiority to state-of-the-art BCI methods in practice. Indeed,

many studies did not compare the studied DNN to state-of-the-art BCI methods or

performed biased comparisons, with either suboptimal parameters for the state-of-the-

art competitors or with unjustified choices of parameters for the DNN, which prevents

us from ruling out manual tuning of these parameters with knowledge of the test set.

There is thus a need to ensure such issues be solved in future publications around DNN

for BCI. An interesting exception is the work in [198], who rigorously and convincingly

showed that a shallow CNN could outperform FBCSP. This suggests that the major

limitation of DNN for EEG-based BCI is that such networks have a very large number

of parameters, which thus requires a very large number of training examples to calibrate

them. Unfortunately, typical BCI data sets and experiments have very small numbers of

training examples, as BCI users cannot be asked to perform millions or even thousands

of mental commands before actually using the BCI. As a matter of fact, it has been

demonstrated outside the BCI field that DNNs are actually suboptimal and among

the worst classifiers with relatively small training sets [36]. Unfortunately, only small

training sets are typically available to design BCIs. This may explain why shallow

networks, which have much fewer parameters, are the only ones which have proved useful

for BCI. In the future, it is thus necessary to either design NNs with few parameters or

to obtain BCI applications with very large training data bases, e.g., for multi-subject

classification.

It is also worth noting that DNNs so far were only explored offline for BCI. This

is owing to their very long training times. Indeed, the computational complexity of

DNN is generally very high, both for training and testing. Calibration can take hours

or days on standard current computers, and testing, depending on the number of layers

and neurons, can also be very demanding. As a result, high-performing computing

tools, e.g., multiple powerful graphic cards, may be needed to use them in practice.

For practical online BCI applications, the classifier has to be trained in at most a few

minutes to enable practical use (BCI users cannot wait for half an hour or more every

time they want to use the BCI). Fast training of a DNN would thus be required for

BCI. Designing DNNs that do not require any subject-specific training, i.e., a universal

DNN, would be another alternative.

4.5. Other new classifiers

4.5.1. Multilabel classifiers

Principles:
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Table 6. Summary of works using Deep Learning for EEG-based BCI

EEG Pattern Features Classifier References

SCP not specified Deep ELM [59]

Motion-onset VEP EEG time points DBN [153]

SSVEP Band Power CNN [113]

P300 EEG time points CNN [32]

P300 EEG time points CNN [156]

Motor Imagery Band Power DBN [150]

Motor Imagery/Execution raw EEG CNN [198]

Motor Imagery Band power DBN [207]

Motor Imagery Band power CNN+DBN [210]

Workload Band power adaptive DBN [234]

Emotions Band power DBN [235]

+ zero crossing

+ entropy

ErrP, P300, EEG time points CNN [116]

MRCP, Motor Imagery

In order to classify more than two mental tasks, two main approaches can be

used to obtain a multiclass classification function [215]. The first approach consists in

directly estimating the class using multiclass techniques such as decision trees, multilayer

perceptrons, naive Bayes classifiers or k-nearest neighbours. The second approach

consists of decomposing the problem into several binary classification problems [5]. This

decomposition can be accomplished in different ways using i) one-against-one pairwise

classifiers [20, 84], ii) one-against-the-rest (or one-against-all) classifiers [20, 84], iii)

hierarchical classifiers similar to a binary decision tree and iv) multi-label classifiers

[215, 154]. In the latter case, a distinct subset of L labels (or properties) is associated

to each class [58]. The predicted class is identified according to the closest distance

between the predicted labels and each subset of labels defining a class.

State-of-the-art:

The number of commands provided by motor imagery-based BCIs depends on the

number of mental imagery states that the system is able to detect. This, in turn,

is limited by the number of body parts that users can imagine moving in a manner

that generate clear and distinct EEG patterns. Multi-label approaches can thus prove

useful for detecting combined motor imagery tasks, i.e. imagination of two or more

body parts at the same time [226, 192, 125], with each body part corresponding to

a single label (indicating whether that body part was used). Indeed, in comparison

with the standard approach, this approach has the advantage of considerably increasing

the number of different mental states while using the same number of body parts: 2P
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compared to P , where P is the number of body parts. Thus, EEG patterns during

simple and combined motor imagery tasks were investigated to confirm the separability

of seven different classes of motor imagery for BCI [249, 226, 126]. For the purpose of

achieving continuous 3D control, both hands motor imagery was adopted to complement

the set of instructions in a simple limb motor imagery based-BCI to go up (and rest

to go down) [192, 114]. The up/down control signal was the inverted addition of left

and right autoregressive spectral amplitudes calculated for each of the electrodes and

3Hz-frequency bins. Another method converted circular ordinal regression to a multi-

label classification approach to control a simulated wheelchair, using data set IIIa of the

third BCI competition, with as motor tasks imagination of left hand, right hand, foot

and tongue movements [57]. Multiclass and multi-label approaches have been compared

to discriminate height commands from the combination of three motor imagery tasks

(left hand, right hand and feet) to control a robotic arm [125]. A first method used

a single classifier applied to the concatenated features related to each activity source

(C3, Cz, C4), with one source for each limb involved. A second approach consisted of a

hierarchical tree of three binary classifiers to infer the final decision. The third approach

was a combination of the first two approaches. All methods used the CSP algorithm

for feature extraction and Linear Discriminant Analysis (LDA) for classification. All

methods were validated and compared to the classical One-Versus-One (OVO) and

One-versus-Rest (OVR) methods. Results obtained with the hierarchical method were

similar to the ones obtained with the OVO and OVR approaches. The performance

obtained with the first approach (single classifier) and the last (combined hierarchical

classifier) were the best for all subjects. The various multi-label approaches explored

are mentioned in Table 7.

Pros and cons:

Multiclass and multi-label approaches therefore aim to recognize more than two

commands. In both cases, the resulting increase in the number of recognized classes

potentially provides the user with a greater number of commands to interact more

quickly with the system, without the need for a drop-down menu, for example. The

multi-label approach can make learning shorter and less tiring, as it requires learning

only a small number of labels. The many possible combinations of these labels leads to

a large number of classes and therefore to more commands. In addition, the multi-

label approach allows redundancy in the labels describing a class, which can lead

to better class separation. Usually, the number of labels to produce is less than

the number of classes. Finally, as compared to standard methods, multiclass and

multilabel approaches usually have a lower computational complexity since they can

share parameters, e.g., using multilayer perceptron, or class descriptors (especially if no

redundancy is introduced).

However, there might be a lack of relationship between the meaning of a label

and the corresponding mental command, e.g., two hand imagery to go up. This may
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generate a greater mental workload and therefore fatigue. It is therefore necessary

to choose carefully the mapping between mental commands and corresponding labels.

Finally, classification errors remain of course possible. In particular, the set of estimated

labels may sometimes not correspond to any class, and several classes may be at equal

distances, thus causing class confusion.

Table 7. Summary of multi-label (and related multiclass) approaches for EEG-based

BCI

EEG Pattern Features Classifier References

Motor Imagery (8 classes) band power LDA [127]

Motor Imagery (8 classes) band power Riemannian Geometry [128]

Mental tasks (4 classes) band power cSVM [57]

Motor imagery (4 classes) band power (ratio between band powers) [192, 114]

Motor imagery (7 classes) band power SVM [226]

Motor imagery (4 classes) band power (mapping to velocity) [162]

4.5.2. Classifiers that can be trained from little data

Principles:

As previously discussed, most EEG-based BCIs are currently optimized for each

subject. Indeed, this has been shown to lead in general to substantially higher

classification performances than subject-independent classifiers. Typical BCI systems

can be optimized by using only a few training data, typically 20 to 100 trials per class,

as subjects cannot be asked to produce the same mental commands thousands of times

before being provided with a functional BCI. Moreover, collecting such training data

takes time, which is inconvenient for the subjects, and an ideal BCI would thus require

a calibration time as short as possible. This calls for classifiers that can be calibrated

using as little training data as possible. In the following we present those classifiers that

were shown to be effective for this purpose. They rely on using statistical estimators

dedicated to small sample size or on dividing the input features between several classifiers

to reduce the dimensionality, thus reducing the amount of training data needed by each

classifier.

State-of-the-art:

The three main classifiers that have been shown to be effective with little training

data, and thus effective for EEG-based BCI design, are the shrinkage LDA classifier

[22, 142, 137], random forest [3, 54] and Riemannian Classifiers [47, 232].

The shrinkage LDA (sLDA), is a standard LDA classifier in which the class-

related covariance matrices used in its optimization were regularized using shrinkage
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[22]. Indeed, covariance matrices estimated from little data tend to have larger extreme

eigenvalues than the real data distribution, leading to poor covariance estimates. This

can be solved by shrinking covariance matrices Σ as Σ̂ = Σ − λI, with I the identity

matrix, and λ the regularization parameter. Interestingly enough, there are analytical

solutions to automatically determine the best λ value (see [118]. The resulting sLDA

classifier has been shown to be superior to the standard LDA classifier for BCI, both

for ERP-based BCI [22] and for oscillatory activity BCI [137]. It has also been shown

that such classifier can be calibrated with much fewer data than LDA to achieve the

same performance [142, 137]. For instance, for mental imagery BCI, an sLDA has been

shown to obtain similar performance with 10 training trials per class than a standard

LDA with 30 training trials per class, effectively reducing the calibration time three-fold

[137].

Random Forest (RF) classifiers are ensembles of several decision tree classifiers [26].

The idea behind this classifier is to randomly select a subset of the available features,

and to train a decision tree classifier on them, then to repeat the process with many

random feature subsets to generate many decision trees, hence the name random forest.

The final decision is taken by combining the outputs of all decision trees. Because each

tree only uses a subset of the features, it is less sensitive to the curse-of-dimensionality,

and thus requires fewer training data to be effective. Outside of BCI research, among

various classifiers and across various classification problems and domains, random forest

algorithms were actually often found to be among the most accurate classifiers, including

problems with small training data sets [26, 36]. RFs were used successfully even online

both for ERP-based BCI [3] and for motor imagery BCI [54]. They outperformed designs

based on LDA classifiers for motor imagery BCI [54].

Riemannian Classifiers have been discussed in section 4.2.1. Typically, a simple

Riemannian classifier such as the RMDM requires less training data as compared to

optimal filtering approaches such as the CSP for motor imagery [46] and xDAWN for

P300 [15]. This is due to the robustness of the Riemannian distance, which the geometric

mean inherits directly, as discussed in [47]. Even more robust mean estimations can

be obtained computing Riemannian medians or trimmed Riemannian means. Shrinkage

and other regularization strategies can also be applied to a Riemannian framework to

improve the estimation of covariance matrices when a small number of data points is

considered [100].

Pros and cons:

sLDA, RF and the RMDM are simple classifiers that are easy to use in practice and

provide good results in general, including online. We thus recommend their use. sLDA

and RMDM do not have any hyper-parameters, which makes them very convenient

to use. sLDA have been shown to be superior to LDA both for ERP and oscillatory

activity-based BCI across a number of data sets [22, 137]. There is thus no reason to use

classic LDA; instead sLDA should be preferred. RMDM performs as well as CSP+LDA
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for oscillatory activity-based BCI [13, 46], as well as xDAWN+LDA but better than a

step-wise LDA on time samples for ERP-based BCI [15, 46] and better than CCA for

SSVEP [100]. Note that because LDA is a linear classifier, it may be suboptimal in

the hypothetic future case when vast amounts of training data will be available. RF

on the other hand is a non-linear classifier that can be effective both with small and

large training sets [36]. RMDM is also non-linear and performs well with small as well

as large training sets [46]. In terms of computational complexity, while RF can be

more demanding than RMDM or sLDA since it uses many classifiers, all of them are

fairly simple and fast methods, and all have been used online successfully on standard

computers.

Table 8. Summary of classifiers that can be trained with limited amount of data

EEG Pattern Features Classifier References

P300 Time points sLDA [142]

P300 Time points sLDA [22]

P300 Time points RF [3]

P300 Special Covariance RMDM [46]

P300 Special Covariance RMDM [15]

Motor Imagery CSP + band power RF [54]

Motor Imagery CSP + band power sLDA [137]

Motor Imagery Band-Pass Covariance RMDM [46, 14]

SSVEP Band-Pass Covariance RMDM [100]

5. Discussion and guidelines

Based on the many papers surveyed in this manuscript, we identify some guidelines

on whether to use various types of classification methods, and if so, when and how it

seems relevant to do so. We also identify a number of open research questions that

deserve to be answered in order to design better classification methods to make BCI

more reliable and usable. These guidelines and open research questions are presented

in the two following sections.

5.1. Summary and guidelines

According to the various studies surveyed in this paper, we extract the following

guidelines for choosing appropriate classification methods for BCI design:

• In terms of classification performance, adaptive classification approaches, both for

classifiers and spatial filters, should be preferred to static ones. This should be the

case even if only unsupervised adaptation is possible for the targeted application.
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• Deep learning networks do not appear to be effective to date for EEG

signals classification in BCI, given the limited training data available. Shallow

convolutional neural networks are more promising.

• Shrinkage Linear Discriminant Analysis (sLDA) should always be used instead of

classic LDA, as it is more effective and more robust for limited training data.

• When very little training data is available, transfer learning, sLDA, Riemannian

Minimum Distance to the Mean (RMDM) classifiers or Random Forest should be

used.

• When tasks are similar between subjects, domain adaptation can be considered

for enhancing classifier performance. However, care should be taken regarding the

effectiveness of the transfer learning, as it may sometimes decrease performance.

• Riemannian Geometry Classifiers (RGC) are very promising, and are considered the

current state-of-the-art for multiple BCI problems, notably Motor Imagery, P300

and SSVEP classification. They should be further applied and further explored to

increase their effectiveness.

• Tensor approaches are emerging and as such may also be promising but currently

require more research to be applicable in practice, online, and to assess their

performance as compared to other state-of-the-art methods.

5.2. Open research questions and challenges

In addition to guidelines, our survey also enabled us to identify a number of unresolved

challenges or research questions and points that must be addressed. These challenges

and questions are presented below.

• Many of the classification methods surveyed in this paper have been evaluated

offline only. However, an actual BCI application is fundamentally online. There

is thus a need to study and validate these classification methods online as well, to

ensure they are sufficiently computationally efficient to be used in real time, can

be calibrated quickly enough to be convenient to use and to ensure that they can

withstand real-life noise in EEG signals. In fact, online evaluation of classifiers

should be the norm rather than the exception, as there is relatively little value in

studying classifiers for BCI if they cannot be used online.

• Transfer learning and domain adaptation may be key components for calibration-

free BCI. However, at this stage, several efforts must be taken before they can be

routinely used. Among the efforts, coupling advanced features such as covariance

matrices and domain adaptation algorithms can further improve on the invariance

ability of BCI systems.

• There are also several open challenges that, once solved, could make Riemannian

geometry classifiers even more efficient. One would be to design a stable estimator

of the Riemannian median to make RMDM classifiers more robust to outliers than

when using the Riemannian mean. Another would be to work on multimodal
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RMDM, with multiple modes per class, not just one, which could potentially

improve their effectiveness. Finally, there is a need for methods to avoid poorly

conditioned covariance matrices or low rank matrices, as these could cause RGC to

fail.

• While deep learning approaches are lagging in performance for BCI, mostly due to

lack of large training datasets, they can be strongly relevant for end-to-end domain

adaptation [73] or for augmenting datasets through the use of generative adversarial

networks [77].

• Classifiers, and the entire machine learning/signal processing pipeline are not

the only considerations in a BCI system design. In particular, the user should

be considered as well and catered to so as to ensure efficient brain-computer

communications [144, 112, 33]. As such, future BCI classifiers should be designed

to ensure that users can make sense of the feedback from the classifier, and can

learn effective BCI control from it [146].

6. Conclusion

In this manuscript, we have surveyed the EEG classification approaches that have been

developed and evaluated between 2007 and 2017 in order to design BCI systems. The

numerous approaches that were explored can be divided into four main categories:

adaptive classifiers, matrix and tensor classifiers, transfer learning methods, and deep

learning. In addition, a few miscellaneous methods were identified outside these

categories, notably the promising shrinkage LDA and Random Forest classifiers.

Overall, our review revealed that adaptive classifiers, both supervised and

unsupervised, outperform static ones in general. Matrix and tensor classifiers are also

very promising to improve BCI reliability; in particular, Riemannian geometry classifiers

are the current state-of-the-art for many BCI designs. Transfer learning seems useful

as well, particularly when little training data is available, but its performance is highly

variable. More research should be invested to evaluate it as part of standard BCI

design. Shrinkage LDA and Random Forest are also worthy tools for BCI, particularly

for small training data sets. Finally, contrary to their success in other fields, deep

learning methods have not demonstrated convincing and consistent improvements over

state-of-the-art BCI methods to date.

Future work related to EEG-based BCI classification should focus on developing

more robust and consistently efficient algorithms that can be used easily and online

and are able to work with small training samples, noisy signals, high-dimensional and

non-stationary data. This could be addressed by further developing transfer learning

methods, Riemannian geometry and tensor classifiers, and by identifying where and how

deep networks could be useful for BCI. Altogether, improving those methods or defining

new ones should consider invariance. Indeed, an ideal classification method would use

features and/or classifiers that are invariant over time, over users and contexts, to be

effective in any situation. Additionally, there is also need for a new generation of BCI
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classification methods that consider the human user in the loop, i.e., that can adapt to

user states, traits and skills, and provide feedback that the user can make sense of and

learn from.

To conclude, this review suggests that it is time to change the gold standard

classification methods used in EEG-based BCI so far, and apply a second generation

of BCI classifiers. We could for instance move from the classical CSP+LDA design,

mostly unchanged for years in many online studies, to adaptive Riemannian geometry

classifiers. Finally, and even more importantly, the next generation of classification

approaches for EEG-based BCI will have to take the user into account.
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[37] T. Cibas, F. F. Soulié, P. Gallinari, and S. Raudys. Variable Selection with Optimal Cell Damage,

pages 727–730. Springer London, London, 1994.

[38] A. Cichocki. Tensor decompositions: A new concept in brain data analysis? Journal of the

Society of Instrument and Control Engineers (SICE), 58 (7):507–516, 2011.

[39] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q.Zhao, and D. Mandic. Tensor networks for

dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions.

Foundations and Trends in Machine Learning, 9(4-5):249–429, 2016.

[40] A. Cichocki, D. Mandic, L. D. Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and A.-H. Phan. Tensor

decompositions for signal processing applications: From two-way to multiway component

analysis. IEEE Signal Processing Magazine, 32(2):145–163, 2015.

[41] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, and D. Mandic. Tensor

networks for dimensionality reduction and large-scale optimizations. Part 2 applications and

future perspectives. Foundations and Trends in Machine Learning, 9(6):431–673, 2017.

[42] A. Cichocki, Y. Washizawa, T. Rutkowski, H. Bakardjian, A.-H. Phan, S. Choi, H. Lee, Q. Zhao,

L. Zhang, and Y. Li. Noninvasive BCIs: Multiway signal-processing array decompositions.

Computer, 41(10), 2008.

[43] A. Cichocki, R. Zdunek, A. Phan, and S. Amari. Nonnegative Matrix and Tensor Factorizations:

Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. John Wiley

& Sons, 2009.

[44] M. Clerc, L. Bougrain, and F. Lotte. Brain-Computer Interfaces 1: Foundations and Methods.

ISTE-Wiley, 2016.

[45] M. Clerc, L. Bougrain, and F. Lotte. Brain-Computer Interfaces 2: Technology and Applications.

ISTE-Wiley, 2016.

[46] M. Congedo. EEG Source Analysis. Habilitation à diriger des recherches (HDR), Univ. Grenoble

Alpes, 38000 Grenoble, France, TEL, 2013.

[47] M. Congedo, A. Barachant, and R. Bhatia. Riemannian geometry for EEG-based brain-computer

interfaces; a primer and a review. Brain-Computer Interfaces, 4(3):155–174, 2017.

[48] M. Congedo, A. Barachant, and K. Kharati. Classification of covariance matrices using a

riemannian-based kernel for BCI applications. IEEE Transactions on Signal Processing,

65(9):2211–2220, 2016.

[49] M. Congedo, F. Lotte, and A. Lécuyer. Classification of movement intention by spatially filtered

electromagnetic inverse solutions. Physics in Medicine and Biology, 51(8):1971–1989, 2006.

[50] R. Corralejo, R. Hornero, and D. lvarez. Feature selection using a genetic algorithm in a motor

imagery-based brain computer interface. In 2011 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, pages 7703–7706, Aug 2011.

[51] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain

adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

[52] D. Coyle, J. Principe, F. Lotte, and A. Nijholt. Guest editorial: Brain/neuronal computer games

interfaces and interaction. IEEE Transactions on Computational Intelligence and AI in Games,

5(2):77–81, 2013.
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[133] A. Llera, M. A. van Gerven, V. Gómez, O. Jensen, and H. J. Kappen. On the use of interaction

error potentials for adaptive brain computer interfaces. Neural Networks, 24(10):1120–1127,

2011.



Review of Classification Algorithms for EEG-based BCI 50

[134] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu. Transfer feature learning with joint distribution

adaptation. In Proceedings of the IEEE International Conference on Computer Vision, pages

2200–2207, 2013.

[135] F. Lotte. A new feature and associated optimal spatial filter for EEG signal classification:

Waveform length. In International Conference on Pattern Recognition (ICPR), pages 1302–

1305, 2012.

[136] F. Lotte. A tutorial on EEG signal-processing techniques for mental-state recognition in brain–

computer interfaces. In Guide to Brain-Computer Music Interfacing, pages 133–161. Springer,

2014.

[137] F. Lotte. Signal processing approaches to minimize or suppress calibration time in oscillatory

activity-based brain–computer interfaces. Proceedings of the IEEE, 2015.

[138] F. Lotte. Towards Usable Electroencephalography-based Brain-Computer Interfaces. Habilitation
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[147] F. Lotte, F. Larrue, and C. Mühl. Flaws in current human training protocols for spontaneous

brain-computer interfaces: lessons learned from instructional design. Frontiers in Human

Neuroscience, 7(568), 2013.

[148] F. Lotte, A. Lécuyer, and B. Arnaldi. FuRIA: An inverse solution based feature extraction

algorithm using fuzzy set theory for brain-computer interfaces. IEEE transactions on Signal

Processing, 57(8):3253–3263, 2009.

[149] D. Lowne, S. J. Roberts, and R. Garnett. Sequential non-stationary dynamic classification with

sparse feedback. Pattern Recognition, 43(3):897–905, 2010.

[150] N. Lu, T. Li, X. Ren, and H. Miao. A deep learning scheme for motor imagery classification based

on restricted Boltzmann machines. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 25(6):566–576, 2017.

[151] S. Lu, C. Guan, and H. Zhang. Unsupervised brain computer interface based on inter-subject

information and online adaptation. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 17(2):135–145, 2009.

[152] S. Luke. Essentials of Metaheuristics. Lulu, 2013.

[153] T. Ma, H. Li, H. Yang, X. Lv, P. Li, T. Liu, D. Yao, and P. Xu. The extraction of motion-onset

VEP BCI features based on deep learning and compressed sensing. Journal of Neuroscience

Methods, 275:80–92, 2017.

[154] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Deroski. An extensive experimental comparison



Review of Classification Algorithms for EEG-based BCI 51

of methods for multi-label learning. Pattern Recognition, 45(9):3084 – 3104, 2012. Best Papers

of Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA’2011).

[155] S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang, and K. Kreutz-Delgado. Evolving

signal processing for brain–computer interfaces. Proceedings of the IEEE, 100:1567–1584, 2012.

[156] R. Manor and A. B. Geva. Convolutional neural network for multi-category rapid serial visual

presentation BCI. Frontiers in Computational Neuroscience, 9, 2015.
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