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Abstract 
A central challenge to cognitive neuroscience consists in decomposing complex brain signals            
into an interpretable sequence of operations - an algorithm - which ultimately accounts for              
intelligent behaviors. Over the past decades, a variety of analytical tools have been developed              
to (i) isolate each algorithmic step and (ii) track their ordering from neuronal activity. In the                
present chapter, we briefly review the main methods to encode and decode temporally-resolved             
neural recordings, show how these approaches relate to one-another, and summarize their            
main premises and challenges. Finally we highlight, through a series of recent findings, the              
increasing role of machine learning both as i) a method to extract convoluted patterns of neural                
activity, and as ii) an operational framework to formalize the computational bases of cognition.              
Overall, we discuss how modern analyses of neural time series can identify the algorithmic              
organization of cognition. 

  



Introduction 
An algorithm is a sequence of simple computations that can be followed to solve a               

complex problem. Under this definition, a major goal of cognitive neuroscience thus consists in              
uncovering the algorithm of the mind: i.e. identifying the nature and the order of computations               
implemented in the brain to adequately interact with the environment (Marr, 1982). 

Over the years, this foundational endeavor has adopted a variety of methods, spanning             
from the decomposition of reaction times (Donders, 1969; Sternberg, 1998) to the modern             
electrophysiology and neuroimaging paradigms. In the present chapter, we focus on two major             
pillars necessary to recover an interpretable sequence of operations from neuronal activity.            
First, we review how individual computations can be isolated by identifying and linking neural              
codes to mental representations. Second, we review how the analysis of dynamic neural             
responses can recover the order of these computations. Throughout, we discuss how the recent              
developments in machine learning not only offer complementary methods to analyze convoluted            
patterns of neural activity, but also provide a formal framework to identify the computational              
foundations of cognition. 

 

 
 
Figure 1. The representational paradigm. Cognitive neuroscience faces a triple challenge: it            
aims to (i) identify the content of mental representations, (ii) determine how this information is               
encoded in the brain, and (iii) link these two levels of description. In the past decades, linking                 
neural codes to mental representations has increasingly benefitted from statistical modeling           
and machine learning. In this view, decoding predicts experimental factors (e.g. the speed of              
a hand movement, the luminance of an flashed image etc) from specific features of brain               
activity (e.g. spike rate, electric field etc), whereas encoding predicts the reverse. Currently,             
the neural codes and the mental representations are engineered manually and linearly            
mapped onto one another with linear modeling. However, the capacity of machine learning to              
find non-linear structures in large datasets may ultimately help us find what the brain              
representations and how. 
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1. Neuronal activity: codes and contents. 

1.1 The triple-quest of cognitive neuroscience. 
Three challenges must be addressed to isolate the elementary computations underlying           

intelligent behavior (Fig. 1). First, we must identify what content the brain represents at each               
instant. For example, speech has been formally described in terms of phonemes (e.g. /b/, /p/,               
/k/). However, the psychological reality of these units has been debated given their extensive              
overlap with low-level acoustic properties. To address this issue, Mesgarani et al. have shown              
that responses in superior temporal gyrus to speech are more closely organized along phonetic              
dimensions than acoustic dimensions (Mesgarani, Cheung, Johnson, & Chang, 2014) (see (Di            
Liberto, Di Liberto, O’Sullivan, & Lalor, 2015) for similar results with electro-encephalography -             
EEG). More generally, the search for mental representations is ubiquitous across the fields of              
cognitive neuroscience, and has helped to characterize the neural bases of faces (Freiwald &              
Tsao, 2010; Haxby, 2006; Kanwisher, 2001), word strings ((Dehaene & Cohen, 2007; Price,             
2010), semantics (Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016), to name a few.  

Second, we must identify how neurons read and communicate such informational           
content. For example, the relative unreliability of neurons to discharge at precise moments has              
led some to argue that neurons transmit information through the rate at which they fire over a                 
small temporal window (Shadlen & Newsome, 1998). By contrast, the speed of cognitive             
processes, which can be as low as a few dozen milliseconds have led others to argue that                 
rate-coding is unlikely to be the only neural code (Kistler & Gerstner, 2002). More generally,               
whether neurons and neural populations code information via their firing rates (Shadlen &             
Newsome, 1998), their oscillatory activity (Buzsaki, 2006; Fries, 2005; Singer & Gray, 1995), or              
even in the interaction between spikes and the phase of local field potentials (Bose & Recce,                
2001; Lisman & Idiart, 1995) remains actively debated. 

Historically, the dual challenge between what is being coded and how it is coded has               
been approached through a univariate mapping between neural activity and mental contents. In             
this view, the objective consists of finding a neural response (e.g. a spike) that is both sensitive                 
and specific to particular content (e.g. the orientation of a visual bar (Hubel & Wiesel, 1963)). To                 
facilitate this quest, it is now common to perform multivariate mapping. For example, one can               
assume a rate coding and test whether a neuron codes for a particular retinotopic location by                
simultaneously stimulating multiple sections of the visual field, and a posteriori modeling the             
independent contribution of each location (Wandell, Dumoulin, & Brewer, 2007). Reciprocally,           
one can assume that neurons code for retinotopic locations and test whether this information              
can be better decoded from rate than from temporal coding (Nishimoto et al., 2011). In all                
analyses, there thus exists an asymmetry in the code-representation equation: either the type of              
neural code is assumed and multiple representations are estimated, or vice versa. This             
asymmetry has contributed to the distinction between encoding and decoding analyses.           
Specifically, encoding consists in predicting neuronal responses from mental representations:          
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(P(brain activity | representations)). Conversely, decoding consists in predicting mental          
representations from neuronal activity (P(representations | brain activity)) (See Fig 1.). 
 

 
 

Figure 2. Statistical framework. Left. The modeling of neural representations is founded on             
a general statistical framework. Middle. Models can be distinguished across three main            
dimensions. First, models that are optimized to estimate the conditional probability P(Y|X) are             
‘discriminative’, whereas models that estimate the joint distribution (P(X,Y)) are ‘generative’           
(All generative models can thus be discriminative). Second, models trained to predict one             
variable X from another Y are ‘supervised’, whereas models that estimate the distribution of a               
single (possibly multidimensional) variable are ‘unsupervised’. Finally, a given model can be            
used for different purposes: e.g. decoding or encoding. Right. Example of classical            
supervised and unsupervised models. 

 
Encoding analyses have been predominantly used to simultaneously examine several          

features in their ability to account for univariate brain responses. For example, the general linear               
model (GLM) routinely used in fMRI studies is designed to evaluate the extent to which multiple                
features independently contribute the blood-oxygen-level dependent (BOLD) response recorded         
in each voxel. Such effects can be hard to orthogonalize a priori (i) because of the slow                 
temporal profile of the hemodynamic response or (ii) because the features under investigation             
intrinsically covary (e.g. in natural images, the orientation of visual edges correlate with their              
spatial position (Sigman, Cecchi, Gilbert, & Magnasco, 2001)). Conversely, decoding analyses           
have been predominantly used to predict subjects’ behavior or postdict their sensory            
stimulations. For example, brain-computer interfaces (BCI) focus on simultaneously examining          
several, potentially collinear patterns of brain activity to predict subjects’ actions, intentions            
(Lebedev & Nicolelis, 2006) or mental state (Zander & Kothe, 2011). 
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Figure 3. Modeling pipeline. Multivariate analyses aim to identify the combination of            
parameters (w) that maximize the relationship between neural codes and mental           
representations. The potentially large number of fitted parameters rapidly leads to overfitting -             
i.e. to identifying an overly complex relationship in the data sample that poorly generalizes to               
the general population. To prevent overfitting, a standard multi-step pipeline must be adopted.             
It starts with 1) preprocessing (any transformation of the data that can be applied              
independently of the overall sample: e.g. filtering), followed by 2) model fitting on a subset of                
the data (a.k.a ‘training set’, in gray), 3) prediction (orange dots) of independent and              
identically distributed (iid, see (Varoquaux et al., 2017) for guidelines) held out test data (blue               
dots) and 4) summarizing the prediction errors of the model (e) with a scoring metrics (e.g.                
Accuracy, AUC, R2, cross-entropy etc). In addition, one can subsequently perform 4) model             
comparison and/or 5) interpret the parameters of the model see (Haufe et al., 2014) for               
guidelines). The score of a model (e.g. goodness of fit, accuracy) is often easier to interpret                
than its numerous parameters because of two reasons. First, the score of a model reduces               
multiple, potentially noisy, dimensions to a low-dimensional, often singleton, quantity. Second,           
the model parameters are generally optimized for predictive performance but do not            
necessarily constitute a unique solution to a given problem. 

1.2 Where do the linearity assumptions come from? 
Encoding and decoding analyses of brain activity are predominantly based on linear            

modeling. The linear constraint is motivated by two theoretical principles: i) the linear             
superposition principle, and ii) the linear readout principle (Fig. 4). 

Linear superposition is a common assumption based on the notion that measurements            
are derived from a weighted sum of independent sources. For example, the electric potential              
measured by an electrode depends on the electric reference, the local field potential, as well as                
on the pre and postsynaptic activity of surrounding neurons. Following Maxwell’s equations, the             
electric fields of these sources linearly sum onto the electrode, and do not interact with one                
another. The analysis of hemodynamic responses is often based on an analogous            
measurement assumption: each voxel contains hundreds of thousands of neurons whose           
activity is summarized in a unique BOLD measurement. Under the linear superposition            
assumption, a measurement linearly covaries with a variable only if a combination of sources              
linearly covaries with such variables. It is possible to separate the independent contribution of              
each source when multivariate measurements are available, based on physical assumptions (as            
in MEG source reconstruction (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993)), or            
based on distributional assumptions (as in spike sorting (Quiroga, Nadasdy, & Ben-Shaul,            
2004)). Note that the linear superposition assumption is generally limited to a specific range. For               

https://paperpile.com/c/je6iaw/5X7C
https://paperpile.com/c/je6iaw/th0U
https://paperpile.com/c/je6iaw/BrqD
https://paperpile.com/c/je6iaw/tZPf
https://paperpile.com/c/je6iaw/tZPf


example, the BOLD response is known to saturate above certain values, above which the linear               
superposition assumption breaks (Heeger & Ress, 2002). 

The linear readout principle is specific to neuroscience, and is based on the notion that               
the function of neurons and neural assemblies can be approximated with a non-linear             
transformation (e.g. a spike) of a weighted sum of electrico-chemical input (e.g. the sum of               
excitatory and inhibitory presynaptic potentials). This computational constraint can thus be used            
to formalize several definitions. First a feature is considered to be explicitly represented if and               
only if it is linearly readable in the brain activity (Hung, Kreiman, Poggio, & DiCarlo, 2005;                
Kamitani & Tong, 2005; King & Dehaene, 2014; Kriegeskorte & Kievit, 2013; Misaki, Kim,              
Bandettini, & Kriegeskorte, 2010). Second, a representation, which characterizes the          
relationships between these features, is defined by a set of basis vectors. In this view, the retina                 
may encode information about faces, strings and objects, but would not represent these             
categories, in that faces, string and objects cannot be linearly separated from retinal activations.  

 

 
Figure 4. Motivating the linear assumptions. Linear models are not only popular because             
of their efficiency and simplicity, but also because they rely on two theoretically-motivated             
assumptions. First, neuroscientific measurements involve the superposition of multiple         
responses at all scales (e.g. dendritic, neuronal and network). The linear superposition            
principle is an epistemic assumption that helps cognitive neuroscientists to isolate the coding             
contribution of each of these sources. Second, the linear readout principle is a computational              
assumption and consists in defining representation as linearly separable information. The           
linear readout principle is motivated by the notion that the response function of individual              
neurons as well as neuronal populations can be reasonably approximated as a linear sum of               
excitatory and inhibitory presynaptic potentials followed by a (series of) spikes (i.e. applying a              
non-linear operation onto a weighted sum). 
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Under these definitions, encoding and decoding analyses are equally limited in their            
ability to determine whether a representation de facto constitutes information that the neural             
system uses. For example, one may find a linear relationship between a sensory feature and (i)                
a spike, (ii) an increase in BOLD response, or (iii) an oscillation of a linear combination of EEG                  
sensors, without that information being effectively read and used by any neurons. Similarly to all               
other correlational methods, encoding and decoding must thus be used in conjunction with             
computational modeling and experimental manipulations in order to identify the causal or            
epiphenomenal nature of an identified pattern of brain activity. 

1.3 Challenging the representational paradigm. 

 
 

Figure 5. A zoo of linear models? While linear models are ubiquitous in cognitive              
neuroscience, their many designations can be formalized as finding a set of weights (w) that               
can be used in combination to predict values (y) from multivariate data (X). The method               
equations shows that such estimation of w can be done by so-called maximum a posteriori               
(MAP), balancing the data likelihood (red) and the priors on the distribution of these              
parameters (blue). In an optimization framework, this transcribes into jointly minimizing the            
loss and regularization function. Note that for categorical models (e.g. Logistic regression,            
support vector classifier (SVM)), the predicted values ŷ are subsequently transformed into            
discrete categories. 

 
A large number of multivariate analyses are routinely used in cognitive neuroscience,            

and range from linear discriminant analysis (LDA) to ridge and logistic regressions and linear              
support vector machines (SVM). Despite their various denominations, these analyses actually fit            
in a common statistical framework, and can be solved with similar optimization procedures (Fig.              
5). In practice, these analyses make distinct assumptions on the data but often lead to similar                
results (Hastie, Tibshirani, & Friedman, 2009; Lebedev & Nicolelis, 2006) (Varoquaux et al.,             
2017). 
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The linearity constraint, present in most encoding and decoding analyses, entails two            
major challenges to the neuroscientific study of mental representations. First, the linear readout             
assumption undermines the non-linear readout abilities of neurons (Brincat & Connor, 2004;            
Chichilnisky, 2001; Mineault, Khawaja, Butts, & Pack, 2012; Sahani & Linden, 2003; Van             
Steveninck & Bialek, 1988), cortical columns (Bastos et al., 2012) and large neural assemblies              
(Ritchie, Brendan Ritchie, Kaplan, & Klein, 2017). We can thus expect that representations will              
eventually be defined, not as set of basis-vectors but as non-linear manifolds (Jazayeri & Afraz,               
2017). 

Second, linear modeling implies a strong dependence on a priori human insight            
(Kording, Benjamin, Farhoodi, & Glaser, 2018). Specifically, linear models only fit the features             
explicitly provided by the experimenter. They are thus limited in their ability to identify              
unexpected patterns of neuronal activity, or unanticipated mental representations. For example,           
the discovery of grid cells - hippocampal neurons that fire when an animal is located at                
regularly-interspaced locations in an arena - strongly derived from human insight. Indeed, Moser             
et al. had to eyeball their electrophysiological data to conjecture the grid coding scheme (Fyhn,               
Molden, Witter, Moser, & Moser, 2004; Moser, Kropff, & Moser, 2008). Only then could they               
input a grid feature in their linear model to test for its robustness (Hafting, Fyhn, Molden, Moser,                 
& Moser, 2005). For this historical discovery, a linear model blindly fitting spiking activity to a                
two-dimensional spatial position variable would have completely missed the grid coding           
scheme. 

The rapid development of machine learning may partially roll back this epistemic            
dependence on human insights. For example, Benjamin and collaborators have recently           
investigated the ability of linear models to predict spiking activity in the macaque motor cortex               
given conventional representations of the arm movement, such as its instantaneous velocity and             
acceleration (Benjamin et al., 2017). The authors show that while linear encoding models for              
these motor features accurately predict neural responses, they are outperformed by random            
forests (Liaw, Wiener, & Others, 2002) and long short term memory neural networks (LSTM              
(Hochreiter & Schmidhuber, 1997)). Random forests and LSTMs are distinct non-linear models            
commonly used in machine learning precisely because they are capable of modeling            
near-arbitrary functions from the data. In other words, machine learning algorithms can identify             
features in the arm movements that improve the prediction of neural activity. These results thus               
suggest that the spiking activity in the motor cortices encodes something beyond what was              
previously hypothesized. More generally, this study illustrates how machine learning may           
supplement human insights and help to discover unanticipated representations. 

Undoubtedly, such machine-learning approaches to neuroscience will be accompanied         
with new challenges (Kording et al., 2018; Stevenson & Kording, 2011). In particular, non-linear              
models remain currently difficult to inspect and interpret (Olah et al., 2018). For example, in               
Benjamin et al’s study discussed above, the improvement of prediction performance provided by             
machine learning algorithms came at the price of a diminished interpretability. Specifically, the             
authors have only shown that the brain represents more than the classic sensory-motor             
features, but have not revealed what these unsuspected representations actually corresponded           
to. Although such interpretability issue is particularly strong in non-linear modeling, it exists in              
linear modeling too. For example (Huth et al., 2016) used linear modeling to predict the fMRI                
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BOLD responses to spoken stories from very large vectors describing the semantic values of              
each of the spoken words. The authors showed that this modeling approach was above chance               
level in a wide variety of cortical regions. To subsequently investigate what each brain region               
specifically represented, the authors used unsupervised linear model: principal component          
analysis (PCA). PCA summarized the main dimensions that accounted for the BOLD responses             
to semantic vectors. However, the authors only managed to make sense of a small subset of                
these principal dimensions. This study thus illustrates that robust linear modeling does not             
necessarily entail a straightforward interpretation. 

2. From individual computations to algorithms. 
The above methods isolate individual computations by linking mental representations          

with their neural implementations. However, to uncover the algorithm of a given cognitive ability,              
one must also identify the order in which these computations are performed. Before quickly              
reviewing the analytical methods developed to track sequences of computations from brain            
activity, it is important to first highlight the prevalence of temporal structures in neuroimaging              
and electrophysiology recordings. 

2.1 Sequences of neural responses. 
With the recent advances in temporally-resolved fMRI (e.g. Ekman, Kok, & de Lange,             

2017) and the increasing ability to simultaneously record multiple neurons (Jun et al., 2017) and               
brain regions (Boto et al., 2018; Tybrandt et al., 2018), numerous studies have evidenced              
spatio-temporal structures in neural activity. For example, at the network level, sensory            
stimulations trigger a long cascade of neural responses from the sensory to associative cortices              
(e.g. (Gramfort, Papadopoulo, Baillet, & Clerc, 2011; King et al., 2016), Fig. 6.C). At the               
columnar level, oscillatory activity propagates from and to the supra- and infragranular layers of              
the cortex through frequency-specific travelling waves (van Kerkoerle et al., 2014) (Fig. 6.B). At              
the cellular level, spatial positions (Girardeau & Zugaro, 2011; Jones & Wilson, 2005), motor              
preparation (Kao et al., 2015) and working memory processes (Heeger & Mackey, 2018;             
Stokes, 2015) are associated with specific sequences of neuronal responses (Fig. 6.A). Finally,             
sequences of pre-synaptic inputs have recently been shown to be detectable by the dendrites of               
single neurons (Branco, Clark, & Häusser, 2010). 

These electrophysiological sequences are increasingly linked to specific sequences of          
computations - and thus proto-algorithms. For example, the sequential reactivation of           
hippocampal place cells is believed to reflect learning and anticipatory simulation of the spatial              
navigation (Girardeau & Zugaro, 2011) (Fig. 6.A). Analogously, the propagation of           
frequency-specific traveling waves across the cortical microcircuit has been proposed to reflect            
a predictive coding algorithm (Bastos et al., 2012). Finally, the macroscopic sequence of brain              
responses identified across brain regions can be directly compared to the deep convolutional             
networks built in artificial vision (Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Eickenberg,             
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Gramfort, Varoquaux, & Thirion, 2017; Gwilliams & King, 2017; Kriegeskorte, 2015; Yamins et             
al., 2014). 
 

 
Figure 6. Sequences of neural responses across all spatial scales. Sequences of neural             
responses have been identified with a variety of methods and across various spatio-temporal             
scales. A. Hippocampal place cells spike when the rodent moves to specific spatial positions.              
When the rodent rests, the previous spike sequence is replayed in reverse order (adapted              
from (Girardeau & Zugaro, 2011)). B. The 10-Hz oscillatory activity recorded in the macaque              
early visual cortex travels from superficial (red) and deep layers (purple) to the granular layer               
(green) (Adapted from (van Kerkoerle et al., 2014)). C. Visual stimulation triggers a             
long-lasting cascade of macroscopic brain responses, starting from the early visual cortex and             
ultimately reaching the associative areas (King, Pescetelli, & Dehaene, 2016). 

2.2 Methods to identify neural sequences. 
A wide variety of analytical methods have been developed to extract and interpret the              

spatio-temporal organization of neural recordings. We implemented most of these methods           
together with dedicated Python tutorials in the MNE package (Gramfort et al., 2014). In the               
present chapter, we focus on how these methods relate to one another. In this regard, an                
important distinction between these methods relates to the type of time series they model. 

2.2.1 Segmented time series. 
Segmented time-series are analyzed as independent two-dimensional samples (time x          

channels, where channels can be defined by sensors, neurons, voxels etc.). The methods for              
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segmented time series have been primarily developed to efficiently extract informative spatial            
patterns of information. 

For example, mixed electrophysiological recordings (i.e. when neuronal responses         
randomly project onto the sensors, Fig. 4) are often modeled with spatial patterns time-locked to               
external events. For example, it is common to model the evoked response to an external event                
by fitting a series of linear models at each time-sample time-locked to the events. This approach                
hence results in a decoding score that varies over time (Cichy, Pantazis, & Oliva, 2014; King et                 
al., 2013). A generalization of this method can be used to characterize the overall dynamics of                
the neural responses (King & Dehaene, 2014; Meyers, Freedman, Kreiman, Miller, & Poggio,             
2008; Stokes et al., 2013). The so-called Temporal Generalization method consists in testing             
whether the models, independently fit at time each time-sample, are interchangeable with one             
another. Specifically, the ability of a model fit at time t to generalize to t’ determines whether the                  
decoded mental representations is associated with a sustained or a changing pattern of brain              
activity. Similarly, Hidden Markov Models can be used to track sequence of brain responses by               
parametrically discretizing a fixed series of stages and fit their the onset and offset on the neural                 
data (Borst & Anderson, 2015). Finally, it is also common to fit a linear model to neural                 
responses at each temporal and spatial sample separately, using a weighted combination of             
stimulus features (L. Gwilliams, Lewis, & Marantz, 2016; Hauk, Shtyrov, & Pulvermüller, 2008).             
Overall, these supervised analyses help identifying and interpreting the dynamics and the            
overall sequence of evoked responses associated with a particular cognitive process. 

The above methods focus on “evoked” spatial patterns - i.e. neural responses whose             
phases are consistent across repeated segments. By contrast, a number of decoding methods             
have been developed to identify “induced” spatial patterns - i.e. neural responses whose             
dynamics are not phase-locked to an external event. The decoding of induced activity is              
generally based on the spatial covariance of electrophysiological recordings. For example, the            
Common Spatial Pattern (CSP) method is a popular spatial filtering technique to identify the              
spatial pattern of neural activity that maximizes the discrimination between induced responses            
of two category of external events (e.g. left versus right hand) (Koles, Lazar, & Zhou, 1990).                
Similarly, the Source Power Comodulation (SPoC) method extracts spatial patterns that are            
modulated by a continuous variable (e.g. hand position) (Dähne, Meinecke, et al., 2014). 

More recently, the decoding performance of induced decoders has proved to be            
improved by directly using the spatial covariance as a feature, without spatial filtering             
(Barachant, Bonnet, & Congedo, 2012; Farquhar, 2009). This approach can be used without             
specifying a priori the number of informative neural sources. However, such covariance matrices             
must be properly linearized to take into account their symmetric and positive-definite structure             
when used with a linear model (Barachant, Bonnet, Congedo, & Jutten, 2013). 

2.2.2 Continuous time series. 
Some cognitive processes may be particularly difficult to investigate within a segmented            

time-series framework. For example, auditory and speech processing involve rapid and           
overlapping stimulations. In such cases, it is thus common to model the neural dynamics with               
multiple “time-lags” of continuously-varying features (i.e. build an Hankel matrix (Almon, 1965;            
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Ho & Kálmán, 1966)), in order to capture the possibility that some neural activity is time-locked                
to specific events. For example, one can first preprocess an auditory waveform of recorded              
speech (i) to extract its continuously changing envelope as well as (ii) to annotate the onsets of                 
individual words (Fig 7.C, (de Heer, Huth, Griffiths, Gallant, & Theunissen, 2017; Holdgraf et al.,               
2017)). A “receptive field” model can then be fit to the corresponding Hankel matrix in order to                 
isolate the neural responses to discrete events (e.g. word onsets) as well as to fluctuations in                
the continuously-changing speech envelope. This modeling is similar to the predominant           
approach in fMRI analysis, where the design matrix is convolved with a known impulse (i.e. the                
canonical hemodynamic response function). However, in the case of electrophysiology, the           
shape of the impulse response function is not known a priori and can indeed be vastly different                  
for different neurocognitive processes. The shape of electro-magnetic responses must thus be            
estimated from the data. Temporal receptive fields have been applied in a variety of contexts:               
they can be used to encode the average brain responses to categorical events             
(Regression-based Event Related Potentials, (de Heer et al., 2017; Smith & Kutas, 2015)) and              
spectro-temporal patterns of visual and auditory inputs (Theunissen et al., 2001), and they can              
also be used to decode overlapping sequences of neural correlates of discrete (Rivet,             
Souloumiac, Attina, & Gibert, 2009; Theunissen et al., 2001) and continuously changing events             
(Dähne, Nikulin, et al., 2014). 

2.3 Predicting sequences of computations. 
In the last decade, the analytical tools reviewed above have been supplemented with             

models that aim to identify the sequence of computations necessary to efficiently produce             
cognitive operations. Indeed, with the recent rebirth of deep neural networks, a wide variety of               
computational architectures have been produced in the machine learning community. For           
example, state of the art computer vision models are now dominated by deep convolutional              
neural networks, which apply an extended series of non-linear transformations on the            
convolution of images, in order to detect objects from natural images. 

The sequence of operations applied by such neural networks has been found to map              
with both the spatial (Cichy et al., 2016; Eickenberg et al., 2017; Gwilliams & King, 2017;                
Kriegeskorte, 2015; Yamins et al., 2014) and the temporal organization (Cichy et al., 2016;              
Gwilliams & King, 2017; van de Nieuwenhuijzen et al., 2013) of the visual system. Specifically,               
the early activity in the primary visual cortex is specifically and linearly correlated with the               
activation in superficial layers, whereas the later responses of the inferior temporal cortex are              
specifically and linearly related to the activation of the deep layers of these CNNs. This               
suggests that the computations applied by the human brain to solve a given task, as well as the                  
order of those computations, may be modeled with deep neural networks trained to solve the               
same task. 

Overall, these results confirm the long-predicted notion that the perceptual systems are            
organized as an extended computational hierarchy (Hubel & Wiesel, 1963; Riesenhuber &            
Poggio, 1999), and interestingly link machine learning and neuroscience within a common            
computational framework. 
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Figure 7. Decoding and encoding neural sequences. A. The methods to track and             
decompose sequences of neural responses can be categorized between those based on            
independent segments of neural recordings (left) and those that additionally dissociate the            
overlapping effects of stimulation and behavior (right). A variety of spatial filtering techniques             
(i.e. linear combinations of sensors) have been proposed to extract oscillatory (induced) and             
average brain responses (evoked) locked to particular events. We implemented these           
methods together with dedicated tutorials in the MNE package (Gramfort et al., 2014). B.              
Temporal generalization consists in fitting a spatial filter at each timesample locked to an              
event, and testing whether it can be used to decode the brain responses at all time-samples.                
This analysis can be used to determine whether a sustained decoding score results from a               
stable pattern of neural responses, or whether it reflects a series of transient neural              
responses. Adapted from (King & Dehaene, 2014) C. Temporal receptive fields consist in first              
annotating the latent dimensions of that characterize the continuously-varying experimental          
variables - e.g. the spectral modulation of an acoustic waveform, the lexical categories of              
spoken words etc - (top left). These features are then transformed into a time-delay matrix               
whose linear modeling can be used to recover the temporal response profile of each feature               
(bottom right, Adapted from (Holdgraf et al., 2017)). 
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Conclusion 
Overall, the rapid development of machine learning provides a threefold promise to            

cognitive neuroscience. First, these tools support the automatization, denoising and summary of            
complex electrophysiological and neuroimaging time series. Second, these tools offer an           
operational ground to data-driven investigation: unanticipated patterns of data may be           
automatically identified from large datasets, without requiring the preface of human insight.            
Finally, machine learning and cognitive neuroscience share the common goal of identifying the             
elementary components of knowledge acquisition and information processing. The interface          
between cognitive neuroscience and machine learning thus leads to a mutual benefit. On the              
one hand, machine learning can help define, identify, and formalize the computations of the              
brain. On the other hand, cognitive neuroscience can help provide insights and principled             
directions to shape the computational architecture of complex cognitive processes (Hassabis,           
Kumaran, Summerfield, & Botvinick, 2017; Lake, Ullman, Tenenbaum, & Gershman, 2017). 
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