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On the long time convergence of potential MFG

Marco Masoero ∗

July 27, 2018

Abstract

We look at the long time behavior of potential Mean Field Games (briefly MFG) using
some standard tools from weak KAM theory. We first show that the time-dependent mini-
mization problem converges to an ergodic constant −λ, then we provide a class of examples
where the value of the stationary MFG minimization problem is strictly greater than −λ.
This will imply that the trajectories of the time-dependent MFG system do not converge to
static equilibria.

Introduction

Mean Field Games were first introduced by Lasry and Lions [24, 25] and, simultaneously, by
Huang, Caines and Malamhé [22]. This theory is a branch of the broader theory of Dynamic
Games and it is devoted to those models where infinitely many players interact strategically
with each other.

In many cases the Nash equilibria of those games can be analyzed through the solutions of the,
so called, MFG system

−∂tu−4u+H(x,Du) = F (x,m) in Rd × [0, T ]

−∂tm+4m+ div(mDpH(x,Du)) = 0 in Rd × [0, T ]

m(t) = m0, u(T, x) = uT (x) in Rd.

with unknown the couple (u,m). We can think at m(t) as the distribution of players at time t
and u(t, x) as the value function of any infinitesimal player starting from x at time t.

The aim of this paper is to shed some light on the long time behavior of potential MFG when
monotonicity is not in place. The long time behavior and the existence of solutions which are
periodic in time have been subject of several papers starting from [26] and the Mexican wave
model in [21] to more recent results in [7, 10, 11, 20], but in these papers either monotonicity was
assumed or the MFG was not of potential type. Cirant and Nurbekyan were the first to recently
provide some results in the direction of periodic solutions for non monotone MFG. Cirant in
[13] suggested the existence of non monotone configurations under which oscillatory behaviors
were to be expected. Afterwards in [14], with Nurbekyan, they proved, through bifurcation
methods, the existence of a path of branches which corresponds to a periodic trajectory. The
main difference with our work is the choice of the class of solutions. In our case we look at paths
which are energy minimizers whereas, in their, it might not be the case.
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1



Potential MFG are those games whose MFG system can be derived as optimality condition of
the following minimization problem

U(T,m0) = inf
(m,w)

∫ T

0

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt,

where (m,w) verifies the Fokker Plank equation −∂tm+4m+ divw = 0 with m(0) = m0 and
the coupling function F in the MFG system is the derivative with respect to the measure of
F . These games have been largely studied (see Lasry and Lions [25] for existence results and,
among others [9, 4, 28] for further properties) but, so far, not much is known regarding their
long time behavior outside the assumption of monotonicity, where Cardaliaguet, Lasry, Lions
and Porretta [10] proved the convergence to the ergodic system{

−λ̄−4u+H(x,Du) = F (x,m) in Td

4m+ div(mDpH(x,Du)) = 0 in Td.

We show that in general this is not the case, even in the very regular setting of non local coupling.
We look at the problem from the point of view of weak KAM theory. The link between the two
theories is not new and it was already proposed by Cardaliaguet [7] in the first order monotone
case, even though in a different manner.

The paper is divided in three sections. In the first one we prove the convergence of T−1U(T, ·)
when T goes to infinity. The method we use is directly inspired by Lions, Papanicolaou, and
Varadhan [27]: instead of looking directly at limT T

−1U we define the infinite horizon, discounted
problem

Vδ(m0) = inf
(m,w)

∫ ∞
0

e−δt
∫
Td
H∗
(
x,−w(t)

m(t)

)
dm(t) + F(m(t))dt

and we prove that limδ δVδ(·) = −λ when δ → 0+and that this limit is uniform with respect to
the initial distribution. A key assumption is the boundedness of the second derivative of F (x,m)
with respect to the state variable. This gives uniform semiconcavity estimates of the solutions
of the MFG system associated to the discounted minimization problem. The existence of the
limit limδ δVδ(·) implies the existence of the limit limT T

−1U and the two must coincide.

As byproduct, we have the existence of a corrector function χ on the space of measures which
enjoys the following dynamic programming principle

χ(m0) = inf
(m,w)

(∫ t2

t1

∫
Td
H∗
(
x,−w(t)

m(t)

)
dm(s) + F(m(s))ds+ χ(m(t2))

)
+ λ(t2 − t1).

The second section is devoted to the study of the set of corrector functions. A corrector is any
continuous function on the space of measures which verifies the dynamic programming principle
above. Both the terminology and the techniques are borrowed from weak KAM theory, in
particular we rely on Fathi’s book [19], along with his seminal papers [16, 17, 18]. In principle,
as in the standard weak KAM theory, the corrector functions verify an HJB equation in the
space of probability measure. In this work nothing is said about this property which is the
subject of a paper that is still in progress.

Particular interest is given to the projected Mather set which is the set of probability measures
contained in a calibrated curve. We say that (m̄, w̄) is a calibrated curve associated to a corrector
function χ if, for any t1, t2 ∈ R, (m̄, w̄) is optimal for the dynamic programming principle, that
is

χ(m̄(t1)) =

∫ t2

t1

∫
Td
H∗
(
x,− w̄(t)

m̄(t)

)
dm̄(s) + F(m̄(s))ds+ χ(m̄(t2)) + λ(t2 − t1).
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These curves play a fundamental role to understand the long time behavior of these MFG. They
are indeed the attractors of the dynamics which minimize the discounted, infinite horizon MFG.

In the third section we focus on the relation between the limit value λ and the ergodic value λ̄,
associated to the stationary MFG, defined by

−λ̄ = inf
(m,w)

∫
Td
H∗
(
x,−w

m

)
dm+ F(m).

We propose two examples which highlight how much important it is the structure of the coupling
function F (x, ·) in the dynamic of potential MFG. In the first example we impose monotonicity
and we recover part of the results in [10]. In this case the limit value and the ergodic one
coincide.

On the other hand, in the second example, the minimization problems are no longer convex and
we can prove that λ > λ̄. This means that it is not possible that the MFG system converges
to a stationary equilibrium. The fact that λ > λ̄ implies that the energy of the finite horizon
game goes below the energy of the stationary one. Looking at the projected Mather set we can
say even more. As this set is compact and it can not contain any stationary curve, calibrated
curves can not even approach any static configuration.
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4.1.
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Assumptions and definitions

We work on the d−dimensional flat torus Td = Rd/Zd to avoid to deal with boundary conditions
and to set the problem on a compact domain.

Notation: We denote by P(Td) the set of Borel probability measures on Td. This is a compact,
complete and separable set when endowed with the Monge-Kantorovich distance d(·, ·). We
define M(Td;Rd) the set of Borel vector valued measures w with finite mass |w|. If mt is a
time dependent probability measure on Td, then L2

m([0, T ] × Td) is the set of m-measurable
functions f such that the integral of |f |2dmt over [0, T ]× Td is finite. Analogously for L2

m(Td)
and L2

m(Td;Rd), where in the latter case we consider vector valued functions.

We use throughout the paper the notion of derivative for functions defined on P(Td) introduced
in [8]. We say that Φ : P(Td)→ R is C1 if there exists a continuous function δΦ

δm : P(Td)×Td → R
such that

Φ(m1)− Φ(m2) =

∫ 1

0

∫
Td

δΦ

δm
((1− t)m1 + tm2, x)(m2 −m1)(dx)dt, ∀m1,m2 ∈ P(Td).

As this derivative is defined up to an additive constant, we use the standard normalization∫
Td

δΦ

δm
(m,x)m(dx) = 0.

Assumptions: We impose the following assumptions on the hamiltonian H and the coupling
function F so that we can derive uniform estimates on the solutions of the MFG system.
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1. H : Td × Rd → R is of class C2, p 7→ DppH(x, p) is Lipschitz continuous, uniformly with
respect to x. Moreover there exists C̄ > 0 that verifies

C̄−1Id ≤ DppH(x, p) ≤ C̄Id, ∀(x, p) ∈ Td × Rd (1)

and θ ∈ (0, 1), C > 0 such that the following conditions hold true

|DxxH(x, p)| ≤ C(1 + |p|)1+θ, |Dx,pH(x, p)| ≤ C(1 + |p|)θ, ∀(x, p) ∈ Td × Rd. (2)

2. F : P(Td)→ R is of class C2. Its derivative F : Td × P(Td)→ R is twice differentiable in
x and D2

xxF is bounded. Examples of non monotone coupling functions which verify such
conditions can be found in Lemma 4.2 and Lemma 4.3.

We recall that, if µ, ν ∈ P(Td), the 1-Wasserstein distance is defined by

d(µ, ν) = sup

{∫
Td
φ(x) d(µ− ν)(x)

∣∣∣∣ continuous φ : Td → R, Lip(φ) ≤ 1

}
.

Minimization Problems: Under the above assumptions, we can introduce two minimization
problems. Each one of those will be proposed in two different but equivalent forms. The first
one is

U(T,m0) = inf
(m,α)

∫ T

0

∫
Td
H∗(x, α)dm(t) + F(m(t))dt, m0 ∈ P(Td)

where m ∈ C0([0, T ],P(Td)), α ∈ L2
m([0, T ] × Td,Rd) and the following equation is verified in

sense of distribution {
−∂tm+4m+ div(mα) = 0 in [0, T ]× Td

m(0) = m0 in Td.
(3)

Equivalently (see [4] for more details),

U(T,m0) = inf
(m,w)∈ET2 (m0)

∫ T

0

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt, m0 ∈ P(Td)

where ET2 (m0) is the set of time dependent Borel measures (m(t), w(t)) ∈ P(Td) ×M(Td;Rd)
such that m ∈ C0([0, T ],P(Td)), w is absolutely continuous with respect to m, its density dw/dm
belongs to L2

m([0, T ]×Td) and −∂tm+4m− divw = 0 is verified in sense of distributions with
initial condition m(0) = m0.

The second minimization problem reads

Vδ(m0) = inf
(m,α)

∫ ∞
0

e−δt
∫
Td
H∗(x, α)dm(t) + F(m(t))dt, m0 ∈ P(Td)

where δ > 0, m ∈ C0([0,+∞),P(Td)), α ∈ L2
m,δ([0,+∞)×Td,Rd), that is L2

m with weight e−δt,

and (m,α) verifies (3) in [0,+∞)× Td. Equivalently, Vδ can be defined as

Vδ(m0) = inf
(m,w)∈Eδ2 (m0)

∫ +∞

0
e−δt

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt, m0 ∈ P(Td)

(4)
where Eδ2 (m0) is defined as E2(m0) with the only difference that we ask dw/dm to be L2 in
[0,+∞)× Td with respect to e−δtm(t). For convenience we introduce the functional on E2(m0)

Jδ(m0,m,w) =

∫ +∞

0
e−δt

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt,
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so that Vδ(m0) = inf(m,w) J(m0,m,w).

We also define the ergodic value λ̄ as follows

−λ̄ = inf
m,α

∫
Td
H∗(x, α)dm+ F(m) (5)

where (m,α) ∈ P(Td)× L2
m(Td;Rd) verifies in sense of distribution 4m+ div(mα) = 0 in Td.

Or, equivalently,

−λ̄ = inf
(m,w)∈E

∫
Td
H∗
(
x,− dw

dm
(x)

)
dm(x) + F(m) (6)

where E is the set of (m,w) ∈ P(Td) ×M(Td;Rd) such that w is absolutely continuous with
respect to m, its density dw/dm belongs to L2

m(Td) and 4m − divw = 0 is verified in sense of
distributions.

Throughout the paper we will use the constant C > 0 which may change from line to line.

1 Ergodic limit value

1.1 Minimizers and dynamic programming principle for Vδ

We start proving that the minimization problem (4) admits a minimizer and we also give a
characterization of such a minimizer in terms of solutions of the associated MFG system.

Proposition 1.1. For any δ > 0 and any m0 ∈ P(Td), Vδ(m0) admits a minimizer (m,w).
Moreover there exists u ∈ C1,2([0,+∞)× Td) and m ∈ C0([0,+∞)× P(Td)) solutions of

−∂tu−4u+ δu+H(x,Du) = δF
δm(x,m) := F (x,m) in Td × [0,+∞)

−∂tm+4m+ div(mDpH(x,Du)) = 0 in Td × [0,+∞)

m(0) = m0, u ∈ L∞([0,+∞)× Td)
(7)

such that w = −mDpH(x,Du).

Proof. First of all we show that Vδ(m0) is finite and that it is bounded by a constant Kδ

independent of m0. We can always use as competitor for Vδ(m0) the couple (µ, 0) where µ is
the solution of {

−∂tµ+4µ = 0 in Td × [0,+∞)

µ(0) = m0 in Td.

Given that F is bounded, if we use (µ, 0) as a competitor, we get

Vδ(m0) ≤
∫ +∞

0
e−δtH∗(x, 0) + sup

m
F(m)dt := Kδ.

We fix a minimizing sequence (mn, wn). If we use (1), we have that

∫ +∞

0

∫
Td
e−δt|wn(t, x)|dxdt ≤Mδ

where Mδ is a fixed constant that does not depend on m0 and n. Hence, for any fixed k > 0∫ k

0

∫
Td
|wn(t, x)|dxdt ≤Mδe

δk. (8)
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Following Lemma 3.1 in [9], we get that for any t, s ∈ [0, k]

d(mn(t),mn(s)) ≤ Ckδ |t− s|+ C|t− s|1/2, (9)

where Ckδ depends only on δ and k. Inequality (9) tells us that {mn}n is uniformly bounded
in C1/2([0, k),P(Td)). We have then that mn converges uniformly on any compact set to a
limit m̄ ∈ C0([0,+∞),P(Td)). Thanks to the bounds (8) we also know that wn converges in
M(I × Td;Rd) to a certain w̄ on any bounded interval I ⊂ [0,+∞).

As the couple (m̄, w̄) belongs to Eδ2 (m0) we have that Jδ(m0, m̄, w̄) < +∞. This means that

Jδ(m(0), m̄, w̄) = lim
k→+∞

∫ k

0
e−δt

∫
Td
H∗
(
x,− dw̄(t)

dm̄(t)
(x)

)
dm̄(t) + F(m̄(t))dt

Note also that the functional is bounded from below, so there exists a constant Cδ such that,
for any (m,w) ∈ Eδ2 ,

∫ +∞

k
e−δt

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt

≥ e−δk
∫ +∞

0
e−δt inf

(x,p)∈Td×Rd
H∗(x, p) + inf

m
F(m)dt = e−δkCδ.

Therefore,

Jδ(m0,mn, wn) ≥
∫ k

0
e−δt

∫
Td
H∗
(
x,− dwn(t)

dmn(t)
(x)

)
dmn(t) + F(mn(t))dt+ e−δkCδ.

Thanks to the convergence of (mn, wn) on compact sets, we can pass to the limit in n and we
get

Vδ(m0) ≥
∫ k

0
e−δt

∫
Td
H∗
(
x,− dw̄(t)

dm̄(t)
(x)

)
dm̄(t) + F(m̄(t))dt+ Cδe

−δk.

Taking the limit on k we finally get that Vδ(m0) ≥ J(m0, m̄, w̄).

The proof of the second statement relies again on classic tools for potential MFG (see for instance
[9] or [4]). Using the convexity of H∗ and the regularity of F , we can easily show that if (m̄, w̄)
is a minimizer for Vδ(m0) then it must be a minimizer for J̄δ : Eδ2 (m0)→ R, which reads

J̄δ(m,w) =

∫ +∞

0
e−δt

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F (x, m̄(t))dm(t)dt.

As J̄δ is convex we can define its dual problem (in the sense of Fenchel-Rockafellar)

inf
u∈C2

b ([0,+∞)×Td)

{
−
∫
Td
u(0, x)dm0(x) where− ∂tu−4u+ δu+H(x,Du) ≤ F (x, m̄)

}
.

Thanks to the comparison principle, the minimizer ū is the unique solution of −∂tū−4ū+ δū+
H(x,Dū) = F (x, m̄) in C2

b ([0,+∞)× Td).
If we sum the two problems we get∫ +∞

0
e−δt

∫
Td
H∗
(
x,− dw̄(t)

dm̄(t)
(x)

)
dm̄(t) + F (x, m̄(t))dm̄(t)dt−

∫
Td
φ(0, x)dm0(x) = 0

6



Using the differential constraints of (m̄, w̄) and ū we get that w̄ = −m̄DpH(x,Dū) m̄-a.e.. This
means that w̄ is bounded that in turn implies that m̄ > 0 so that w̄ = −m̄DpH(x,Dū) is verified
everywhere.

�

We now state without proof the dynamic programming principle for Vδ. The proof relies on
standard arguments in optimal control theory (see for instance [5]).

Lemma 1.2. The function Vδ verifies the dynamic programming principle, which reads

Vδ(m0) = inf
(m,α)∈Eδ2 (m0)

(∫ t

0
e−δs

∫
Td
H∗(x, α)dm(s) + F(m(s))ds+ e−δtVδ(m(t))

)
.

1.2 Existence of a corrector

The main result of this section is Theorem 1.5 where show that the function Vδ(·) is uniformly
Lipschitz with respect to δ. As a consequence, we have Proposition 1.6 which claims on one side
that the limit limδ→0 δVδ(m0) is well defined and it is uniform in m0 and, on the other, that,
up to subsequence, also Vδ(·)−Vδ(m0) converges to a continuous function χ. In Lemma 1.7 we
prove that χ enjoys the dynamic programming principle and, therefore, we have the existence
of a corrector function.

The idea behind the proof of Theorem 1.5 is the following: we want to prove that there exists
a constant K̄ > 0 independent of δ, such that

|Vδ(m0
2)− Vδ(m0

1)| ≤ K̄d(m0
1,m

0
2).

We fix an horizon T > 0, to be chosen later, and we take (m1(·), α1(·)) a minimizer for Vδ(m0
1).

We consider any couple (m2, α2) such that (3) is verified in [0, T ], m2(0) = m0
2, m2(T ) = m1(T )

and m2 ≡ m1, α2 ≡ α1 in [T,∞). The couple (m2, α2) is admissible and

Vδ(m0
2) ≤

∫ T

0
e−δs

∫
Td
H∗(x, α2)dm2(s) + F(m2(s))ds+ e−δTVδ(m1(T )). (10)

Therefore,

Vδ(m0
2)− Vδ(m0

1) ≤
∫ T

0
e−δt

∫
Td
H∗(x, α2)dm2(t)−H∗(x, α1)dm1(t) + F(m2(t))−F(m1(t))dt.

In order to prove the continuity of Vδ with respect to the initial data we need to introduce some
standard estimates on the solutions of the MFG system (7).

Lemma 1.3. There exists C > 0 independent of m0, T, δ such that, if (u,m) is a classical
solution of (7), then

• ‖Du‖L∞([0,+∞)×Td) ≤ C

• |D2u(s, ·)| ≤ C for any s ∈ [0,+∞)

• d(m(s),m(l)) ≤ C|l − s|1/2 for any l, s ∈ [0,+∞)

Consequently, we also have that |∂tu(s.·)| ≤ C for any s ∈ [0,+∞).

7



Proof. The proof follows closely the one proposed in [12] and it relies on semiconcavity estimates
for the value function u. We recall that if φ ∈ C∞(Td) then

‖Dφ‖L∞(Td) ≤ d
1
2 sup
x∈Td, |ξ|≤1

D2φ(x)ξ · ξ. (11)

We first prove the result for uT : [0, T ]× Td → R, solution of
−∂tu−4u+ δu+H(x,Du) = F (x,m) in Td × [0, T ]

−∂tm+4m+ div(mDpH(x,Du)) = 0 in Td × [0, T ]

m(t) = m0, u(T, x) = 0 in Td

We consider ξ ∈ Rd, |ξ| ≤ 1, that maximizes supt,xD
2uT (t, x)ξ · ξ = M and we look at the

equation solved by w(t, x) = D2uT (t, x)ξ · ξ deriving twice in space the HJB equation in (7):

−∂tw −4w + δw +DξξH(x,Du) + 2DξpH(x,Du) ·D2uξ

+DppH(x,Du)D2uξ ·D2uξ +DpH(x,Du) ·Dw = D2
ξξF (x,m).

The maximum of w can be achieved either at t = T , but using the terminal condition of uT we
get M = 0, or at a point (s, x) in the interior. In this case, if we use hypothesis (1) and (2) on
H and the boundedness of D2

xxF , then, at the maximum (s, x), we get the following inequality

δM − C(1 + |Du|)1+θ − 2C(1 + |Du|)θ|D2uξ|+ C̄−1|D2uξ|2 ≤ C.

By Cauchy-Schwarz inequality we have that M = w(s, x) ≤ |D2u(s, x)ξ|. If we also plug (11)
we get, for a possible different constant C

−C(1 +M)1+θ − 2C(1 +M)2θ + C̄−1M2 ≤ C.

Given that θ < 1 the above inequality ensures that M is bounded by a constant that does not
depend on m0, δ and T . The bound on ‖DuT ‖L∞([0,T ]×Td) follows from (11). Now that we

proved that DuT is bounded so that Theorem V 5.4 in [23] gives us the boundedness of D2uT .
Note that the estimates on DuT and D2uT imply directly from the HJB equation that ∂tu

T is
bounded as well. As all the estimates are independent of T , if we look at the sequence of uT we
have that, on any compact set, uT is uniformly bounded and continuous. This means that uT

converges to u solution of the HJB equation on [0,+∞) and the same estimates hold true for u.

Furthermore, it implies that also DpH(x,Du), the drift of the Fokker Planck equation, is uni-
formly bounded. Standard results on SDEs (for instance Lemma 3.4 in [6]) ensure the Holder
continuity of s 7→ m(s) uniformly with respect to m0 and δ. �

We now fix m0
1, m0

2 ∈ P(Td). According to (10) we have

Vδ(m0
2)− Vδ(m0

1) ≤∫ T

0
e−δs

∫
Td
H∗(x, α2)dm2(s)−H∗(x,DH(x,Du1))dm1(s) + F(m2(s))−F(m1(s))ds, (12)

where (u1,m1) is a solution of (7) related to a minimizer (m1, w1) of Vδ(m0
1) that we found in

Proposition 1.1. The couple (m2, α2) is such that (3) is verified in [0, h + τ ] with m2(0) = m0
2

8



and m2(T ) = m1(T ). The key point to prove the continuity of Vδ is to construct a suitable
(m2, α2). We first consider m̃2 solution of{

−∂tm̃2 +4m̃2 + div(m̃2DpH(x,Du1)) = 0 in [0, T ]× Td

m̃2(0) = m0
2

(13)

and then we set

m2(s, x) =


m̃2(s, x), if s ∈ (0, h]
τ+h−s
τ m̃2(s, x) + s−h

τ m1(s, x), if s ∈ [h, h+ τ ]

m1(s, x) if s ∈ [τ + h, T ],

(14)

where h and τ will be chosen later. Note that, thanks to the boundedness of their drifts,
Corollary 6.3.2 in [3] ensures that m̃2 and m1 have a density for any s > 0 . What we still need
is to define α2 in [h, h + τ ] . We compute the equation verified by m2 in [h, h + τ ] and, using
(7) and (13), we get

∂tm2 −4m2 =
τ + h− s

τ
div (m̃2DpH(x,Du1)) +

s− h
τ

div (m1DpH(x,Du1)) +
m1 − m̃2

τ

that is, by linearity,

∂tm2 −4m2 = div(m2DpH(x,Du1)) +
m1 − m̃2

τ
.

Let ζ : [0, h+ τ ]× Td → R be the solution to{
4ζ = m1 − m̃2, in [0, h+ τ ]× Td∫
Td ζ(s, x) = 0.

(15)

We can now define the drift α2 as follows: α2 = DpH(x,Du1) + Dζ
m2 τ

in [h, h + τ ] and α2 =
DpH(x,Du1) elsewhere. As (m2, α2) verifies the Fokker Plank equation by construction with
m2(0) = m0

2, it is admissible. For the continuity of Vδ we still need estimates on the drift α2.
We prove those estimates in the next lemma using the regularity of the solutions of the adjoint
of the Fokker-Plank equation.

Lemma 1.4. For any time s < h + τ , there exists a constant Ks > 0, bounded for s > ε > 0,
such that

‖Dζ(s, ·)‖L2(Td) ≤ Ksd(m0
1,m

0
2).

The constant Ks is independent of m0
1, m0

2.

Proof. We first note that, if we multiply (15) by ζ and we use Cauchy-Schwarz inequality on
the right hand side, we get

‖Dζ(s)‖2L2(Td) ≤ ‖m1(s)− m̃2(s)‖L2(Td)‖ζ(s)‖L2(Td).

Now Pointcaré-Wirtinger inequality gives us

‖Dζ(s)‖L2(Td) ≤ C‖m1(s)− m̃2(s)‖L2(Td). (16)

If we define µ(s) = m1(s)− m̃2(s) then µ verifies the following equation{
−∂tµ+4µ+ div(µDpH(x,Du1)) = 0 in [0, s]× Td

µ(0) = m0
1 −m0

2 in Td.
(17)
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We now fix a φ̄ ∈ L2(Td) and we consider the adjoint backward equation{
−∂tφ−4φ+DpH(x,Du1)Dφ = 0 in [0, s]× Td

φ(s, x) = φ̄(x) in Td.
(18)

Given that DpH(x,Du) is bounded, if φ is the solution of (18), then there exists a constant Ks

(Theorem 11.1 in [23]), such that

‖φ(0)‖C1+α(Td) ≤ Ks‖φ̄‖L2(Td). (19)

As the equation (18) is the adjoint of (17),∫
Td
φ(s)µ(s)dx =

∫
Td
φ(0)µ(0)dx.

We now plug in the initial and terminal conditions and we estimate the righthand side as follows∫
Td
φ̄(x)(m1(s)(dx)− m̄2(s)(dx)) =

∫
Td
φ(0, x)(m0

1(dx)−m0
2(dx)) ≤ ‖Dφ(0)‖L∞d(m0

1,m
0
2).

If we use the interior estimate (19) on the righthand side and we take the supremum over
‖φ̄‖L2 ≤ 1, we finally end up with

‖m1(s)− m̃2(s)‖L2 ≤ Ksd(m0
1,m

0
2).

If we plug the last inequality into (16), we get the result. �

Theorem 1.5. The family of functions {Vδ(·)}δ is uniformly Lipschitz continuous.

Proof. Let α1(t, x) = DpH(x,Du1) for any t ∈ [0, h + τ ]. We consider the same (m2, α2) that

we defined earlier: m2 is defined in (14), α2 = α1 + Dζ
m2 τ

in [h, h + τ ] and α2 = α1 elsewhere,
where ζ solves (15). According to (12) we have

Vδ(m0
2)− Vδ(m0

1) ≤
∫ h

0
e−δs

∫
Td
H∗(x, α1)d(m2 −m1)+ (20)

+

∫ h+τ

h
e−δs

∫
Td
H∗(x, α2)dm2 −H∗(x, α1)dm1 +

∫ h+τ

0
F(m2(s))−F(m1(s))ds.

Using the convexity of H, we can estimate the term H∗(x, α2(s)) for any time s ∈ [h, h+ τ ] as
follows ∫

Td
H∗(x, α2(s))dm2(s) ≤

∫
Td
H∗(x, α1(s))dm2(s) +DpH

∗(x, α2(s)) · Dζ(s)

τ
dx (21)

≤
∫
Td
H∗(x, α1(s))dm2(s) +

1

τ
|α1(s)||Dζ(s)|+ C̄

|Dζ(s)|2

τ2m2(s)
dx,

where in the last inequality we add and subtract α1(s) ·Dζ/τ and we used the growth condition
(1) on DppH.

We recall that, as the drift DpH(x,Du1) is continuous and bounded, according to Theorem 2.2.1
[2], the measure m1 has a density m1(s, x) for any s > 0, then, using Theorem 2.5.1 in [2], for
any l ∈ (0, s), we have

m1(s, x) > m1(l, x0)e−Q(1+ 1
s−l+

1
l
),

10



where Q does not depend on m0
1, l and s. As Td is bounded, for any l > 0, there exists a x0

such that m1(l, x0) > 1/2. Given that the same holds true for m̃2 then, for any s ∈ [h, h + τ ],
the definition of m2 in (14) implies that

m2(s, x) >
1

2
e−Q(1+ 1

s−l+
1
l
) ∀l ∈ (0, h).

For l = h/2 we obtain that the infimum, with respect to s, in the righthand side is achieved
when s = h. Thus,

m2(s, x) >
1

2
e−Q(1+ 4

h
). (22)

We can now plug (21) and (22) into (20), which becomes

Vδ(m0
2)− Vδ(m0

1) ≤
∫ h+τ

0
e−δs

∫
Td
H∗(x, α1)d(m2 −m1) + F(m2(s))−F(m1(s))ds

+

∫ h+τ

h
e−δs

∫
Td

C2

τ
|Dζ|+ 2

C

τ2
|Dζ|2eQ(1+ 4

h
)dxds.

Using the bounds on Du1 found in Lemma 1.3, Lemma 1.4 and the regularizing property of F ,
we get

Vδ(m0
2)− Vδ(m0

1) ≤

C

∫ h+τ

0
d(m2(s),m1(s))ds+

∫ h+τ

h
Cd(m0

1,m
0
2)Ks + 2

C

τ2
d2(m0

1,m
0
2)eQ(1+ 4

h
)K2

sds ≤

C

∫ h+τ

0
d(m2(s),m1(s))ds+ Cd(m0

1,m
0
2)eQ(1+ 4

h
)

∫ h+τ

h

(
1 +

Ks

τ2
d(m0

1,m
0
2)

)
Ksds ≤

C

∫ h+τ

0
d(m2(s),m1(s))ds+

C

τ2
d(m0

1,m
0
2)eQ(1+ 4

h
)

∫ h+τ

h
K2
sds. (23)

In the last inequality we neglected the terms which go to infinity slower than K2
s and which

vanish faster than d(m0
1,m

0
2). Note that the constant Ks might explode when s goes to 0 but,

otherwise, it is bounded. Therefore, as h > 0, there is no problem of integrability for the term∫ h+τ
h K2

s .

We now focus on the first term in the above inequality. In order to estimate d(m1(s),m2(s)),
we have to look at the SDEs verified by the stochastic processes whose laws are m1 and m2. We
first recall that an equivalent formulation of the 1−Wasserstein distance between two probability
measures µ and ν is

d(µ, ν) = inf
γ

{∫
Td×Td

|x− y|dγ(x, y) s.t. π1γ = µ, π2γ = ν

}
. (24)

We consider a standard probability space (Ω,G,P) and two random variables Z1, Z2 such that
L(Zi) = m0

i and E
[∣∣Z2 − Z1

∣∣] = d(m0
1,m

0
2). Therefore, m1 and m2 are the laws of the processes

defined by of the following SDEs{
dXi

s = αi(t,Xs)ds+
√

2dBs

Xi
0 = Zi.

Using the definition of distance in (24), we have

d(m1(s),m2(s)) ≤ E
[∣∣X2

s −X1
s

∣∣] ≤ E
[∣∣Z2 − Z1

∣∣+

∫ s

0

∣∣α2(l,X2
l )− α1(l,X1

l )
∣∣ dl] .

11



We first split
∫ h+τ

0 d(m2(s),m1(s))ds in the sum of the integrals on the intervals [0, h] and
[h, h+ τ ]. For any s ∈ [0, h], α1(l, x) = DpH(x,Du1(t, x)) = α2(l, x), then

d(m1(s),m2(s)) ≤ d(m0
1,m

0
2) + E

[∫ s

0

∣∣DpH(X2
l , Du1(l,X2

l ))−DpH(X1
l , Du1(l,X1

l ))
∣∣] .

Hypothesis (1), (2) and Lemma 1.3 ensure that both p→ DpH(x, p) and x→ DpH(x,Du1(l, x))
are Lipchitz continuous, hence

d(m1(s),m2(s)) ≤ d(m0
1,m

0
2) + C

∫ s

0
d(m1(l),m2(l))dl.

If we apply Gronwall’s inequality, then for any s ∈ [0, h]

d(m1(s),m2(s)) ≤ d(m0
1,m

0
2)eCs. (25)

We now look at
∫ h+τ
h d(m1(s),m2(s))ds. According to the definition of α2, for s ∈ [h, h+ τ ], we

have
d(m1(s),m2(s)) ≤ d(m1(h),m2(h))+

+E
[∫ s

h

∣∣∣∣DpH
(
X2
l , Du1(l,X2

l )
)

+
Dζ(l,X2

l )

τm2(l,X2
l )
−DpH(X1

l , Du1(l,X1
l ))

∣∣∣∣] . (26)

Using (25) on d(m1(h),m2(h)) and splitting the last term, we get that (26) is smaller than

d(m0
1,m

0
2)eCh+E

[∫ s

h

∣∣DpH
(
X2
l , Du1(l,X2

l )
)
−DpH(X2

l , Du1(l,X1
l ))
∣∣]+E

[∫ s

h

∣∣∣∣ Dζ(l,X2
l )

τm2(l,X2
l )

∣∣∣∣] .
If we use again that x→ DpH(x,Du1(l, x)) is Lipschitz continuous, we get

d(m1(s),m2(s)) ≤ d(m0
1,m

0
2)eCh +

C

τ
E
[∫ s

h

∣∣∣∣Dζ(l,X2
l )

m2(l,X2
l )

∣∣∣∣]+

∫ s

h
d(m1(l),m2(l)). (27)

Thanks to estimates (22) on m2 we can use Tonelli’s theorem and switch the integral with the
expectation. Using Lemma 1.4, we eventually have

E
[∫ s

h

∣∣∣∣Dζ(l,X2
l )

m2(l,X2
l )

∣∣∣∣] =

∫ s

h

∫
Td
|Dζ(l, x)| dx ≤ d(m0

1,m
0
2)

∫ s

h
Kldl.

If we plug the last inequality into (27), we can use again Gronwall’s inequality so that for
s ∈ [h, h+ τ ]

d(m1(s),m2(s)) ≤
(
eCs +

es−h

τ

∫ s

h
Kldl

)
d(m0

1,m
0
2). (28)

We can now suppose h = τ = 1 and plugging (25) and (28) into (23), we finally get that, for a
given constant C depending on all the other ones

Vδ(m0
2)− Vδ(m0

1) ≤

Cd(m0
1,m

0
2)

(∫ 2

0
eCsds+

∫ 2

1
es−1

∫ s

1
Kldlds+ e5Q

∫ 2

1
K2
sds

)
.

We recall that the constant Ks of Lemma 1.4 is bounded when h is not close to 0 (Theorem
11.1 in [23]). The infimum in the expression above is finite and none of the constants therein
depends on δ. Therefore, {Vδ}δ is uniformly K̄-Lipschitz with

K̄ = C

(∫ 2

0
eCsds+

∫ 2

1
es−1

∫ s

1
Kldlds+ e5Q

∫ 2

1
K2
sds

)
.

�
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Proposition 1.6. For any fixed η ∈ P(Td) there exists a subsequence δn → 0, such that Vδn(·)−
Vδn(η) uniformly converges to a function χ : P(Td) → R when n → +∞. Moreover, δnVδn
uniformly converges to a constant −λ

Proof. The continuity proved in Theorem 1.5 ensures the boundedness of Vδ(·)−Vδ(η). Indeed
we have |Vδ(·) − Vδ(η)| ≤ K̄d(·, η). As P(Td) is compact, the right hand side is bounded by a
constant K. Arzelà-Ascoli theorem ensures that there exists a subsequence δn → 0 such that
Vδn(·)− Vδn(η) converges to a continuous function χ.

We now want to prove that δVδ is a bounded function. We fix a measure µ ≡ 1, then we
define the control (m,α) as follows: m(t) = µ and α(t) = 0 for all t ∈ [0,+∞). The control is
admissible, therefore we have

δVδ(µ) ≤ δ(H∗(x, 0) + F(µ))

∫ ∞
0

e−δsds = H∗(x, 0) + F(µ).

Given that H∗ and F are bounded from below, then

δVδ(µ) ≥ δ
(

inf
(x,a)∈Td×Rd

H∗(x, a) + inf
m∈P(Td)

F(m)

)∫ ∞
0

e−δsds = inf
(x,a)

H∗(x, a) + inf
m
F(m).

Therefore, δVδ(µ) is uniformly bounded in δ. If we fix any other measure m0 we can use again
the uniform continuity of Vδ to get that |δVδ(m0)−δVδ(µ)| ≤ δK that in turn tells us that δVδ(·)
is a sequence of uniformly continuous functions. Using again Arzelà-Ascoli theorem we get that
δnVδn uniformly converges to a function Ψ (we can suppose δn to be the same subsequence that
we identified earlier). Moreover, we have |δnVδn(·)− δnVδn(µ)| ≤ δnK. Taking the limit we get
|Ψ(·)−Ψ(µ)| ≤ 0 so that δnVδn converges to the constant function Ψ(µ) := −λ.

�

Lemma 1.7. Dynamic programming principle for χ: for any m0 ∈ P(Td) and t > 0,

χ(m0) = inf
(m,α)

(∫ t

0
H∗(x, α)dm(s) + F(m(s))ds+ χ(m(t))

)
+ λt (29)

where m ∈ C0([0, t],P(Td)), α ∈ L2
m([0, t] × Td,Rd) and the pair (m,α) solves in sense of

distribution −∂tm+4m+ div(mα) = 0 with initial condition m0.

Proof. In Proposition 1.6 we proved the convergence of Vδ(·) − Vδ(η) to χ(·) along the subse-
quence {δn}n, for a fixed measure η. Hereafter, {δn}n and η will be the ones identified in that
proposition.

We know from Proposition 1.1 that, for any δ > 0, there exists a solution (uδ,mδ) to (7) such
that

Vδ(m0) =

∫ t

0
e−δs

∫
Td
H∗(x, αδ)dmδ(s) + F(mδ(s))ds+ e−δtVδ(mδ(t)),

where αδ = DpH(x,Duδ). If we take the expansion of e−δt and we subtract on both sides Vδ(η)
we get

Vδ(m0)−Vδ(η) =

∫ t

0
e−δs

∫
Td
H∗(x, αδ)dmδ(s)+F(mδ(s))ds+(1− tδ+o(tδ))Vδ(mδ(t))−Vδ(η).

(30)
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We recall that the estimates in Lemma 1.3 are uniform in δ hence DpH(x,Duδn) converges
uniformly to a function α. We can now take the limit n→ +∞ and using that Vδn(·)−Vδn(η)→
χ(·) and δnVδn(·)→ −λ, we get

χ(m0) =

∫ t

0

∫
Td
H∗(x, α)dm(s) + F(m(s))ds+ λt+ χ(mt)

In order to show that (α,m) is optimal, we fix a competitor (β, µ). According to the dynamic
programming principle of Vδ, if we plug (β, µ) into (30), we get

Vδ(m0)− Vδ(η) ≤
∫ t

0
e−δs

∫
Td
H∗(x, β)dµ(s) + F(µ(s))ds+ (1− tδ + o(tδ))Vδ(µ(t))− Vδ(η).

Taking again the limit on the subsequence {δn}n we eventually have that

χ(m0) ≤
∫ t

0

∫
Td
H∗(x, β)dµ(s) + F(µ(s))ds+ λt+ χ(µt),

which proves the result.

�

1.3 Convergence of U(t, ·)/t and δVδ(·)

In this section we propose a Tauberian-type result where we prove that the limit of δVδ(·)
coincides with the one of U(t, ·)/t when t→ +∞.

Theorem 1.8. The limit value −λ is uniquely defined and δVδ(·) → −λ does not depend on a
subsequence. Moreover, 1

T U(T, ·) uniformly converges to −λ when T goes to +∞.

Proof. Let {δn}n such that δnVδn → −λ and Vδn(·) − Vδn(η) → χ(·). As χ is a continuous
function on the compact set P(Td), there exists a constant C > 0 such that 0 ≤ χ(m) + C for
any m ∈ P(Td). If (m(t), w(t)) ∈ ET2 (m0), then∫ T

0

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt

≤
∫ T

0

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt+ χ(m(T )) + λT − λT + C.

Taking the infimum over ET2 , the definition of U(T,m0) and the dynamic programming principle
of χ lead to

U(T,m0) ≤ χ(m0)− λT + C.

As the constant C does not depend on m0 and T , if we divide on both sides by T and we take
the limit T → +∞, we get

lim
T→+∞

1

T
U(T,m0) ≤ −λ.

The other inequality is analogous. We just need to take a C2 > 0 such that 0 ≥ χ(m)−C2 and
repeat the same computation.

Note that the limit U(T, ·)/T → −λ is uniform and does not depend on the subsequence δn or
the function χ. Therefore, the limit δVδ is uniquely defined. �
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We conclude the section showing that our limit value λ is never lower than the ergodic one λ̄
defined in (5).

Proposition 1.9. Under the above assumptions, λ ≥ λ̄.

Proof. We know that the convergence of U(·, T )/T is uniform, therefore, if (m,α) is an admissible
couple for the static problem, we can use it as competitor for U(m,T ). So,

1

T
U(T,m) ≤ 1

T

∫ T

0

∫
Td
H∗(x, α)dm+ F(m)dt =

∫
Td
H∗(x, α)dm+ F(m).

If we take the infimum over all admissible static (m,α) we get

1

T
U(T,m) ≤ −λ̄.

Letting T go to +∞, we get the result. �

1.4 An other representation for λ

We can now introduce a third representation for λ, inspired again by classic results on weak
KAM theory (see for instance [16]), which consists in minimizing over paths with fixed endpoints.

Let ΠT (m0,m1) be the set of (m,α) ∈ C0([0,+∞),P(Td)) × L1
m,loc([0,+∞) × Td,Rd) such

that (m,α) solves the usual Fokker-Plank equation −∂tm+4m− div(mα) = 0 with the extra
constraint m(0) = m0 and m(T ) = m1. Note that, due to the smoothing property of the
parabolic constraint, not for every m1 we can find such a path, so ΠT (m0,m1) might be the
empty set.

Proposition 1.10. Let m0, m1 ∈ P(Td). If m1 has a density in H1(Td) and there exists an
ε > 0 such that m1 > ε almost everywhere then

−λ = lim
T→∞

1

T
inf

ΠT (m0,m1)

∫ T

0

∫
Td
H∗(x, α)dm(s) + F(m(s))ds.

Proof. Let m0 and m1 be as above and (m̄, ᾱ) be optimal for U(T,m0). We extend (m̄, w̄) in
[0, T + 1] as follows: for any t ∈ [T, T + 1] we define ᾱ(t, x) = ᾱ(T, x) and m̄(t, x) as the solution
of −∂tm+4m+ div(ᾱm) = 0 with m(T, x) = m̄(T, x). Note that ᾱ is continuous and bounded
in [0, T + 1], therefore, the estimates (22) still apply.

We now define a path from m0 to m1 as follows:

m2(s, x) =

{
m̄(s, x) s ∈ [0, T ]

(T + 1− s)m̄(s, x) + (s− T )m1(x) s ∈ [T, T + 1]
.

Let also ζ(s, x) be solution of −4ζ(s, x) = m1(x)− m̄(s, x) with
∫
T d ζ = 0. We can define the

control

α2(s, x) =

{
ᾱ(s, x) s ∈ [0, T ]

ᾱ(s, x)− (s−T )ᾱ(T,x)m1(x)+Dζ(s,x)+(s−T )Dm1(x)
(T+1−s)m̄(s,x)+(s−T )m1(x) s ∈ [T, T + 1].

The couple (m2, α2) belongs to ΠT (m0,m1). From the definition of U we deduce that

1

T + 1
inf

m∈P(Td)
U(T + 1,m) ≤ 1

T + 1
inf

ΠT+1(m0,m1)

∫ T+1

0

∫
Td
H∗(x, α)dm(s) + F(m(s))ds
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≤ 1

T + 1

∫ T+1

0

∫
Td
H∗(x, α2)dm2(s) + F(m2(s))ds

=
T

T + 1

(
1

T
U(T,m0)

)
+

1

T + 1

∫ T+1

T

∫
Td
H∗(x, α2)dm2(s) + F(m2(s))ds. (31)

If we prove that 1
T+1

∫ T+1
T

∫
Td H

∗(x, α2)dm2(s) + F(m2(s))ds converges to zero we have the
result. Indeed, if we let T go to +∞, according to Theorem 1.8, we have

−λ ≤ lim
T→∞

1

T + 1
inf

ΠT+1(m0,m1)

∫ T+1

0

∫
Td
H∗(x, α)dm(s) + F(m(s))ds ≤ −λ.

We now focus on the last part in (31). Given that F(m2) is uniformly bounded, we look at the
first term. ∫ T+1

T

∫
Td
H∗(x, α2)dm2(s)

≤ C
∫ T+1

T

∫
Td

|ᾱ(T, x)m2(s) + (s− T )ᾱ(T, x)m1(s) +Dζ(s, x) + (s− T )Dm1(s)|2

m2
2(s)

+1 dm2(s)ds

≤ C
∫ T+1

T

∫
Td

(|ᾱ(T, x)m2|+ |ᾱ(T, x)m1|+ |Dζ(s, x)|+ |Dm1|)2

m2
dxds+ C (32)

If we use the hypothesis on m1 and the estimates (22) on m̄ with h = T + 1 and t = T − 1, we
get that m2 ≥ τ for a certain τ > 0 independent of T . Lemma 1.3 ensures that ᾱ is uniformly
bounded by a constant K independent of T . Therefore, (32) is lower than

1

τ

(
K‖m2‖L2(Td×[T,T+1]) +K‖m1‖L2(Td) + ‖Dζ‖L2(Td×[T,T+1]) + ‖Dm1‖L2(Td)

)2
+ C.

Thanks again to the boundedness of ᾱ, standard result on parabolic equations tell us that m̄(s)
(which is defined at the beginning of the proof) is uniformly bounded from above in [T, T + 1].
Hence, ‖Dζ‖L2 ≤ C‖m1‖L2 and ‖m2‖L2(Td×[T,T+1]) ≤ C‖m1‖L2(Td) + C2. Thus∫ T+1

T

∫
Td
H∗(x, α2)dm2(s) ≤M‖m1‖2H1(Td) +M2

where neither M nor M2 depends on T . Dividing by T + 1 and taking the limit completes the
proof. �

2 Projected Mather set and Calibrated curves

2.1 Calibrated Curves

We borrow again some tools and some notations from the weak KAM theory (see Chapter 4
of [19]) and in particular we will focus on the notion of calibrated curve. Before introducing
this notion, we look back to the dynamic programming principle verified by corrector functions,
which reads

χ(m0) = inf
(m,w)∈Et2(m0)

(∫ t

0
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds+ χ(m(t))

)
+ λt.

As the function χ is continuous, standard arguments show that, for any fixed m0 ∈ P(Td) and
t > 0, there exists a solution (m̄, w̄) ∈ E t2(m0) to the minimization problem described above.
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Therefore, extending (m̄, w̄) from m̄(t), it is easy to construct a new trajectory (m̄, w̄), defined
on [0,+∞) such that, for any τ > 0, it verifies

χ(m0) = λτ +

∫ τ

0

∫
Td
H∗
(
x,− w̄(s)

m̄(s)

)
dm̄(s) + F(m̄(s))ds+ χ(m̄(τ)).

We now prove that any of these trajectories is associated to a MFG system.

Proposition 2.1. Let m0 ∈ P(Td), χ be a corrector function and (m̄, w̄) be a minimizing
trajectory on [0,+∞) defined as above. Then, m̄ ∈ C1,2((0 + ∞) × Td) and there exists a
function ū ∈ C1,2([0,+∞)× Td) such that w̄ = −m̄DpH(x,Dū) where (m̄, ū) solves

−∂tu−4u+H(x,Du) = F (x,m) in [0,+∞)× Td

−∂tm+4m+ div(mDpH(x,Du)) = 0 in [0,+∞)× Td

m(0) = m0.

Remark 2.2. Due to the lack of regularity of χ we can not derive the MFG system as optimal
condition for the minimization problem (33). Indeed, if χ were C1 we would derive typical MFG
system with terminal condition u(t) = δχ(m(t))/δm but this latter term is not well defined.

Proof. The proof relies on the same arguments as in Proposition 1.1. Let (m̄, w̄) be as in the
hypothesis. Then it verifies the Fokker-Plank equation and it is a minimizer of the problem

inf
(m,w)∈Et2(m0)

∫ t

0

∫
Td
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds+ χ(m(t)). (33)

As (m̄, w̄) is optimal for the minimization problem above, then it must be also optimal for the
following MFG planning problem

inf
(m,w)∈Π(m0,m̄(t))

∫ t

0

∫
Td
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds,

where Π(m0, m̄(t)) is the set of (m,w) ∈ E t2(m0) that solves the usual Fokker-Plank equation
on [0, t] with the constraints m(0) = m0 and m(t) = m̄(t). We want to prove that w̄ =
−m̄DpH(x,Dū) where (m̄, ū) solves in classical sense

−∂tu−∆u+H(x,Du) = F (x,m) in [0, t]× Td

∂tm−∆m− div(mDpH(x,Du)) = 0 in [0, t]× Td

m(0) = m0, m(t) = m̄(t).

We argue again as in Proposition 1.1. According to Proposition 3.1 in [4], (m̄, w̄) minimizes also
the following convex problem

inf
(m,w)∈Π(m0),m̄(t))

∫ t

0

∫
Td
H∗
(
x,−w

m

)
dm(s) +

∫
Td
F (x, m̄(s))dm(s)ds. (34)

This problem admits a dual formulation, in the sense of Fenchel Rokafellar Theorem, which
reads

inf
ψ∈K̄

{∫
T d
ψ(x, t)dm̄(t)−

∫
T d
ψ(x, 0)dm0)

}
where K̄ is the set of ψ ∈ C1,2([0, t]× Td) such that −∂tψ −4ψ +H(x,Dψ) ≤ F (x, m̄). A full
justification of the result above can be found again in [9].
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In the definition of the dual problem we can replace K̄ with K, where K is the set of u ∈
C1,2([0, t]×Td) such that −∂tu−∆u+H(x,Du) = F (x, m̄). Indeed, if ψ verifies −∂tψ−4ψ+
H(x,Dψ) ≤ F (x, m̄), we can alway consider u ∈ C1,2([0, t]× Td) solution of{

−∂tu−∆u+H(x,Du) = F (x, m̄) in [0, t]× Td

u(x, t) = ψ(x, t) in Td

Thanks to the comparison principle we have that u(0, x) ≥ ψ(0, x), thus

inf
ψ∈K̄

{∫
T d
ψ(x, 0)dm̄(t)−

∫
T d
ψ(x, 0)dm0

}
≥ inf

u∈K

{∫
T d
u(x, t)dm̄(t)−

∫
T d
u(x, 0)dm0

}
(35)

The opposite inequality holds by inclusion. Lemma 3.2 in [9] and Proposition 3.1 in [4], which
rely on the Fenchel-Rokafellar Theorem, ensure that, if (m̄, w̄) is a minimizer of (34) and ū ∈ K
is a minimizer of the dual problem, then

∫
T d
u(x, t)dm̄(t)−

∫
T d
u(x, 0)dm0 +

∫ t

0

∫
Td
H∗
(
x,− w̄

m̄

)
dm̄(s) +

∫
Td
F (x, m̄(s))dm̄(s)ds = 0.

This implies that w̄ = −m̄DpH(x, ū). As a consequence, we have that m̄ is driven by a smooth
drift and so, by Schauder theory, m̄ ∈ C1,2((0, t] × Td). In particular, given that t is arbitrary,
then m̄ ∈ C1,2((0,+∞)× Td).
We assumed that the minimization problem (35) admits a solution. The proof of this result is
developed in Lemma 4.1 in appendix. �

Remark 2.3. Note that the convex duality between the minimization problems

inf
(m,w)∈Π(m0,m̄(t))

∫ t

0

∫
Td
H∗
(
x,−w

m

)
dm(s) +

∫
Td
F (x, m̄(s))dm(s)ds

and

inf
u∈K

{∫
T d
u(x, t)dm̄(t)−

∫
T d
u(x, 0)dm0

}
holds true independently from the existence of minimizers for the latter one and, therefore,
independently from Lemma 4.1.

We can now introduce the notion of calibrated curve. Let E∞2 be the set of (m(t), w(t)) ∈
P(Td)×M(Td;Rd) such that m ∈ C0(R,P(Td)), w is absolutely continuous with respect to m,
its density dw/dm belongs to L2

m,loc(R×Td) and −∂tm+4m− divw = 0 is verified in sense of
distribution.

Definition 2.4. We say that (m̄, w̄) ∈ E∞2 is a calibrated curve if there exists a continuous
function χ : P(Td) → R which verifies the dynamic programming principle (29) and (m̄, w̄) is
optimal for χ: for any t1 < t2 ∈ R

χ(m̄(t1)) = λ(t2 − t1) +

∫ t2

t1

∫
Td
H∗
(
x,− w̄(s)

m̄(s)

)
dm̄(s) + F(m̄(s))ds+ χ(m̄(t2)).

A direct consequence of Proposition 2.1 is the following result which tells that calibrated curves
are smooth and associated to MFG systems defined for any time t ∈ R.

Proposition 2.5. If (m,w) ∈ E∞ is a calibrated curve, then m ∈ C1,2(R×Td) and there exists
a function u ∈ C1,2(R× Td) such that w = −mDpH(x,Du) where (m,u) solves{

−∂tu−4u+H(x,Du) = F (x,m) in R× Td

−∂tm+4m+ div(mDpH(x,Du)) = 0 in R× Td
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2.2 The projected Mather set

Definition 2.6. We say that m0 ∈ P(Td) belongs to the projected Mather set M ⊂ P(Td) if
there exists a calibrated curve (m(t), w(t)) such that m(0) = m0.

Note that, if from m0 starts a calibrated curve m(t), then, by translation, m(t) ∈ M for any
t ∈ R.

Proposition 2.7. There exists a calibrated curve and, consequently, the projected Mather set
M is not empty.

Proof. We fix a smooth density m0 and we look at the δ-discounted problem (4) which reads

Vδ(m0) = inf
(m,w)

∫ ∞
0

e−δt
∫
Td
H∗
(
x,−w

m

)
dm(t) + F(m(t))dt.

We recall that Vδ satisfies the dynamic programming principle

Vδ(m0) = inf
m,w

∫ T

0
e−δs

∫
Td
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds+ e−δTVδ(m(t)),

where the infimum is taken over (m,w) ∈ Eδ2 (m0). We already know that the solution of the
minimization problem corresponds to a couple (m̄T

δ ,−m̄T
δ DpH(x,DūTδ )) where (m̄T

δ , ū
T
δ ) solves

−∂tu−4u+ δu+H(x,Du) = F (x,m) in Td × [0,+∞)

−∂tm+4m+ div(mDpH(x,Du)) = 0 in Td × [0,+∞)

m(0) = m0 in Td.
(36)

Note that, as the initial condition is smooth, the solution (m̄T
δ , ū

T
δ ) is smooth as well.

We define the new couple (mT
δ , w

T
δ ) as mT

δ (t, x) = m̄T
δ (t + T, x) and wTδ (t, x) = w̄Tδ (t + T, x)

so that our problem is set on [−T,+∞). We now want to prove that, when we take the limit
T → +∞, our sequence converges to a couple (mδ, wδ) defined on R×Td such that the Fokker-
Plank equation is still verified. We proved in Lemma 1.3 that the drift DpH(x,DuTδ ) is uniformly
bounded in T , therefore, mT

δ is the solution of a Fokker-Plank equation with bounded and smooth
drift. This means that mT

δ is uniformly bounded in C1,2([−T + 1,+∞)× Td).
This implies that, at least on compact subsets of R× Td, when we take the limit T → +∞, we
have, up to a subsequence, uniform convergence of mT

δ to a limit mδ.

The same convergence holds true also for wTδ . Indeed, in Lemma 1.3 we proved also the uniform
boundedness of D2uTδ and ∂tu

T
δ that implies the uniform continuity and the uniform boundedness

of wTδ . The convergence (mT
δ , w

T
δ ) to (mδ, wδ) ensures that the couple (mδ, wδ) verifies the

Fokker-Plank equation on R× Td.
We fix two different times t1 < t2. For sufficiently large T , the interval [t1, t2] is included in
[−T,+∞). If we apply the dynamic programming principle for Vδ, we get

Vδ(mT
δ (t1)) =

∫ t2

t1

e−δ(s−t1)

∫
Td
H∗
(
x,−

wTδ
mT
δ

)
dmT

δ (s) + F(mT
δ (s))ds+ e−δ(t2−t1)Vδ(mT

δ (t2)).

We can now take the limit of T → +∞ in the above expression and we find that (mδ, wδ) verifies

Vδ(mδ(t1)) =

∫ t2

t1

e−δ(s−t1)

∫
Td
H∗
(
x,−wδ

mδ

)
dmδ(s) + F(mδ(s))ds+ e−δ(t2−t1)Vδ(mδ(t2)).
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for any t1 < t2 ∈ R.

As the function uTδ is uniformly bounded in T we have also uniform convergence of uTδ to a
function uδ. We can then pass to the limit in the MFG system (36) and the couple (uδ,mδ)
solves {

−∂tuδ −4uδ + δuδ +H(x,Duδ) = F (x,mδ) in Td × R
−∂tmδ +4mδ + div(mδDpH(x,Duδ)) = 0 in Td × R.

As in [1], in order to let δ → 0, we need to define ūδ(t, x) = uδ(t, x)− uδ(0, 0) and θδ = uδ(0, 0).
The couple (ūδ,mδ) solves

−∂tūδ −4ūδ + δūδ + δθδ +H(x,Dūδ) = F (x,mδ) in Td × R
−∂tmδ +4mδ + div(mδDpH(x,Dūδ)) = 0 in Td × R
ūδ(0, x) = uδ(0, x)− uδ(0, 0) in Td.

We restrict ourselves to the subsequence {δn}n identified in the proof of Lemma 1.7. Using again
the uniform estimates on Dūδ, we have that ūδ(0, x) is uniformly bounded which implies the
boundedness of δθδ. Moreover, thanks to the bounds on D2uδ and ∂tuδ, ūδ is also uniformly
continuous and the same holds true for mδ. We can then pass to the limit on any compact set
and ūδn → u, mδn → m and δnθδn → θ where (u,m, θ) solves{

−∂tu−4u+ θ +H(x,Du) = F (x,m) in Td × R
−∂tm+4m+ div(mDpH(x,Du)) = 0 in Td × R

As we can always replace u(t, x) with u(t, x) − θt we can suppose θ = 0. The convergences
above give us also the uniform convergence on compact sets (up to subsequence) of the couple
(mδn , wδn) = (mδn ,−mδnDpH(x,Dūδn)) to (m,w) = (m,−mDpH(x,Du)) which solves the
usual Fokker-Plank equation.

Let now η ∈ P(Td) be the measure identified in the proof of Lemma 1.7. Then

Vδn(mδn(t1))− Vδn(η) =∫ t2

t1

e−δn(s−t1)

∫
Td
H∗
(
x,−wδn

mδn

)
dmδn(s) + F(mδn(s))ds+ e−δn(t2−t1)Vδn(mδn(t2))− Vδn(η).

Given the continuity of Vδ, the uniform convergence of mδ and wδ, we can pass to the limit
in n and we finally get that for any interval [t1, t2] the couple (m,w) verifies the Fokker-Plank
equation on R and

χ(m(t1)) =

∫ t2

t1

∫
Td
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds+ χ(m(t2)) + λ(t2 − t1).

In particular we found a calibrated curve and, for any t ∈ R, m(t) belongs to the projected
Mather set M.

�
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2.3 Compactness of the projected Mather set

In Proposition 2.1 we proved that, if χ is a corrector function and (m,w) is a trajectory starting
from m0 ∈ P(Td) which is optimal for the dynamic programming principle of χ, then (m,w) is
associated to a MFG system which enjoys the estimates we proved in Lemma 1.3. Therefore, a
completely analogous proof to the one proposed in Theorem 1.5 gives the following result.

Proposition 2.8. The set of corrector functions is uniformly Lipschitz continuous.

We can now prove the compactness of the projected Mather set M

Proposition 2.9. The projected Mather set M is compact

Proof. Let mn ∈ M such that m0
n → m0. Let (mn(t), wn(t)) be the calibrated curve starting

from m0
n. For any t1, t2 we know that (mn(t), wn(t)) verifies

χn(mn(t1)) ≥
∫ t2

t1

∫
Td
H∗
(
x,−wn

mn

)
dmn(s) + F(mn(s)) + λ(t2 − t1) + χn(mn(t2)). (37)

We know from Proposition 2.8 that the set {χn}n is uniformly Lipschitz. If we replace χn
with χn(·) − χn(η), then {χn}n is also bounded and thus compact. Therefore, we can pick a
subsequence such that χn converges to a function χ.

Given that χn are uniformly bounded, then∫ t2

t1

∫
Td
H∗
(
x,−wn

mn

)
dmn(s) + F(mn(s))ds ≤ C.

The constant C does not depend on n and, therefore,
∫ t2
t1
|wn| is uniformly bounded as well. As we

argued in Proposition 1.1, this implies that {mn}n is uniformly bounded in C1/2([t1, t2],P(Td))
for any t1, t2. We have then that mn converges uniformly on any compact set to a limit
m ∈ C0(R,P(Td)) and the same holds true for wn in M(R× Td;Rd), therefore (m,w) solves in
sense of distribution the usual FP equation on R. By weak lower semicontinuity of the integral
part in (37) and the uniform convergence of χn we get that

χ(m(t1)) ≥
∫ t2

t1

∫
Td
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds+ χ(m(t2)) + λ(t2 − t1)

with m(0) = m0 because m0
n → m0. The opposite inequality is true by dynamic programming

principle and so this proves that m0 ∈M and, eventually, that M is closed.

�

2.4 Minimal invariant set and Ergodicity

We say that a closed subset C of M is invariant if, for any m0 ∈ C, there exists a calibrated
curve (m,w) such that m(0) = m0 and m(t) ∈ C for any t ∈ R. We say that an invariant set C
is minimal if C does not contains any proper closed invariant subset.

Lemma 2.10. There exists a minimal set N .

We do not present the proof which is a standard application of Zorn’s Lemma (see for instance
[15]).
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Proposition 2.11. Let N be a minimal invariant set. If m0 ∈ N and {m(t), t ∈ R} is a
calibrated curve such that m(0) = m0, then {m(t), t ∈ R} is dense in N .

Proof. The proof is analogous to the one we used to prove that M is closed. We define C the
closure of the trajectory {m(t) t ∈ R}. C is a closed subset of N , in order to prove that it
coincides with N we just need to prove that it is invariant or, in other words, that, if m̄ ∈ C,
then also a calibrated curve passing through m̄ belongs to C.
Let m̄ be the limit of mn = m(tn) ∈ {m(t), t ∈ R} and {mn(t)} their corresponding calibrated
curves. If wn(t) are the control associated to the calibrated curve mn(t) then, as in Lemma
2.10, we get that ‖wn‖L1 is uniformly bounded on any compact set. As we already pointed
out, it implies the uniform convergence of mn(t) on compact sets. If m̄(t) is the trajectory to
which mn(t) converges, then it must be a calibrated curve starting from m̄ because we imposed
that mn → m̄. This means that for any s ∈ R, m̄(s) is the limit of mn(s). As C is closed and
mn(s) ∈ C, then m̄(s) ∈ C.
We proved that C is a not empty, invariant, closed subset of N . By the minimality of N the
two sets must conicide. �

3 The role of Monotonicity

So far, the hypothesis on F were mostly about its regularity and no structural assumptions
were imposed. On the other hand, when we are interested in understanding whether the limit
value λ coincides with λ̄, the ergodic one, the structure of F does actually play a fundamental
role. In the next section we impose convexity and, as it was already proved in [10], we get that
λ = λ̄. More interestingly, in Section 3.2 we provide a class of explicit examples where λ > λ̄
and, therefore, there is not convergence of the time dependent MFG system to the ergodic one.

3.1 The convex case: λ = λ̄

In this section we will show that under convexity those two values are the same.

We assume the following further assumptions on F :∫
Td

(F (x,m1)− F (x,m2))d(m1 −m2) ≥ 0 (38)

We introduce the functional JT (m0, ·, ·) : ET (m0)→ R defined by

JT (m0,m,w) =

∫ T

0

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt,

so that
U(T,m0) = inf

(m,w)∈ET2 (m0)
JT (m0,m,w).

Under the monotonicity assumption (38), the functional JT is convex, therefore we can easily
prove that λ = λ̄. We recall that

−λ̄ = inf
(m,w)∈E

∫
Td
H∗
(
x,− dw

dm
(x)

)
dm(x) + F(m).

Proposition 3.1. Under the above assumptions λ = λ̄.
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Proof. In order to prove the proposition we use the representation of λ that we discussed in
Proposition 1.10:

−λ = lim
T→∞

1

T
inf

ΠT (m0,m1)

∫ T

0

∫
Td
H∗(x, α)dm(s) + F(m(s))ds.

Given that λ does not depend on the initial valuem0, we takem0 = m1. We can also suppose that
m0 is smooth and bounded from below by a positive constant, so that we can apply Proposition
1.10. We now consider any admissible (mT , wT ) for Π(m0,m0) and we define m̄T = 1

T

∫ T
0 mTdt

and w̄T = 1
T

∫ T
0 wTdt. Given that the mT (0) = mT (T ) = m0, the couple (m̄T , w̄T ) verifies, in

sense of distributions, −4m+ div(w) = 0 and it is an admissible competitor for the stationary
problem.

Now we just need to apply Jensen’s inequality to get

JT (m0,m
T , wT ) =

1

T

∫ T

0

∫
Td
H∗(x,wT /mT )dmT+F(mT )dt ≥

∫
Td
H∗(x, w̄T /m̄T )dm̄T+F(m̄T ).

If we take the infimum over (mT , wT ) ∈ ΠT (m0,m0) and we take the limit in T , we end up with

−λ ≥ lim
T→∞

inf
ΠT (m0,m0)

∫
Td
H∗(x, w̄T /m̄T )dm̄T + F(m̄T ) ≥ −λ̄.

We already proved the opposite inequality in Proposition 1.9, which we recall that it holds true
also outside the monotonicity assumption. �

As λ = λ̄, the dynamic programming principle for χ reads

χ(m(t1)) =

∫ t2

t1

∫
Td
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds+ χ(m(t2)) + λ̄(t2 − t1).

If (m̄, w̄) is a minimizer for the static MFG problem then, if we define (m(t), w(t)) = (m̄, w̄) for
any t ∈ R, the relation above holds true. This means that the constant trajectory (m̄, w̄) is a
calibrated curve so that m̄ ∈ M. Moreover, as the calibrated curve is stationary, the singleton
N = {m̄} is a minimal invariant set because it is closed, invariant and it cannot contain any
proper subset.

3.2 A non convex example where −λ < −λ̄

We now present an example where the non convexity of F leads to an ergodic configuration where
the limit value −λ is strictly lower then the ergodic one −λ̄. A straightforward consequence
will be that there cannot be any stationary calibrated curve, which in turn implies that any
calibrated curve in a minimal invariant set has to be either periodic or chaotic. We say that
a calibrated curve m(t) in a minimal invariant set N has a chaotic behavior if its trajectory is
strictly included in N .

We fix ed ∈ Rd \ {0} a unit vector parallel to one of the axes and we identify Td with Td−1 × T
where T is the torus identified by the direction ed. We fix also H such that H∗ verifies the
following conditions: H∗(x, p) > 0 for any x ∈ Td, p 6= −ed and H∗(x,−ed) = 0 for any x ∈ Td.
The assumption (1) on the hamiltonian H implies that there exist two constants C1 > 0, C2 > 0
such that

C1Id ≤ DppH
∗(x, p) ≤ C2Id ∀x ∈ Td, ∀p ∈ Rd. (39)
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Let us define the set A ⊂ P(Td) as the set of µ ∈ P(Td) for which there exits µ′ ∈ P(Td−1)
such that µ = µ′ ⊗ dxd, where dxd si the Lebesgue measure on T. Note that µ ∈ A if and only
if div(edµ) = 0.

We fix m0 : Td → R a smooth, strictly positive density such that m0 /∈ A. A measure m belongs
to the set B if there exists z ∈ Td such that m(·) = m0(· + z). As A and B are closed and
disjoint, they are separated by a positive distance ε > 0.

We choose F : P(Td)→ R such that F ≥ 0, F ≡ 2 in A and F ≡ 0 in B. The existence of such
a function is ensured by Lemma 4.2 and Lemma 4.3 in Appendix. They also guarantee that we
can choose F such that it verifies the regularity assumptions that were in place in the previous
sections.

We recall that the functional JT (µ, ·, ·) is defined on ET2 (µ) by

JT (µ,m,w) =

∫ T

0

∫
Td
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt.

In this section we add in the definition of ET2 (µ) a viscosity constant σ > 0 so that (m,w) verifies
−∂tm+ σ4m− div(w) = 0.

We also define the ergodic functional J : E → R as follows

J(m,w) =

∫
T
H∗
(
x,− dw(t)

dm(t)
(x)

)
dm(t) + F(m(t))dt, (40)

where in this framework, (m,w) verifies σ4m − divw = 0. According to the definition of λ̄ in
(6), we have

−λ̄ = inf
(m,w)∈E

J(m,w) (41)

Proposition 3.2. There exists a σ0 > 0 such that for any σ ∈ (0, σ0] we have −λ < −λ̄.

Proof. We define

m(t, x) = m0(x− edt),

and

w(t, x) = edm(t, x) + σDm0(x− edt).

The couple (m,w) belongs to ET2 (m0), so −λ ≤ JT (m,w). By definition of F , we know that
F(m(t)) = 0 for any time t. Moreover, since DppL ≤ C2Id with 0 = H∗(x,−ed) ≤ L(x, α), we
have H∗(x, α) ≤ 1

2C2|α+ ed|2. Thus

−λ ≤ 1

T

∫ T

0

∫
Td

C2

2

∣∣∣∣w(t, x)

m(t, x)
− ed

∣∣∣∣2m(t, x)dxdt =
C2

2
σ2

∫
Td

|Dm0(x)|2

m0(x)
dx = σ2I,

where I = C2
2

∫
Td
|Dm0(x)|2
m0(x) dx.

We now focus on the static case. We recall that the differential constraint on J is −σ4m +
divw = 0. By standard arguments we have that there exists a minimizer (m̄, w̄) of (40).

As in the proof of Proposition 1.1 we can define a dual problem which reads

inf
(u,λ)∈C2(Td)×R

{λ s.t.− λ−4u+H(x,Du) ≤ F (x, m̄)} .
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Thanks to the regularity of F (·, m̄) we have a smooth solution (ū, λ̄) which solves −λ̄ +4ū +
H(x,Dū) = F (x, m̄). By duality, if we argue as in Proposition 1.1 (see [4]) we get that w̄ =
−m̄DpH(x,Dū), so that, by Schauder theory, m̄ is smooth and bounded from below.

We can now estimate −λ̄. Thanks to the regularity of (m̄, w̄), the parabolic constraint ensures
that w̄ = σDm̄+ ζ where ζ is a smooth, divergence free vector field. If (m̄, w̄) = (m̄, σDm̄+ ζ)
is a minimizer of (40) and we use the growth assumption (39), we have

∫
Td
H∗
(
x,
σDm̄+ ζ

m̄

)
m̄(dx) + F(m̄) ≥ C1

2

∫
Td

∣∣∣∣σD̄m+ ζ

m̄
+ ed

∣∣∣∣2 m̄(dx) + F(m̄). (42)

Note that, as divζ = 0 and m̄ is smooth and bounded from below,
∫
Td ζ ·Dm̄/m̄ = 0. Indeed,∫

Td

Dm̄

m̄
ζdx =

∫
Td
D(ln(m̄))ζdx = −

∫
Td

ln(m̄)div(ζ)dx = 0.

Therefore, if we expand the square in (42), we get∫
T
H∗
(
x,
σDm̄+ ζ

m̄

)
m̄(dx)+F(m̄) ≥ C1

2

∫
T d
σ2 |Dm̄|2

m̄
+

∣∣∣∣ ζm̄ + ed

∣∣∣∣2 m̄dx ≥ C1

2

∫
T d

∣∣∣∣ ζm̄ + ed

∣∣∣∣2 m̄dx.
(43)

Plugging (43) into (41) we eventually find that

−λ̄ ≥ C1

2

∫
T d

∣∣∣∣ ζm̄ + ed

∣∣∣∣2 m̄dx+ F(m̄).

The righthand side of the above inequality is bounded from below by a positive constant inde-
pendent of σ. Indeed, we know that, for any σ, m̄ > 0, so

−λ̄ ≥ inf
(m,ξ)

∫
T d

∣∣∣∣ ξm + ed

∣∣∣∣2mdx+ F(m)

where the infimum is taken over all the probability densities m > 0 and the free divergence
vectors ξ. Here, m and ξ do not verify the elliptic constraint, therefore we lose the dependence
on σ.

Let (mn, ξn) be a minimizing sequence and m ∈ P(Td) a the limit of mn (the existence of
m is guaranteed by the compactness of P(Td)). If the infimum were achieved at zero then
div(mned) → div(med) = 0. Indeed, as both the addends should converge to zero, for any test
function ϕ, we have∣∣∣∣∫

Td
div(mned)ϕdx

∣∣∣∣ =

∣∣∣∣∫
Td
mned ·Dϕdx

∣∣∣∣ =

∣∣∣∣∫
Td

(mned − ξn) ·Dϕdx
∣∣∣∣

≤
(∫

Td

|mned − ξ|2

mn
dx

)1/2(∫
Td
|Dϕ|2mndx

)1/2

→ 0

On the other hand, if div(med) = 0, then, by construction of F , we have F(mn) → F(m) = 2.
Therefore, there exists a constant K > 0 independent of σ such that −λ̄ > K.

We can conclude the proof choosing σ small enough such that

0 ≤ −λ ≤ σ2I < K ≤ −λ̄.

�
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Proposition 3.3. Under the hypothesis of Subsection 3.2 the projected Mather set M does not
contain any stationary calibrated curve. Moreover, if m0 belongs to a minimal invariant set N
and m(t) is a calibrated curve starting from m0 then m(t) is either periodic or it has a chaotic
behavior.

Proof. We recall that if m(t) is a calibrated curve then

χ(m(t1))− χ(m(t2)) =

∫ t2

t1

∫
Td
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds+ λ(t2 − t1).

If m(t) is constantly equal to m̄ then we have that
∫
T L (x,−w̄/m̄) dm + F(m̄) = −λ̄. As

−λ < −λ̄, it implies

χ(m̄)− χ(m̄) =

∫ t2

t1

∫
Td
H∗
(
x,− w̄

m̄

)
dm̄(s) + F(m̄)ds+ λ(t2 − t1) = (t2 − t1)(−λ̄+ λ) > 0,

so the contradiction.

Moreover, if m(t) is a calibrated curve in N , we proved in Proposition 2.11 that its trajectory has
to be dense in N . If the trajectory is closed then the curve is periodic and {m(t) t ∈ R} = N .
Otherwise {m(t) t ∈ R} ( N and m(t) is chaotic. �

4 Appendix

We present here the result used in Proposition 2.5, which is part of an on-going work with Marco
Cirant.

Lemma 4.1. Let (m̄, w̄) be as in Proposition 2.5. For any 0 ≤ t1 < t2, the minimization
problem

Āt2t1 = inf
u∈K

At2t1(u) = inf
u∈K

{∫
T d
u(x, t2)dm̄(t2)−

∫
T d
u(x, t1)dm̄(t1)

}
where K is the set of u ∈ C1,2([t1, t2] × Td) such that −∂tu − ∆u + H(x,Du) = F (x, m̄) and∫
Td u(t1, x)dx = 0, admits a solution.

Proof. The difficulties of this minimization problem comes from the fact that, a priori, we have
no regularity on the measure m̄, which does not allow us to directly get the compactness of the
minimizing sequence that we need. On the other hand the dynamic programming principle of
χ and some local in time semiconcavity estimates help to overcome this obstacle.

Let us recall that the dynamic programming principle for χ reads

χ(m0) = inf
(m,w)

(∫ t

0
H∗
(
x,−w

m

)
dm(s) + F(m(s))ds+ χ(m(t))

)
+ λt

and that the following convex duality holds true (see Remark 2.3)

inf
(m,w)∈Π(m̄(t1),m̄(t2))

∫ t2

t1

∫
Td
H∗
(
x,−w

m

)
dm(s)+

∫
Td
F (x, m̄(s))dm(s)ds

= − inf
u∈K

{∫
T d
u(x, t2)dm̄(t2)−

∫
T d
u(x, t1)dm̄(t1)

}
.
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Fist of all we prove that for any t1 < t2 < t3 we have that Āt3t1 = Āt2t1 + Āt3t2 . Indeed, using the
duality between the two minimization problems, we have

Āt2t1 + Āt3t2 = inf
(m,w)∈Π(m̄(t1),m̄(t2))

∫ t2

t1

∫
Td
H∗
(
x,−w

m

)
dm(s) +

∫
Td
F (x, m̄(s))dm(s)ds

+ inf
(m,w)∈Π(m̄(t2),m̄(t3))

∫ t3

t2

∫
Td
H∗
(
x,−w

m

)
dm(s) +

∫
Td
F (x, m̄(s))dm(s)ds.

If we use the dynamic programming principle of χ and the fact that (m̄, w̄) is optimal, the
expression above is equal to∫ t3

t1

∫
Td
H∗
(
x,− w̄

m̄

)
dm̄(s) +

∫
Td
F (x, m̄(s))dm̄(s)ds =

inf
(m,w)∈Π(m̄(t1),m̄(t3))

∫ t3

t1

∫
Td
H∗
(
x,−w

m

)
dm(s) +

∫
Td
F (x, m̄(s))dm(s)ds = Āt3t1

We claim now and we prove later that, if {un}n is a minimizing sequence for Āt3t1 , then un
uniformly convergences to a function u ∈ C1,2([t1, t3) × Td) on any [t1, t] with t < t3 and u is
admissible for Ātt1 . This implies that the function u is a minimizer for Ātt1 and in particular for

t = t2. If we suppose that At2t1(u) = Āt2t1 + ε, then we have

At3t1(un) = At2t1(un) +At3t2(un) ≥ At2t1(un) + Āt3t2 .

If we take the limit n→∞ on both side, the uniform convergence of un on [t1, t2] and the fact
that un is a minimizing sequence for Āt3t1 give us

Āt3t1 ≥ A
t2
t1

(un) + Āt3t2 = At2t1(u) = Āt2t1 + ε+ Āt3t2 = Āt3t1 + ε

which is impossible and so u has to be a minimizer for Āt2t1 .

We now prove our claim and we show that the set of functions u ∈ C1,2([t1, t3] × Td) which
solves {

−∂tu−4u+H(x,Du) = F (x, m̄) in [t1, t3]× Td∫
Td u(t1, x)dx = 0

(44)

is uniformly bounded in C1([t1, τ ] × Td) for any τ < t3. This gives the local convergence that
we used earlier. Without loss of generality we can suppose t1 = 0 and t3 = T . As in Lemma 1.3
we argue by semiconcavity.

We consider ξ ∈ Rd, |ξ| ≤ 1 and we look at the equation solved by w(t, x) = D2uT (t, x)ξ · ξ.
We now define w̄(t, x) = w(t, x)η(t), where η is the cutoff function η(t) = (t − T )2. We choose
ξ such that it maximizes supt,x w̄(t, x).

If we derive twice in space the HJB equation in (44), then w̄ solves

−∂tw̄ − wη′ −4w̄ +DξξH(x,Du)η + 2DξpH(x,Du) ·D2uξη

+DppH(x,Du)D2uξ ·D2uξη +DpH(x,Du) ·Dw̄ = D2
ξξF (x,m)η.

The cutoff function ensures the existence of a positive interior maximum of w̄. At the maximum,
using also the boundedness of D2

ppH, the above equation implies
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−wη′ −K + 2DξpH(x,Du) ·D2uξη + C̄−1|D2uξ|2η ≤ D2
ξξF (x,m)η.

Rearranging the terms and using the boundedness of D2
ξξF we get

|D2uξ|2η ≤ wη′ + C + 2C|D2uξ|η.

As η′ = 2η1/2 we can apply the Young’s inequality so that η′w ≤ η/2|D2uξ|2 + 4 and

1

2
|D2uξ|2η ≤ C + 2C|D2uξ|η,

which in turn gives
|D2uξ|2η ≤ C.

If w+ and w̄+ are the positive parts of w and w̄, then we have our semiconcavity estimates
because in [0, τ ]× Td

(w+η)2 ≤ (w̄+)2 ≤ |D2uξ|2η2 ≤M.

Note that M = M(τ) and it diverges when τ → T . On the other hand the estimates above,
along with (11), gives uniform bounds on ‖Du‖∞ on [0, τ ] with τ < T .

Integrating in space the HJB equation we get

|∂t
∫
Td
udx| ≤

∫
Td
|H(x,Du)|+ |F (x, m̄)|dx ≤ C(τ).

As
∫
Td u(0, x)dx = 0, the above inequality ensures that |

∫
Td u(t, x)dx| ≤ C(τ) for any t ≤ τ .

This gives us osc(u(t, ·)) ≤ |
∫
Td u(t, x)dx|+ C supx |Du(t, x)| ≤ C(τ).

As in Lemma 1.3, the boundedness of space derivatives implies also that |∂tu(t)| ≤ C(τ) for any
t ≤ τ and so the claim.

�

Here we propose the proof of the existence of the smooth functions that we used in Subsection
3.2.

Lemma 4.2. For any m0 ∈ P(Td) and any ε > 0, there exists Φ : P(Td)→ R of class C1 such
that Φ(m0) = 1 and Φ = 0 on Bc

ε(m0). Moreover, we can choose Φ such that

‖DmΦ‖∞ ≤ 10/ε.

and with DxDmΦ bounded.

Proof. Let E be the compact set of 1−Lipschitz continuous maps on Td vanishing at 0. Let (φn)
be a dense family in E consisting of smooth maps. For N large, we consider

ΨN (m) = sup
n=1,...,N

∫
Td
φn(m−m0).

Then (ΨN ) is a family which is uniformly Lipschitz continuous in P(Td) and converges to
d1(·,m0). So, for η > 0 small there exists N large enough such that

‖ΨN − d1(·,m0)‖∞ ≤ η.
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Next we approximate the sup in the definition of ΨN . We consider

Ψδ
N (m) = δ log

(
N∑
n=1

exp

{
δ−1

∫
Td
φn(m−m0)

})
.

Recall that
ΨN (m) ≤ Ψδ

N (m) ≤ δ ln(N) + ΨN (m).

Note that Ψδ
N is C1, with

DmΨδ
N (m,x) =

(
N∑
n=1

exp

{
δ−1

∫
Td
φn(m−m0)

})−1 N∑
n=1

exp

{
δ−1

∫
Td
φn(m−m0)

}
Dφn(x).

(45)
Note that DmΨδ

N (m,x) is a convex combination of Dφn(x), so that

|DmΨδ
N (m,x)| ≤ sup

n
|Dφn(x)| ≤ 1.

For δ > 0 small (depending on N), we have

‖Ψδ
N − d1(·,m0)‖∞ ≤ 2η.

In particular, for ε > 0, choose η = ε/5: then

inf
m∈Bcε (m0)

Ψδ
N (m) ≥ ε− 2η = 3ε/5 and Ψδ

N (m0) ≤ 2η = 2ε/5.

Moreover, if we derive (45) in space we get

DxDmΨδ
N (m,x) =

(
N∑
n=1

exp

{
δ−1

∫
Td
φn(m−m0)

})−1 N∑
n=1

exp

{
δ−1

∫
Td
φn(m−m0)

}
D2φn(x).

Note that DxDmΨδ
N (m,x) is a convex combination of D2φn(x). Therefore, there exists a con-

stant CN such that
|DxDmΨδ

N (m,x)| ≤ sup
n
|D2φn(x)| ≤ CN .

To complete the result, define a map ζε = R→ [0, 1] smooth and nonincreasing, with ζε(s) = 0
if s ≥ 3ε/5 and ζε(s) = 1 for s ≥ 2ε/5. We can choose ‖ζ ′ε‖∞ ≤ 10/ε. The map Φ = ζε ◦ Ψε

N

satisfies the claim. �

Lemma 4.3. Let A and B be closed subsets of P(Td) with an empty intersection. Then there
exists a C1 map Φ : P(Td)→ R such that Φ = 1 on A, Φ = 0, B and DxDmΦ bounded.

Proof. Let ε > 0 be the minimal distance between A and B:

ε := inf
m∈A, m′∈B

d1(m,m′) > 0.

Let (mn) be dense in A and Φn : P(Td) → [0, 1] be associated with mn as in Lemma 4.2:
Φn(mn) = 1, Φn = 0 in Bc

ε (mn) and ‖DxDmΦn‖ bounded. For δ > 0 small and N large, let us
set

Ψδ
N (m) = δ log

(
N∑
n=1

exp
{
δ−1Φn(m)

})
.
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Note that Ψδ
N is C1 with

DxDmΨδ
N (m, y) =

(
N∑
n=1

exp
{
δ−1Φn(m)

})−1 N∑
n=1

exp
{
δ−1Φn(m)

}
DxDmΦn(m, y).

In particular,
|DxDmΨδ

N (m,x)| ≤ sup
n
|D2φn(x)| ≤ CN .

For m ∈ B we have Φn(m) = 0, so that Ψδ
N (m) = δ ln(N). As (mn) is dense, we can choose, for

η > 0, N large enough so that

max
m∈A

min
n=1,...,N

d1(m,mn) ≤ η.

Then, for m ∈ A, there exists n ∈ {1, . . . , N} with d1(m,mn) ≤ η, so that (by Lipschitz
continuity of Φn)

Φn(m) ≥ Φn(mn)− 10ε−1d1(m,mn) ≥ 1− 10ε−1η.

Thus
Ψδ
N (m) ≥ δ log

(
exp

{
δ−1Φn(m)

})
≥ 1− 10ε−1η.

We now choose η > 0 such that 1−10ε−1η = 2/3 (which in turns fixes N), and then δ > 0 small
such that δ ln(N) ≤ 1/3. Then we have

inf
m∈A

Ψδ
N (m) ≥ 2/3 and sup

m∈B
Ψδ
N (m) ≤ 1/3.

Then conclusion follows easily. �
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