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This preprint has been reviewed and recommended by Peer Community In Evolutionary

Biology (http://dx.doi.org/10.24072/pci.evolbiol.100044).

Sex chromosomes have repeatedly evolved from a pair of autosomes1. Consequently, X

and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to

reduced Y gene expression and eventual Y gene loss. The resulting imbalance in gene expression

between Y genes and the rest of the genome is expected to reduce male fitness, especially when

protein networks have components from both autosomes and sex chromosomes. A diverse set of

dosage compensating mechanisms that alleviates these negative effects has been described in

animals2–4. However, the early steps in the evolution of dosage compensation remain unknown

and  dosage  compensation  is  poorly  understood  in  plants5.  Here  we  show  a  novel  dosage

compensation mechanism in the evolutionarily young XY sex determination system of the plant

Silene  latifolia.  Genomic  imprinting  results  in  higher  expression  from  the  maternal  X

chromosome in both males and females. This compensates for reduced Y expression in males but

results in X overexpression in females and may be detrimental. It could represent a transient

early stage in the evolution of dosage compensation. Our finding has striking resemblance to the

first stage proposed by Ohno for the evolution of X inactivation in mammals.

In  Drosophila, the  X  chromosome  is  upregulated  specifically  in  males,  resulting  in

complete dosage compensation through both ancestral expression recovery in males and equal

expression  between  the  sexes  (hereafter  sex  equality)6.  In  Caenorhabditis  elegans,  both  X

chromosomes are downregulated in XX hermaphrodites resulting in sex equality, but only a few

genes have their X expression doubled for ancestral expression recovery7. In placental mammals,

including humans, one X chromosome is randomly inactivated in XX females, resulting in  sex

equality but without recovering the ancestral expression of sex chromosomes, except for a few
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dosage-sensitive genes whose X expression was doubled in both sexes8–12. In the marsupials, the

paternal X chromosome is consistently inactivated in XX females13. Differential expression that

depends on the parent of origin is known as genomic imprinting14,  and this  mechanism also

operates in the mouse placenta15.

Despite the plethora of studies on gene expression on sex chromosomes, it is not yet clear

if  genomic  imprinting  is  commonly  involved  in  the  early  steps  of  dosage  compensation

evolution. In a seminal work, Ohno hypothesized a two-step process for the evolution of dosage

compensation16.  In  the  first  step,  expression  from the  X  is  doubled,  thereby  mediating  the

recovery  of  ancestral  expression  in  XY males.  Second,  the  resulting  overexpression in  XX

females selects for X inactivation. This scenario is consistent with the fact that sexual selection is

often  stronger  on  males  than  on  females.  Under  this  scenario,  selection  on  XY males  to

upregulate their single X chromosome should be stronger than selection on females, leading to

overexpression in females until a second correcting mechanism evolves3. However, in order to

understand  these  early  steps  of  dosage  compensation  evolution,  species  with  young  sex

chromosomes must be studied.

The plant  Silene  latifolia is  an  ideal  model  to  study early  steps  of  sex  chromosome

evolution thanks to its pair of X/Y chromosomes that evolved ~4 Mya17. Dosage compensation is

poorly understood in plants5.  Thus far only  sex equality has been studied.  Equal  expression

levels were observed for males and females for some genes despite Y expression degeneration18–

23. However, the mechanisms through which  sex equality is achieved  – and whether  ancestral

expression is recovered in S. latifolia males – remain unknown. To address these questions, we

have developed an approach relying on (i) the use of an outgroup without sex chromosomes as

an  ancestral  autosomal  reference5 in  order  to  determine  whether  X  chromosome expression
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increased or  decreased in  S.  latifolia,  (ii)  the application of  methods to  study allele-specific

expression  while  correcting  for  reference  mapping bias5,  and  (iii)  a  statistical  framework to

quantify dosage compensation5.

Because  only  ~25% of  the  large  and  highly  repetitive  S.  latifolia genome  has  been

assembled so far23, we used an RNA-seq approach based on the sequencing of a cross (parents

and a few offspring of each sex), to infer sex-linked contigs (i.e. contigs located on the non-

recombining region of the sex chromosome pair)24. X/Y contigs show both X and Y expression,

while  X-hemizygous  contigs  are  X-linked  contigs  without  Y  allele  expression.  We  made

inferences separately for three tissues: flower buds, seedlings and leaves (Supplementary Table

S2).  Results  are  consistent  across tissues  and  flower  buds  and  leaves  are  shown  in

Supplementary Materials. In seedlings, ~1100 sex-linked contigs were inferred. Among these,

15% of contigs with significant expression differences between males and females were removed

for  further  analyses  (Supplementary Table S2 and Materials  and Methods).  These  are  likely

involved in sex-specific functions and are not expected to be dosage compensated25. This was

done as a usual procedure for studying dosage compensation, however the resulting trends and

significance levels are not affected. About half of the non sex-biased sex-linked contigs could be

validated by independent data using three sources: literature, a genetic map and sequence data

from Y flow-sorted chromosomes (see Supplementary Table S2 and Materials and Methods). X-

hemizygous contigs are more difficult to identify than X/Y contigs using an RNA-seq approach

(see Supplementary Text S1). This explains conflicting earlier results on dosage compensation in

S. latifolia5. A study using genomic data (i.e. not affected by the aforementioned ascertainment

bias) found sex-equality in approximately half of the studied X-hemizygous genes23. In our set of

X-hemizygous contigs, no evidence for dosage compensation was found (Supplementary Text
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S1), in agreement with previous work relying on an RNA-seq approach18,22. This could be due to

an  over-representation  of  dosage  insensitive  genes  in  our  set  of  X-hemizygous  contigs

(Supplementary Text S1).

We estimated paternal and maternal allele expression levels in males and females for sex-

linked and autosomal contigs in S. latifolia after correcting for reference mapping bias (Materials

and Methods).  We then compared these allelic expression levels to one or two closely related

outgroups without sex chromosomes in order to polarise expression changes in S. latifolia. For

autosomal contigs, expression levels did not differ between S. latifolia and the outgroups (Figure

1). This is due to the close relatedness of the outgroups (~5My, Supplementary Figure S1), and

validates their use as a reference for ancestral expression levels. We used the ratio of Y over X

expression levels in S. latifolia males as a proxy for Y degeneration and then grouped contigs on

this basis. As expression of the Y allele decreased (paternal allele in blue in Figure 1), expression

of the corresponding X allele in males increased (maternal allele in red in Figure 1). This is the

first  direct evidence for  ancestral expression recovery in  S. latifolia,  i.e. ancestral expression

levels are reestablished in males despite Y expression degeneration. In females, expression of the

maternal X allele also increased with Y degeneration (gray bars in Figure 1), similarly to the

maternal X allele in males.  The paternal X alleles in females, however, maintained ancestral

expression  levels,  regardless  of  Y degeneration  (black  bars  in  Figure  1).  Consequently,  sex

equality is  not  achieved  in  S.  latifolia due  to  upregulation of  sex-linked  genes  in  females

compared to ancestral expression levels. These results were confirmed in two other tissues and

when analysing independently validated contigs only (although statistical power is sometimes

lacking due to the limited number of validated contigs, Supplementary Figures S2-S7).
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Upregulation of the maternal X allele both in males and females of S. latifolia (Figure 1

and  Supplementary  Figures  S2-S7)  establishes  a  role  for  genomic  imprinting  in  dosage

compensation.  In  order  to statistically  test  this  inference at  the SNP level,  we used a  linear

regression model with mixed effects (Materials and Methods). Outgroup species were used as a

reference  and  expression  levels  in  S.  latifolia were  then  analyzed  while  accounting  for  the

variability  due  to  contigs  and  individuals.  The  joint  effect  of  the  parental  origin  and  the

degeneration  level  was  estimated,  which  allowed  computing  expression  differences  between

maternal and paternal alleles in females for different Y/X degeneration categories (Figure 2).

Maternal and paternal alleles of autosomal SNPs were similarly expressed in females, indicating

a global absence of genomic imprinting for these SNPs. However, for X/Y SNPs, the difference

between the maternal and paternal X in females increased with Y degeneration. These results

were confirmed in two other tissues and when analysing independently validated contigs only

(although statistical power is sometimes lacking due to the limited number of validated contigs,

Supplementary Figures S8-S13).

Previous studies that showed  sex equality in  S. latifolia could have been explained by

simple buffering mechanisms, where one copy of a gene is expressed at a higher level when

haploid than when diploid, due to higher availability of the cell machinery or adjustments in gene

expression networks23,26,27. However, the upregulation of the X chromosome we reveal here in S.

latifolia males cannot be explained by buffering mechanisms alone, as the maternal X in females

would  otherwise  not  be  upregulated.  Instead,  our  findings  indicate  that  a  specific  dosage

compensation  mechanism  relying  on  genomic  imprinting  has  evolved  in  S.  latifolia.  This

apparent  convergent  evolution  with  marsupials  is  mediated  by  different  mechanisms  (in

marsupials the paternal X is inactivated13, while in S. latifolia the maternal X is upregulated).
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An exciting challenge ahead will be to understand how upregulation of the maternal X is

achieved in S. latifolia males and females at the molecular level. Chromosome staining suggests

that DNA methylation is involved. Indeed, one arm of one of the two X chromosomes in females

was  shypomethylated,  as  well  as  the  same  arm  of  the  single  X  in  males28 (Figure  3  and

Supplementary Figure S14). Based on our results, we hypothesize that the hypomethylated X

chromosome corresponds to the maternal, upregulated X. Unfortunately, parental origin of the X

chromosomes was not established in this study28. It would be of interest in the future to study

DNA methylation patterns in S. latifolia paternal and maternal X chromosomes, along with the

homologous  pair  of  autosomes  in  a  closely  related  species  without  sex  chromosomes.  The

methylation pattern observed by chromosome staining suggests that dosage compensation in S.

latifolia could be a chromosome arm-wide phenomenon. To test this hypothesis with expression

data, positions of genes along the X chromosome remain to be elucidated.

Our study is the first to establish female upregulation of the X chromosome compared to

autosomes, as predicted by Ohno. An earlier report in Tribolium castaneum was later shown to

be due to biases from inclusion of gonads in whole body extracts4. X overexpression in females

may be deleterious. Its occurence suggests that reduced expression of sex-linked genes in males

is more deleterious than overexpression in females. This potentially suboptimal situation may be

transitory and a consequence of the young age of S. latifolia sex chromosomes. Sex equality may

evolve at a later stage, following the evolutionary path trajectory originally proposed by Ohno

for placental mammals16.

Methods
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Sequence data and inference of sex-linkage. RNA-seq data was generated in S. latifolia for a

cross (parents and progeny) for three tissues (seedlings, leaves and flower buds) and analysed

using the SEX-DETector pipeline24. RNA-seq data was also generated for two outgroup species

(S. viscosa and S. vulgaris). Reference mapping bias was corrected using the program GSNAP29.

Inferences of sex-linked contigs were validated using three sources of information (literature, a

genetic map and flow-sorted Y chromosome sequences). See Supplementary Text S2 for details.

Allelic  expression  levels. Contigwise  autosomal,  X,  Y,  X+X  and  X+Y normalised  allelic

expression levels were computed by summing read numbers for each X-linked or Y-linked alleles

for filtered SNPs of the contigs (Supplementary Text S2) for each individual separately and then

normalised using the library size and the number of studied sex-linked SNPs in the contig:

E = r/ (n * l)      (1)

With E = normalised expression level for a given individual, r = sum of total read counts, n =

number of studied SNPs, l = library size of the individual (number of mapped reads). Allelic

expression levels were then averaged among individuals for each contig. In order to make  S.

latifolia expression levels comparable to  S. viscosa and  S. vulgaris,  S. vicosa and  S. vulgaris

expression  levels  were  estimated  using  only  the  filtered  SNP positions  used  in  S.  latifolia.

Normalised expression levels computed as explained in equation (1) in the two outgroups were

then averaged together for leaves and flower buds as expression levels are highly correlated (R2

0.7 and 0.5 for flower buds and leaves respectively and p-value < 2.10-6 in both cases). Averaging

expression levels between the two outgroups allows to get  closer to  the ancestral  autosomal

expression level.

Sex-biased expression. Sex-biased contigs were inferred as in Zemp et al30. See  Supplementary

Text S2 for more detail.
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Expression divergence between  S. latifolia and the two outgroups at the contig level.  The

normalised difference in allelic expression between S. latifolia and the two outgroups (hereafter

Δ) was computed in order to study how sex chromosome expression levels evolved in S. latifolia

compared to autosomal expression levels in the two outroups: Δ is equal to zero if S. latifolia and

the outgroups have equal expression levels, Δ is positive if  S. latifolia has higher expression

levels compared to the outgroups and Δ is negative otherwise:

Δ = (S. latifolia expression level  -  outgroup expression level)  /  (outgroup expression

level)    (2)

Sex-linked contigs were grouped by categories of degeneration level using the average Y

over X expression ratio in males. 200 autosomal contigs were randomly selected in order to have

similar statistical power among gene categories. Δ values for each allele (maternal and paternal

in males and females) and each gene category were compared to zero using a Wilcoxon test. P-

values  were  corrected  for  multiple  testing  using  a  Benjamini  and Hochberg  correction.  The

estimated median Δ, confidence intervals and adjusted p-values were then used to plot Figure 1

and Supplementary Figures S2 to S7.

Expression differences between maternal and paternal alleles at the SNP level. Maternal and

paternal alleles expression were compared in S. latifolia for autosomal and sex-linked SNPs. In

order  to  deal  with  the  difference  in  numbers  of  autosomal  versus  sex-linked  contigs

(Supplementary  Table  S2),  200  autosomal  contigs  were  randomly  selected  in  order  to  keep

comparable powers of detection. Allelic expression levels in  S. latifolia for each individual at

every SNP position were analysed using a linear regression model with mixed effects with the R

package lme4. We assumed a normal distribution of the read count data after log transformation.

In order to account for inter-individual and inter-contig variability, a random “individual” and a
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random “contig” effect were included in the model. The aim of this modeling framework was to

estimate the joint effect of the chromosomal origin of alleles (paternal or maternal in males or

females)  and  the  status  of  the  gene  (autosomal  or  sex-linked  with  various  levels  of  Y

degeneration defined by the average Y over X expression ratio in males). Two fixed effects with

interaction were therefore considered in the model, see equation (3). In order to estimate the

changes in sex-linked gene expression levels since the evolution of sex chromosomes, we used

the average of the two outgroup expression levels as a reference (offset) for every SNP position,

divided by two in order to be comparable to S. latifolia allelic expression levels.

log(Expression+1) ~ Chromosome * Degeneration + (1|individual) + (1|Contig), offset =

log(outgroup average expression/2 +1)        (3)

All effects of the model (fixed or random) were proved highly significant (p-values <

2.2.10-16) using comparison of the fit of model (3) to simpler nested models (removing one effect

at a time in model (3)). In order to statistically test whether there was a difference between the

effects of paternal and maternal alleles in females in different degeneration categories we used

the  contrasts  provided  by  the  lmerTest  package  in  R.  This  strategy  provided  estimates,

confidence  intervals  and p-values  of  the  difference  between the  two effects  of  paternal  and

maternal  origin  in  females  in  interaction  with degeneration  levels,  while  normalising by the

expression of the two outgroups. Moreover, the presence of random effects allows to account for

inter-individual and inter-contig variability. Finally, p-values were corrected for multiple testing

using  a  Benjamini  and  Hochberg  correction.  These  values  were  used  to  plot  Figure  2  and

Supplementary Figures S8 to S13.
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Data Availability. The new sequence data presented here can be downloaded from the European

Nucleotide Archive (ENA) under accession number PRJEB24933.
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Figures

Figure 1: Normalised difference (hereafter Δ) in allelic expression levels between S. latifolia and

the outgroup without sex chromosomes S. vulgaris, in autosomal and sex-linked contigs

for  the  seedling  tissue.  If  Δ is  lower,  higher  or  equal  to  zero,  then  expression  in  S.

latifolia is  respectively  lower,  higher  or  equal  to the  outgroup  (See  Materials  and

Methods for details). For all contig categories, Δ was compared to zero using a Wilcoxon

test. The median Δ, confidence intervals and p-values adjusted for multiple testing using

a Benjamini and Hochberg correction  are shown (***: p-value < 0.001; **: p-value <

0.01, *: p-value < 0.05). Allelic expression at SNP positions was averaged for each contig

separately and the Y/X ratio was used as a proxy for Y degeneration to group contigs.
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Contigs  with  sex-biased  expression  were  removed,  as  well  as  contigs  with  Y/X

expression  ratios  above  1.5.  Sample  sizes  for  the  different  contig  categories  are:

autosomal:  200;  1-1.5:148;  0.75-1:139;  0.5-0.75:160;  0.25-0.5:114;  0-0.25:79  (we

randomly selected 200 autosomal contigs to ensure similar statistical power among gene

categories).

Figure 2: Normalised expression difference between maternal and paternal alleles in S. latifolia

females in autosomal and sex-linked SNPs in the seedling tissue. The Y axis unit is the
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normalised  allelic  read  count  difference  in  log  scale.  A  linear  regression  model  with

mixed  effects  was  used  to  estimate  the  normalised  difference  between  the  effect  of

paternal and maternal origin of alleles in interaction with the contig status (autosomal or

sex-linked with various levels of Y degeneration), while accounting for inter-contig and

inter-individual variability (see Materials and Methods for details). The analysis is SNP-

wise and reveals consistent patterns across SNPs. See Fig. 1 legend for sample sizes for

the different contig categories and statistical significance symbols.

Figure 3: Illustration of DNA methylation staining results in S. latifolia from Siroky et al. 28. See

Supplementary Figure S14 for the original Figure. One arm of one of the two X chromosomes in

females was hypomethylated, as well as the same arm of the single X in males.
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Supplementary Materials

Supplementary  Text  S1:  Dosage  compensation  in  X-hemizygous

genes

The first papers on dosage compensation in S. latifolia were contradictory because they

focused on different  gene sets.  Muyle et  al.1 focused on X/Y gene pairs  while  other  papers

focused on X-hemizygous genes2,3. However, the X-hemizygous gene sets returned by the RNA-

seq approach used in those papers is less reliable than the X/Y gene sets4.  A gene might be

inferred as X-hemizygous simply because the – still functional – Y copy is not expressed in the

tissue sampled for RNA-seq. In S. latifolia, X-hemizygous genes tend to be less expressed than

X/Y genes and are less likely to be detected by segregation analysis as efficient SNP calling

requires  a  certain  read  depth,  see4.  Moreover,  X-hemizygous  genes  are  inferred  from  X

polymorphisms while X/Y genes can be detected both with X and X/Y polymorphisms, which

are more numerous. Another inherent bias to X-hemizygous contig inference comes from the

assembly step. If the X and the Y copy are too divergent to be assembled together, the X contig

will be wrongly inferred as X-hemizygous because Y alleles will be absent from the contig (this

bias was at least partly corrected in the analyses presented here, see Material and Method section

5.1).  The  inferences  of  X-hemizygous  genes  using  the  RNA-seq  approach  (including  SEX-

DETector) imply a higher rate of both false positives and false negatives than those for X/Y gene

pairs. In Papadopoulos et al.5, 25% of the X/Y chromosomes were sequenced using a genomic

approach. A much higher fraction of X-hemizygous genes was found than in previous RNA-seq

papers2,3. Papadopoulos et al.5 did find evidence for dosage compensation in approximately half
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of X-hemizygous genes (see their figure 3D). Due to limitations of the RNA-seq approach in

inferring X-hemizygous genes, results on X-hemizygous contigs are analysed separately here. 

Poor dosage compensation of X-hemizygous contigs compared to X/Y contigs with high

Y degeneration was observed across all tissues (Supplementary Figures 2 to 7). Also, the parental

origin  of  the  X chromosome has  limited  to  no effect  on female X expression levels  for  X-

hemizygous contigs, unlike X/Y contigs (Supplementary Figures 8 to 13). A reason that could

explain such a different pattern for X-hemizygous genes compared to X/Y genes is the possible

dosage insensitivity of X-hemizygous genes. X-hemizygous genes could have lost their Y copy

because dosage was not important for them and selection neither slowed down the loss of the Y

copy  nor  selected  for  dosage  compensation  when  degeneration  inevitably  occurred6.  A well

described characteristic of dosage sensitive genes is that they tend to code proteins involved in

large complexes7.  Gene Ontology was studied using the Blast2GO PRO version 2.7.230 as in8.

Using the GO-term analysis, our set of X-hemizygous contigs were found to be significantly

depleted  in  ribosomal  protein coding genes  compared to  autosomal genes  (p-value  1.3.10-4),

which is consistent with the global dosage insensitivity of X-hemizygous genes in  S. latifolia.

This  depletion  in  large  protein  complexes  was  not  found  when  comparing  X/Y genes  to

autosomal genes.

Supplementary Text S2:

1) Plant material and sequencing

1.1) RNA-seq Illumina data
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RNA-seq  data  from  previous  studies  were  used  (the  GEO  database  GEO  Series

GSE35563, European Nucleotide Archive PRJEB14171), it included flower buds and leaf tissues

from individuals of a cross in S. latifolia as well as individuals in S. vulgaris. In addition to these

preexisting  data,  RNA-seq  reads  were  generated  in  a  comparable  way  for  seedlings  of  a

controlled cross using the same parents in S. latifolia, four males and four females were sampled

(Seed_lati_female_1,  Seed_lati_female_2,  Seed_lati_female_3,  Seed_lati_female_4,

Seed_lati_male_1, Seed_lati_male_2, Seed_lati_male_3 and Seed_lati_male_4). Seedlings were

also sequenced for S. vulgaris (Seed_vulg_herm_1, Seed_vulg_herm_2, Seed_vulg_herm_3 and

Seed_vulg_herm_4).  Seedlings  were  grown  in  a  temperature  controlled  climate  chamber  in

Eschikon  (Switzerland)  using  the  same  conditions  as  in8.  The  S.  latifolia and  S.  vulgaris

seedlings  were  collected  without  roots  at  the  four-leaf  stage.  The  sexing  of  the  S.  latifolia

seedlings  was  done  using  Y specific  markers9 that  were  amplified  with  the  direct  PCAR

KAPA3G Plant PCR Kit (however male number 3 was later shown to be a female). High quality

RNA (RIN > 8.5) was extracted using the total RNA mini kit from Geneaid. Twelve RNA-seq

libraries were produced using the Truseq kit v2 from Illimina. Libraries were tagged individually

and sequenced in two Illumina Hiseq 2000 channels at the D-BSSE (ETH Zürich, Switzerland)

using 100 bp paired-end read protocol.

S. viscosa seeds we received from botanical gardens or collected in the wild by Bohuslav

Janousek and grown under controlled conditions in a greenhouse in Eschikon (Switzerland) and

Lyon (France). Similarly to8, flower buds  after removing the calyx and leaves were collected.

Total  RNA were  extracted  through  the  Spectrum  Plant  Total  RNA kit  (Sigma,  Inc.,  USA)

following the manufacturer’s protocol and treated with a DNAse. Libraries were prepared with

the TruSeq RNA sample Preparation v2 kit (Illumina Inc., USA). Each 2 nM cDNA library was
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sequenced  using  a  paired-end  protocol  on  a  HiSeq2000  sequencer.  Demultiplexing  was

performed using CASAVA 1.8.1 (Illumina) to produce paired sequence files containing reads for

each sample  in  Illumina  FASTQ format.  RNA extraction  and sequencing were  done by the

sequencing platform in the AGAP laboratory, Montpellier, France (http://umr-agap.cirad.fr/).

 A female individual from an interspecific  S. latifolia cross (C1_37) was back crossed

with a male from an 11 generation inbred line (U10_49). The offspring (hereafter called BC1

individuals) were grown under controlled conditions in a greenhouse in Eschikon (Switzerland).

High quality RNA from flower buds as described in10 was extracted from 48 BC1 individuals (35

females  and  13 males).  48  RNA-seq  libraries  were  produced  using  the  Truseq  kit  v2  from

Illimina  with  a  median  insert  size  of  about  200 bp.  Individuals  were  tagged separately  and

sequenced in four Illumna Hiseq 2000 channels at the D-BSSE (ETH Zürich, Switzerland) using

100bp  paired-end  read  protocol.  The  parents  used  for  this  back  cross  had  previously  been

sequenced in a similar way1,8.

1.2) DNA-seq data from filtered Y chromosome

Y chromosome  DNA was  isolated  using  flow  cytometry.  The  samples  for  flow  cytometric

experiments were prepared from root tips according to11 with modifications. Seeds of S. latifolia

were germinated in a petri dish immersed in water at 25°C for 2 days until optimal length of

roots  was  achieved  (1  cm).  The  root  cells  were  synchronized  by  treatment  with  2mM

hydroxyurea at 25°C for 18h. Accumulation of metaphases was achieved using 2.5μM oryzalin.

Approximately 200 root tips were necessary to prepare 1ml of sample. The chromosomes were

released from the root tips by mechanical homogenization using a Polytron PT1200 homogenizer

(Kinematica AG, Littau, Switzerland) at 18,000rpm for 13 s. The crude suspension was filtered

and stained with DAPI (2μg/ml). All flow cytometric experiments were performed on FACSAria
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II SORP flow cytometer (BD Biosciences, San José, Calif., USA). Isolated Y chromosomes were

sequenced with 2x100bp PE Illumina HiSeq.

1.3) RNA-seq PacBio data

Plants from an 11 generation inbred line were grown under controlled conditions in a

greenhouse in Eschikon (Switzerland). One male (U11_02) was randomly selected. High quality

RNA (RIN > 7.5) were extracted using the total RNA mini kit of Geneaid from very small flower

buds,  small  and  large  flower  buds,  flowers  before  anthesis  without  calyces,  rosette  leaves,

seedlings (4 leaves stage) and pollen. RNA of the different tissues was equally pooled and cDNA

was produced using the Clontech SMARTer Kit. The cDNA pool was then normalized using a

duplex specific endonuclease of the Evrogen TRIMMER kit. Two ranges were selected (1- 1.3

kb and 1.2 -2 kb) using the Pippin Prep (Sage Science). Two SMRTbell libraries were prepared

using the C2 Pacific Biosciences (PacBio) chemistry and sequenced with two SMRT Cells runs

on a PacBio RS II at the Functional Genomic Center Zurich (FGCZ). 

1.4) RNA-seq 454 data

Previously generated 454 data was used8,12.

2) Reference trancriptome assembly

The same reference transcriptome as in Muyle et al.12 and Zemp et al.8 was used.

3) Inference of sex-linked contigs

Autosomal and sex-linked contigs were inferred as in Muyle et al.12 and Zemp et al.8.

Illumina reads from the individuals of the cross were mapped onto the assembly using BWA13

version 0.6.2 with the following parameters: bwa aln -n 5 and bwa sampe. The libraries were

then  merged  using  SAMTOOLS  version  0.1.1814.  The  obtained  alignments  were  locally
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realigned using GATK IndelRealigner15 and were analysed using reads2snps16 version 3.0 with

the  following  parameters:  -fis  0  -model  M2  -output_genotype  best  -multi_alleles  acc

-min_coverage 3 -par false. This allowed to genotype individuals at each loci while allowing for

biases in allele expression, and without cleaning for paralogous SNPs. Indeed, X/Y SNPs tend to

be filtered out by paraclean, a program which removes paralogous positions17. A second run of

genotyping was done with paraclean in order to later remove paralogous SNPs from autosomal

contigs only. SEX-DETector12 was then used to infer contig segregation types after estimation of

parameters using an SEM algorithm. Contig posterior segregation type probabilities were filtered

to be higher than 0.8. Because the parents were not sequenced for the leaf and seedling datasets,

SEX-DETector was run using the flower bud data for the parents.

4) Reference mapping bias correction

In order  to  avoid  biases  towards  the reference  allele  in  expression  level  estimates,  a

second mapping was done using the program GSNAP18 with SNP tolerant mapping option. A

GSNAP SNP file was generated by home-made perl scripts using the SEX-DETector SNP detail

output file. Shortly, for each polymorphic position of all contigs, the most probable posterior

SNP type was used to extract the possible alleles and write them to the GSNAP SNP file. This

way, reference mapping bias was corrected for both sex-linked and autosomal contigs.  Only

uniquely mapped and concordant paired reads were kept after this. See Supplementary Table S1

for percentage of mapped reads. SEX-DETector was run a second time on this new mapping and

the  new inferences  were  used  afterwards  for  all  analyses  (see  Supplementary  Table  S2  for

inference results).

5) Validation of sex-linked contigs

5.1) Detection of false X-hemizygous contigs
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Erroneous inference of X-hemizygous contig can be due to a true X/Y gene which X and

Y copies were assembled into different contigs. In order to detect such cases, X-hemizygous

contigs were blasted19 with parameter -e 1E-5 against RNA-seq contigs that have male-limited

expression (see section 7 below for how male-limited contigs were inferred). These cases were

removed from the analyses presented here.

5.2) Validation using data from literature

A few sex-linked and autosomal genes in S. latifolia have already been described in the

literature (see Supplementary Table S3).

5.3) Validation using a genetic map

A genetic map was built and contigs from the X linkage group were used to validate

SEX-DETector  inferences.  RNA-seq  reads  from  the  flower  bud  S.  latifolia full-sib  cross

(hereafter CP) and backcross (hereafter BC1) were mapped against the reference transcriptome

using BWA13 with  a  maximum number of  mismatch  equal  to  5.  Libraries  were merged and

realigned using GATK15 and SNPs were analysed using reads2snps16. Using a customized perl

script,  SNP genotypes from the parents and the offspring as well  as the associated posterior

probabilities  were  extracted  from the  reads2snps  output  file.  Only  SNPs  with  a  reads2snps

posterior  genotyping  probability  higher  than  0.8  were  kept  for  further  analyses.  Then,  only

informative SNPs were kept: both parents had to be homozygous and different between father

LEUK144-3 and mother U10_37 in a first generation backcross population design (BC1) and at

least  one allele  had to  be different  between mother  C1_37 and father  U10_49 in  the  cross-

pollinator (CP). Filtered SNPs were then converted into a JoinMap format using a customized R

script. If more than one informative SNP per contig was present, the SNP was used with less

segregation distortion and less missing values. This led to 8,023 BC1 and 16,243 CP markers.

Page 25 of 47

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

24

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/179044doi: bioRxiv preprint first posted online Aug. 21, 2017; 

http://dx.doi.org/10.1101/179044


Loci with more than 10 % missing values were excluded, resulting in 7,951 BC1 and 15,118 CP

markers. Linkage groups were identified using the default setting of JoinMap 4.120. Robustness

of the assignment of the linkage groups was tested using LepMap21. Blasting the contigs against

known sex-linked genes allowed the identification of the X chromosome linkage group. Contigs

could not be ordered along the linkage groups due to the too limited number of individuals that

prevented the convergence of contig order. However, contigs were reliably attributed to linkage

groups.

5.4) Validation using isolated Y chromosome DNA-seq data

Filtered Y chromosome DNA-seq reads were filtered for quality and Illumina adapters

were  removed  using  the  ea-utils  FASTQ  processing  utilities22.  The  optimal  kmer  value  for

assembly was searched using KmerGenie23. Filtered reads were assembled using soapdenovo224

with  kmer=49,  as  suggested  by KmerGenie.  The obtained assembly  was  highly  fragmented,

therefore  RNA-seq  data  was  used  to  join,  order  and  orient  the  genomic  fragments  with

L_RNA_scaffolder25. The following RNA-seq reads were used (see section 1): one sample of

male flower buds sequenced by 454, 6 samples  of male flower buds sequenced by Illumina

paired-end, 4 samples of male leaves sequenced by Illumina paired-end and one sample of male

pooled tissues sequenced by PacBio. The genomic assembly was successively scaffolded with

L_RNA_scaffolder using RNA-seq samples one after the other, first 454 samples then Illumina

and finally PacBio. The obtained contigs were filtered to be longer than 200pb.

5.5) Set of validated sex-linked and autosomal contigs

The three sources of data (litterature, genetic map and filtered Y sequence data) were

compared to SEX-DETector inferred sex-linked RNA-seq contigs using BLAST19 with parameter

-e 1E-5. Blasts were filtered for having a percentage of identity over 90%, an alignment length

Page 26 of 47

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

25

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/179044doi: bioRxiv preprint first posted online Aug. 21, 2017; 

http://dx.doi.org/10.1101/179044


over  100bp  and  were  manually  checked.  If  a  sex-linked  RNA-seq  contig  blasted  against  a

sequence from one of the three data sources (literature, X genetic map or filtered Y DNA-seq) it

was then considered as validated. See Supplementary Table S2 for numbers of validated sex-

linked contigs.

6) Expression level estimates

6.1) whole contig expression levels

Whole contig mean expression levels were obtained for each individual  using GATK

DepthOfCoverage15 as the sum of every position coverage, divided by the length of the contig.

Normalised expression levels, in RPKM26, were then computed for each individual by dividing

by the value by the library size of the individual (total number of mapped reads), accounting for

different depths of coverage among individuals. Whole contig mean male and female expression

levels were then computed by averaging male and female individuals for each contig.

6.2) Allelic expression levels filtering

In  order  to  study separately  X and Y allele  expression  levels  in  males  and females,

expression  levels  were  studied  at  the  SNP level.  In  S.  latifolia,  for  each  sex-linked  contig

expression  levels  were  estimated  using  read  counts  from  both  X/Y  and  X-hemizygous

informative SNPs. SNPs were attributed to an X/Y or X hemizygous segregation type if  the

according posterior  probability  was  higher  than  0.5.  SNPs  are  considered  informative  if  the

father is heterozygous and has a genotype that is different from the mother (otherwise it is not

possible to tell apart the X from the Y allele and therefore it is not possible to compute X and Y

expression separately). X/Y SNPs for which at least one female had over two percent of her
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reads belonging to the Y allele were removed as unlikely to be true X/Y SNPs. Informative

autosomal SNPs from autosomal contigs were used in a similar way.

For contigs that only have X/X SNPs (SNPs for which the father's X is different to both

Xs from the mother),  Y expression level  is  only computed from the father  as  all  males are

homozygous in the progeny. Such contigs were therefore removed when having under 3 X/X

SNPs to avoid approximations on the contig mean Y/X expression level (39 contigs removed in

the flower buds dataset, 44 in the leaves dataset and 40 in the seedlings dataset).

In order to make S. latifolia expression levels comparable to  S. viscosa and  S. vulgaris

for sex-linked contigs, S. vicosa and S. vulgaris expression levels were estimated using only the

positions used in S. latifolia (informative X/Y or X-hemizygous SNPs).  The read count of every

position in every contig and for every S. viscosa and S. vulgaris individual was given by GATK

DepthOfCoverage15.  Only  positions  corresponding  to  informative  autosomal,  X/Y  or  X-

hemizygous SNPs in S. latifolia were used to compute the expression level for each contig and

each individual as explained in equation (1).

Contigwise  S. latifolia autosomal, X, Y, X+X, X+Y allelic expression levels were then

averaged among individuals. Autosomal normalised expression levels in the two outgroups (S.

vulgaris and S. viscosa) were averaged together.

7) Identification of contigs with sex-biased expression

The analysis was done separately for the three tissues (flower buds, seedling and rosette

leaves) as in Zemp et al.8 using the R package edgeR27. See Supplementary Table S2 for number

of sex-biased contigs removed in order to study dosage compensation. Male-limited expressed
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contigs were identified by calculating the mean expression values (FPKM) in both sexes and

selecting those which were exclusively expressed in males.
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Supplementary Figures

Supplementary Figure S1: Relatedness among the three studied species, extracted from31 ages

at the nodes are shown in million years (My). The exact relationship among species is poorly

resolved31–33.  In  some phylogenies  S.  viscosa is  closest  to  S.  latifolia,  whereas  in  others  S.

vulgaris is closest as shown here, and in others both species are equally diverged to S. latifolia. 
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Supplementary  Figure  S2:  Normalised  difference  in  allelic  expression  levels  between  S.

latifolia and the two outgroups without sex chromosomes  S. vulgaris and  S. viscosa (hereafter

Δ), in autosomal and sex-linked contigs for the seedling tissue. Maternal and paternal allelic read

numbers  were summed at  SNP positions and normalised for each individual  separately,  then

averaged among individuals for each contig.  Δ was computed as follows:  Δ=(allelic expression

in  S. latifolia –  allelic expression in the outgroup) /  allelic expression in the outgroup). If Δ is

lower, higher or equal to zero, then expression in  S. latifolia is respectively lower, higher or

equal to the outgroup. For all contig categories, Δ was compared to zero using a Wilcoxon test.

The median Δ, confidence intervals and p-values adjusted for multiple testing using a Benjamini

and Hochberg correction are shown (***: p-value < 0.001; **: p-value < 0.01, *: p-value < 0.05).

The Y/X ratio was computed in S. latifolia males and averaged among individuals to use as a
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proxy for Y degeneration. X-hemizygous contigs have a Y/X ratio equal to zero. Contigs with

sex-biased expression were removed, as well as contigs with Y/X expression ratios above 1.5.

Sample sizes for the different contig categories are: autosomal:200; 1-1.5:148; 0.75-1:139; 0.5-

0.75:160;  0.25-0.5:114;  0-0.25:79;  0:205  (note  that  200  autosomal  contigs  were  randomly

selected in order to have similar statistical power among gene categories). In the absence of

dosage compensation, the single X in males should be expressed at levels similar to the outgroup

that does not have sex chromosomes, in other words, without dosage compensation Δ should be

close to zero for the maternal allele in males (red bars). Results show that the maternal allele is

hyper-expressed  in  S.  latifolia when  the  Y chromosome  is  degenerated,  both  in  males  and

females.
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Supplementary  Figure  S3:  Normalised  difference  in  allelic  expression  levels  between  S.

latifolia and the two outgroups without  sex chromosomes  S. vulgaris and  S.  viscosa (Δ),  in

autosomal and sex-linked contigs  for  the  flower bud tissue.  Same legend as Supplementary

Figure S2 except for sample sizes for the different contig categories: autosomal:200; 1-1.5:95;

0.75-1:195; 0.5-0.75:203; 0.25-0.5:176; 0-0.25:116; 0:103.
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Supplementary  Figure  S4:  Normalised  difference  in  allelic  expression  levels  between  S.

latifolia and the two outgroups without  sex chromosomes  S. vulgaris and  S.  viscosa (Δ),  in

autosomal and sex-linked contigs for the leaf tissue. Same legend as Supplementary Figure S2

except for sample sizes for the different contig categories: autosomal:200; 1-1.5:159; 0.75-1:132;

0.5-0.75:147; 0.25-0.5:126; 0-0.25:71; 0:275.
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Supplementary  Figure  S5:  Normalised  difference  in  allelic  expression  levels  between  S.

latifolia and the two outgroups without  sex chromosomes  S. vulgaris and  S.  viscosa (Δ),  in

autosomal  and  sex-linked  contigs  that  were  validated (see  Materials  and  Methods),  for  the

seedling tissue.  Same  legend  as  Supplementary  Figure  S2  except  for  sample  sizes  for  the

different  contig  categories:  autosomal:77;  1-1.5:71;  0.75-1:82;  0.5-0.75:91;  0.25-0.5:44;  0-

0.25:29; 0:89.
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Supplementary  Figure  S6:  Normalised  difference  in  allelic  expression  levels  between  S.

latifolia and the two outgroups without  sex chromosomes  S. vulgaris and  S.  viscosa (Δ),  in

autosomal  and  sex-linked  contigs  that  were  validated (see  Materials  and  Methods),  for  the

flower bud tissue. Same legend as Supplementary Figure S2 except for sample sizes for the

different  contig  categories:  autosomal:74;  1-1.5:86;  0.75-1:91;  0.5-0.75:67;  0.25-0.5:45;  0-

0.25:31; 0:55.
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Supplementary  Figure  S7:  Normalised  difference  in  allelic  expression  levels  between  S.

latifolia and the two outgroups without  sex chromosomes  S. vulgaris and  S.  viscosa (Δ),  in

autosomal and sex-linked contigs that were validated (see Materials and Methods), for the leaf

tissue. Same legend as Supplementary Figure S2 except for sample sizes for the different contig

categories: autosomal:79; 1-1.5:84; 0.75-1:74; 0.5-0.75:77; 0.25-0.5:52; 0-0.25:19; 0:119.
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Supplementary Figure S8: Normalised expression difference between the maternal and paternal

allele in S. latifolia females in autosomal and sex-linked contigs for the seedling tissue. The Y

axis unit is the normalised allelic read count difference in log scale. A linear regression model

with mixed effects was used to study allelic expression in S. latifolia for every SNP position. In

order to measure the changes in  S. latifolia expression due to sex chromosomes evolution, the

outgroup S. vulgaris that does not have sex chromosomes was used as a reference in the model

(see Materials and Methods for details). The framework provided estimates for the normalised

difference between the effect of paternal and maternal origin of alleles in interaction with the

contig status (autosomal or sex-linked with various levels of Y degeneration), while accounting

for inter-contig and inter-individual variability. See Supplementary Figure S2 legend for sample

sizes for the different contig categories and statistical significance symbols. Results show that Y

degeneration is linked to a significant expression difference between the paternal and maternal

alleles in females, which is not observed in autosomal and non-degenerated sex-linked contigs.
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Supplementary Figure S9: Normalised expression difference between the maternal and paternal

allele in S. latifolia females in autosomal and sex-linked contigs for the flower bud tissue. See

supplementary  Figure  S8 for  legend  and Supplementary  Figure  S3 for  sample  sizes  for  the

different contig categories.
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Supplementary  Figure  S10:  Normalised  expression  difference  between  the  maternal  and

paternal allele in S. latifolia females in autosomal and sex-linked contigs for the leaf tissue. See

supplementary  Figure  S8 for  legend  and Supplementary  Figure  S4 for  sample  sizes  for  the

different contig categories.
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Supplementary  Figure  S11:  Normalised  expression  difference  between  the  maternal  and

paternal  allele  in  S.  latifolia females  in  autosomal  and sex-linked  validated contigs  for  the

seedling tissue.  See  supplementary  Figure  S8  for  legend  and  Supplementary  Figure  S5  for

sample sizes for the different contig categories.
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Supplementary  Figure  S12:  Normalised  expression  difference  between  the  maternal  and

paternal  allele  in  S.  latifolia females  in  autosomal  and sex-linked  validated contigs  for  the

flower bud tissue. See supplementary Figure S8 for legend and Supplementary Figure S6 for

sample sizes for the different contig categories.
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Supplementary  Figure  S13:  Normalised  expression  difference  between  the  maternal  and

paternal allele in S. latifolia females in autosomal and sex-linked validated contigs for the leaf

tissue. See supplementary Figure S8 for legend and Supplementary Figure S7 for sample sizes

for the different contig categories.
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Supplementary  Figure  S14:  Original  DNA methylation  staining  results  from  Siroky  et  al

199834.  (a) Male metaphase chromosomes stained with PI.  (b) FITC-anti-5-mC signals on the

same chromosomes. The hypomethylated shorter X arm is marked by an asterisk; The X and Y

chromosomes are indicated. (c) Female metaphase chromosomes stained with PI. (d) FITC-anti-

5-mC signals on the same chromosomes. Shorter arms of the Xs are indicated by asterisks. The

hypermethylated X chromosome is marked as Xm. Bars = 5μm.
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Supplementary Tables

Supplementary  Table  S1: library  sizes  (number  of  reads)  of  each  individual  and  mapping

statistics.

Supplementary Table S2: Number of contigs after SEX-DETector inferences, removal of sex-

bias and selection of validated contigs in the three tissues.

Tissue type

flower buds leaves seedlings

number of ORFs 46178

Unassigned 33172 33564 33781

Autosomal 11662 11558 11292

X/Y 1140 772 844

X-hemizygous 204 284 261

X/Y non sex-biased 901 733 732

X-hemizygous non sex-biased 103 275 205

X/Y non sex-biased validated 339 345 365

X-hemizygous non sex-biased validated 55 119 89

Autosomal validated 74 79 77

Supplementary Table S3: list of known sex-linked genes in S. latifolia and associated literature

references.
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