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Deep Reinforcement Learning for Audio-Visual Gaze Control

Stéphane Lathuilière, Benoit Massé, Pablo Mesejo, and Radu Horaud

Abstract— We address the problem of audio-visual gaze con-
trol in the specific context of human-robot interaction, namely
how controlled robot motions are combined with visual and
acoustic observations in order to direct the robot head towards
targets of interest. The paper has the following contributions:
(i) a novel audio-visual fusion framework that is well suited
for controlling the gaze of a robotic head; (ii) a reinforcement
learning (RL) formulation for the gaze control problem, using
a reward function based on the available temporal sequence
of camera and microphone observations; and (iii) several deep
architectures that allow to experiment with early and late fusion
of audio and visual data. We introduce a simulated environment
that enables us to learn the proposed deep RL model without the
need of spending hours of tedious interaction. By thoroughly
experimenting on a publicly available dataset and on a real
robot, we provide empirical evidence that our method achieves
state-of-the-art performance.

I. INTRODUCTION

In recent years there has been a growing interest in the
development of robotic systems able to communicate with
people, i.e. human-robot interaction (HRI). Unlike traditional
robot perception systems that have primarily been used for
robot localization and navigation, HRI implies that there are
people in the loop, therefore the robot must take decisions in
order to optimally interact with users. For example, a robot
can recognize an user’s gestures, intentions, or speech only
if the robot faces that user, i.e. dyadic interaction. Moreover,
robots are likely to be present in populated spaces, such
as hospitals, museums, hotel lobbies, etc. Consequently, a
robot should be able to interact with a group of people or
be part of a team. In situations such as the ones cited, a
robot teammate must constantly maintain the participants in
its visual and acoustic fields of view such that it can easily
receive instructions while respecting social etiquette.

In this paper, we address the problem of audio-visual gaze
control, or more precisely, how a robot should combine con-
trolled motions with acoustic and visual observations in order
to direct its head towards groups of people. Active perception
is necessary for making inferences from observations; it is
equally needed for deciding to look at something or to speak
with someone. The objective is to design a methodology
that enables robots to learn gazing strategies from data; for
example, to maximize the number of persons that are present
in its visual field of view and, possibly, to favor people
engaged in spoken communication.
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Also, it is interesting to note that gaze control has been
mainly addressed for dyadic interaction. In multi-party sce-
narios, focusing on only one person may lead to miss
important information such as who looks at whom and who
is the speaker and who are the listeners [1]. Hence there is a
danger that the controller makes suboptimal decisions with
respect to the task at hand. We address gaze control in the
specific case of multi-party interaction.

Gaze control was already addressed within the frame-
work of sensor-based robot servoing. For example, visual
servoing consists of designing a control loop that aligns the
observed position of an object with a targeted position [2].
This implies that the direct and inverse robot Jacobians are
known. Alternatively, these Jacobians may be estimated via
reinforcement learning [3]. Recently, the concept of sensor-
based servoing was applied to the audio modality by directly
linking observed acoustic features to robot control. However
this approach makes the strong assumption that there is a
single sound source that emits continuously. e.g. [4], [5].
Unfortunately this cannot be applied to speech uttered by
several participants. Currently, sensor-based servoing meth-
ods that are able to combine visual and audio features,
possibly associated with several persons, are not available.
When several modalities and hence several types of sensors
are available, it is difficult to optimally fuse the available
sensory data and to implement an optimal controller, based
on handcrafted rules that must consider all the situations that
may occur.

In this paper, we propose a reinforcement learning ap-
proach [6] to the gaze control problem, e.g. Fig. 1. Reinforce-
ment learning (RL) has several advantages over sensor-based
servoing as it replaces a handcrafted control strategy with a
trial-and-error learning model. Over time, the agent, e.g. the
robot, refines its behavior via optimization of a reward-based
function that may well be viewed as a feedback signal that
indicates whether the robot actions are beneficial or not. The
model can be trained both offline and online, which yields
interesting adaptation capabilities. As it will be described in
detail below, there is no need of an annotated training dataset
as is often the case with machine learning techniques.

The paper has the following contributions. We built a
novel audio-visual fusing framework that is well suited for
controlling the gaze of a robotic head in a multi-party
interaction scenario. We map the gaze control problem in the
framework of RL and we propose a reward function based on
the available temporal sequence of camera and microphone
observations. We use deep RL to model the action-value
function, and suggest several deep architectures based on



Fig. 1: Overview of the proposed deep RL method for controlling the gaze of a robot. At each time index t, audio and
visual data are represented as features maps which, together with motor positions, form the set of observations Ot. A motor
action At (rotate left, right, up, down, or stay still) is selected based on past and present observations via maximization of
current and future rewards. The rewards R are based on the number of visible persons as well as on the presence of speech
sources in the camera field of view. We use a deep Q-network (DQN) model that can be learned both offline and online.
Please refer to Section III and Section IV for the mathematical notations and detailed problem formulation.

LSTM (a recurrent neural network model) that allow us to
experiment with early fusion and late fusion of audio and vi-
sual data. We introduce a simulated environment that enables
us to learn the proposed deep RL model without the need of
spending hours of tedious interaction. By experimenting on
a publicly available dataset and on a real robot, we provide
empirical evidence that our method achieves state-of-the-art
performance.

The remainder of this article is organized as follows.
Section II describes related work. Section III presents the
proposed mathematical formulation and Section IV describes
the deep reinforcement learning architectures. Section V
briefly describes the simulated environment needed for of-
fline training. Section VI reports experiments and results
obtained with a publicly available dataset and with a Nao
robot.

II. RELATED WORK

There are several RL-based HRI methods relevant to
our work. In [7] an RL algorithm is used for a robot to
learn to play a game with a human partner. The algorithm
uses vision and force/torque feedback to choose the motor
commands. The uncertainty associated with human actions
is modeled via a Gaussian process model, and Bayesian
optimization selects an optimal action at each time step.
In [8] RL is employed to adjust motion speed, timing,
interaction distances, and gaze in the context of HRI. The
reward is based on the amount of movement of the subject
and the time spent gazing at the robot in one interaction. As
external cameras are required, this cannot be easily applied
in scenarios where the robot has to keep learning in a real
environment. Moreover, the method is limited to the case of
a single human participant. Another example of RL applied
to HRI can be found in [9], where a human-provided reward
is used to teach a robot. This idea of interactive RL is also
exploited in [10] in the context of a table-cleaning robot.
Visual and speech recognition are used to get advice from

a parent-like trainer to enable the robot to learn a good
policy efficiently. An extrinsic reward is used in [11] to
learn how to point a camera towards the active speaker in a
conversation. Audio information is used to determine where
to point the camera, while the reward is provided using visual
information: the active speaker raises a blue card that can
be easily identified by the robot. The use of a multimodal
deep Q-network (DQN) to learn human-like interactions is
proposed in both [12] and [13]. The robot must choose an
action to shake hands with a person. The reward is either
negative, if the robot tries unsuccessfully to shake hands,
positive, if the hand-shake is successful, or null otherwise.
In practice, the reward is obtained from a sensor located in
the hand of the robot and it takes fourteen training days to
learn this skill successfully. To the best of our knowledge,
the closest work to ours is [14] where an RL approach
learns good policies to control the orientation of a mobile
robot during social group conversations. The robot learns to
turn its head towards the speaking person. However, their
model is learned on simulated data that are restricted to a
few predefined scenarios with static people and a predefined
spatial organization of the group.

As already mentioned, gaze control has been addressed in
the framework of sensor-based servoing. In [15] a method
is proposed that uses audio-visual input to detect, track,
and involve multiple persons into an interaction. In a multi-
person scenario, [16] investigated the complementary nature
of tracking and visual servoing that enables the system to
track several persons and to visually control the gaze such
as to keep a selected person in the camera field of view.
Also, in [17], a system for gaze control of socially interactive
robots in multiple-person scenarios is presented. This method
requires external sensors to locate human participants. How-
ever, in opposition to all these works, we aim at learning
the optimal behavior for gaze control, using the minimal
supervision represented by a reward function, instead of
adopting an arbitrary and handcrafted gaze control strategy.



III. REINFORCEMENT LEARNING FOR GAZE CONTROL

We consider a robot which should gaze towards a group of
people. Hence, the robot must learn by itself a gaze control
strategy via a trial-and-error procedure. The desired robot
action is to rotate its head, on which are mounted a camera
and two microphones, such as to maximize the number of
persons visible in the camera field-of-view. Moreover, the
robot should prefer to look at speaking people. The overall
architecture of the proposed methodology is shown in Fig. 1.
The terms agent and robot will be used indistinctly.

Random variables and their realizations are denoted with
uppercase and lowercase letters, respectively. Vectors and
matrices are in bold italic. At each time index t, the agent
gathers motor Θt, visual V t, and audio W t observations and
performs an action At ∈ A from an action set according to a
policy π, i.e. controlling the head motors such that the robot
gazes in a selected direction. Once an action is performed,
the agent receives a reward Rt, as explained in detail below.

Without loss of generality we consider the companion
robot Nao whose head has two rotational degrees of freedom,
pan and tilt. Motor observations correspond to pan and tilt
angles, Θt = (Θ1

t ,Θ
2
t ). The values of these angles are

relative to a reference head orientation, e.g. aligned with
the robot body. This reference orientation together with the
motor limits define the robot-centered motor field-of-view, or
M-FOV.

We use the multiple person detector of [18] to estimate
visual landmarks for each detected person, namely the nose,
eyes, ears, neck, shoulders, elbows, wrists, hip, knees and
ankles, or a total of J = 18 possible landmarks for each
person. Based on the detection of these landmarks, one
can determine the number of (totally or partially) observed
persons, Nt, as well as the number of observed faces, Ft.
Notice that in general the number of faces that are present
in the image (i.e. detection of nose, eyes or ears) may be
smaller than the number of detected persons. The landmark
coordinates are described in image coordinates. Since the
camera is mounted onto the robot head, the landmarks are
described in a head-centered reference system. The visual
landmarks are represented by J binary grids of size Kv×Lv ,
namely V t ∈ {0, 1}Kv×Lv×J , where 1 (or zero) corresponds
to the presence (or absence) of a landmark. Notice that this
representation gathers all the detected landmarks associated
with the Nt detected persons. Kv and Lv are the horizontal
and vertical resolution of the visual grids.

Audio observations are provided by the multiple speech-
source localization method described in [19]. Audio ob-
servations are also represented with a binary grid of size
Ka × La, namely W t ∈ {0, 1}Ka×La . A grid cell is set to
1 if a speech source is detected at that grid location and 0
otherwise. Similarly, Ka and La represent the resolution of
the audio grid. The audio grid is robot-centered and hence it
remains fixed whenever the robot turns its head. Moreover,
the audio grid spans an acoustic field-of-view, or A-FOV,

which is much wider than the visual field-of-view, or V-
FOV, associated with the camera mounted onto the head. The
motor observations allow to estimate the relative alignment
between the audio and visual grids and to determine whether
a speech source lies within the visual field-of-view or not.
This is represented by the binary variable Σt ∈ {0, 1}, such
that Σt = 1 if a speech source lies in the visual field-of-
view and Σt = 0 if none of the speech sources lies inside
the visual field-of-view.

Let Ot = {Θt,V t,W t} and let St = {O1, . . . ,Ot}
denote the state variable. Let the set of actions be defined
by A = {∅,←, ↑,→, ↓}, namely either remain in the same
position or turn the head by a fixed angle in one of the four
cardinal directions. We propose to define the reward Rt as
follows:

Rt = Ft+1 + αΣt+1, (1)

where α ≥ 0 is an adjustment parameter. High α values
return high rewards when speech sources lie within the
camera field-of-view. We consider two types of rewards
which are referred to in Section VI as Face reward (α = 0)
and Speaker reward (α > 0). Notice that the number of
observed faces Ft is independent of each person’s speaking
status. Upon the application at hand, the value of α allows
one to weight the importance given to speaking persons.

In RL, the model parameters are learned on sequences of
states, actions and rewards, called episodes. At each time
index t, an optimal action At should be chosen in order to
maximize future rewards, Rt, Rt+1, . . . , RT . We make the
standard assumption that future rewards are discounted by
a factor γ that defines the importance of short-term rewards
as opposed to longer term ones. We define the discounted
future return R̄t as the discounted sum of future rewards,
R̄t =

∑T−t
τ=0 γ

τRτ+t. If γ = 0, R̄t = Rt and, consequently,
we aim at maximizing only the immediate reward whereas
when γ ≈ 1, we favor policies that leads to better rewards in
the long term. Considering a fixed value of γ, we now aim
at maximizing R̄t at each time index t. In other words, the
goal is to learn a policy, π(at, st) = P (At = at|St = st)
with (at, st) ∈ A × S, such that if the agent chooses its
actions according to the policy π, the expected R̄t should be
maximized. The Q-function (or the action-value function) is
defined as the expected future return from state St, taking
action At and then following any given policy π:

Qπ(st, at) = Eπ[R̄t|St = st, At = at]. (2)

Learning the best policy corresponds to the following op-
timization problem Q∗(st, at) = max

π
[Qπ(St = st, At =

at)]. In practice, the evaluation of the Q-function from (2)
is intractable. Following [20], we propose to use a deep
Q-network (DQN) Q(s, a,ω), parametrized by ω yielding
the approximation Q(s, a,ω) ≈ Q∗(s, a). We minimize the
following loss:

L(ω(i)) = ESt,At,Rt,St+1

[
(Y (i−1) −Q(St,At,ω

(i)))2
]
,

(3)



where the superscript (i) denotes the iteration index asso-
ciated with the optimization procedure and with Y (i−1) =
Rt+γ max

a
(Q(St+1, a,ω

(i−1))). In order to compute (3), we
sample quadruplets (St,At,Rt,St+1) following the policy
implied by:

at = argmax
a∈A

Q(st, a, ω
(i−1)) (4)

However, instead of only sampling according to (4), ran-
dom actions at are taken in ε percents of the time indices
in order to explore new policies. This approach is known as
the ε-greedy policy. L is minimized over ω(i) by stochastic
gradient descent. Refer to [20] for more technical details
about the training algorithm.

IV. PROPOSED DQN ARCHITECTURES

We propose to model the Q-function with a long short-
term memory (LSTM) [21] recurrent neural network that
takes as input S∆t

t = {Ot−∆t, . . . ,Ot} and that outputs
a vector of size #A that corresponds to each Q(s∆t

t , at,ω)
with at ∈ A, i.e. Section III. We argue that LSTM is well-
suited for our task as it is capable of learning temporal
dependencies better than other recurrent neural networks and
than hidden Markov models. In practice, when a person is
not detected anymore, the network should be able to use
previous detections (back in time) in order to predict the
direction towards which the robot should be gazing. The J
grids of V t are flattened before the LSTM layers. Batch
normalization is applied to the output of the LSTM in order
to accelerate training [22]. Following [20], the output layer
is a fully-connected layer (FCL) with linear activations.

Four different network architectures were tested. They are
described below and evaluated in Section VI. In order to
evaluate how the visual and audio streams of information
should be fused, we propose to compare two strategies: early
fusion and late fusion. In early fusion, EFNet, the unimodal
features are combined into a single representation before
modeling time dependencies, i.e. Fig. 2a. In late fusion,
LFNet, visual and audio features are processed separately
before they are fused, i.e. Fig. 2b. In order to measure the
impact of each modality, we propose two more network
architectures that use either visual-only, VisNet, or audio-
only, AudNet, input, e.g. Fig. 2c, where we used the compact
graphical representation proposed in [23].

V. SIMULATED ENVIRONMENT FOR TRAINING

Training a DQN model from scratch may require long
periods until convergence, e.g. of the order of 150000 time
steps in our case. Moreover, using a robot for training may
not be convenient for two reasons. First, each robotic action
takes an irreducible time. Second, in the case of HRI, partici-
pants would need to be actually present in front of a robot for
tens of hours and to mimic realistic behaviors. Therefore, we
propose to perform training using a simulated environment.
DQN is learned using a simulated robot and people that

(a) EFNet (b) LFNet

(c) AudNet (d) VisNet

Fig. 2: Proposed architectures to model the Q-function.
Dashed lines indicate connections only used in the last time
step. Black squares represent a delay of a single time step.
Circled crosses represent the concatenation of inputs. FCL
outputs a Q-value for each action.

Fig. 3: Example of a simulated sequence used for offline
training. The field of view is shown with a white rectangle.
Visual landmarks associated with two persons are shown
as colored dots. The white circles correspond to simulated
speech sources that may correspond to a person.

move and speak. Then the Q-function thus learned is used to
initialize the DQN associated with real gaze control in the
presence of people. Importantly, the network learned from
this simulated environment can be successfully used by the
robot without the need of fine-tuning with real data. In this



simulated environment, we do not need to generate realistic
images and sounds, instead we directly generate observations
and rewards as needed by DQN learning.

Using the formulation introduced in Section III we defined
motor, acoustic, and visual fields of view that correspond
to the robot characteristics, e.g. Fig. 3. Without loss of
generality we assumed that the motor field of view is the
same as the acoustic field of view.

We simulated people that can freely move in a space that
is larger than the motor/acoustic field of view. This allows us
to consider people that randomly enter and quit this field of
view. To simulate realistic human movements, we applied the
person detector of [18] to the AVDIAR dataset [24] in order
to collect a large number person poses and their associated
landmarks. Realistic human trajectories were obtained using
a smoother. Then the landmarks and their trajectories were
mapped onto our simulated environment such that people
move at different speeds, suddenly change their trajectories,
come in and out the motor field of view, etc. Speech sources
were simulated as follows. Three situations were randomly
selected: one speaking person, two speaking persons, and no
speaking person. A Markovian model was used to enforce
temporal continuity of the speaking status. In addition, we
also simulated speech sources that do not correspond to a
person location.

VI. EXPERIMENTS

A. Evaluation with Recorded Data

The evaluation of HRI systems is not an easy task. In order
to fairly compare different models, we need to train and test
each model on the exact same data. In the context of RL and
HRI, this is problematic because the data, i.e. what the robot
actually sees and hears, depends on the action taken by the
robot. Thus, we propose to first evaluate our model with the
AVDIAR dataset [24]. This dataset was recorded with four
microphones and one high-resolution camera (1920 × 1080
pixels). These images, due to their wide field of view, are
suitable to simulate the motor field of view of the robot. In
practical terms, only a small box of the full image simulates
the robot’s camera field of view.

However, it is important to highlight that transferring the
model learned using AVDIAR to Nao is problematic. First,
faces are almost always located at the same position (around
the image center). Second, all videos are recorded indoors
using only two different rooms, and participants are not
moving too much. Finally, the audio setting is unrealistic for
a robotics scenario, e.g. absence of motor noise. Therefore,
the main reason for using the AVDIAR dataset is to compare
our method with other methods.

B. Live Experiments with Nao

In order to carry out an online evaluation of our method,
we performed experiments with a Nao robot. Nao has a

640×480 pixels cameras and four microphones. This robot is
particularly well suited for HRI applications because of its
design, hardware specifications and affordable cost. Nao’s
commercially available software can detect people, locate
sounds, understand some spoken words, synthesize speech
and engage itself in simple and goal-directed dialogs. Our
gaze control system is implemented on top of the NAOLab
middleware [25] that synchronizes proprioceptive data (mo-
tor readings) and sensor information (image sequences and
acoustic signals). The reason why we use a middleware is
threefold. First, the implementation is platform-independent
and, thus, easily portable. Platform-independence is crucial
since we employ a transfer learning approach to transfer the
model parameters, obtained with the proposed simulated en-
vironment, to the Nao software/hardware platform. Second,
the use of external computational resources is transparent.
This is also a crucial matter in our case, since visual
processing is implemented on a GPU which is not available
onboard of the robot. Third, the use of middleware makes
prototyping much faster. For all these reasons, we employ
the remote and modular layer-based middleware architecture
named NAOLab. NAOLab consists of four layers: drivers,
shared memory, synchronization engine and application pro-
gramming interface (API). Each layer is divided into three
modules devoted to vision, audio and proprioception, re-
spectively. The last layer of NAOLab provides a general
programming interface in C++ to handle the sensory data
and to manage its actuators. NAOLab provides, at each time
step, an image and the direction of the detected sound sources
using [19], [26].

It is important to highlight that we pre-train the proposed
model using the simulated environment before running live
experiments on Nao. This environment is flexible and allows
us to be closer to the actual conditions that Nao would face in
practice (field of view range, uniform location of the people,
etc.). For instance, in AVDIAR, heads are almost always at
the same height. As a consequence, the learned model would
not be general enough to perform well in real scenarios.

C. Implementation Details

We managed to obtain the full-body pose using [18] in
less than 100 ms by carefully selecting the resolution used
to perform the detection. Considering that NAOLab gathers
images at 10 FPS, this pose estimator can be considered
as fast enough for our scenario. Moreover, [18] follows a
bottom-up approach, which allows us to speed-up landmark
detection by skipping the costly association step.

The parameters of our model are based on a preliminary
experimentation. We set ∆T = 4 in all scenarios, such that
each decision is based on the last 5 observations. The output
size of LSTM is set to 30 (since a larger size does not provide
an improvement in performance), and the output size of the
FCL is set to 5 (one per action). We use a discount factor
(γ) of 0.90. Concerning the training phases, we employed
the Adam optimizer [27] and a batch size of 128. In order



to help the model to explore the policy space, we use an ε-
greedy algorithm: while training, a random action is chosen
in ε% of the cases; we decrease linearly the ε value from
ε = 90% to ε = 10% after 120000 iterations. Concerning
the observations, we employ visual and audio grids of sizes
7 × 5 for the AVDIAR environment. However, due to the
acoustic properties of the robot, it is very difficult to estimate
the elevation of a speech source. Then, on the simulated
environment and the Nao, the audio grids are 7 × 1. The
models were trained in approximately 45 minutes on both
AVDIAR and the simulated environment. It is interesting to
notice that we obtain this training time without using GPUs.
A GPU is only needed for person detection and estimation
of visual landmarks (in our case, a Nvidia GTX 1070 GPU).

We also provide details specifically related to the Nao
implementation. The delay between two successive obser-
vations is ∼0.3 seconds. The head has a motor field of
view 180 degrees. The head motion parameters are chosen
such that a single action corresponds to 0.15 radians (∼9◦)
and 0.10 radians (∼6◦) for horizontal and vertical motions,
respectively. Concerning the AVDIAR dataset, we employ 16
videos for training. The amount of training data is doubled
by flipping the video and the speech grids. In order to save
computation time, the original videos are down-sampled to
1024×640 pixels. The size of the camera field of view where
faces can be detected is set to 300×200 pixels using motion
steps of 36 pixels each. These dimensions approximately
correspond the coverage angle and motion of Nao. At the
beginning of each episode, the position of the camera field of
view is selected such that it contains no face. We noticed that
this initialization procedure favors the exploration abilities of
the agent. To avoid a bias due to the initialization procedure,
we used the same seed for all our experiments and iterated
three times over the 10 test videos (20 when counting the
flipped sequences). An action is taken every 5 frames (0.2
seconds). In the simulated environment, the size of field in
which the people can move is set to ξ = 1.4. In the case
of Nao, the audio observations are provided by the multiple
speech-source localization method described in [19].

D. Results and Discussion

In all our experiments, we run five times each model and
display the mean of five runs to lower the impact of the
stochastic training procedure. On AVDIAR, the results on
both training and test sets are reported in the tables. As
described previously, the simulated environment is randomly
generated in real time, so there is no need for a separated
test set. Consequently, the mean reward over the last 10000
time steps is reported as test score.

In Table I, we compare the final reward obtained while
training on the AVDIAR dataset and on our simulated en-
vironment with the two proposed rewards (Face reward and
Speaker reward). Four different networks are tested: EFNet,
LFNet, VisNet, and AudNet. The best results are generally
provided by the late and early fusion strategies (LFNet and

TABLE I: Comparison of the reward obtained with different
architectures. The best results obtained are displayed in bold.

AVDIAR Simulated
Face Speaker Face Speaker

AudNet 1.47± 0.04 1.82± 0.03 0.21± 0.01 0.33± 0.01
VisNet 1.85± 0.02 2.23± 0.03 0.37± 0.04 0.45± 0.06
EFNet 1.81± 0.04 2.22± 0.03 0.41± 0.03 0.53 ± 0.03
LFNet 1.83± 0.02 2.29± 0.02 0.42 ± 0.01 0.52± 0.03

EFNet), showing that our model is able to effectively exploit
the complementarity of both modalities. We observe that
the rewards we obtain on AVDIAR are higher than those
obtained on the simulated environment. We suggest two
possible reasons. First, the simulated environment has been
specifically designed to enforce exploration and tracking
abilities. Consequently, it poses a more difficult problem to
solve. Second, the number of people in AVDIAR is higher
(about 4 in average), thus finding a first person to track
would be easier. We notice that, on the AVDIAR dataset
using the Face reward, we obtain a mean reward greater
than 1, meaning that, on average, our model can see more
than one face per frame. We also observe that AudNet is
the worst performing approach. However, it performs quite
well on AVDIAR compared to the simulated environment.
This behavior can be explained by the fact that, on AVDIAR,
the speech source detector returns a 2D heatmap whereas
only the yaw angle is used in the simulated environment. As
conclusion, we select LFNet to perform experiments on Nao.

Concerning the experiments performed on Nao, Figure 5
shows an example of a two-person scenario using the LFNet
architecture. We managed to transfer the exploration and
tracking abilities learned using the simulated environment. In
our experiments, we see that our model behaves well inde-
pendently of the number of participants, and the main failure
cases are related to quick movements of the participants.

We now perform a comparative evaluation with respect
to the state of the art. To the best of our knowledge, there
is no existing work that tackles the problem of finding
an optimal head motion policy in the HRI context. Only
Bennewitz et al. [15] propose a heuristic that uses an audio-
visual input to detect, track and involve multiple persons
into interaction. We compare our learned policy with their
proposed algorithm. On the simulated environment, as the
speech source detector does not provide vertical information
(see section VI-C), in the case where no person has been
observed so far but a sound is detected, we randomly move
along the vertical axis corresponding to the horizontal speech
source position. In their experiments, Ban et al. [16] propose
two strategies to evaluate their visual head control method. A
first strategy consists in following a person and orienting the
robot head in order to align the person’s face with the image
center. A second strategy consists in randomly jumping every
3 seconds between persons. Obviously, the second strategy
was designed as a toy experiment and does not correspond to
a natural behavior. Therefore, we compare our RL approach
with their first strategy. Unfortunately, the case where nobody



Fig. 4: Example of a sequence from the AVDIAR dataset. The speech direction binary grid is superimposed on the image,
and the visible landmarks are displayed using a colored skeleton. The camera field of view (in red) is randomly initialized
(far left). The agent controls its gaze, explores, and finds a person where it detects a speech source (left). The agent manages
to get all the persons in the field of view (right), and it gazes at three persons when the group split (far right).

Fig. 5: Example of a live sequence with two persons. First row shows an overview of the scene, including the participants
and the robot. Second row shows the images gathered with the camera mounted onto the robot head. The robot head is first
initialized in a position where no face is visible (first column), and the model uses the available landmarks (elbow and wrist)
to find the person onto the right (second column). The robot detects the second person by looking around while keeping
the first person in its field of view (third column), and gazes the two people walking together (fourth column).

is in the field of view is not considered in [16]. To be able
to compare their method in the more general scenario we
tackle, we propose the following handcrafted policy in the
case no face is detected in the field of view:

• Rand: A random action is chosen.
• Center: Go towards the center of the acoustic field-of-

view.
• Body: Go up (↑) if a limb is detected, to find the

corresponding head. Otherwise, Rand is followed.
• Speech: Go towards the position of the last detected

speech source.

Importantly, in our model the head motion speed is lim-
ited, since the robot can only select unitary actions. When
implementing other methods, one could argue that this speed
limitation is inherent to our approach and that other methods
may not suffer from it. However, it is not realistic to consider
that the head can move between two opposite locations of
the auditory field in two consecutive frames with an infinite
speed. Therefore, we report two scores in our comparison.
The first one is obtained using the same speed value than
the one used in our model (referred to as equal). The second
score is obtained by making the unrealistic assumption that
the head motion speed is infinite (referred to as infinite). This

second evaluation protocol is, therefore, biased in favor of
handcrafted methods. The results obtained are reported in
Table II.

First, we observe that no handcrafted policy can compete
with our RL approach when considering models with equal
head motion speeds. On both environments, LFNet largely
outperforms all handcrafted policies. This clearly justifies
the need of policy learning and the use of RL for the
audio-visual gaze control. Concerning [16], Center obtains
the best result among the [16]’s variances on AVDIAR
and the worst on Simulated according to the Face reward
metric. It can be explained by the fact that, as mentioned
in section VI-A, most people are located around the image
center and, therefore, this dummy strategy works better than
more sophisticated ones. A similar behavior can be observed
with the Speaker reward metric. We observe that, in both
environments, using speech source localization when no face
is detected improves the performance with respect to Rand.
Concerning [15], it obtains the second best performance
on AVDIAR with Speaker reward. On the simulated en-
vironment, they equal the score obtained by our proposal
when making the unrealistic assumption of infinite head
motion speed. In that case, their performance is marginally



TABLE II: Comparison of the rewards obtained with different handcrafted policies. The performances of competitor methods
are reported considering the two speed assumptions (equal/infinite) described in the text.

AVDIAR Simulated
Face reward Speaker reward Face reward Speaker reward

Ban et al.[16]+Rand 1.19/1.21 1.45/1.59 0.25/0.26 0.40/0.37
Ban et al.[16]+Center 1.62/1.68 1.95/2.01 0.14/0.11 0.28/0.29
Ban et al.[16]+Body 1.23/1.20 1.40/1.52 0.27/0.26 0.39/0.37
Ban et al.[16]+Speech 1.54/1.63 1.84/2.06 0.32/0.39 0.43/0.48
Bennewitz et al.[15] 1.56/1.55 2.07/2.05 0.30/ 0.42 0.35/0.50
LFNet 1.83± 0.02 2.29± 0.02 0.42 ± 0.01 0.52± 0.03

inferior to our proposal according to the Speaker reward.
When considering equal speed limit, our RL approach sig-
nificantly outperforms their handcrafted approach (26% and
48% higher according to Face reward and Speaker reward
respectively).

All these results highlight the major importance of audio-
visual fusion in the context of gaze control for HRI, and
that RL is an effective tool to tackle this task. The high
variances on AVDIAR are coming from the impact of the
random initial head orientation. On the contrary, our method
has a low variance as it is able to adapt to any initialization.
This illustrates the importance of combining tracking ability
with an exploration strategy when no or only a single face
is detected.

VII. CONCLUSIONS

In this paper, we presented a deep reinforcement learning
approach to solve the gaze control problem in the specific
context of human-robot interaction. In particular, our agent
is able to autonomously learn how to find people in the
environment by maximizing the number of people present
in its field of view, while favoring people that speak. We
built a simulated environment for offline training in order to
avoid live training which implies hours of tedious interaction
between a group of people and a robot. Neither external
sensors nor human intervention are necessary to provide a
reward. Several architectures and rewards are compared on
three different environments: two offline (a recorded dataset
and a simulated one) and one online (live experiments using
the Nao robot). Our results suggest that fusion of audio and
visual information yields state-of-the-art performance, that
reinforcement learning outperforms handcrafted strategies,
and that pre-training using a simulated environment is ben-
eficial.
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