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A Hypersequent Calculus with Clusters
for Linear Frames

David Baelde Anthony Lick Sylvain Schmitz

LSV, ENS Paris-Saclay & CNRS & Inria, Université Paris-Saclay

Abstract

The logic Kt4.3 is the basic modal logic of linear frames. Along with its extensions, it
is found at the core of linear-time temporal logics and logics on words. In this paper,
we consider the problem of designing proof systems for these logics, in such a way that
proof search yields decision procedures for validity with an optimal complexity—coNP

in this case. In earlier work, Indrzejczak has proposed an ordered hypersequent calculus
that is sound and complete for Kt4.3 but does not yield any decision procedure. We
refine his approach, using a hypersequent structure that corresponds to weak rather
than strict total orders, and using annotations that reflect the model-theoretic insights
given by small models for Kt4.3. We obtain a sound and complete calculus with an
associated coNP proof search algorithm. These results extend naturally to the cases of
unbounded and dense frames, and to the complexity of the two-variable fragment of
first-order logic over total orders.

Keywords: modal logics, proof systems, hypersequents, clusters.

1 Introduction

Modal logics are expressive and intuitive languages for describing properties
of relational structures. Accordingly, when investigating properties of linear
frames, it is often quite useful to express them using a tense logic [19] able to
reason on temporal flows. For instance, LTL [17,20] and CTL [4] are widely
used for verifying computer programs.

When studying a logic, a common approach is to design a proof system, such
as a sequent calculus. Our own interest in (enriched) sequent calculi, compared
to e.g. axiomatisations, is that their associated proof-search procedures often
yield decidability and even complexity results for the satisfiability and validity
problems. They are also modular, allowing them to be easily adapted to handle
extensions or fragments of the logic at hand. However, basic sequent calculi
are often ill-suited for modal logics, as the class of frames underlying the logic
is typically difficult to capture. Therefore, more expressive variants of the

? Work funded by ANR grant ANR-14-CE28-0005 prodaq.



2 A Hypersequent Calculus with Clusters for Linear Frames

sequent calculus have been developed, such as labelled sequents [15], nested
sequents [3,18], linear nested sequents [12] or hypersequents [1,7,8,9,10].

In this paper, we focus on Kt4.3 [5,2], the tense logic of linear frames. Some-
what surprisingly for the logic lying at the heart of LTL with past modalities—
which is largely studied in verification [13,11]—, to the best of our knowledge,
a sound and complete sequent-style calculus for Kt4.3 was only recently pro-
posed by Indrzejczak [9]. This is an ordered hypersequent calculus, where the
structure of the hypersequents reflects the linear structure of Kt4.3 frames.
However, this calculus does not yield a proof-search algorithm, even though
Kt4.3 satisfiability is known to be decidable and even NP-complete [16]. The
issue here is that ordered hypersequents correspond to strictly ordered linear
frames, which are arguably not the most adequate structures for the logic.
Although every satisfiable Kt4.3 formula has a model whose underling frame is
a strict total order, there are examples of invalid formulæ (like G⊥ ∨ FG⊥),
whose strictly ordered counter-models are all infinite. On such invalid instances,
the hypersequent calculus of Indrzejczak [9] yields a proof tree with some infinite
failure branches, thus proof-search does not terminate.

The decidability of the satisfiability problem of Kt4.3 comes from its finite
model property, shown by Ono and Nakamura [16, Thm. 3]. But this property
can only be obtained when working with weak total orders, i.e. allowing some
worlds of the models to be equivalent for the order relation. Such groups of
nodes are commonly called ‘clusters.’ Note that the logic itself is not able to
distinguish between a weakly ordered frame and any of its ‘bulldozed’ strict
orders [2, Thm. 4.56].

In the remainder of this paper, we capture the syntactic aspects of these
model-theoretic results. In Section 3, we show how to enhance the hypersequent
calculus of Indrzejczak [9] by capturing the model-theoretic ideas in hyperse-
quents with clusters and annotations. This leads to a sound and complete
proof system where proof search always terminates, furthermore with a coNP

complexity—which is optimal for the validity problem. Moreover, this proof
system is also modular: we consider some classical extensions of Kt4.3 in
Section 4, and provide new rules for our hypersequent calculus to handle these
extensions; these new rules still yield an optimal coNP proof search. Finally,
Manuel and Sreejith [14] have recently shown that validity in first-order logic
with two variables over strict total orders is in coNEXP. The same statement
can be derived from our results and further extended to dense linear orders, by
first converting the first-order formulæ into equivalent exponential-sized Kt4.3
formulæ [6]; see Section 5.

We start by recalling the definition of Kt4.3 in Section 2.

2 Modal Logic on Weak Total Orders

We consider tense logics with two unary temporal operators, over a set Φ of
propositional variables, with the following syntax:

ϕ ::= ⊥| p | ϕ ⊃ ϕ | Gϕ | Hϕ (where p ∈ Φ)
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Formulæ Gϕ and Hϕ are called modal formulæ. Intuitively, Gϕ expresses that
ϕ holds ‘globally’ in all future worlds reachable from the current one, while Hϕ
expresses that ϕ holds ‘historically’ in all past worlds from which the current
world is accessible. Other Boolean connectives may be encoded from ⊥ and ⊃,
and we define, as is common, Fϕ = ¬G¬ϕ expressing that ϕ will hold ‘in the
future’ and Pϕ = ¬H¬ϕ expressing that ϕ was true ‘in the past.’

2.1 Semantics

As is standard, our formulæ shall be evaluated on Kripke structures. A frame
is a pair F = (W,-), where W is a set of worlds, and - ⊆W ×W is a binary
relation over W . A structure is a pair M = (F, V ), where F = (W,-) is a frame,
and V : Φ→ 2W is a valuation function. Given such a structure, we define the
satisfaction relation M, w |= ϕ, where w ∈W and ϕ is a formula, by structural
induction on ϕ:

M, w 6|=⊥
M, w |= p iff w ∈ V (p)

M, w |= ϕ ⊃ ψ iff if M, w |= ϕ then M, w |= ψ

M, w |= Gϕ iff ∀w′ ∈W such that w - w′, M, w′ |= ϕ

M, w |= Hϕ iff ∀w′ ∈W such that w′ - w, M, w′ |= ϕ

When M, w |= ϕ, we say that (M, w) is a model of ϕ.
A formula that is satisfied in all worlds of all structures is said to be valid.

In this paper, we shall not consider the validity problem in general, but only in
restricted classes of structures. Namely, we will consider the logic of weak total
orders, i.e., the formulæ that hold in all structures whose accessibility relation
is transitive and total. This logic can be defined axiomatically, as shown next.
Later in Section 4, we will study further restrictions of the logic.

The choice of the symbol - for our frames’ accessibility relations is in line
with our focus on weak total orders. When working on such orders, it is useful
to define x ≺ y when x - y but not y - x. Note that ≺ may not be a strict
total order: it is transitive but not necessarily total.

2.2 Weak Total Orders

The logic Kt4.3 is defined as the set of theorems generated by necessitation,
modus ponens and substitution from classical tautologies and the axioms:

G (p ⊃ q) ⊃ (G p ⊃ G q) (Kr)

H (p ⊃ q) ⊃ (H p ⊃ H q) (K`)

p ⊃ GP p (tr)

p ⊃ HF p (t`)

FF p ⊃ F p (4)

F p ∧ F q ⊃ F (p ∧ F q) ∨ F (p ∧ q) ∨ F (q ∧ F p) (.3r)

P p ∧ P q ⊃ P (p ∧ P q) ∨ P (p ∧ q) ∨ P (q ∧ P p) (.3`)
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The first two axioms are simply the Kripke schema, given for each modality.
Next we find the t axioms, which are obviously satisfied in our setting since
the two modalities are converses of each other. 1 The next axiom, dubbed 4,
corresponds to the transitivity of -. More precisely, canonical models of 4 are
transitive [2]. Similarly, canonical models of the trichotomy axioms .3 have
accessibility relationships that are non-branching to the left and to the right.
All together, this implies the following completeness result:

Fact 2.1 ([2, p. 220]) A formula is a theorem of Kt4.3 iff it is valid in all
structures whose relation is transitive and total, i.e., in weak total orders.

The logic Kt4.3 is perhaps better known for being complete wrt. the class
of strict total orders [2, Thm. 4.56]. As we shall see, focusing on this charac-
terisation would however be counterproductive for our purposes. As a simple
illustration of when weak total orders could be beneficial, note that some for-
mulæ admit finite weak total orders as models but only infinite strict total
orders. It is the case, for example, of (GF>)∧(F>), which admits a single-world
model that is a weak total order. The use of weak total orders is instrumental
in order to derive decidability and complexity results.

3 Hypersequents with Clusters

Indrzejczak [9] proposed a complete calculus for Kt4.3 using the framework of
ordered hypersequents (aka. linear nested sequents [12]): his calculus works with
lists of sequents rather than the usual multisets of sequents of hypersequent
calculi. The semantics of ordered hypersequents relies on a mapping from
ordered sequents to worlds that are ordered accordingly. This extension allows
for a natural calculus, enjoying the subformula property and extending nicely
to accommodate semantic restrictions such as unboundedness and density.

For example, the calculus of [9] allows the following inference:

Γ ` ∆; ` ϕ
Γ ` ∆,Gϕ

It expresses that, if w 6|= Gϕ for an arbitrary world w, there must be a w - w′

such that w′ 6|= ϕ.
Unfortunately, Indrzejczak’s completeness argument is quite complex, and

does not yield a decision procedure. The argument is Hintikka-style: if a careful
exhaustive proof search fails in his calculus, then some failed proof-search branch
yields a counter-model of the conclusion hypersequent. In Indrzejczak’s calculus,
that failure branch may be infinite, in which case the extracted counter-model
is obtained as a limit, and is itself infinite.

Finite Models and Hypersequents with Clusters. In fact, the counter-
models extracted from failure branches of Indrzejczak’s calculus are always
strictly (and totally) ordered, hence they must be infinite in some cases. The

1 In a standard bi-modal setting, we would have two a priori unrelated relations. The t
axioms would then force the two relations to be converses of each other in canonical models.
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model theory of Kt4.3 provides us with a way to circumvent this problem.
Indeed, Kt4.3 enjoys a finite model property for weak total orders [16, Thm. 3];
the desired finite model is obtained from the original model by applying Lem-
mon’s filtration (see Appendix A for details).

This insight leads us to consider ordered hypersequents with clusters, corre-
sponding semantically to sets of worlds which are all equivalent with respect to
the weak total order, i.e. where w - w′ and w′ - w for all w,w′ in the cluster.
In itself, this only complicates the calculus as it only creates more premises
(and indeed some rules in our calculus have a large number of premises), and
does not allow us to bound failure branches. For example, the inference shown
above would be modified as follows:

Γ ` ∆; ` ϕ
{Γ ` ∆ ‖ ` ϕ} {Γ ` ∆} ; ` ϕ

{Γ ` ∆,Gϕ }
Γ ` ∆,Gϕ

The bottom inference expresses that, if w 6|= Gϕ, then either there is w ≺ w′

such that w′ 6|= ϕ (first premise) or w is reflexive (second premise). In the latter
case, the next inference expresses that there must be a w′ such that w′ 6|= ϕ
satisfying either w - w′ - w (first premise) or w ≺ w′ (second one).

Extremal Models and Annotations. Crucially, this new formalism allows
us to benefit from another model-theoretic insight. It is known that satisfiability
in Kt4.3 is NP-complete because any satisfiable formula ϕ admits a model of size
linear in the size of the formula [16, Thm. 5] (see also [2, Thm. 6.38]). We shall
not exploit this result as such, but the construction behind it: the linear-sized
model is obtained by keeping, for each subformula Fψ (resp. Pψ) of ϕ, only
the rightmost (resp. leftmost) world of the original model that satisfies ψ.

Viewing our hypersequent calculus as a search for counter-models, we con-
strain it to search for ‘extremal’ counter-models as above. Concretely, we
annotate some sequents with modal formulæ, requiring that a modal formula
occurs at most once as an annotation. For example, the previous inferences are
enriched as follows (with the annotations between parentheses and in violet):

Γ ` ∆; ` ϕ (Gϕ)

{Γ ` ∆ ‖ ` ϕ (Gϕ)} {Γ ` ∆} ; ` ϕ (Gϕ)

{ Γ ` ∆,Gϕ }
Γ ` ∆,Gϕ

The annotation indicates a maximal sequent for the contradiction of the consid-
ered modal formula. This is then reflected by special inferences, for example

. . . ; Γ ` ∆ (Gϕ) ; . . . ; Π ` Σ,Gϕ ; . . .

which expresses that, for the (complete) class of counter-models that we are
considering, there is no counter-model, since Gφ would have to be contradicted
strictly after a rightmost contradicting world.

With this in place, we finally obtain a calculus where failure branches
are finite. This allows for an elementary completeness argument, extracting
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finite weakly ordered counter-models from failure branches. For the soundness
argument, we indirectly make use of the extremal counter-model construction
of [16, Thm. 4]. Another consequence is that proof search in our calculus directly
yields an optimal coNP procedure for validity.

3.1 Definitions and Basic Meta-Theory

We shall now formally describe our calculus. We first define hypersequents with
clusters and their semantics in terms of embeddings into weak total orders. We
then extend them with annotations, and present our system of deduction rules.

Hypersequents with Clusters. A sequent (denoted S) is a pair of two finite
sets of formulæ, written Γ ` ∆. It is satisfied in a world w of a model M if, in
that world, the conjunction of the formulæ of Γ implies the disjunction of the
formulæ of ∆. In that case, we write M, w |= Γ ` ∆.

In this paper, a hypersequent is a list of cells, each cell being either a sequent
or a list of sequents called a (syntactic) cluster. We shall use the following
abstract syntax, where both operators ‘;’ and ‘‖’ are associative with unit ‘•’:

H ::= • | C ;H (hypersequents)

C ::= S | {S ‖ Cl} (cells)

Cl ::= • | S ‖ Cl (clusters)

The main feature of hypersequents with clusters is that their structures
are weak total orders. The order of cells in a hypersequent is relevant, as it
yields a strict ordering in the semantics. The order of sequents inside a cluster
is semantically irrelevant; nevertheless, assuming an ordering as part of the
syntactic structure of clusters is sometimes useful, as in the upcoming definition.

Underlying Frames and Embeddings. Let H be a hypersequent containing
n sequents, counting both the sequents found directly in its cells and those
in its clusters. We call a natural number i ∈ [1;n] a position of H, and we
write H(i) for the i-th sequent of H. We define the underlying frame of H as
F(H) = ([1;n],-) where i - j iff either the i-th and j-th sequents are in the
same cluster, or the i-th sequent is in a cell that lies strictly to the left of the
cell of the j-th sequent. In particular, a position can only be reflexive in the
underlying frame of a hypersequent if it is in a cluster.

Let F = (W,-) and F′ = (W ′,-′) be two frames. We say that µ : W →W ′

is an embedding of F into F′ if, for all (w1, w2) ∈W 2,

• w1 - w2 implies µ(w1) -′ µ(w2) and

• w1 ≺ w2 implies µ(w1) ≺′ µ(w2).

In that case, we write F ↪→µ F′. We simply write H ↪→µ F′ when F(H) ↪→µ F′.
An example embedding is shown in Figure 1. Note that it is possible that

µ(i) is reflexive when i is not. However, positions from distinct cells cannot
be embedded into worlds of a same cluster. By contrast, distinct positions
belonging to the same cluster may be mapped to the same (reflexive) world.



Baelde, Lick and Schmitz 7

· · · ; Γ1 ` ∆1 ; Γ2 ` ∆2 ; · · · ; {Γn ` ∆n ‖ Γn+1 ` ∆n+1 ‖ · · · } ; · · ·

µ µ
µ

µ
µ

µ
µ

Fig. 1. Embedding of a hypersequent in a weak total order.

Definition 3.1 (semantics) Let M = (F, V ) be a structure. Given an em-
bedding H ↪→µ F, we say that (M, µ) is a model of a hypersequent H, written
M, µ |= H, when there exists a position i of H such that M, µ(i) |= H(i). We
say that a hypersequent is valid if for any weak total order M = (F, V ) and any
embedding H ↪→µ F, we have M, µ |= H. 2

Annotations. We finally introduce annotations, and their semantics. An
annotated sequent is a sequent that may be annotated with modal formulæ. We
simply write Γ ` ∆ for a sequent carrying no annotation, otherwise we write,
e.g., Γ ` ∆ (Hϕ,Gψ, . . .). Then, annotated hypersequents are hypersequents
whose sequents are annotated, with the constraint that an annotation may only
occur once in an annotated hypersequent. Formally, we can see annotations
as partial functions from the set of modal formulæ to the set of positions of
the hypersequent. For instance, Γ ` ∆ (Gϕ) ; {Π ` Σ (Hϕ)} is an annotated
hypersequent but Γ ` ∆ (Hϕ,Gϕ) ; {Π ` Σ (Hϕ)} is not allowed because of
the two occurrences of Hϕ as an annotation.

Since we use these annotations to guide the search for a finite counter-model,
we only define a semantics for annotated hypersequents over finite structures.

Definition 3.2 (annotation semantics) Given an annotated hypersequent
H and a finite structure M = (F, V ), an embedding H ↪→µ F is annotation-
respecting if, for all i such that H(i) carries the annotation (Gϕ) (resp. (Hϕ)),
there is no w ∈W such that M, w |= ¬ϕ and µ(i) ≺ w (resp. w ≺ µ(i)).

An annotation-respecting model of H is a model ((F, V ), µ) of H where
H ↪→µ F is annotation-respecting. The sequent H is annotation-respecting valid
if, for any finite weak total order M = (F, V ) and any annotation-respecting
embedding H ↪→µ F, we have M, µ |= H. 2

A peculiarity of our system is that it is sound with respect to the annotation-
respecting validity of Definition 3.2, but only complete with respect to the general
validity of Definition 3.1: if a hypersequent is annotation-respecting valid but
not valid in general, it might not have a derivation. Thus our annotation system
may be seen as a proof search strategy over a more standard, annotation-free
system. 2 In any case, our proof system is sound and complete for hypersequents
without annotations, since the two notions of validity coincide in that case.

2 This more standard system simply consists of the rules of figures 2 and 3 without annotations,
ignoring the rules of Figure 4. It is obviously sound. For completeness, we conjecture that
Indrzejczak’s proof could be adapted to weak total orders. However that system is not
interesting as it is subsumed by Indrzejczak’s original calculus, only adding more branches.



8 A Hypersequent Calculus with Clusters for Linear Frames

(ax)
H [ϕ,Γ ` ∆, ϕ]

H [ϕ ⊃ ψ,Γ ` ∆, ϕ] H [ϕ ⊃ ψ,ψ,Γ ` ∆]

H [ϕ ⊃ ψ,Γ ` ∆]
(⊃ `)

(⊥)
H [Γ,⊥ ` ∆]

H [ϕ,Γ ` ∆, ψ, ϕ ⊃ ψ]

H [Γ ` ∆, ϕ ⊃ ψ]
(` ⊃)

Fig. 2. Propositional rules of the hypersequent calculus with clusters.

Rules of the Hypersequent Calculus. The rules are given in figures 2 to 4,
making use of a few notations.

First, we use hypersequents with holes. One-placeholder hypersequents, cells,
and clusters are defined by the syntax

H [] ::= H ; C [] ;H C [] ::= ? | { Cl [] } Cl [] ::= Cl ‖ ? ‖ Cl

Two-placeholder cells and hypersequents have two holes identified by ?1 and ?2:

H [] [] ::= H ; C [] [] ;H | H[?1] ;H[?2]

C [] [] ::= { Cl [?1] ‖ Cl [?2] } | { Cl [?2] ‖ Cl [?1] }

As usual, C [S] (resp. C [Cl ]) denotes the same cell with S (resp. Cl) substituted
for ?; two-placeholder cells and hypersequents with holes behave similarly. In
terms of the frames underlying hypersequents with two holes, observe that the
positions i and j associated resp. to ?1 and ?2 are such that i - j.

Second, we do not write explicitly the annotations that sequents may carry
in rule applications. These annotations are implicitly the same in a conclusion
sequent and the corresponding sequents in premises, or updated by adding the
explicit annotation; freshly created sequents always have an explicit annotation.
Annotations can prevent a rule application if the addition of an annotation
would break the single-annotation constraint.

Third, we use a convenient notation for enriching a sequent: if S is a
sequent Γ ` ∆ (A), then S n (Γ′ ` ∆′ (A′)) is the sequent Γ,Γ′ ` ∆,∆′ (A,A′).
Moreover, we sometimes need to enrich an arbitrary sequent of a cluster C with
a sequent S; then C n S denotes the cluster with its leftmost sequent enriched.

Modal Rules. After the usual propositional rules of Figure 2, we give in
Figure 3 the introduction rules for modalities. The left introduction rules are
symmetric for our two modalities. The first two, (G`) and (G`′), express that
if Gϕ holds at some position, then ϕ must also hold at a position to its right in
the underlying frame.

Regarding the right introduction rules for modalities, let us start with the
particular case where these modalities occur in extremal cells. In rule (`G),
we introduce a formula Gϕ to the right of a principal sequent that is in the
rightmost cell of the hypersequent. The premises cover all the ways in which a
world could occur to the right of (the embedding of) the principal sequent:

• We always have to consider a possible new cell strictly further to the right;
in that case, the cell carries the (single) annotation (Gϕ).



Baelde, Lick and Schmitz 9

(G`)
H [Gϕ,Γ ` ∆] [ϕ,Π ` Σ]

H [Gϕ,Γ ` ∆] [Π ` Σ]

H1; {Cl1 ‖ ϕ,Gϕ,Γ ` ∆ ‖ Cl2} ;H2

H1; {Cl1 ‖ Gϕ,Γ ` ∆ ‖ Cl2} ;H2

(G`′)

(H`)
H [ϕ,Π ` Σ] [Hϕ,Γ ` ∆]

H [Π ` Σ] [Hϕ,Γ ` ∆]

H1; {Cl1 ‖ ϕ,Hϕ,Γ ` ∆ ‖ Cl2} ;H2

H1; {Cl1 ‖ Hϕ,Γ ` ∆ ‖ Cl2} ;H2

(H`′)

H ; C [Γ ` ∆,Gϕ] ; ` ϕ (Gϕ)
H ; {Γ ` ∆,Gϕ} if C = ?
H ; C [Γ ` ∆,Gϕ ‖ ` ϕ (Gϕ)] if C 6= ?

H ; C [Γ ` ∆,Gϕ]
(`G)

` ϕ (Hϕ) ; C [Γ ` ∆,Hϕ] ;H
{Γ ` ∆,Hϕ} ;H if C = ?
C [Γ ` ∆,Hϕ ‖ ` ϕ (Hϕ)] ;H if C 6= ?

C [Γ ` ∆,Hϕ] ;H
(`H)

H [C [Γ ` ∆,Gϕ] ; ` ϕ (Gϕ) ; C ′]
H [C [Γ ` ∆,Gϕ] ; C ′ n (` Gϕ)]
H [C [Γ ` ∆,Gϕ] ; C ′ n (` ϕ (Gϕ))] if C ′ is not a cluster
H [{Γ ` ∆,Gϕ} ; C ′] if C = ?
H [C [Γ ` ∆,Gϕ ‖ ` ϕ (Gϕ)] ; C ′] if C 6= ?

H [C [Γ ` ∆,Gϕ] ; C ′]
(`G′)

H [C ′; ` ϕ (Hϕ) ; C [Γ ` ∆,Hϕ]]
H [C ′ n (` Hϕ) ; C [Γ ` ∆,Hϕ]]
H [C ′ n (` ϕ (Hϕ)) ; C [Γ ` ∆,Hϕ]] if C ′ is not a cluster
H [C ′ ; {Γ ` ∆,Hϕ}] if C = ?
H [C ′ ; C [Γ ` ∆,Hϕ ‖ ` ϕ (Hϕ)]] if C 6= ?

H [C ′ ; C [Γ ` ∆,Hϕ]]
(`H′)

Fig. 3. Modal rules of the hypersequent calculus with clusters.

• If the active sequent does not belong to a cluster, i.e., if C = ?, it may
still be embedded in a cluster in a frame, so we have to consider a premise
where the last cell is changed into a single-sequent cluster.

• Alternatively, if C 6= ?, the active sequent belongs to a cluster and we need
the last premise when ϕ is falsified in an arbitrary world of that cluster.

Rule (`H) is, as expected, symmetric. Note that the (`G) and (`H) rules cannot
apply when the principal formula already belongs to the annotations of some
sequent of the hypersequent, since it would then create a new cell with that
annotation. The rules (`G′) and (`H′), where the active sequent is not extremal,
follow the same idea but have extra premises corresponding to the case where
ϕ is falsified in the next cell C ′ or beyond.

Annotation Rules. Finally, the rules of Figure 4 allow special deduction
steps based on the annotations, leveraging the annotation-respecting semantics.
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((G))
H1 [Γ ` ∆ (Gϕ)] ;H2 [Π ` Σ,Gϕ]

H1 ; {Γ ` ∆,Hϕ (Hϕ)} ;H2

H1 ; Γ ` ∆,Hϕ (Hϕ) ;H2

({(H)})

((H))
H1 [Π ` Σ,Hϕ] ;H2 [Γ ` ∆ (Hϕ)]

H1 ; {Γ ` ∆,Gϕ (Gϕ)} ;H2

H1 ; Γ ` ∆,Gϕ (Gϕ) ;H2

({(G)})

Fig. 4. Annotation rules of the hypersequent calculus with clusters.

The ((G)) rule allows to derive any hypersequent where Gϕ occurs strictly to
the right of a sequent carrying the annotation (Gϕ), and symmetrically for
((H)): such hypersequents cannot have annotation-respecting counter-models.
The ({(G)}) and ({(H)}) rules express that, if a hypersequent features a sequent
containing a modal formula both in its right hand side and in its set of annota-
tions, then that sequent must occur in a cluster for the hypersequent to have
an annotation-respecting counter-model.

Invertibility. Note that our rules are formulated in an invertible style, keep-
ing the principal formula in the premises. This eases the proof of completeness,
where proof search induces a form of saturation. The following weakening rules
are admissible in our system, and we shall use them implicitly in examples to
avoid carrying around useless formulæ:

H[Γ ` ∆]

H[Γ, ϕ ` ∆]

H[Γ ` ∆]

H[Γ ` ϕ,∆]

We prove invertibility with respect to Definition 3.1.

Lemma 3.3 (invertibility) For any instance of a deduction rule where the
conclusion hypersequent is valid, all premisses are also valid.

Proof. Considering a rule instance with a counter-model (M, µ) of a premise
H, we build a counter-model (M, µ′) of the conclusion H ′. Depending on the
rule that is applied, H and H ′ will either have exactly the same structure, or
H will have a new cell, or H will have a cluster cell where H ′ contains a simple
sequent cell. Accordingly, we take µ′ to be the restriction of µ to the positions
of H ′ (and adapt it accordingly for the positions that have been shifted). It is
indeed a proper embedding of H ′ into M. It is then easy to see that (M, µ′) is a
counter-model of H ′, since any sequent H ′(i) is contained in the corresponding
sequent H(j): M, µ(j) 6|= H(j) implies M, µ′(i) 6|= H ′(i). 2

Example 3.4 We provide on the next page a proof of the hypersequent
{H p,G p, p ` GH p} in our system. At each inference, the principal formula is
indicated in orange and weakenings are implicit.

Example 3.5 Consider the hypersequent G¬G⊥ ` G⊥, which has finite
counter-models with a weak total order, but no finite counter-models with
a strict total order (a counter-model of this sequent must be unbounded to the
right). When trying to prove this sequent with the calculus of Indrzejczak [9],
the proof search strategy underlying its completeness argument unfolds the



B
a
eld

e,
L

ick
a
n

d
S

ch
m

itz
1
1

P

(G`)

(ax)
{H p,G p, p ` ‖ ` (GH p) ‖ p ` p (H p)}
{H p,G p, p ` ‖ ` (GH p) ‖ ` p (H p)}

p ` p (H p) ; {H p,G p, p ` ‖ ` (GH p)}
(ax)

` p (H p) ; {H p,G p, p ` ‖ ` (GH p)}
(H`)

{H p,G p, p ` ‖ ` H p (GH p)}
(`H)

{H p,G p, p ` GH p}
(`G)

where P is:

(ax)
{H p,G p, p ` H p} ; ` (GH p)

{H p,G p, p `} ; p ` p (H p) ; ` (GH p)
(ax)

{H p,G p, p `} ; ` p (H p) ; ` (GH p)
(G`)

P ′

{H p,G p, p `} ; ` H p (GH p)
(`H′)

where P ′ is:

{H p,G p, p ` H p} ; {` (GH p)}
(ax)

{H p,G p, p `} ; p ` p (H p) ; {` (GH p)}
(ax)

{H p,G p, p `} ; ` p (H p) ; {` (GH p)}
(G`)

{H p,G p, p `} ; {` (GH p) ‖ p ` p (H p)}
(ax)

{H p,G p, p `} ; {` (GH p) ‖ ` p (H p)}
(G`)

{H p,G p, p `} ; {` H p (GH p)}
(`H′)
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following infinite derivation, by alternating the right and left introduction rules
for G (with implicit uses of the left rules for ⊃ and ⊥):

...

G¬G⊥ ` G⊥ ; ` G⊥,⊥ ; ` ⊥
G¬G⊥ ` G⊥ ; ` G⊥,⊥

G¬G⊥ ` G⊥ ; ` ⊥
G¬G⊥ ` G⊥

Principal formulas shown in orange,
useless formulas in gray.

In our calculus, a derivation of that same hypersequent would necessarily
contain several branches. The analogue of the one shown above will quickly
lead to a point where only ({(G)}) applies, after which no rule applies:

. . .

G¬G⊥ ` G⊥ ; {` G⊥,⊥ (G⊥)}
G¬G⊥ ` G⊥ ; ` G⊥,⊥ (G⊥)

({(G)})

G¬G⊥ ` G⊥ ; ` ⊥ (G⊥)
(G`)
. . .

G¬G⊥ ` G⊥
(`G)

In other words, it is a finite failure branch. As we shall see, we can extract from
it a finite counter-model featuring a reflexive world. 2

3.2 Soundness

We show two soundness statements, relative to definitions 3.2 and 3.1.

Lemma 3.6 (annotation-respecting soundness) All the rules of our hy-
persequent calculus with clusters are sound with respect to the annotation-
respecting semantics.

Proof. We prove the contrapositive. Considering a rule instance whose conclu-
sion H admits an annotation-respecting counter-model (M, µ), we show that
one of its premises also admits an annotation-respecting counter-model (M, µ′).
Below, embeddings and counter-models are implicitly annotation-respecting.

We first consider the case of rule (`G′), applied on a principal sequent
Γ ` ∆,Gϕ at position i in H. Since M, µ(i) 6|= Gϕ, there exists w′ such that
µ(i) - w′ and M, w′ |= ¬ϕ. Since M is finite we can take w′ to be a rightmost
world invalidating ϕ, i.e., such that there is no w′ ≺ w′′ such that w′′ |= ¬ϕ.

• We first consider the case where µ(i) and w′ are two worlds (distinct or not)
of the same cluster. If i is not in a cluster in the underlying frame of H, i.e.,
if C = ?, then the rule has a premiseH [{Γ ` ∆,Gϕ} ; C ′] of which (M, µ) is
a counter-model. Otherwise, the premiseH [C [Γ ` ∆,Gϕ ‖ ` ϕ (Gϕ)] ; C ′]
is available. We extend µ into µ′, mapping the new sequent, at position
i + 1, to the world w′: µ′(k) = µ(k) for all k ≤ i, µ′(i + 1) = w′, and
µ′(k + 1) = µ(k) for all k > i. Then (M, µ′) is a counter-model of the
premise. In particular, the annotation (Gϕ) at position i+ 1 is respected,
as we have chosen µ′(i+ 1) = w′ such that for any µ′(i+ 1) ≺ w′′, w′′ |= ϕ.

• Otherwise, µ(i) ≺ w′. Let j be the first position in the cell C ′. If w′ ≺ µ(j),
we obtain a counter-model of premise H [C [Γ ` ∆,Gϕ] ; ` ϕ (Gϕ) ; C ′]
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by adapting µ into an embedding µ′ that assigns w′ to the new posi-
tion. If µ(j) - w′ then we have a counter-model of the second premise
H [C [Γ ` ∆,Gϕ] ; C ′ n (` Gϕ)], with the same embedding µ. Otherwise,
µ(j) = w′ and µ(j) is not reflexive, hence the next premise is available,
namely H [C [Γ ` ∆,Gϕ] ; C ′ n (` ϕ (Gϕ))]. Our counter-model (M, µ) is
a counter-model of that premise.

In the case of rule ({(G)}) applied on a principal sequent Γ ` ∆,Gϕ (Gϕ) at
position i in H, i cannot be in a cluster. Since (M, µ) is a counter-model of H,
we have M, µ(i) � ¬Gϕ, i.e., there is a world w of M such that µ(i) - w and
M, w � ¬ϕ. Since H(i) carries the annotation (Gϕ), we cannot have µ(i) ≺ w,
hence µ(i) = w or w - µ(i). Either way, µ(i) is reflexive, hence (M, µ) is still a
counter-model of the premise of the rule, which creates a cluster at position i.

We finally consider the case of rule ((G)). We show that there cannot be a
counter-model (M, µ) of the conclusion H1 [Γ ` ∆ (Gϕ)] ;H2 [Π ` Σ,Gϕ]. Let
i ≺ j be the respective positions of the two active sequents in the rule application.
Since M, µ(j) � ¬Gϕ, there exists w such that µ(j) - w and M, w � ¬ϕ. Since
µ(i) ≺ w, this contradicts the fact that µ was assumed annotation-respecting.

The other rules are analogous, or easy to handle. 2

Theorem 3.7 (soundness) Our hypersequent calculus with clusters is sound:
if an annotation-free hypersequent is provable, then it is valid.

Proof. We prove the contrapositive. If an annotation-free hypersequent has a
counter-model, then it has a finite counter-model M as a consequence of the finite
model property of Kt4.3 [16] recalled in Lemma A.2, Appendix A. Since M is
finite and H does not carry any annotations, M is also an annotation-respecting
counter-model of H. So, by Lemma 3.6, H is not provable. 2

3.3 Completeness and Complexity

We now turn to establishing completeness for our calculus, and to showing
that proof search yields an optimal coNP procedure for deciding Kt4.3 validity.
These results follow from two properties of our calculus: deduction rules are
invertible wrt. the (annotation-blind) semantics (recall Lemma 3.3), and proof
search branches are polynomially bounded (as shown next in Lemma 3.8).

In this section, we call partial proof a finite open derivation tree: each node
corresponds to a rule application, but some leaves may be left open. Partial
proofs arise from (backward) proof search. We require that the conclusion
hypersequent of any rule application differs from all of the premisses of that
rule—this amounts to forbidding useless proof search steps.

In general, proof search may diverge by expanding partial proofs infinitely,
or require backtracking due to (finite) choices in rule applications. Lemma 3.8
shows that divergence cannot happen with our calculus, regardless of the way
rules are applied. Lemma 3.3 shows that backtracking is not necessary either.
Hence, proof search in our calculus simply consists in expanding one proof
attempt, either reaching a complete proof or obtaining a partial proof with at
least one open leaf that cannot be derived by any rule application.
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We define |H| to be the maximum of the number of positions in H and the
number of distinct subformulæ occurring in H.

Lemma 3.8 (small branch property) For any partial proof of a hyperse-
quent H, any branch of the proof is of length at most 4|H|2 + 2|H|.

Proof. Let H be a hypersequent of size |H|, P a partial proof of it, and β a
branch of P. Remark that the number of positions in hypersequents of β is
bounded by 2|H|: we have at most |H| positions initially, and a new position
may only be created together with a new annotation among at most |H| formulæ.
Any rule application adds some subformula among |H| to the left or to the
right of the turnstile at a position among 2|H|, hence with 4|H|2 choices, or
changes a simple cell among 2|H| into a cluster. Thus β is of length at most
4|H|2 + 2|H|. 2

Theorem 3.9 (completeness) Our hypersequent calculus with clusters is
complete: every annotation-free valid hypersequent H has a proof.

Proof. Assume that a hypersequent H is not provable. Consider a partial
proof P of H that cannot be expanded any more: its leaves cannot be obtained
as the conclusion of a rule instance. Such a partial proof exists by Lemma 3.8.
By invertibility, it suffices to exhibit a counter-model for an open leaf of P to
obtain a counter-model of H as required.

We thus consider a leaf hypersequent H ′, which cannot be derived by any
rule (excluding rule applications which would have H ′ itself as a premise). Let
F = (W,-) be the underlying frame of H ′. Let V be the valuation defined for all
i ∈ W by V (p) = {i ∈W | p appears on the left-hand side of H ′(i)} . Finally,
let M = (F, V ). We shall establish that (M, µ) is a counter-model of H ′, where
µ is the identity embedding H ′ ↪→µ F. More precisely, we prove by structural
induction on ϕ that, for every position i of H ′:

• If ϕ appears on the left of the turnstile in H ′(i), then M, i |= ϕ.

• If ϕ appears on the right of the turnstile in H ′(i), then M, i 6|= ϕ.

We reason by case analysis on ϕ. We only detail below the case where ϕ = Gϕ′,
since the other cases are either standard or analogous.

• If Gϕ′ appears on the left-hand side of a sequent H ′(i), then, since rules
(G`) and (G`′) cannot be applied on H ′, ϕ′ appears on the left-hand side
of every sequent H ′(j) such that i - j. By induction hypothesis, M, j |= ϕ′

for all i - j. Hence M, i |= Gϕ′.

• If Gϕ′ appears on the right-hand side of H ′(i), there must be some position
j such that H ′(j) carries the annotation (Gϕ′), as otherwise, either (`G)
or (`G′) would apply. Moreover, by inspection of our rules and since H was
initially annotation-free, necessarily j must contain ϕ′ on its right-hand
side. By totality, we have i - j, j - i or i = j. If i = j, since rule ({(G)})
does not apply, i is in a cluster. If j - i, since rule ((G)) does not apply,
i and j must be in the same cluster. So we have i - j in any case. By
induction hypothesis on ϕ′, we have M, j 6|= ϕ′, hence M, i 6|= Gϕ′. 2
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Proposition 3.10 Proof search in our hypersequent calculus is in coNP.

Proof. Proof search can be implemented in an alternating Turing machine
maintaining the current hypersequent on its tape, where existential states choose
which rule to apply to which principal sequent(s) and formula, and universal
states choose a premise of the rule. By Lemma 3.8, the computation branches
are of length bounded by a polynomial. By Lemma 3.3, the non-deterministic
choices in existential states can be replaced by arbitrary deterministic choices,
thus this Turing machine has only universal states, hence is in coNP. 2

4 Extensions

The logic Kt4.3 can be extended by additional axioms to further restrict
the class of frames. We consider here two examples of such extensions also
considered by Indrzejczak [9]: density and unboundedness. For each extension,
we show that our calculus can be adapted by adding new rules corresponding to
the new axioms, and yields the same coNP upper bound. These new rules are
rather different from Indrzejczak’s, and exploit our use of hypersequents with
clusters. Together, these rules extend our calculus into a sound and complete
proof system with a coNP proof search algorithm for KtQ, the logic of dense
unbounded linear frames, consisting of Kt4.3 with both extensions.

Density. A frame F = (W,-) is dense if ∀(x, y) ∈W 2, if x - y then ∃z ∈W
such that x - z - y. Density is axiomatised by adding the following axiom:

F p ⊃ FF p (Den)

This new logic also has a finite model property as well as a small model
property [16]. Moreover, a finite weak total order is dense if and only if it never
has two consecutive worlds that are not in clusters. This last property leads to
the following new rule for our calculus to handle density:

H [{S1} ; S2] H [S1 ; {`} ; S2] H [S1 ; {S2}]
H [S1 ; S2]

(den)

Proposition 4.1 Adding (den) to our calculus yields a sound and complete
proof system for Kt4.3 ∪ (Den), where proof search is in coNP.

Proof. Our rule is obviously sound, as it closely reflects the shape of dense
finite weak total orders. It is also invertible, since the underlying frame of the
conclusion of the rule is always a subframe of its premises. Hence Theorem 3.7
and Lemma 3.3 still hold.

To obtain that proof search is in coNP, it suffices to check that Lemma 3.8
carries over to our extension. This is true because the rule (den) can only be
applied on two consecutive non-cluster cells, and whenever the rule (den) is
applied on such a bad occurrence, this occurrence is no longer present in the
premises. Hence, every time the rule (den) is applied, we reduce at least by one
the number of bad occurrences, so we can only apply the rule (den) a finite
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number of times between applications of other rules creating new cells such as
(`G) and (`H). Finally, since new cells can only be created polynomialy many
times by those other rules thanks to our initial strategy, the new rule (den) can,
in the end, only be applied polynomialy many times along a branch. So the
branches of our proof tree are still polynomial.

Finally, completeness is obtained as in Theorem 3.9. It only remains to
show that the underlying frame of a hypersequent found at the end of a failing
branch is dense. Indeed, if its underlying frame was not dense, we could apply
the rule (den) which would contradict the fact that no rules can be applied any
more on this hypersequent. 2

Unboundedness. A frame F = (W,-) is unbounded to the right if
∀x ∈W,∃y ∈ W such that x - y. Symmetrically, a frame F = (W,-) is
unbounded to the left if ∀x ∈W, ∃y ∈W such that y - x. These frame proper-
ties can be axiomatised by adding the following axiom(s):

G p ⊃ F p (Dr)

H p ⊃ P p (D`)

The logics we obtain when adding these axioms still have a finite model prop-
erty and a small model property [16]. Moreover, a finite weak total order is
unbounded to the right (resp. left) if and only if its rightmost (resp. leftmost)
world is in a cluster. This leads to the following new rules for our calculus to
handle unboundedness:

(Dr)
H ; {S} H ; S ; {`}

H ; S

{S} ;H {`} ; S ;H

S ;H
(D`)

Proposition 4.2 Adding (Dr) (resp. (D`)) yields a sound and complete proof
system for Kt4.3 ∪ (Dr) (resp. Kt4.3 ∪ (D`)), where proof search is in coNP.

Proof. It is easy to check that rule (Dr) is sound, as it reflects the shape of right-
unbounded finite weak total orders. It is also invertible, since the underlying
frame of the conclusion of the rule is always a subframe of its premises. Hence
Theorem 3.7 and Lemma 3.3 still hold.

To obtain that proof search is in coNP, it suffices to check that Lemma 3.8
carries over to our extension. This is true because the rule (Dr) can only be
applied when the last cell of the hypersequent is not a cluster, and whenever the
rule (Dr) is applied, the last cell of its premises is always a cluster. Hence, the
rule (Dr) can only be applied once between applications of other rules creating
new cells such as (`G) and (`H). Finally, since new cells can only be created
polynomialy many times by those other rules thanks to our initial strategy, the
new rule (Dr) can, in the end, only be applied polynomialy many times along a
branch. So the branches of our proof tree are still polynomial.

Finally, completeness is obtained as in Theorem 3.9. It only remains to show
that the underlying frame of a hypersequent found at the end of a failing branch
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is unbounded to the right. Indeed, if its underlying frame was not unbounded
to the right, we could apply the rule (Dr) which would contradict the fact that
no rules can be applied any more on this hypersequent. 2

One can see that all rules can be taken together to form a sound and
complete calculus for KtQ, with coNP proof search. Note that the rules proposed
in this section differ from the ones proposed by Indrzejczak for density and
unboundedness [9]. These rules would be sound but would break our polynomial
bound on the length of proof branches.

5 First-Order Logic with Two Variables

We show here a coNEXP upper bound on the complexity of validity in the
two-variable fragment of first-order logic over linear orders, re-proving and
extending recent results by Manuel and Sreejith [14].

Syntax and Semantics. We consider first-order formulæ with two variables x
and y over the signature (=, <, (p)p∈Φ) where = and < are binary relational
symbols and each p is a unary relational symbol:

ψ ::= z = z′ | z < z′ | p(z) | ⊥ | ψ ⊃ ψ | ∀z.ψ (first-order formulæ)

where z, z′ range over {x, y} and p over Φ. We call this logic FO2(<).
We interpret our formulæ over structures M = (W,<, V ) where = is inter-

preted as the equality over W , < as the strict total ordering of W , and each p
as V (p) for the valuation V : Φ→ 2W .

Equivalence with Kt4.3. Given an FO2(<) formula ψ(z) with one free
variable z, Etessami et al. [6] show how to construct a Kt4.3 formula ϕ such
that, for all strict totally ordered structures M = (W,<, V ), M, [w/z] |= ψ if
and only if M, w |= ϕ, where [w/z] is the variable assignment mapping z to w.

Fact 5.1 ([6, Thm. 2]) Every FO2(<) formula ψ(z) can be converted to an
equivalent Kt4.3 formula ϕ with |ϕ| ∈ 2poly(|ψ|).

Although the proof of [6, Thm. 2] is given for the case of the strict total order ω—
i.e., for ω-words over the alphabet 2Φ—, it actually does not rely on this specific
frame and applies similarly to arbitrary strict total orders.

We have therefore the following, where the NEXP upper bounds in items (i–iii)
were already shown by Manuel and Sreejith [14, Thm. 15] using automata-based
techniques. Let us reiterate that the complexity bounds on the satisfiability
problem for the modal logics in question were already known [16], so the interest
here lies in the use of proof search in our hypersequent proof system rather
than a brutal enumeration of all potential models up to some bound.

Theorem 5.2 The following problems are in NEXP: satisfiability of FO2(<)
over (i) arbitrary strict total orders, (ii) countable strict total orders, (iii) scat-
tered strict total orders, and (iv) dense strict total orders.

Proof. Regarding (i), given an FO2(<) formula ψ, we first turn it into the
equisatisfiable formula ∃y.ψ with one free variable x. Fact 5.1 then allows to
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construct a Kt4.3 formula ϕ of exponential size, which is equisatisfiable over
strict total orders. By Fact 2.1, it is also equisatisfiable over weak total orders,
and Theorem 3.10 shows that satisfiability can be checked in non-deterministic
polynomial time in |ϕ|, hence in NEXP overall.

Regarding (ii) and (iii), by [16, Thm. 3], the above-constructed ϕ is satisfiable
over weak total orders if and only if it is satisfiable over finite weak total orders.
The bulldozing construction used to prove Fact 2.1 (see [2, Thm. 4.56]) consists
essentially in turning each cluster into a direct product ω∗ · ω (i.e., a copy of
Z), which shows that ϕ is satisfiable over finite weak total orders if and only if
it is satisfiable over countable scattered strict total orders.

Finally, regarding (iv), by adapting [2, theorems 4.41 and 4.56] to bulldoze
clusters over Q rather than Z, ψ is satisfiable over dense strict total orders if
and only if the above-constructed ϕ is satisfiable over dense weak total orders
as a Kt4.3 ∪ (Den) formula. By Proposition 4.1, the latter can be checked in
non-deterministic polynomial time in |ϕ|, hence in NEXP overall. 2

6 Discussion

We have designed a sound and complete hypersequent calculus with clusters for
the modal logic Kt4.3 of linear temporal frames. The proof system relies on the
finite model property of our logic in the presence of clusters to bound the length
of branches during a proof search, which yields a proof search with optimal
coNP complexity for the validity problem. Moreover, the approach is modular,
as these results remain true when extending the proof system to handle density
and unboundedness, yielding a sound and complete system for KtQ with the
same complexity, and a sound and complete system for FO2(<) with coNEXP

upper bounds. This coNEXP upper bound itself is hardly surprising, but from a
proof-theoretic perspective, the two-variable fragment of first-order logic is an
unusual beast—eigenvariables must be avoided—, hence our solution through a
proof system for a modal logic is arguably a natural one.

An extension we would like to consider in future work is well-foundedness,
by adding the Gödel-Löb axiom to our logic. Here, the logic of weak total
orders well-founded to the left and unbounded to the right does not enjoy a
finite model property.

A Finite Model Property

We recall the result from Ono and Nakamura [16] which yields the finite model
property for all logics considered in this paper. Finite models are obtained by
using a filtration [2, Def. 2.36] on a structure to obtain a finite structure of the
same ‘shape.’ The relevant filtration in this case is called the Lemmon filtration.

Lemmon Filtration. Let M = (W,-, V ) be a Kripke structure. Let Ψ be
a set of Kt4.3 formulæ closed under taking subformulæ. We define a binary
relation ≡ on W by:

w ≡ w′ iff ∀ψ ∈ Ψ, M, w |= ψ ⇐⇒ M, w′ |= ψ
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The relation ≡ is an equivalence relation, and we note [w] the equivalence class
of a world w ∈W . Note that, if Ψ is finite, then ≡ has finite index. Moreover,
if w ≡ w′, then ∀p ∈ Φ ∩Ψ, w ∈ V (p) ⇐⇒ w′ ∈ V (p). Hence, we can define
the Lemmon filtration of M by Ψ as Mf = (Wf ,-f , V f ) such that:

Wf = W/≡ V f (p) = V (p)/≡

[w] -f [w′] iff

{
∀Gψ ∈ Ψ, if M, w |= Gψ then M, w′ |= Gψ and M, w′ |= ψ

∀Hψ ∈ Ψ, if M, w′ |= Hψ then M, w |= Hψ and M, w |= ψ

Fact A.1 ([16, Thm. 3]) Let M = (W,-, V ) be a weak total order and Ψ a set
of Kt4.3 formulæ closed under taking subformulæ, and let Mf = (Wf ,-f , V f ) be
the Lemmon filtration of M by Ψ. Then (i) [w] -f [w′] if w - w′, (ii) -f is
transitive and linear, (iii) -f is unbounded to the right (resp. left) if - is
unbounded to the right (resp. left), and (iv) -f is dense if - is dense.

Now, if M is a model of a Kt4.3 formula ϕ and Ψ is the set of subformulæ
of ϕ, then Mf is finite since Ψ is finite. Moreover, if we had M, w |= ϕ, then
we also have Mf , [w] |= ϕ since it is a filtration [2, Thm. 2.39]. Hence, all the
logics presented in this paper have the finite model property.

Finally, we show that our hypersequents with clusters also enjoy the finite
counter-model property; the following proof also captures our extensions to
dense and unbounded frames.

Lemma A.2 If H is an invalid annotation-free hypersequent with clusters,
then H has a finite counter-model.

Proof. Let (M, µ) be a counter-model of H and Mf its Lemmon filtration for Ψ
the set of subformulæ of H. For every position i of H, we have Mf , [µ(i)] 2 H(i).
But µf : i 7→ [µ(i)] might not be an embedding of H in Mf , as we could have two
positions i ≺ j such that [µ(i)] -f [µ(j)] and [µ(j)] -f [µ(i)], i.e., [µ(i)] ∼f [µ(j)].
We can avoid this problem by duplicating such clusters.

Formally, let i ≺ j and [µ(i)] ∼f [µ(j)]. Let C = {w ∈ Mf | w ∼f [µ(i)]}
be the cluster containing [µ(i)] and [µ(j)]. We define a modified model Mf

1 =

(Wf
1 ,-

f
1, V

f
1 ) featuring two copies of C as follows:

Wf
1 = (Wf \ C) ∪ {(w, b) | w ∈ C, b ∈ {0, 1}}

V f1 (w) = V f (w) ∀w ∈Wf \ C V f1 ((w, b)) = V f (w) ∀(w, b) ∈ C × {0, 1}
(w, b) -f1 (w′, b) ∀(w,w′, b) ∈ C2 × {0, 1} (w, 0) -f1 (w′, 1) ∀(w,w′) ∈ C

w -f1 (w′, b) whenever w -f w′ (w, b) -f1 w
′ whenever w -f w′

w -f1 w
′ whenever w -f w′

We now have ([µ(i)], 0) ≺f1 ([µ(j)], 1) and we still have Mf
1, ([µ(i)], 0) 6|= H(i) and

Mf
1, ([µ(j)], 1) 6|= H(j), because [µ(i)] and ([µ(i)], 0) (resp. [µ(j)] and ([µ(j)], 1))
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are bisimilar [2, Thm. 2.20]. The mapping µf can be modified into µf1 as follows:

µf1(k) =


([µ(k)], 0) if k ∈ C and k - i

([µ(k)], 1) if k ∈ C and i ≺ k
[µ(k)] if k 6∈ C

This fixes the failure of the second condition of embeddings on i and j, though
not necessarily on other positions.

Finally, let M′ be the model obtained from Mf after performing this dupli-
cation for all such i ≺ j; M′ is finite, since Mf is finite and we only did finitely
many copies, and the resulting µ′ is such that (M′, µ′) is a counter-model of H.2
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