
HAL Id: hal-01856329
https://hal.archives-ouvertes.fr/hal-01856329

Submitted on 10 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Abstract Accountability Language: its Syntax,
Semantics and Tools

Walid Benghabrit, Hervé Grall, Jean-Claude Royer, Anderson Santana de
Oliveira

To cite this version:
Walid Benghabrit, Hervé Grall, Jean-Claude Royer, Anderson Santana de Oliveira. The Abstract
Accountability Language: its Syntax, Semantics and Tools. [Research Report] IMT Atlantique. 2018.
�hal-01856329�

https://hal.archives-ouvertes.fr/hal-01856329
https://hal.archives-ouvertes.fr

The Abstract Accountability Language: its Syntax,
Semantics and Tools

Walid Benghabrit · Hervé Grall · Jean-Claude Royer · Anderson

Santana de Oliveira

2018-07-14

Abstract Accountability is the driving principle for

several of regulatory frameworks such as the European

Union’s General Data Protection Regulation (EU GDPR),

the Health Insurance Portability and Accountability

Act (HIPAA) and the Corporate and Auditing Account-

ability and Responsibility Act, thus influencing how or-

ganizations run their business processes. It is a cen-

tral concept for enabling trust and assurance in cloud

computing and future internet-based services that may

emerge. Nevertheless, accountability can have different

interpretations according to the level abstraction. This

leads to uncertainty concerning handling and respon-

sibility for data in computer systems with outsourcing

supply-chains, as in cloud computing. When defining

policies to govern organizations, we need tools to model

accountability in rich contexts, including concepts like

multiple agents, obligations, remediation actions and
temporal aspects. The Abstract Accountability Lan-

guage (AAL) is built on logical foundations allowing

to describe real-world scenarios involving accountabil-

ity concerns. Its semantic principles provide us means to

answer whether the conditions to reach accountability

in a given context are met. Moreover, we created a tool

support to verify and monitor accountability policies.

W. Benghabrit
Idento, 4 avenue Laurent Cély Asnières-sur-Seine, France -
92600 Ile-de-France
E-mail: walid.benghabrit@imt-atlantique.fr

H. Grall, J-C. Royer
Institut Mines-Télécom Atlantique, 4 rue A. Kastler, France
- 44307 Nantes cedex 3
E-mail: Herve.Grall@imt-atlantique.fr,Jean-
Claude.Royer@imt-atlantique.fr

A. S. de Oliveira
SAP Labs France, 805 avenue du Dr Donat Font de l’Orme,
France - 06250, Mougins, Sophia Antipolis
E-mail: anderson.santana.de.oliveira@sap.com

The present paper recaps the main features of AAL,

and introduces new contributions on expressiveness and

tool support.

Keywords Accountability, Formal specification,

First-order temporal logic, Semantics, Tool support,

Verification

1 Introduction

Demonstrating accountability is the main goal for orga-

nizations that need to comply with corporate policies

and regulations. This involves defining control objec-

tives and controls that span across organizational units,

outsourced service providers, roles, and event techno-

logical infrastructures. The concept of accountability

draws the central elements for many regulations, let us

mention the European Union’s General Data Protec-

tion Regulation (EU GDPR) [1], the Health Insurance

Portability and Accountability Act (HIPAA) [2] and

the Corporate and Auditing Accountability and Re-

sponsibility Act (also known as SOx) [3], to cite a few.

Given its importance, it is paramount to understand

under which conditions accountability can be met. In

the digital era, the question involves controlling usage

of information flows across organizational boundaries.

Defining roles and accountability for the multiple actors

handling data is not straightforward. The very first step

is modelling organizational processes, their agents, and

the interplay between the obligations they must execute

in the processes, the authorizations, and the remedia-

tion actions in case of failures. Although the topic of ac-

countability for distributed critical systems has gained

importance over the years, there are few frameworks

to help analyzing whether suitable properties apply to

a given context today. Reviewing the related work in

2 Walid Benghabrit et al.

formal accountability we observe a lack of concrete lan-

guages and tools to specify and experiment with ac-

countability policies.

We are interested in concrete approaches for reason-

ing about accountability for a diverse set of applications

(cloud computing, mobile, etc.) where models are de-

fined in a formal language with precise semantics that

can be verified by tools, such as theorem provers, SAT

solvers and model checkers. We focus on accountability

policies for computer based systems, where events can

be unambiguously observed and asserted. We consider

out of the scope of our work typically human moral

dilemmas, or determining whether force majeure con-

ditions were met that justify not fulfilling an obligation

(mostly external to the system in question), or yet de-

termining if an excuse is valid. These questions require

human judgment, and very frequently some sort of hu-

man mediator. In this work we explore the spectrum

of automatable, reproducible and enforceable account-

ability rules.

In previous work [4,5,6,7] we introduced the Ab-

stract Accountability Language (AAL) which is a declar-

ative policy specification language based in First-Order

and linear Temporal Logic, featuring constructs sup-

porting role definitions, delegations, obligations, and

usage control rules. Besides setting its syntax and se-

mantics, in these papers we showed how AAL is used to

check compliance with regulations, how to find inconsis-

tencies in policies using static analysis, and a practical

verification approach supported by a state of the art

automatic prover.

The current paper brings new contributions to some

important aspects for accountability management: ex-

pressiveness and tool support. We provide an expres-

sive language covering the three dimensions of [8]: in-

formation, justification and punishment. Information is

achieved via formal declarative statements comprising

various privacy features, temporal modalities, audit and

rectification aspects. Justifications are realized thanks

to our verification principles which allow checking for

contract compliance and to query contracts using prop-

erty verification. Punishment can be made explicit in

the accountability contract and enforced thanks to a

monitoring mechanism. Furthermore, we introduce pol-

icy templates, generic specifications useful in determin-

ing the expected behaviour for an abstract policy. This

mechanism is very useful, since often accountability is

challenged in outsourcing chains. The paper also over-

views the AccLab tool support, our dedicated applica-

tion allowing a component based description, the edi-

tion, verification and monitoring of accountability poli-

cies.

The remainder of the paper is structured as follows.

Section 2 presents the core AAL grammar, usage ex-

amples to express accountability and the translational

semantics. The next section is devoted to verification

principles covering consistency, compliance, and prop-

erty verification. Section 4 describes our AccLab tool

support. We present the state of the art in computer

science and accountability in Section 5 focusing on for-

mal models and verification. The reader being up on

accountability may skip this section and directly go to

Section 6 which compares AAL and AccLab with re-

lated work and discuss some limits. A last section sum-

marizes our findings and describes future perspectives.

2 Abstract Accountability Language

This section introduces our AAL language, its seman-

tics and accountability expressiveness through various

examples. In our approach, we consider that an ac-

countability clause should express three things: a us-

age, an audit and a rectification. The usage expression

describes access control, obligations, privacy concerns,

usage controls, and more generally an expected behav-

ior. The audit and rectification expressions are similar

to usage expression but dedicated to auditing, punish-

ment and remediation. The audit expression defines a

specific audit event which triggers the auditing steps.

The rectification expression denotes actions that are

done in case of usage violations. For instance, to punish

the guilty party and to compensate the victim agent.

We follow [8,9] which argue that punishments and sanc-

tions are parts of accountability.

2.1 AAL Grammar

We present in Listing 1 the core AAL syntax, more de-

tails and extensions can be found in [10]. An AAL pro-

gram declares a set of types, agents, data and services

which define the context. Usage expressions denote ac-

cess control, privacy, or other actions and properties

relevant to this context. The usage expression, ActionExp

, is the most general construction but we also provide a

dedicated accountability clause (the CLAUSE construction)

and templates to assist users in defining accountability.

The main AAL notion is an action or a service call rep-

resented as a message sender.action[receiver](parameters).

Authorizations are denoted by the PERMIT and DENY key-

words prefixing an action or an expression. The lan-

guage provides Boolean operators, first-order quanti-

fiers and linear temporal operators. This is a simplified

grammar and it has syntactic constraints about type-

checking ensuring the consistency of the provided and

The Abstract Accountability Language: its Syntax, Semantics and Tools 3

required sides of services. Another important constraint

is that nesting permission is not allowed, we consider

only one level of permission but it applies to any ex-

pression containing actions.

Listing 1 AAL core grammar

// A. AAL program is a set of clauses and declarations
AALprogram ::= {Declaration | Clause}*
// B. Declaration part
Declaration ::= TypeDec | ServiceDec | AgentDec | DataDec
TypeDec ::= TYPE type [EXTENDS(type*)]
ServiceDec ::= SERVICE Id TYPES(type*)
AgentDec ::= AGENT Id [TYPES(type*)]

[REQUIRED(service*) PROVIDED(service*)]
DataDec ::= DATA Id TYPES(type*)

[REQUIRED(service*) PROVIDED(service*)]
// C. Clause part
Clause ::= CLAUSE Id(Usage [Audit Rectification])
Usage ::= ActionExp
Audit ::= AUDITING ActionExp
Rectification ::= IF_VIOLATED_THEN ActionExp
// D. Action expression (usage, audit and rectification

expressions)
ActionExp ::= Action | {PERMIT | DENY} ActionExp

| NOT ActionExp | Modality(ActionExp)
| Condition | ActionExp1 BinaryOp ActionExp2
| Quant ActionExp | Predicate

// E. Action expression components
Action ::= agent1.service’[’agent2’]’(Exp)
Exp ::= Variable | constant | Id.attribute | Predicate
Predicate ::= @Id(arg*)
Condition ::= [NOT] Exp | Exp1 {== | !=} Exp2

| Condition1 {AND | OR} Condition2
Quant ::= {FORALL | EXISTS} Variable
Variable ::= Id : type
Modality ::= ALWAYS | NEVER | SOMETIME | NEXT
BinaryOp ::= AND | OR | => | UNTIL | UNLESS
Id, type, service, agent, arg, constant, attribute, true, false

::= literal

We present, in the rest of this section, examples

demonstrating the AAL expressiveness and specially for

accountability policies.

2.2 Usage Expression

An AAL program appears in Listing 2 which declares

few types, agents, and services. Some predefined types

are provided like DataSubject, DataController, DataProcessor,

data useful for data privacy expressions. The usage ex-

pression states a permission and a prohibition related

to some purposes for the KardioMon agent. It expresses

that in any state for any D:Data if the owner is Kim and

the purpose is research or statistics then KardioMon is al-

lowed to process D. Else KardioMon is denied to process

the data from Kim. This also defines a simple behavioral

obligation for KardioMon: In any state each data process-

ing should be followed by a notification to a data con-

troller. We consider internal actions (like process) and

binary actions (like notify) which represent a communi-

cation from a client (the required side) to a server (the

provided side). The prefix @ declares a predicate, and an

action without receiver as in KardioMon.process(D, purpose)

is an internal action.

Listing 2 A simple AAL program

AGENT Kim TYPES(DataSubject) REQUIRED() PROVIDED()
AGENT KardioMon TYPES(DataProcessor) REQUIRED(notify)

PROVIDED(process)
AGENT auditor TYPES(DataController) REQUIRED()

PROVIDED(notify)
TYPE Data EXTENDS(data)
TYPE Purpose EXTENDS(data)
SERVICE process TYPES(Data Purpose)
SERVICE notify TYPES(Data Purpose)
CLAUSE usageExample(
// Processing only if the purpose is research or statistics
ALWAYS FORALL D:Data P:Purpose (D.owner==Kim AND

(@research(P) OR @statistics(P)))
=> PERMIT KardioMon.process(D, P)

ALWAYS FORALL D:Data P:Purpose (d.owner==Kim AND
NOT (@research(P) OR @statistics(P)))

=> DENY KardioMon.process(D, P)
// Processing is followed by a notification to an authority
ALWAYS FORALL D:Data P:Purpose (KardioMon.process(D, P)

=> SOMETIME KardioMon.notify[Auditor](D, P)))

In [7] we show that AAL subsumes XACML, the de

facto standard for security language, on several points,

namely its pure logical semantics and expressiveness

regarding privacy concerns and data transfer. The lan-

guage supports a type system with Boolean operators,

hierarchies for actions, users, resources and roles. AAL

allows discrete linear time and duration. It enables com-

plex dependencies between authorizations and obliga-

tions, thus making possible the writing of various pro-

tocols. In addition to covering many classic character-

istics needed for security it provides new features for

expressing accountability policies.

2.3 Accountability Expressiveness

As previously explained an accountability clause (CLAUSE)

is compound from three expressions which are usage,

audit and rectification (see Listing 3). Audit and recti-

fication are optional expressions with the same syntax

as usage expressions.

Listing 3 An accountability clause

CLAUSE AccPolicy (
// usage expression
(FORALL D:Data (D.owner==Kim) => (PERMIT KardioMon.usage(D) AND

PERMIT KardioMon.send[MapOnWeb](D)))) AND
(FORALL D:Data ((D.owner==Kim) AND KardioMon.send[MapOnWeb](D)))
AUDITING // auditing

Kim.alert[Auditor]() => SOMETIME Auditor.audit()
IF_VIOLATED_THEN // rectification

(SOMETIME (Auditor.punish[KardioMon](tenEuros)
AND NEXT (KardioMon.give[Auditor](tenEuros)

AND Auditor.transfer[Kim](tenEuros))))
)

The usage expression defines two permissions for the

KardioMon agent and a simple send action. The audit is

triggered as soon as the data subject alert the audi-

tor. The rectification is a simple punishment with com-

pensation to the data subject. The informal meaning

of a clause is: Always the usage is satisfied or if vio-

lated and if an audit occurs a rectification will be done.

4 Walid Benghabrit et al.

This meaning addresses security but also unanticipated

behaviors violating the usage expression. This view is

compliant with [11] and governs both preventive secu-

rity and deterrence. It is simpler to write for end users

and also it provides several intuitive properties we will

see later.

Nevertheless, usage phrases are expressive and thanks

to the uninterpreted (abstract) use of actions and pred-

icates we are able to define many more controls (see

Listing 4). Here, we write a more complex account-

ability example using only a unique usage expression

with more precise descriptions of violations and rectifi-

cations. The usage defines an authorization to process

and a prohibition to send data from Kim. If Kim does not

give consent to processing then, in case KardioMon pro-

cesses a data, he will be denied to process data forever.

Finally, if the data processor sends a Kim data he is pun-

ished and Kim is compensated.

Listing 4 A usage expression with accountability

// some authorizations
(ALWAYS FORALL D:Data (D.owner==Kim) =>

(PERMIT KardioMon.process(D) AND
FORALL X:Subject DENY KardioMon.send[X](D))) AND

// illegal processing and rectifying
(FORALL D:Data

((NOT Kim.giveConsent[KardioMon]("Agreed")) UNTIL
((KardioMon.process(D) AND (D.owner==Kim) AND

NEXT (ALWAYS (FORALL D:Data DENY KardioMon.process(D)))))))
AND

// illegal sending then punishing and compensating
(ALWAYS ((SOMETIME EXISTS D:Data X:Subject

(KardioMon.send[X](D) AND (D.owner==Kim) AND (X!=Kim)))
=> (Auditor.punish[KardioMon]() AND

Auditor.compensate[Kim](tenEuros))))

Following this example many variations can be con-

sidered for the audit time, for the data to be audited

and the auditing mechanism. A punishment example is
described in Listing 5, where Kim.do() is a denied action.

The punishment has three cumulative steps, the two

first oblige Kim to pay in case of misconduct. The last

step prohibits login for Kim in case of a third violation.

Listing 5 Expression with three rectification steps

// first penalty
(ALWAYS (Kim.do() => Kim.pay[Sys](ten))) AND
// second step
(ALWAYS ((Kim.do() AND NEXT SOMETIME Kim.do())

=> Kim.pay[Sys](fifty))) AND
// final sanction
(ALWAYS ((Kim.do() AND NEXT SOMETIME Kim.do() AND

NEXT SOMETIME Kim.do()) =>
NOT Kim.login() AND ALWAYS DENY Kim.login()))

In Listing 6 we have another example denoting per-

missions, logging in case of modify and send actions, au-

dit, punishment and compensation. The first part of the

example shows a generalized authorization. Alice has the

permission to modify and send any data, however she is

denied to modify a data and then send it to Bob. Such a

prohibition is an information which can be checked for

consistency but also it can be violated and we should

detect and rectify it.

Listing 6 An example with explicit log

// [1] strict permissions
ALWAYS FORALL Z:Agent D:Data

((D.owner==Kim) => (@relatives(Kim, Alice)
<=> PERMIT Alice.modify(D) AND PERMIT Alice.send[Z](D)))

// [2] but prohibition to chain modify and send to Bob
AND DENY EXISTS D:Data SOMETIME (Alice.modify(D)

AND SOMETIME Alice.send[Bob](D))
// ...
// logging some actions by an external observer
AND FORALL D:Data ALWAYS (Alice.modify(D)

=> Auditor.log("modify", Alice, D))
AND FORALL D:Data ALWAYS (Alice.send[Bob](D)

=> Auditor.log("send", Alice, Bob, D))
// auditing and rectifying
AND FORALL D:Data ALWAYS

((Auditor.log("modify", Alice, D)
AND SOMETIME Auditor.log("send", Alice, Bob, D))

=> (Auditor.punish[Alice](twenty)
AND (EXISTS X:Agent ((d.owner==X)

AND Auditor.compensate[X](ten))))

The second part of the example illustrates an explicit

logging and audit in case of the violation. An external

observer is assumed to log these critical actions and to

detect the violations.

Listing 7 makes explicit the violation expression,

EXISTS S:Data Bob.send[Alice](S), which is assumed to be dis-

joint from the usage expression. It also extends the ac-

countability clause in specifying a link between a judg-

ment identifying culprits and victims, and the rectifica-

tion. The behavior of this example is: always the usage

is satisfied or else it is satisfied until a violation occurs

and in case of audit there is punishment of culprits and

compensation of victims.

Listing 7 Extended accountability example

// audit expression
ALWAYS (Kim.notify[Auditor]() => Auditor.audit()) AND
// judgment
ALWAYS FORALL D:Data (Bob.send[Alice](D) =>

(@guilty(Bob) UNTIL Auditor.enforced[Bob]())
AND (@victim(Kim) UNTIL Auditor.enforced[Kim]())

// behavior
AND (ALWAYS FORALL D:Data (PERMIT Kim.send[Bob](D)

AND DENY Bob.send[Alice](D))
OR
((FORALL D:Data (PERMIT Kim.send[Bob](D)

AND DENY Bob.send[Alice](D)))
// until a violation occurs
UNTIL ((EXISTS S:Data Bob.send[Alice](S)) AND

(ALWAYS (Auditor.audit() =>
((FORALL A:Agent (@guilty(A) => Auditor.punish[A]())) AND
(FORALL A:Agent (@victim(A) => Auditor.compensate[A]())))

)))))

We limit the complexity of the sub-expressions for read-

ability, which is a critical problem. To mitigate it we

propose to use templates in Section 2.6.

2.4 Semantics

In this subsection we sketch the translation process

from AAL to FOTL, giving semantics to it. Additional

The Abstract Accountability Language: its Syntax, Semantics and Tools 5

details can be found in [6]. Here, we concentrate on the

main principles and two extensions: general authoriza-

tions and templates.

There are two cases for the translation:

1. The first case is to translate each usage expression

in FOTL, and this applies to a clause without its

optional audit and rectification expressions.

2. The second case is relevant for CLAUSE with its two op-

tional sub-expressions. In this case we built a new

temporal sentence with the three expressions, then

an interpretation of this sentence is made. More gen-

erally, this is the process used by the template con-

struction.

2.4.1 First-Order Temporal Logic

FOTL extends both first-order logic (allowing predi-

cates and quantifiers) and propositional linear temporal

logic (allowing temporal modalities). FOTL formulas

are built from variables V , constants C and predicates

with a fixed arity Pi. If Pi is a predicate symbol and (ej)

are variables or constants then Pi(ej) is an atom (A). In

the grammar of Listing 8 one can recognize Boolean op-

erators (not, and, or, =>), temporal operators (next, until,

always, sometime) and quantifiers (forall, exists). Note that

we use lower case letters for these operators to make

more clear the distinction with AAL.

Listing 8 FOTL grammar

F ::= C + A + (not F) + (F and F) + (F or F) + (F => F)
+ (forall V F) + (exists V F)
+ (always F) + (sometime F) + (next F) + (F until F)

The semantics of FOTL is based on models which are

infinite sequences, indexed by naturals, of first order

structures (a non empty domain and an interpretation

of the atomic predicates). Such a model will be called

a trace as usual in linear temporal logic.

2.4.2 Expression Translation

The function [_]: AAL → FOTL represents the translation

from an AAL expression to a FOTL one. Types, pred-

icates, actions, attributes are all translated into predi-

cates. Boolean operators are convenient to express logi-

cal relations like type union or disjunction. Agents and

data instances are defined as constants. The transla-

tion of these declarations leads to a logical context pre-

fixed with an always modality. Interpretation of Boolean,

quantifiers and temporal operators are straightforward

in FOTL. The PERMIT and DENY modalities generate new

opposite events and a new context property which states

that processing an action implies it is permitted. The

extended grammar supports few additional facilities to

express time in actions, limited equality and a past tem-

poral operators. We also provide translations for these

features. This translation needs some care in managing

existential and universal quantifiers, and in adding the

logical sentences capturing equality, dates, and autho-

rizations.

2.4.3 Accountability Clause Interpretation

The accountability clause with its three expressions is

an ease to write accountability and its translation is

more elaborated. Our accountability clause is defined

in Listing 9, AE the audit expression is assumed to gen-

erate atomic audit events. The informal clause meaning

is as follows: audit is running and at each instant ei-

ther usage is satisfied or it is violated and then if an

audit event occurs there will be rectification.

Listing 9 Accountability clause interpretation

[ALWAYS AE AND
ALWAYS (UE OR ((NOT UE) AND (ALWAYS audit => RE)))]

Listing 9 provides our default interpretation for ac-

countability. As soon as a violation of the usage is done

and if an audit event occurs later then rectification ap-

plies. Figure 1 illustrates the linear traces with a vi-

olation and rectification. Let UE a usage expression, a

violation can be formally defined as an expression ver-

ifying (VE => NOT UE). Note that there is no hypothesis on

RE and it could allow one rectification only, one each

time, only one in the future or stands forever in the fu-

ture. However, this clause is restricted because we dot

not make explicit logging or auditing actions and pa-

rameter passing between the three parts is limited to
constants.

2.5 General Authorizations

We define a general means to describe complex permis-

sions, not only covering the case of atomic expressions

as in many previous work. There are many cases, in

protocols, for instance where we want to specify some

permissions for individual actions but in the same time

to prohibit few chaining of these actions. For instance,

in our Listing 6 we permit modify and send actions,

but we do not want to chain a data modification and a

send action. In our interpretation we have a sub-world

for the authorizations and another one for the “real” ac-

tions. The distinction is made by generating new events

associated to each permitted sequences of actions. The

connection between both worlds is done by generating

context rules like always (expression => permit(expression)).

The function permit copies the expression and uniquely

6 Walid Benghabrit et al.

UE UE UE NOT UE

audit

RE

audit

Fig. 1 A trace with a violation and rectification

tagged each actions, thus putting it in the world of per-

missions. We extend our initial semantics in the follow-

ing manner: i) DENY is rewritten as NOT PERMIT, ii) for the

construction PERMIT expression, without nested authoriza-

tion, the expression is copied thanks to the function

permit, iii) we add the clauses linking an expression

with its permission, and iv) we enrich the context with

rules to link permissions for complex expressions with

action permissions. The translation of expressions [1]

and [2] of Listing 6 appears in Listing 10 (but without

the data type translations).

Listing 10 FOTL translation part of Listing 6

// from expression [1]
always forall X, D (modify(X, D) => P1_modify(X, D)) and
always forall X, Y, D (send(X, Y, D) => P2_send(X, Y, D)) and
always forall Z, D ((relatives(Kim, Alice) and owner(Kim, D))

<=> (P1_modify(Alice, D) and P2_send(Alice, Z, D))) and
// from expression [2]
not exists D sometime (P3_modify(Alice, D) and

sometime P3_send(Alice, Bob, D)) and
// link between expression and permission
always ((exists D sometime (modify(Alice, D) and

sometime send(Alice, Bob, D)))
=> (exists D sometime (P3_modify(Alice, D) and

sometime P3_send(Alice, Bob, D)))) and
// link between complex and atomic permissions
always ((exists D sometime (P3_modify(Alice, D) and

sometime P3_send(Alice, Bob, D)))
=> (exists D sometime (P1_modify(Alice, D) and

sometime P2_send(Alice, Bob, D))))

This example captures that chaining modify and send

requires the permission to do it but there is a conflict

with the negative permission. However it does not pro-

hibit to do the modify or send actions as far it concerns

distinct data. Another useful feature for the user is

the ability to set different interpretation modes. For in-

stance, the MODE: STRICT generates (always (action <=> permit

(action))) for the case at hand, it provides a context

where, in addition to the default mode, if an action is

permitted its negation cannot be performed. We also

add MODE: => which allows to relate permissions for com-

plex usage expressions with action permissions as in

the above example. The default mode corresponds to

<=> denoting that a permission for a complex expression

is equivalent to the expression of its atomic permissions.

One remaining point is to find an efficient implementa-

tion of the general authorization feature. We are inves-

tigating a solution based on a unique normal forms for

FOTL expressions.

2.6 Accountability Templates

We go further in assisting privacy and security officers

in writing policies with the help of dedicated templates.

A template, or a behavioral pattern, is a function which

transforms several AAL expressions into a more com-

plex AAL sentence expressing a specific security prac-

tice. The interpretation uses the translation function []

and applies it to the template instantiation with some

parameters. It is quite straightforward to write few tem-

plates for authorizations, data retention, data transfer,

transfer of ownership or permission. More complex tem-

plates concern accountability. For instance, the tem-

plate associated to the previous accountability clause is

defined as in Listing 11.

Listing 11 Accountability clause template

clause(AUDIT, AE, UE, RE) = ALWAYS AE AND
ALWAYS (UE OR ((NOT UE) AND (ALWAYS AUDIT => RE)))

Templates abstracting two punishment variations ap-

pear in Listing 12. The first template enables exactly

one punishment in case of a violation (VE). It triggers the

ith punishment in case of i successive violations. While

the second one generalizes the Listings 5 and accumu-

lates the punishments for every sequence of violations.

That is, if an execution trace contains i (i ≤ n) succes-

sive violations then punishment actions are performed

from 1 to i.

Listing 12 Punishment templates

// VE: violation expression
// P1 ... Pn : punishment expressions
// END: last deactivate the possibility of violation
// first exclusive punishment template
punish1(VE, P1, ... Pn, END) = (ALWAYS (END => NOT VE)) =>
((ALWAYS NOT VE) OR
(SOMETIME (VE AND NEXT ((ALWAYS NOT VE) AND (SOMETIME P1))))
OR ... OR
(SOMETIME (VE AND ... AND

NEXT ((ALWAYS NOT VE) AND (SOMETIME END)) ...))
// second cumulative punishment template
// same hypotheses as above
punish2(VE, P1, ... Pn, END) = (ALWAYS (END => NOT VE)) =>
(ALWAYS (VE => SOMETIME P1)) AND
...
(ALWAYS ((VE AND ... NEXT SOMETIME VE) => SOMETIME END))

Listing 13 describes a template for an extension of

our accountability clause. Our example of Listing 7 is

an instantiation of the template in Listing 13. This tem-

plate makes explicit several new parameters: the VE vi-

olation expression and the JE the judgment expression,

The Abstract Accountability Language: its Syntax, Semantics and Tools 7

and two conditions. The first condition states that UE

and VE are disjoint. The second condition links the judg-

ment expression JE with the violation VE and should

identify culprits or victims. The qualification with pred-

icates @guilty and @victim remains until enforcement by

the agent A. The parameter instantiation for Listing 7

appears in Listing 14.

Listing 13 Extended template

extended(AUDIT, AE, UE, VE, JE, RE) =
// application conditions
(ALWAYS (VE => NOT UE)) AND
(ALWAYS ((JE AND VE) =>

((EXISTS A:Agent (@guilty(A) UNTIL Auditor.enforced(A)))
OR (EXISTS A:Agent (@victim(A) UNTIL Auditor.enforced(A))))
))

=> // template
(ALWAYS (JE AND AE) AND

((ALWAYS UE) OR (UE UNTIL (VE AND (ALWAYS (AUDIT => RE))))))

That means, replacing the template parameters (List-

ing 13) with these values (Listing 14) we should get

the original accountability expression (Listing 7) or an

equivalent expression.

Listing 14 Parameters instantiation

AUDIT = Auditor.audit()
AE = (Kim.notify[Auditor]() => AUDIT)
UE = FORALL D:Data (PERMIT Kim.send[Bob](D)

AND DENY Bob.send[Alice](D))
VE = EXISTS S:Data Bob.send[Alice](S)
JE = (VE => ((@guilty(Bob) UNTIL Auditor.enforced[Bob]()) AND

(@victim(Kim) UNTIL Auditor.enforced[Kim]())))
RE = (FORALL A:Agent (@guilty(A) => Auditor.punish[A]()))

AND (FORALL A:Agent (@victim(A) => Auditor.compensate[A]()))

Dependencies between formal parameters are permit-

ted if they are not circular. Furthermore, we will show

in Section 3.3 that this instantiation can be automati-

cally verified. As the previous accountability clause, this

template enjoys few properties described in Listing 17

and 18.

We expect to enrich this initial set of templates, the

challenges are: i) to get a catalogue of accountability

practices with a precise while informal description and

ii) to formalize them in AAL and to prove their ex-

pected properties.

3 Verification and Tool Principles

The goal of this section is to introduce the principles

behind the AccLab tool support. We focus here on soft-

ware engineering activities related to policy verification.

The objectives of verification are various, comprising:

To prove some expected properties, to detect undesir-

able situations, or to eliminate redundancies. A redun-

dancy is defined, in our context, as a policy P for a policy

set R, satisfying R => P is valid. It can be checked using

the prover back-end, but it is not a critical problem

since it does not entail the system logic. Furthermore,

we claim that it is practically uncommon in complex

accountability policies with linear time and quantifiers.

Thus we consider that the conflict detection question is

really more critical, and formal policy compliance is an

important requirement in regulations. From the related

papers we can classify the properties of interest as inter-

nal properties or specific properties. Internal properties

are related to the system and independent from the

business domain like consistency, completeness, simpli-

fication, conciseness, and so on. Specific properties are

depending on the business domain, several classes are

relevant in our context. We consider specific properties

related to privacy or security concerns but also some

proper accountability properties.

To perform verification we rely on the temporal res-

olution procedure presented in [12]. This procedure has

been implemented in a theorem prover (TSPASS [13]),

which we have integrated into our specification and ver-

ification environment, the AccLab tool. The decision

procedure behind the prover addresses the so-called

monodic fragment [14,15]. The monodic condition states

that any temporal sub-formula has, at most, one free

variable. This is a constraint which is satisfied in our

examples. It allows to mix, in a non trivial way, lin-

ear temporal logic and first-order logic, thus providing

expressiveness. Regarding efficiency, the temporal reso-

lution behind TSPASS has a non elementary complex-

ity. Nevertheless, there are three papers which demon-

strate the ability of this tool to solve real examples [16,

12,17]. The latter shows in fact that TSPASS is com-

petitive with model-checkers and SAT solvers. In addi-

tion [18,6] study several non trivial examples with tem-

poral operators and unbounded data with acceptable

performances. In the rest we focus on three activities:

conflict management, checking compliance and proving

accountability properties.

3.1 Conflict Management

Conflict management consists of three activities: detec-

tion, localization (that is, finding the conflicting rules,

or more generally finding the unsatisfiable core in the

policy set) and conflict resolution, this is a key issue.

There are various techniques, the most common prin-

ciple is to check for pairs of incompatible rules. But

this is not generally a correct approach since it can for-

get some conflicts. A more general way is to look for

conflicts between any number of rules. It is still weak,

inefficient and enforces a too strict writing style. In

a context where we do not have rule, like with AAL,

the correct approach is to rely on satisfiability or log-

ical consistency and to use a solver, prover or model-

checker. This is the approach we use with AAL, the

8 Walid Benghabrit et al.

TSPASS prover allows us to check for the satisfiability

of a set of policies. However, the drawback is that lo-

calization becomes less obvious than looking for pair of

rules. But we reused the masking principle suggested

in [19], which is intuitive and simple to implement. We

consider that resolution is a manual activity in charge

of the specifier.

Writing inconsistent specifications is rather com-

mon, one example is our Listing 4 where we can find

a problem as soon as we add the fact that Kim owns

some private data. Indeed there is a conflict between the

permission and the prohibition to process by KardioMon.

Listing 15 shows the result provided by our tool and

the solution is to remove the permission for KardioMon to

always process.

Listing 15 Conflicting example

// The example is unsatisfiable, there is a conflict
// with the following expressions
PERMIT KardioMon.process[KardioMon](D)
EXISTS private:Data (private.owner == Kim)
NEXT ALWAYS FORALL D:Data (DENY KardioMon.process[KardioMon](D))

3.2 Policy Compliance

In accountability contracts, compliance covers different

meanings. A common idea, as in [20,21], is to check if

a given real situation or execution trace is compliant

or according to the contract. This is often the basis of

the audit and detection mechanisms. We called it test-

ing compliance and while this kind of compliance can

be tested with our tool we are rather concerned with

contract compliance. The goal of the contract compli-

ance is to ensure that the provider’s contractual terms

satisfy or ensure the client’s requirements. Thus it is

much more complex than testing compliance since it

is about proving that a policy is “stronger” than an-

other one. In propositional logic it could be as simple

as the implication of Provided => Required. In the FOTL
framework the semantics is linear trace based and the

previous intuition is also correct in the sense that the

traces satisfying the provider clauses are included in

those satisfying the client expectations.

Listing 16 A provider compliant policy

CLAUSE ListingProvider (
(FORALL D:Data S,K,M,A:Agent ((D.owner==S)

AND (PERMIT K.usage(D)) AND PERMIT K.send[M](D)
AND K.send[M](D) AND K.notify[A]()))

AUDITING (FORALL P,A:Agent
(P.notify[A]() OR P.alert[A]()) => A.audit())

IF_VIOLATED_THEN (FORALL M:Money
(auditor.punish[KardioMon](M) AND

(NEXT (KardioMon.give[auditor](M)))
AND auditor.transfer[Kim](M)))

)

More sophisticated semantics exist, but this one pro-

vides an intuitive and simple interpretation which is

suitable for end-users. Thus compliance between two

expressions relies on the validity of the logical implica-

tion, that is the validity of R => (Provided => Required). For

instance, Listing 16 presents a provider policy which en-

sures the clause in Listing 3. While this example seems

rather simple, a tool is convenient in establishing the

compliance, here in less than one second.

The CLAUSE construction of Listing 11 enjoys an in-

teresting property: The contract compliance between

two accountability clauses can be established with more

natural (monotonic/covariant) conditions (see Listing 17).

Listing 17 Natural Condition for Accountability Clauses
Compliance

((ALWAYS (UEp => UEr)) AND ALWAYS (AEp => AEr)
AND (ALWAYS (REr => REr))) =>

CLAUSE(AUDIT, AEp, UEp, REp) => CLAUSE(AUDIT, AEr, UEr, REr)

Where AE, UE, RE, are respectively, the audit, usage, and

rectification expressions and p (respectively r) is the

server (or provided) side (respectively the client/required

side). We also demonstrate that this provides a more

efficient way to check for compliance by splitting the

formula in three shorter verification parts. For instance,

in [6] we show an example of accountability compliance,

with more than 1200 identifiers, which does not finish

before 10000s with the global compliance formula. Us-

ing the above criterion it succeeds in less than 1400s.

The use of additional heuristics can reduce the proving

time down to 4s.

3.3 Specific Property Verification

Verification of properties needs the manual translation

of the property into AAL and then the use of the prover.

As previously explained the principle is to check the va-

lidity of R => Property. The prover, with the monodic re-

striction, enables us to automatically prove data prop-

erties as well as safety and liveness properties. In the

following, we will give various examples of properties

but related to specific privacy or accountability con-

cerns.

We can prove dependent conflict properties as in [22,

23], for example:

SOMETIME EXISTS D:data NOT (PERMIT Kim.input[Hospital](D) AND
DENY Kim.input[Hospital](D)).

But our conflict detection based on logical consistency

is more general and safer.

Other properties are related to reachability. For in-

stance [24] in the context of administrative RBAC and

with specific algorithms, studies how an initial system

The Abstract Accountability Language: its Syntax, Semantics and Tools 9

can reach a specific state. Defining the initial system

and the expected final state this problem can be solved

using property verification. Time, discrete or with dates,

is useful in expressing the state change progression. A

related example is the verification of purpose: does an

agent performing an action is processing it according to

the required purpose? There are several dedicated arti-

cles ([25,26]) on this subject but none with a property

verification view. Since doing an action is constrained

by its permission in the generated logical context, a

simple schema for this property in AAL is

ALWAYS FORALL D:Data PERMIT KardioMon.processing(D, purpose).

Controlling data disclosure is the main concern of

data privacy. In this case we are interested in situations

where a piece of data reaches an authorized or non au-

thorized agent. This can also be viewed as a reachabil-

ity case but with emphasis on agent locations, with or

without specific behavior for the agents. In [6] we show

a related verification in the context of an healthcare

system.

We also automatically prove several original account-

ability related properties. It is possible to automatically

prove the natural criterion in Listing 17. We also prove

three other properties which appear in Listing 18.

Listing 18 Accountability properties

// 1) validity of the sufficient audit condition
(ALWAYS AE => (ALWAYS SOMETIME AUDIT)) =>

(CLAUSE(AUDIT, AE, UE, RE)
=> (ALWAYS ((NOT UE) => (SOMETIME RE))))

// 2) an equivalent formulation of CLAUSE(AUDIT, AE, UE, RE)
((ALWAYS (AE AND UE)) OR
(ALWAYS AE AND (UE UNTIL ((NOT UE) AND (ALWAYS AUDIT => RE)))))
// 3) decomposition of a complex contract
CLAUSE(AUDIT, AE1 AND AE2, UE1 AND UE2, RE1 AND RE2) =>

CLAUSE(AUDIT, AE1, UE1, RE1) AND CLAUSE(AUDIT, AE2, UE2, RE2)

The first states that it exists a simple and sufficient au-

dit condition to catch all the violations. The second is

an equivalent formulation of the accountability clause

interpretation of Listing 9. This clause says that either,

in any state, the usages are correct or it is correct until

a violation occurs then rectification happens in case of

an audit. It is common that contracts are presented as

a conjunction of policies. The third property expresses

that such a complex accountability contract can be split

in several sub-contracts and its verification implies the

verification of its sub-contracts. The equivalence is pos-

sible for property 3) if the usage expressions are equiv-

alent. These properties are rather intuitive or desirable

but also improve efficiency in verification.

Other examples of properties and proofs are: i) a

compliance criterion for the extended accountability tem-

plate of Listing 13, however the compliance is covariant

on all the parameters but contravariant on the audit

expression, ii) the equivalent formulation for the ex-

tended template with the condition that ALWAYS (VE => NOT

UE), and iii) the decomposition property is also valid for

the extended template in case of conjunction of policies.

A last usage of verification is relevant to the ex-

tended accountability template (from Listings 13 and 14)

and its instantiation (Listing 7). Listing 19 shows the

equivalence between both expressions and it can be

proved in about two seconds. More precisely, with the

set of expressions in Listing 14, we can prove that the

example in Listing 7 is an instantiation of the extended

template of Listing 13. This listing has three parts:

i) the parameter instantiation and the conditions of

the template, ii) the instantiated example coming from

Listing 7, and iii) the template as in Listing 13. This ex-

pression is difficult to read but it is only for specialists

of formal specifications which are in charge of defin-

ing the templates with their conditions and properties.

The listing above illustrates the steps performed by the

specialist to validate a new template. It starts from one

or more concrete examples of accountability policy, it

manually write the conditions and the template, next

the specifier tries to automatically prove the expected

instantiation.

Listing 19 Equivalence of the extended template instantia-
tion

// i) instantiation from Listing 14
(ALWAYS (AUDIT <=> Auditor.audit())) AND
(ALWAYS (AE <=> (Kim.notify[Auditor]() => AUDIT))) AND
(ALWAYS (UE <=> FORALL D:Data (PERMIT Kim.send[Bob](D)

AND DENY Bob.send[Alice](D)))) AND
(ALWAYS (VE <=> EXISTS S:Data Bob.send[Alice](S))) AND
(ALWAYS (JE <=>

(VE => ((@guilty(Bob) UNTIL Auditor.enforced[Bob]()) AND
(@victim(Kim) UNTIL Auditor.enforced[Kim]()))))) AND

(ALWAYS (RE <=>
(FORALL A:Agent (@guilty(A) => Auditor.punish[A]())) AND
(FORALL A:Agent (@victim(A) => Auditor.compensate[A]())))) AND

// template conditions
(ALWAYS (VE => NOT UE)) AND
(ALWAYS ((JE AND VE) =>

((EXISTS A:Agent (@guilty(A) UNTIL enforced(A)))
OR (EXISTS A:Agent (@victim(A) UNTIL enforced(A))))))

// -- end of conditions
=>
// ii) instantiated expression from Listing 7
ALWAYS (Kim.notify[Auditor]() => Auditor.audit()) AND
ALWAYS FORALL D:Data (Bob.send[Alice](D) =>

(@guilty(Bob) UNTIL Auditor.enforced[Bob]())
AND (@victim(Kim) UNTIL Auditor.enforced[Kim]())

AND (ALWAYS FORALL D:Data (PERMIT Kim.send[Bob](D)
AND DENY Bob.send[Alice](D))

OR
(FORALL D:Data (PERMIT Kim.send[Bob](D)

AND DENY Bob.send[Alice](D)))
UNTIL ((EXISTS S:Data Bob.send[Alice](S)) AND

(ALWAYS (Auditor.audit() =>
(Auditor.judged() AND Auditor.punish[Bob]()
AND Auditor.compensate[Alice]())))

// --
<=>
// iii) application of the extended template Listing 13
((ALWAYS (JE AND AE)) AND
((ALWAYS UE) | (UE UNTIL (VE AND (ALWAYS (AUDIT => RE))))))

Privacy officers are mainly concerned by choosing

and filling the templates. In case of standard and sim-

ple regulation the privacy officer selects the right tem-

10 Walid Benghabrit et al.

plate and its sub-expressions. Assistance could be im-

proved by a dedicated graphic user interface. However,

we claim that templates provide assistance specifically

in case of complex regulations with several sub-contracts.

Each sub-contracting has to formalize its proper part

of the contract, maybe still using some templates. Af-

terwards the primary data processor should check the

conditions of the template and then automatically ap-

ply it to the sub-contracts.

4 The AccLab Tool Support

In this section we sketch the main features of the Ac-

cLab tool support which represents a step in defining

an end to end accountability framework from specifi-

cation to implementation. AccLab is compound from

a set of tools which are: The component editor, the

AAL editor and its verifications, and the monitoring

tools. The last release of AccLab is version 2.1 which

was released on November 23, 2016 on GitHub (https:

//github.com/hkff/AccLab) under GPL3 license. The

AccLab IDE is a web interface that provides a compo-

nent diagram editor and tools to work with the AAL

language. The back-end is written in Python3 and the

front-end in JavaScript based on dockspawn (http:

//www.dockspawn.com) which is a web based dock lay-

out engine released under MIT license. For verification

purposes AccLab is interacting with the TSPASS tool.

The implementation is still in progress we will give an

overview of its main current features.

4.1 System Specification

We consider accountability by design that is going from

specification to implementation of accountability. The

starting point of the accountability process is a compo-

nent diagram in the UML style which describes the ap-

plication architecture. The method was described in [4]

and allows the user to define in a graphic way the dif-

ferent agents and their required, provided and internal

services. The diagram is enriched with textual annota-

tions for services types and with accountability clauses

associated to services and agents. To manage more eas-

ily the AAL language a dedicated editor has been im-

plemented. This editor is directed by the syntax and

highlights the language keywords. There are syntactic

checks but also semantic controls for type checking and

consistency of the declared services.

4.2 Verification Tools

A panel in the editor arranges a set of tools providing

assistance in writing by the use of dedicated templates,

for instance generating type declarations, accountabil-

ity clauses or specific privacy expressions. This panel

also contains few verification tools mainly the conflict

checking with localization and the compliance checking.

Figure 2 shows the graphical interface of AccLab, the

AAL editor and its tool panel. Both checking tools use

Fig. 2 AccLab screenshot

the connection with TSPASS and its satisfiability algo-

rithm as explained in the previous section. This panel

assists in generating macro calls which are useful in au-

tomating some complex tasks related to the translation

to FOTL and the interaction with TSPASS.

4.3 Accountability in Action

One idea behind AccLab is to see accountability in

action, one way to achieve that is to be able to run

simulations. AccLab includes a simulation module that

allows it to simulate agents in a system and to ob-

serve accountability in action. Each agent is wrapped

in a reference monitor which acts as a proxy and inter-

cepts all incoming and out-going messages of an agent.

Reference monitors communicate with each other via

a component that simulates the network. The agents

are asynchronous and use asynchronous communica-

tions, and they exchange monitoring information when

communicate with each others. The policy is monitored

using an engine based on the rewriting technique [27,

28,29,30] and the monitors use distributed monitoring

techniques [31]. [31] proposes local monitoring for dis-

tributed systems but limited to past formulae only. We

reuse and extend this work focusing on future formulae

and we use knowledge vectors (extending vector clocks)

to update local monitors knowledge. Sub-monitors are

https://github.com/hkff/AccLab
https://github.com/hkff/AccLab
http://www.dockspawn.com
http://www.dockspawn.com

The Abstract Accountability Language: its Syntax, Semantics and Tools 11

generated for each formula that describes non local ac-

tions in each agent. We extended the progression func-

tion to deal with knowledge vectors that are exchanged

between agents during communications and containing

the evaluation of sub-monitors.

4.4 Real Monitoring

We introduce the AccMon tool which implements the

aforementioned principles, allowing for monitoring ac-

countability policies in the context of real systems. The

tool is build over the Django, an open-source web ap-

plication framework in Python, relying on the model-

view-controller pattern. AccMon allows to specify poli-

cies that are applicable to network traffic, web applica-

tion code and other components via plug-ins. AccMon

acts as a middleware in the Django framework. It inter-

cepts and logs client’s HTTP requests, server’s requests

processing and responses. On the web application side,

the developer can configure the framework to intercept

function/method calls and databases access. The prop-

erties to be monitored with the tool are defined in a

variant of AAL with interpreted predicates. The tool

receives log events via its RESTful API. AccMon can

act as a daemon and interconnecting a variety of exter-

nal tools.

In the following, we present a broad review of related

works in Section 5. Experts in these areas will rather

focus on Section 6, where we compare our work with

similar initiatives in the field of computer science.

5 Formal Models for Accountability in

Computer Science

Accountability is a complex and broad notion which

has been discussed in several domains: economy, laws

and regulations, ethics, privacy, education, public ser-

vices, and much more. The term has recently evolved

and gained much interest as analyzed in [9]. However,

there is not a clear agreement on its characteristics [8]

and how to make it computer understandable if possi-

ble. This is the main reason why we restrict our study

to accountability in computer science. The notion of

accountability crosscuts several domains of computer

science: digital forensics, computer security, distributed

systems in general (grid and cloud computing, the In-

ternet and network applications) and natural language

processing. The notion of accountability has been the

subject of several surveys in computer science [32,33,

34,35]. We will here focus only on a set of papers re-

lated to computer science and accountability, focusing

on formal models, specifications and verification. There

are only few references in computer science which con-

siders a general and interdisciplinary view of account-

ability, see [32,36,37]. Most of the papers, due to the

complexity of the concept, only address some properties

or specific mechanisms related to accountability. The

preventive controls used by classical information tech-

nology security are not sufficient to achieve accountabil-

ity. Accountability performs a posteriori control and it

requires several mechanisms: information transparency,

secure logging, checking misbehavior and responsibili-

ties, then proceeding to penalties and compensation.

There are already some proposals for frameworks inte-

grating these aspects [37,21] and formal models or logic

for accountability [38,39,40,41,42]. Recently Butin et

al. advocate for strong accountability in [21]. The au-

thors put forward strong accountability as a set of pre-

cise legal obligations supported by an effective software

tool set. They demonstrate that the state of the art

in term of technology is sufficient to ensure the notion

of accountability by design. In the rest of this section

we summarize some formal work around accountabil-

ity since it is more closely related to our current work.

There are also several interesting applications of the

notion of accountability in concrete domains. Among

them [43,44,45,46,47,48]. These approaches are dedi-

cated to specific applications and use techniques that

are not fully relevant to our abstract and formal con-

text. We group the references of interest in three coarse

parts: logical models, theories, and formal verification

aspects.

5.1 Logical Models

These are logical models often with delegation. In [49]

authors consider accountability transfer during right

delegations. The basis of accountability is for a par-

ticipant to prove a statement to a third party. This

paper provides a rich logical model for communica-

tion protocols with authentication, a participant can

formally prove some statements, is trusted on some

statements or can exercise some rights. [50] focuses on

distributing digital assets while preserving some pri-

vacy properties. The authors define a formal model to

express usage policies and to enforce them. This is a

logical model with agent creation, exchanging and re-

distributing data and assuming that an authority ob-

serves evidences of these actions. The associated proof

system is based on predicate logic enriched with in-

ference rules for communication, data and policy cre-

ation and delegation. The context of [38] is data pri-

vacy in a distributed system. The formal model allows

to define accountability policies as extensions of First-

Order-Logic (FOL) with special constructions for data

12 Walid Benghabrit et al.

ownership and right delegation but without negation.

A terminating proof system for accountability is de-

fined and implemented in the Twelf prover. The paper

from Etalle and Winsborough [11] discusses the weak-

nesses of preventive security face to unanticipated sit-

uations occurring in collaborative environments. The

authors argue that an approach based on deterrence is

complementary and forms “a second line of defence”.

They define APPLE, a logical framework for a poste-

riori policy enforcement based on three critical compo-

nents: logging, auditing, and accountability. The con-

cept of sticky policy is used, it is a conjunction of few

specific first-order predicates describing the owner and

the permission to modify or distribute a document and

to modify or refine a policy. An inference system can

audit logs and proves that a user performed action in

compliance with the sticky policy. A formal framework

for privacy relying on accountability is proposed in [51].

The author considers privacy in modern pervasive sys-

tems and specifically the disclosure of privacy informa-

tion. The author defines the SIMPL privacy language

allowing features related to data disclosure. The seman-

tics of agents is based on traces on which a notion of

compliance is defined. The model of computation uses

the notion of sticky policy and two global properties.

These properties express that if a value is in the space

of an agent, either the owner directly sent it to the

agent, or the sticky policy enabled this agent to receive

this value.

5.2 Theories

These are references focusing on abstract properties of

audit, accountability and agent behaviours. In [39] the

authors state that the accountability approach to secu-

rity lacks general foundations for models and program-

ming. They propose a theoretical operational model

for accountability in a distributed system with defi-

nitions of honest agent, auditor, and responsiveness.

This allows them to discuss the power of the audi-

tor and the constraints placed on agents and on the

communication infrastructure. The model is based on

point to point communications providing integrity and

authenticity guarantees. The behavior of agents is ex-

pressed via process algebra and discrete time. They

use a game-based method, linear temporal logic and

model-checking to check accountability properties. This

model explores the trade offs between the honest prin-

cipals, the communication network, the audit proto-

col and proposes five abstract properties about agent

guilty blamed by the auditor. In [40] new definitions

for accountability and verifiability are proposed and

shown to be connected together. They provide two in-

terpretations: A symbolic one in the Dolev-Yao style

and a computational one with a cryptographic model.

The authors demonstrate the applicability of their ap-

proach analyzing several cryptographic protocols. The

authors of [41] claim to provide a more general and more

widely applicable definition of accountability. They ex-

plain that existing approaches have been mainly pre-

ventive which is inadequate since it is generally impos-

sible to, a priori, differentiate an honest user from an

attacker. A posteriori or corrective approach is being

more suitable to accountability. They provide a formal

model of accountability based on event traces and util-

ity functions taking into account anonymous agents, au-

tomatic and mediated enforcement of accountability.

5.3 Formal Verification

The work discussed in this section is related to con-

crete approaches targeting verification means for spe-

cific domains. Note that [38] suggests a limited tool

support. AIR [20] (Accountability in RDF) is a rule-

based language for the semantic Web and supports rule

nesting, and explanation of inferences. AIR supports

a non-monotonic negation and rules ordering counts.

The semantics is based on defining the translation of

an AIR-program to a semantically equivalent strati-

fied Logic Program. It employs a RETE based forward-

chaining approach to compute the AIR-closure and al-

lows closed-world reasoning. The language does allow

neither permissions nor features for rectifications. The

accountability views of AIR is only covering explana-

tions and justifications needed for the audit task. [52]

provides a formal service contract for accountable SaaS

services. The authors, after analyzing some business

contract languages, identify few requirements, a ma-

jor one for them is language decidability. They pro-

pose a formal model, called OWL-SC, and a represen-

tation of the contracts based on ontology and mixes

two languages OWL-DL and SWLR. They also present

a translation of these contracts into the formalism of

colored Petri nets. This allows to check properties and

to reason on the contracts with CPN-tools. [53] pro-

poses a formal model for service composition with ac-

countability, which is called Accountable Cloud Service

(ACS). The language enables the expression of deontic

constructions: obligatory, permissible, and prohibited

actions as well as rules for remediation. The seman-

tics is based on dynamic logic extended with deontic

and accountability constructions but the authors claim

to remove any paradox using the Dynamic Logic. ACS

provides a notation for modeling service collaboration

based on BPMN 2.0 and proposes an Obligation Flow

The Abstract Accountability Language: its Syntax, Semantics and Tools 13

Diagram as a method for conflict resolution and veri-

fication. ACS allows the specification of accountability

contracts in a machine understandable style but does

not yet pave the way for a tool support.

6 AAL and AccLab Discussion

We introduce our general approach for accountability

in [5] with the idea to focus on enforcement by synthe-

sizing an XACML [54] extension. [4] presents a com-

ponent-based approach to specify accountability in a

system and a model-checking based verification approach.

We switch to a more abstract approach using the First-

Order linear Temporal Logic and the TSPASS prover

in [18,6]. In [7] we demonstrate that AAL is suitable for

several kinds of security and privacy concerns. We also

analyze the problem of conflict detection in policy sets,

exhibit weaknesses of most of the current proposals and

justify the choice to rely on logical consistency. A real

accountability policy example is discussed in [55] as well

as lessons learnt from its formal specification with our

language. The current paper summarizes our previous

work but adds a bundle of related work and compar-

isons. We also discuss more precisely how to write ac-

countability expressions and some limits of the current

formalism. We provide new unique features: the gener-

alized authorizations and the accountability templates.

We also expose the verification principles, behind our

tool like conflict detection, and compliance. The Ac-

cLab tool description and its monitoring facilities were

also never published.

6.1 Comparison with Related Work

[53] proposes a formal model for service composition

with accountability, which is called Accountable Cloud

Service. The logic is not a classic one and is mixed with

BPMN notations, the drawback is that neither a de-

cision algorithm nor a tool support are described. An-

other close work is [38] which defines a policy language

based on FOL with policy disclosure allowing delega-

tion responsibility. The main difference is that we con-

sider policies already defined and assigned, without a

native delegation mechanism. But note that the same

compliance relation is valid in both contexts. It also

proposes a concrete tool support with the Twelf proof

checker but AAL adds linear temporal features and Ac-

cLab automated proofs. [11] is another formal model for

accountability, AAL is more abstract because we do not

assume specific component like trust management and

dedicated predicates for refinement or transfer. There

are only two previously existing tools [52,20]. On one

hand, the language proposed by [52] is limited to on-

tology, without specific feature for audit or rectification

and targeted to monitoring. On the other hand [20] fo-

cuses on explanations of inferences. Our approach is

unique on two sides: the language and its tool support.

Regarding AAL its unrivalled features are its FOTL
foundation with an accountability clause, general au-

thorizations and templates. AccLab has the following

noteworthy characteristics: an expressive language cov-

ering most of the security and accountability needs as

well as formal compliance, conflict checking and moni-

toring support.

Aside the previous accountability articles there is

other related work which crosscuts our approach. Ac-

countability like security is expressed by policies thus

many works done in the policy domain are related to

our. Our work, especially the usage expression part is

related to privacy and security languages like: [56,57,

58,59]. In addition to specific accountability features

(audit and rectification) our work has the following

characteristics. As demonstrated in [7] the language

provides negation, even for obligation, access control

and privacy concerns thus covering many needs. We

rely on the FOTL framework with the monodic con-

straint, this is related to [56], but without the burden

of fix points. While [59] present a FOL approach for

privacy and accountability enforcement but without ex-

plicit linear temporal operators.

Regarding policy verification we think that [60,22,

61,62] are the most related, all are limited to usual

security policies. [60] is only access control in the FOL
context, [22] focuses on location properties without tool

support, and [61] uses FOL with event calculus and

a verification prototype restricted to finite domains.

While [62] defines a rich policy language in Fusion logic

and uses model-checking.

Enforcement of accountability has been done in a

specific and concrete way in [63] with an extension of

XACML. However, A-PPL (An Accountability Policy

Language) is not a flexible approach since it operates

with few dedicated constructions. It also inherits vari-

ous limitations from its XACML ancestor. A more ab-

stract vision of enforcement is proposed by monitoring

or runtime verification [64]. Our monitoring approach

is rather close to the following papers [31,27,30]. In

fact we mix the use of rewriting temporal expressions,

the temporal and first-order approach, localization and

monitoring distributed systems.

6.2 Open Questions and Limits

In the previous sections, we have seen several ways to

express accountability with AAL. Regarding the three

14 Walid Benghabrit et al.

dimensions of accountability from [8], i) we have in-

formation as formal contract which can be checked for

compliance, ii) justification is provided by querying the

formal contract using property verification, and iii) pun-

ishment is made explicit in the contract and enforced

by monitoring.

It is possible to embed models like [49,50,38,11,51]

as they are based on predicate calculus, first-order in-

ference rules and linear traces. The model in [53] uses

a dynamic deontic logic based on FOL and a discrete

temporal operator. The definition of the accountability

clause is rather limited and specific, because it consid-

ers accountability related to one atomic action. In AAL

we keep a classic logic with its tool support. We have or-

thogonal notions of permission, and action but not the

exact obligation of deontic logic. Paradoxes of deontic

logic seem difficult, if possible, to remove [65]. Another

set of related work is focusing on properties for audit

and accountability [39,41,40]. These are more challeng-

ing or impossible to fully encode without strongly re-

stricting expressiveness since they are based on utility

functions or probabilistic approaches.

We aim at integrating other notions of accountabil-

ity, those defined outside computer science, as in [8,9].

However, one first limitation is that these are complex

notions and there is no clear agreement on precise and

operational definitions of accountability characteristics.

The second point is that some characteristics (for in-

stance, moral dilemma or force majeure) are specific of

human behaviors and cannot be modelled or are out of

the scope of automation. Many works consider that true

accountability cannot be completely automatic and hu-

mans (an auditor, a judge, etc) should be involved in the

process. This is still according to [8]: “Given that the

notion of accountability is not built on the illusion that

power is subject to full control ...”. A fully automated

solution would be equivalent to a preventive security

solution, all violation cases and countermeasures are

known and decided in advance. In our approach human

behavior is defined by actions connected to a virtual

agent (as in [51]) under the control of the real human,

thus it will be transparent here.

Other difficult notions are linked to deontic con-

cepts, like the contrary to duty. Finally, there are some

concepts like complicity, valid excuse, group account-

ability, grades of accountability which are totally or

partly machine understandable. The main barrier for us

is to obtain an agreement or at least sufficiently precise

definitions for these concepts in order to model them.

There are also expressiveness and decidability issues in

accountability policies. However many progresses have

been done recently in satisfiability modulo theories and

we could expect new results in automated verification

of FOTL.

7 Conclusion and Perspectives

Accountability is a complex concept that becomes more

important in the digital society, as an effect of the rais-

ing privacy concerns in ubiquitous systems. We advo-

cate a privacy by design approach, addressing account-

ability requirements starting from specification towards

their implementation in software systems. We provide a

flexible and expressive domain agnostic language, where

one can handle distinct usages and definitions for the

term accountability. Accountability interpretation and

its operational management are slightly varying in the

related work, even from a formal perspective. This lead

us naturally to the development of the accountability

laboratory, supported by its verification principles and

concrete tools for policy verification and monitoring.

The existing related work is rather limited to theoreti-

cal models without tool support. Tools support for some

dedicated applications and domains are proposed in [20,

52]. However, a wider perspective with concrete lan-

guage and enforcement tools was lacking. In this paper

we demonstrate that this objective is perfectly attain-

able and our proposal is aligned with the three Schedler

dimensions [8]. We provide the AAL language with se-

mantics based on FOTL, we demonstrate its expressive-

ness and flexibility concerning accountability policies.

Apart from its expressiveness AAL provides a notion of

general authorizations and a convenient notion of tem-

plates to assisting in writing policies. We study veri-

fication means for internal and specific properties and

we propose conflict detection, and policy compliance.

Finally, these ideas have been implemented in our Ac-

cLab tool support and it provides accountability writ-

ing, consistency checking, compliance verification, and

runtime monitoring.

In the near future, we intend to improve the lan-

guage and its tool support. In fact one challenge is the

integration of more computation primitives in FOTL.

We also expect to relax the monodic constraint. For

instance, (always forall X,Y pred(X, Y)) => forall X,Y always

pred(X, Y)) is a valid property. While the conclusion of

the right-hand side is not monodic, it can be proved

with the left-hand side. With respect to performance,

in [6] we defined some heuristics to reduce execution

time and we expect to rationalize them. One important

topic, which is actually not discussed in this paper, is

the link between the global view promoted by AAL and

the local view needed for distributed agents. Still, there

are some decidability issues but results exist with the

session type theory [66].

The Abstract Accountability Language: its Syntax, Semantics and Tools 15

References

1. Regulation, E. U. REGULATION (EU) 2016/679 of the
European Parliament and of the Council of 27 April
2016. http://ec.europa.eu/justice/data-protection/

reform/files/regulation_oj_en.pdf, 2016. accessed by
22/05/2017.

2. 104th Congress Public Law 191. Health Insur-
ance Portability and Accountability Act of 1996.
https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/

PLAW-104publ191.htm, 1996. accessed by 22/05/2017.
3. 107th Congress Public Law 204. Corporate and

Auditing Accountability and Responsibility Act.
https://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/

PLAW-107publ204.htm, 2016. accessed by 22/05/2017.
4. Walid Benghabrit, Hervé Grall, Jean-Claude Royer, and

Mohamed Sellami. Accountability for Abstract Compo-
nent Design. In EUROMICRO DSD/SEAA 2014, pages
213–220, Verona, Italie, August 2014.

5. Walid Benghabrit, Hervé Grall, Jean-Claude Royer, Mo-
hamed Sellami, Melek Önen, Anderson Santana De
Oliveira, and Karin Bernsmed. volume 512 of Commu-

nications in Computer and Information Science, chapter
From Regulatory Obligations to Enforceable Account-
ability Policies in the Cloud, pages 134–150. 2015.

6. Walid Benghabrit, Hervé Grall, Jean-Claude Royer, and
Mohamed Sellami. Abstract accountability language:
Translation, compliance and application. In APSEC, New
Delhi, India, 2015. IEEE Computer Society.

7. Jean-Claude Royer and Anderson Santana De Oliveira.
Aal and static conflict detection in policy. In CANS, 15th
International Conference on Cryptology and Network Secu-

rity, LNCS, pages 367–382. Springer, November 2016.
8. Andreas Schedler. Self-Restraining State: Power and Ac-

countability in New Democracies, chapter Conceptualiaz-
ing Accountability, pages 13–28. Lynne Reiner, 1999.

9. Richard Mulgan. ’accountability’: An ever-expanding
concept? Public Administration, 78(3):555–573, 2000.

10. Walid Benghabrit and Hervé Grall and Jean-Claude
Royer. Accountability Laboratory. http://www.emn.fr/

z-info/acclab/, 2016. accessed by 22/05/2017.
11. Sandro Etalle and William H. Winsborough. A pos-

teriori compliance control. In Volkmar Lotz and Bha-
vani M. Thuraisingham, editors, SACMAT 2007, pages
11–20. ACM, 2007.

12. Michel Ludwig and Ullrich Hustadt. Implementing a fair
monodic temporal logic prover. AI Commun, 23(2-3):69–
96, 2010.

13. Michel Ludwig. Tspass, 2010. https://lat.inf.tu-
dresden.de/˜michel/software/tspass/.

14. Ian M. Hodkinson, Frank Wolter, and Michael Za-
kharyaschev. Decidable fragment of first-order temporal
logics. Ann. Pure Appl. Logic, 106(1-3):85–134, 2000.

15. Anatoli Degtyarev, Michael Fisher, and Boris Konev.
Monodic temporal resolution. ACM Transactions on Com-

putational Logic, 7(1):108–150, January 2006.
16. Carmen Fernández-Gago, Ullrich Hustadt, Clare Dixon,

Michael Fisher, and Boris Konev. First-order temporal
verification in practice. Journal of Automated Reasoning,
34(3):295–321, 2006.

17. Viktor Schuppan and Luthfi Darmawan. Evaluating LTL
satisfiability solvers. In Tevfik Bultan and Pao-Ann Hsi-
ung, editors, ATVA, volume 6996 of LNCS, pages 397–
413. Springer, 2011.

18. Walid Benghabrit, Hervé Grall, Jean-Claude Royer, and
Mohamed Sellami. Checking Accountability with a

Prover. In COMPSAC, pages 83–88, Taichung, China,
2015.

19. Viktor Schuppan. Towards a notion of unsatisfiable and
unrealizable cores for LTL. Science of Computer Program-

ming, 77(7–8):908–939, July 2012.
20. Ankesh Khandelwal, Jie Bao, Lalana Kagal, Ian Jacobi,

Li Ding, and James A. Hendler. Analyzing the AIR lan-
guage: A semantic web (production) rule language. In
Pascal Hitzler and Thomas Lukasiewicz, editors, RR, vol-
ume 6333 of Lecture Notes in Computer Science, pages 58–
72. Springer, 2010.

21. Denis Butin, Marcos Chicote, and Daniel Le Métayer.
Strong Accountability: Beyond Vague Promises. In
Reloading Data Protection: Multidisciplinary Insights and

Contemporary Challenges, pages 343–369. Springer, 2014.
22. Carlo Montangero, Stephan Reiff-Marganiec, and Laura

Semini. Logic-based conflict detection for distributed
policies. Fundamantae Informatica, 89(4):511–538, 2008.

23. Bei Wu, Xing yuan Chen, Yong fui Zhang, and Xiang
dong Dai. An extensible intra access control policy con-
flict detection algorithm. In Computational Intelligence
and Security, pages 483–488. IEEE Computer Society,
2009.

24. Scott D. Stoller, Ping Yang, C. R. Ramakrishnan, and
Mikhail I. Gofman. Efficient policy analysis for adminis-
trative role based access control. In Conference on Com-

puter and Communications Security, pages 445–455, 2007.
25. Lili Sun, Hua Wang, Xiaohui Tao, Yanchun Zhang, and

Jing Yang. Privacy preserving access control policy and
algorithms for conflicting problems. In TrustCom, pages
250–257. IEEE Computer Society, 2011.

26. Michael Carl Tschantz, Anupam Datta, and Jean-
nette M. Wing. Purpose restrictions on information use.
volume 8134 of ESORICS 2013, pages 610–627. Springer,
2013.

27. Grigore Rosu and Klaus Havelund. Rewriting-based
techniques for runtime verification. Autom. Softw. Eng,
12(2):151–197, 2005.

28. Andreas Bauer, Martin Leucker, and Christian Schall-
hart. Runtime verification for ltl and tltl. ACM Trans.
Softw. Eng. Methodol., 20(4):14:1–14:64, September 2011.

29. Torben Scheffel and Malte Schmitz. Three-valued asyn-
chronous distributed runtime verification. In Formal

Methods and Models for Codesign, pages 52–61, Oct 2014.
30. Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach.

The ins and outs of first-order runtime verification. For-
mal Methods in System Design, 46(3):286–316, 2015.

31. Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore
Rosu. Efficient decentralized monitoring of safety in dis-
tributed systems. In International Conference on Software
Engineering, pages 418–427, May 2004.

32. Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee,
Joan Feigenbaum, James Hendler, and Gerald Jay Suss-
man. Information accountability. Commun. ACM,
51(6):82–87, June 2008.

33. Kwei-Jay Lin, Joe Zou, and Yan Wang. Accountability
computing for e-society. In 24th Advanced Information
Networking and Applications Conference (AINA), pages
34–41. Ieee, 2010.

34. Yang Xiao Zhifeng Xiao, Nandhakumar Kathiresshan. A
survey of accountability in computer networks and dis-
tributed systems. Security and Communication Networks,
2012.

35. Daniel Guagnin, Leon Hempel, Carla Ilten, Inga Kroener,
Daniel Neyland, and Hector Postigo, editors. Managing
Privacy through Accountability. Palgrave Macmillan, 2012.

http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm
https://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm
http://www.emn.fr/z-info/acclab/
http://www.emn.fr/z-info/acclab/

16 Walid Benghabrit et al.

36. Daniel Le Métayer. Formal methods as a link between
software code and legal rules. Software Engineering and

Formal Methods, pages 3–18, 2011.
37. Siani Pearson and Nick Wainwright. An interdisciplinary

approach to accountability for future internet service pro-
vision. International Journal of Trust Management in Com-
puting and Communications, 1(1):52–72, 2013.

38. Jan Cederquist, Roberto Corin, Marnix Dekker, Sandro
Etalle, and Jerry Den Hartog. An audit logic for account-
ability. In POLICY’05, pages 34–43. IEEE, 2005.

39. Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and
James Riely. Towards a theory of accountability and
audit. ESORICS’09, pages 152–167, Berlin, Heidelberg,
2009. Springer-Verlag.

40. Ralf Kusters, Tomasz Truderung, and Andreas Vogt. Ac-
countability: definition and relationship to verifiability.
pages 526–535. ACM, 2010.

41. Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N.
Wright. Towards a formal model of accountability. In
Sean Peisert, Richard Ford, Carrie Gates, and Cormac
Herley, editors, New Security Paradigms Workshop, pages
45–56. ACM, 2011.

42. Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N.
Wright. Open vs. closed systems for accountability. In
Proceedings of the 2014 Symposium and Bootcamp on the
Science of Security, pages 4:1–4:11, New York, NY, USA,
2014. ACM.

43. Brent N. Chun and Andy Bavier. Decentralized
trust management and accountability in federated sys-
tems. Hawaii International Conference on System Sciences,
9:90279a, 2004.

44. Andreas Haeberlen, Paarijaat Aditya, Rodrigo Ro-
drigues, and Peter Druschel. Accountable virtual ma-
chines. In 9th USENIX Symposium on Operating Systems

Design and Implementation, OSDI, pages 119–134, 2010.
45. Smitha Sundareswaran, Anna Cinzia Squicciarini, and

Dan Lin. Ensuring distributed accountability for data
sharing in the cloud. IEEE Trans. Dependable Sec. Com-
put, 9(4):556–568, 2012.

46. Ryan K. L. Ko, Bu-Sung Lee, and Siani Pearson. To-
wards achieving accountability, auditability and trust in
cloud computing. In Ajith Abraham, Jaime Lloret Mauri,
John F. Buford, Junichi Suzuki, and Sabu M. Thampi,
editors, Advances in Computing and Communications, vol-
ume 193, pages 432–444. Springer, 2011.

47. Siani Pearson. Accountability in cloud service provision
ecosystems. In Karin Bernsmed and Simone Fischer-
Hübner, editors, Secure IT Systems - 19th Nordic Confer-
ence, volume 8788 of Lecture Notes in Computer Science,
pages 3–24. Springer, 2014.

48. Anupam Datta. Privacy through Accountability: A Com-
puter Science Perspective, pages 43–49. Springer Interna-
tional Publishing, Cham, 2014.

49. Bruno Crispo and Giancarlo Ruffo. Reasoning about Ac-
countability within Delegation. In International Confer-
ence on Information and Communications Security, pages
251–260. Springer-Verlag, 2001.

50. Roberto Corin, Sandro Etalle, Jerry den Hartog, Gabriele
Lenzini, and I. Staicu. A Logic for Auditing Accountability

in Decentralized Systems, pages 187–201. Springer US,
Boston, MA, 2005.

51. Daniel Le Métayer. A Formal Privacy Management Frame-
work, pages 162–176. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

52. Joe Zou, Yan Wang, and Kwei-Jay Lin. A formal service
contract model for accountable saaS and cloud services.

In International Conference on Services Computing, pages
73–80. IEEE Computer Society, 2010.

53. Jun Zou, Yan Wang, and Mehmet A. Orgun. Modeling
accountable cloud services. In International Conference on
Web Services, pages 353–360. IEEE, 2014.

54. OASIS Standard. eXtensible Access Control Markup
Language (XACML) Version 3.0. 22 January 2013.
http://docs.oasis-open.org/xacml/3.0/xacml-3.

0-core-spec-os-en.html, 2013. accessed by 22/05/2017.
55. Walid Benghabrit, Jean-Claude Royer, and Anderson

Santana De Oliveira. Towards the specification of natural
language accountability policies with acclab: The laptop
policy use case. volume 2051, October 2017. http://ceur-
ws.org/.

56. Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kay-
nar, and Anupam Datta. Experiences in the logical spec-
ification of the HIPAA and GLBA privacy laws. In ACM

Workshop on Privacy in the Electronic Society, pages 73–
82, 2010.

57. Moritz Y. Becker, Alexander Malkis, and Laurent Bus-
sard. A practical generic privacy language. volume 6503
of ICISS 2010, pages 125–139. Springer, 2010.

58. Guillaume Piolle and Yves Demazeau. Representing pri-
vacy regulations with deontico-temporal operators. Web
Intelligence and Agent Systems, 9(3):209–226, 2011.

59. Anupam Datta, Jeremiah Blocki, Nicolas Christin, Henry
DeYoung, Deepak Garg 0001, Limin Jia, Dilsun Kirli
Kaynar, and Arunesh Sinha. Understanding and pro-
tecting privacy: Formal semantics and principled audit
mechanisms. In Sushil Jajodia and Chandan Mazum-
dar, editors, Information Systems Security, volume 7093
of LNCS, pages 1–27. Springer, 2011.

60. Joseph Y. Halpern and Vicky Weissman. Using first-
order logic to reason about policies. ACM Transactions on

Information and System Security, 11(4):1–41, July 2008.
61. Robert Craven, Jorge Lobo, Jiefei Ma, Alessandra Russo,

Emil C. Lupu, and Arosha K. Bandara. Expressive pol-
icy analysis with enhanced system dynamicity. In Wan-
qing Li, Willy Susilo, Udaya Kiran Tupakula, Reihaneh
Safavi-Naini, and Vijay Varadharajan, editors, Proceed-

ings of the 2009 ACM Symposium on Information, Com-
puter and Communications Security, pages 239–250. ACM,
2009.

62. Antonio Cau, Helge Janicke, and Ben C. Moszkowski.
Verification and enforcement of access control policies.
Formal Methods in System Design, 43(3):450–492, 2013.

63. Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Karin
Bernsmed, Anderson Santana de Oliveira, and Jakub
Sendor. A-PPL: an accountability policy language. In
Data Privacy Management, Autonomous Spontaneous Se-

curity, and Security Assurance, pages 319–326, 2014.
64. Alwyn Goodloe and Lee Pike. Monitoring distributed

real-time systems: A survey and future directions, 2010.
65. Albert J. J. Anglberger. Dynamic deontic logic and its

paradoxes. Studia Logica, 89(3):427–435, 2008.
66. Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Lúıs

Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris
Mostrous, Luca Padovani, António Ravara, Emilio Tu-
osto, Hugo Torres Vieira, and Gianluigi Zavattaro. Foun-
dations of session types and behavioural contracts. ACM
Computing Surveys, 49(1):3:1–3:36, July 2016.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

	Introduction
	Abstract Accountability Language
	Verification and Tool Principles
	The AccLab Tool Support
	Formal Models for Accountability in Computer Science
	AAL and AccLab Discussion
	Conclusion and Perspectives

