
HAL Id: hal-01856516
https://hal.archives-ouvertes.fr/hal-01856516

Submitted on 12 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing Covers of Functional Dependencies using
FCA

Victor Codocedo, Jaume Baixeries, Mehdi Kaytoue, Amedeo Napoli

To cite this version:
Victor Codocedo, Jaume Baixeries, Mehdi Kaytoue, Amedeo Napoli. Characterizing Covers of Func-
tional Dependencies using FCA. CLA 2018 - The 14th International Conference on Concept Lattices
and Their Applications, Jun 2018, Olomouc, Czech Republic. pp.279-290. �hal-01856516�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163032367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01856516
https://hal.archives-ouvertes.fr

Characterizing Covers of Functional Dependencies
using FCA

Victor Codocedo1, Jaume Baixeries2, Mehdi Kaytoue1, and Amedeo Napoli3

1 Université de Lyon. CNRS, INSA-Lyon, LIRIS. UMR5205, F-69621, France.
2 Universitat Politècnica de Catalunya. 08032, Barcelona. Catalonia.

3 LORIA (CNRS - Inria Nancy Grand Est - Université de Lorraine), B.P. 239, F-54506,
Vandœuvre-lès-Nancy.

Corresponding author: victor.codocedo@inria.fr

Abstract. Functional dependencies (FDs) can be used for various important op-
erations on data, for instance, checking the consistency and the quality of a
database (including databases that contain complex data). Consequently, a generic
framework that allows mining a sound, complete, non-redundant and yet compact
set of FDs is an important tool for many different applications. There are different
definitions of such sets of FDs (usually called cover).
In this paper, we present the characterization of two different kinds of covers for
FDs in terms of pattern structures. The convenience of such a characterization is
that it allows an easy implementation of efficient mining algorithms which can
later be easily adapted to other kinds of similar dependencies. Finally, we present
empirical evidence that the proposed approach can perform better than state-of-
the-art FD miner algorithms in large databases.

1 Introduction

Functional Dependencies (FDs) are a keystone of the relational database model, since
they allow to check the consistency and maintain the quality of a database [7, 9, 8], and
to guide the database design [17]. In addition, they have been used to study information
integration in the Web of data with varying degrees of quality [21, 22], or to check the
completeness in DBpedia [1]. Therefore, the computation of a succinct representation of
a set of FDs (usually refered to as a cover), is of interest to various fields of knowledge
discovery and representation, specially, if this computation can easily be extended to
other kinds of dependencies.

The computation of covers for FDs is a popular topic in database literature. As a
reference, in [18], seven algorithms to mine FDs and compute their covers are reviewed
and grouped into three families: lattice transversal algorithms, difference/agree sets al-
gorithms, and dependency induction algorithms. The characterization of FDs with FCA
and pattern structures has also be presented in [2] which in turn, have been generalized
to other types of FDs [5]. For a more detailed review on the characterization of FDs and
FCA, see [3].

In this paper, we characterize these representations of FD covers using pattern struc-
tures, an extension of FCA dealing with complex object representations [15]. On the

one hand, in Section 3.2 we discuss on the relation between the Stem Base of implica-
tions [11] with the Minimal Cover of dependencies, a sound, complete, non-redundant
set of FDs that has minimum cardinality w.r.t. any other equivalent cover. Our main
contribution shows that the latter can be characterized by pseudo-extents of a partition
pattern structure.

On the other hand, in Section 3.1 we adapt the definition of a canonical direct basis
of implications with proper premises [4, 19] to the formalism of pattern structures, in
order to prove that this basis is equivalent to a reduced non-redundant cover of FDs.

Finally, in Section 5 we empirically compare these two ways of computing a cover
for a set of FDs with the algorithm TANE [14]. This algorithm is one of the most
popular FD mining algorithms and according to [18], it is the base for the family of
“lattice transversal algorithms” and serves as the base to compare our proposal with a
state-of-the-art algorithm for computing covers for FDs.

2 Theoretical Background

Let U be a set of attributes, and let Dom be a set of values (a domain). For the
sake of simplicity, we assume that Dom is a numerical set. A tuple t is a function
t : U ÞÑ Dom, and a table T is a set of tuples. Usually a table is represented as a
matrix, as in Table 1, where the set of tuples (or objects) is T “ t t1, t2, . . . , t7 u and
U “ t a, b, c, d, e u is the set of attributes. We use table, dataset, set of tuples as equiv-
alent terms. We overload the functional notation of a tuple in such a way that, given a
tuple t P T , we say that tpXq (for all X Ď U) is a tuple with the values of t in the
attributes xi P X:

tpXq “ xtpx1q, tpx2q, . . . , tpxnqy

For example, we have that t2pt a, c uq “ xt2paq, t2pcqy “ x2, 1y. In this article, the
set notation is dropped: instead of t a, b u we use ab.

2.1 Functional Dependencies and their covers

Definition 1 ([20]). Let T be a set of tuples, and X,Y Ď U . A functional dependency
(FD) X Ñ Y holds in T if:

@t, t1 P T : tpXq “ t1pXq ùñ tpY q “ t1pY q

For instance, the functional dependency d Ñ e holds in T , whereas the functional
dependency eÑ d does not hold since t4peq “ t5peq but t4pdq ‰ t5pdq.

For a given set of functional dependencies F , we can use the three Armstrong’s
axioms (reflexivity, augmentation and transitivity) to derive a larger set of FDs [17]. We
will call F˚ the set of FDs derived from F by reflexivity and augmentation, and F`

the set of FDs derived by reflexivity augmentation and transitivity. Two sets of FDs F
and H are said to be equivalent F ” H ðñ F` “ H`.

Let F be a set of FDs from a database with tuples T . F is said to be sound if all
FDs in F hold in T . In addition, F is said to be complete if all FDs that hold in T can
be derived from F . Let X Ñ Y be any FD in F , then F is said to be non-redundant if

F ztX Ñ Y u ı F for any X Ñ Y . Additionally, F is said to be non-redundant w.r.t.
augmentation iff pF ztX Ñ Y uq˚ ‰ F˚

A set F is said to be left-reduced if @X Ñ Y P F and Z Ă X we have that
pF ztX Ñ Y uqYtZ Ñ Y u ı F . Dually, it is said to be right-reduced if @X Ñ Y P F
and Z Ă Y we have that pF ztX Ñ Y uq Y tX Ñ Zu ı F . F is said to be reduced if
it is simultaneously left and right-reduced.

Let F be a reduced set of FDs, then we can derive G “ tX Ñ y | @X Ñ Y P

F, y P Y u. G is the splitting of F and both sets are equivalent. Let F be a reduced
set, its splitting is called a canonical cover. A canonical cover is a left-reduced, non-
redundant w.r.t. augmentation set of FDs with a single element in their right hand side (a
split set). Notice that canonical covers can be redundant w.r.t. transitivity. For example
the canonical cover of Table 1 contains tc Ñ b, c Ñ e, d Ñ e, bd Ñ c, be Ñ cu
where bdÑ e is redundant w.r.t. transitivity, i.e. bdÑ bdeÑ c.

Finally, a set F is said to be a minimum cover if it has as few FDs as any other equiv-
alent set of FDs. For example, the minimum cover of Table 1 contains FDs tc Ñ be,
d Ñ e, be Ñ cu. Notice that the minimum cover is not restricted to be reduced, so
it is not presented with split sets. Secondly, the cardinality of the example minimum
cover contains exactly one fewer FD than the canonical cover, namely bdÑ c.

2.2 Formal Concept Analysis (FCA)

For the sake of brevity we do not provide a description of the FCA framework. The
notation used in this article follows [12] where K “ pG,M, Iq is a formal context of
objects G, attributes M and incidence relation I , with formal concepts pA,Bq.

2.3 Implication Systems

Implications are relations established between attribute sets from a formal context K.
Implications are analogous to FDs and they can be used to characterize the latter [2].
Implication systems (sets of implications) can also characterize FD covers [4].

An implication X Ñ Y holds in K for X,Y Ď M if Y Ď X2. Notice that
we maintain the notation of FDs to denote the relation between X and Y , the reason
for this will become apparent in what follows. Let T be a set of tuples and U , a set
of attributes in a table (such as the one in Table 1). We define the set PairpT q “
T ˆ T as the Cartesian product of the set of tuples T and incidence set I such that
ppti, tjq, xq P I ðñ tirxs “ tjrxs, @x P U , @ti, tj P T . It can be shown that an FD
X Ñ Y holds in the database if and only if X Ñ Y is an implication of the formal
context K “ pPairpT q,U , Iq [12]. K is called the binary codification of table T . For
example, Table 3 contains the binary codification of Table 1. In Table 3 we can observe
the implication dÑ e which can be verified as an FD in Table 1.

The previous statement entails that FDs and implications in K are in 1-1 correspon-
dence. Moreover, the corresponding definition of a canonical cover of FDs is equivalent
to that of a canonical-direct unitary basis of implications as shown in [4].

a b c d e
t1 1 1 1 1 1
t2 2 1 1 1 1
t3 3 1 2 2 2
t4 3 2 3 2 2
t5 3 1 2 3 2
t6 1 1 2 2 2
t7 1 1 2 4 2

Table 1: Example of a table T
a b c d e

δpaq ˆ

δpbq ˆ

δpeq ˆ

δpaq [δpbq ˆ ˆ Ö Ö

δpaq [δpeq ˆ ˆ

δpdq [δpeq ˆ ˆ

δpaq [δpdq [δpeq ˆ Ö Ö ˆ ˆ

δpbq [δpcq [δpeq ˆ ˆ ˆ

δpaq [δpbq [δpcq [δpeq ˆ ˆ ˆ Ö ˆ

δpbq [δpcq [δpdq [δpeq Ö ˆ ˆ ˆ ˆ

δpaq [δpbq [δpcq [δpdq [δpeq ˆ ˆ ˆ ˆ ˆ

Table 2: Representation context

a b c d e
pt1, t2q ˆ ˆ ˆ ˆ

pt1, t3q ˆ

pt1, t4q
pt1, t5q ˆ

pt1, t6q ˆ ˆ
pt1, t7q ˆ ˆ
pt2, t3q ˆ

pt2, t4q
pt2, t5q ˆ

pt2, t6q ˆ

pt2, t7q ˆ

pt3, t4q ˆ ˆ ˆ

pt3, t5q ˆ ˆ ˆ ˆ

pt3, t6q ˆ ˆ ˆ ˆ

pt3, t7q ˆ ˆ ˆ

pt4, t5q ˆ ˆ

pt4, t6q ˆ ˆ

pt4, t7q ˆ

pt5, t6q ˆ ˆ ˆ

pt5, t7q ˆ ˆ ˆ

pt6, t7q ˆ ˆ ˆ ˆ

Table 3: Binary codification of Table 1

2.4 Partition Pattern Structures

Partition Pattern Structures (PPS) is a type of pattern structure [15] that deals with,
as the name suggests, object representations in the form of set partitions. PPS have
shown to be useful for mining biclusters [6] and, more importantly for this article, rela-
tions between partition pattern concepts have been used to characterize FDs of different
kinds [3].

The formalization of a database with tuples T and attributes U as a PPS is as follows.
A partition d of T is a set d Ď ℘pT q of disjoint subsets of T such that for any two
different elements Ki,Kj P d we have that Ki XKj “ H and

Ť

KiPd
Ki “ T .

Let D be the set of all possible partitions of T , they can be ordered by a coarser/finer
relation denoted di Ď dj (di is finer than dj for di,dj P D) iff @Ki P di, DKj P dj :
Ki Ď Kj . The similarity operator is defined as di [dj “ tKi XKj |Ki P di,Kj P

dju.
From this, it follows that pD,[q is a complete lattice with supremum and infimum
defined respectively as J “ tttu | t P T u and K “ ttT uu.

The set of attributes U is mapped onto pD,[q through a function δ which for a given
attribute x P U yields its equivalence relations over T . With this, we can configure the
PPS pU , pD,[q, δq where pX,dq is a partition pattern concept with X˝ “ d denoting
the equivalence relations implied by attributes in X , and d˝ “ X denoting all attributes
with associated equivalence relations finer than d.

Theorem 1. Let pPairpT q,U , Iq be the binary codification of a table within a database,
and pU , pD,[q, δq its PPS representation:

pW,Xq P pPairpT q,U , Iq ðñ pX,dq P pU , pD,[q, δq

The proof of Theorem 1 can be found in [3]. Theorem 1 presents an important
property of the PPS that states that X Ď U is an extent in pU , pD,[q, δq if and only
if it is also an intent in pPairpT q,U , Iq (the relation between the set of tuple pairs
W Ď PairpT q and the partition d P D can be formalized as well but it is of no
interest for our development). Theorem 1 is very important since it entails that the
lattices derived from pPairpT q,U , Iq and pU , pD,[q, δq are isomorphic. Consequently,
implication X Ñ Y in pPairpT q,U , Iq can be found as a relation between extents in
pU , pD,[q, δq (extent implication) such that Y Ď X˝˝.

3 Covers and Pattern Structures

In this section we present two different kinds of covers for FDs: canonical covers (Sub-
section 3.1) and minimal covers (Subsection 3.2), as well as their characterization in
terms of Pattern Structures. This section uses existing well-known results in FCA,
which are reviewed here for the sake of readability.

First, we present how a canonical cover for FDs can be computed with pattern struc-
tures, according to the results in [4, 19]. Then, in Subsection 3.2 we present a novel
characterization of a minimum cover of FDs by means of pseudo-intents [12]. The in-
terest of these results are not only limited to computing covers for FDs, but also for
computing covers for generalizations of FDs.

3.1 Mining a Canonical Cover of FDs

The characterization of a canonical cover of FDs using FCA is straightforward and it
has been previously studied in [4, 19]. In a nutshell, a canonical direct basis of implica-
tions with proper premises is analogous to a reduced non-redundant cover of FDs, i.e.
a canonical cover. In this section we recall some of these ideas and show how they can
be simply adapted to the framework of partition pattern structures.

Firstly, let pU , pD,[q, δq be a PPS, we define D “ td P D | d˝˝ “ du as the set
of all closed partition patterns in D, then the triple pU ,D, Jq with pd, xq P J ðñ

d Ď δpxq is called a representation context of pU , pD,[q, δq and their correspond-
ing concept lattices are isomorphic [15]. For the sake of readability of the following
definitions, we will prefer to define the representation context as pD,U , Jq instead
of pU ,D, Jq. By transitivity of equivalence, it is clear that pD,U , Jq is isomorphic
to pPairpT q,U , Iq as defined in Section 2.4 and as such, implications in pD,U , Jq
correspond to FDs. For example, Table 2 (not considering elements Ö) contains the
representation context pD,U , Jq of the partition pattern structure derived from Table 1.
Notice that objects are closed intersections of object representations, e.g. δpdq is not
present since δpdq˝˝ “ de (thus d Ñ e). With this, the canonical direct basis of im-
plications in pD,U , Jq (and thus, canonical cover of FDs) is determined by the set of
proper premises of elements in U .

Theorem 2 ([19]). X Ď Uztyu is a premise of y P U iff X is a hypergraph transversal
of HÖy defined as :

HÖy “ tppUztyuqqzd1 | d P D,dÖ yu

The set of all proper premises of y is exactly the minimum hypergraph transversal
TrpHÖy q.

Detailed descriptions of the development of Theorem 2 can be found in [19]. Provid-
ing a formal definition of hypergraph transversals is out of the scope of this article,
however we briefly mention that this formalization can also be made considering set
collections (instead of hypergraphs) and minimum hitting sets (instead of minimum hy-
pergraph transversals) [10]. Alternatively, this problem is analogous to the vertex cover
problem [11].

Theorem 2 provides a formal description for the proper premises of a given attribute
y P U that in turn yields the canonical cover of functional dependencies. However this
approach requires the creation of the representation context which creates a middle step
in the overall mining process. Actually, by analyzing the arrow relation between d and
y we can observe that the representation context is not really necessary.

dÖ y ðñ pd, yq R J and if d1 Ĺ h1 then ph, yq P J

We have that in pD,U , Jq, d1 “ tx P U | pd, xq P Jp ðñ d Ď δpxqqu and thus
d1 ” d˝ for any d P D. Moreover, in pU , pD,[q, δq, d˝ Ĺ h˝ ðñ h Ĺ d since
h “ h˝˝ and d “ d˝˝. With this, we can rewrite the previous definition as follows.

dÖ y ðñ pd, yq R J and if ,d1 Ĺ h1 then ph, yq P J
ðñ d Ę δpyq and if d˝ Ĺ h˝ then h Ď δpyq

ðñ d Ę δpyq and if h Ĺ d then h Ď δpyq

The last result shows that d Ö y in pD,U , Jq can be defined directly over the PPS.
Intuitively, this definition corresponds to y Õ d in pU ,D, Jq and thus, in pU , pD,[q, δq.
With these elements we can finally propose a characterization for the canonical cover
of functional dependencies in pU , pD,[q, δq as follows.

Corollary 1. Let pU , pD,[q, δq be a partition pattern structure and TrpHq denote the
hypergraph transversal of H, then with

Lcc “ tX Ñ y | y P U , X P TrpHÕy qu
HÕy “ tppUztyuqqzd1 | d P D, y Õ du

y Õ d ðñ d Ę δpyq and if h Ĺ d then h Ď δpyq

Lcc is a canonical cover of functional dependencies.

For the running example, let us calculate the proper premises of attribute c using
the arrow relations in Table 3. We have c Õ pδpaq [δpbqq and c Õ pδpaq [δpdq [
δpeqq. With this, we have the hypergraph HÕc “ ttd, eu, tbuu for which the minimum
transversal hypergraph is TrpHÕc q “ ttb, du, tb, euu. Correspondingly, we have the
FDs bdÑ c and beÑ c which are included in the canonical cover.

3.2 Characterizing a Minimum Cover of FDs with FCA

We introduce a novel characterizations of a minimum cover of FDs by means of pseudo-
intents, and its generalization using pseudo-extents in a PPS.

The stem base of implications, or Duquenne-Guigues basis [13], is a sound, com-
plete and non-redundant basis which also has minimum cardinality among the sets of
implications for a given formal context. We show how this can be used to characterize
a minimum cover of FDs in a rather simple manner. Prior to introducing the stem base,
let us define pseudo-closed sets [12].

Definition 2. (Pseudo-closed sets) Let P ÞÑ P 2 be a closure operator over a set M,
then P is a pseudo-closed set if and only if (Q Ă P ” Q Ď P and Q ‰ P):

P ‰ P 2 (1)
Q Ă P and Q is a pseudo-closed set ùñ Q2 Ď P (2)

Given a formal context pG,M, Iq, pseudo-closed sets A Ď G are called pseudo-
extents, while pseudo-closed sets B Ď M are called pseudo-intents. A stem base of
implications, or Duquenne-Guigues basis, can be defined as follows:

Theorem 3 ([12]). (Duquenne-Guigues Basis) The set of implications:

L “ tP Ñ P 2 | P is a pseudo-intentu (3)

is sound, complete and non-redundant.

Theorem 4 ([12]). Every complete set of implications contains an implicationX Ñ Y
with X2 “ P 2 for every pseudo-intent P of pG,M, Iq

Theorem 4 entails that the stem base of implications has minimum cardinality with
respect to any equivalent set of implications of pG,M, Iq. With this and the previous
observation that FDs are in 1-1 correspondence with implications in pPairpT q,U , Iq,
we can derive the following corollary.

Corollary 2. Let pPairpT q,U , Iq be the formal context derived from a database with
tuples T and attributes U . The set of functional dependencies L “ tP Ñ P 2u is a
minimum cover of tuples T .

Corollary 2 provides a novel characterization of the minimum cover of functional
dependencies through pseudo-intents of a formal context. At this point, we are in the
position to use the FCA machinery to calculate this minimum cover, however we would
like to propose a generalization of the stem base using PPS which allows for a more
direct representation of the database, avoiding the creation of the costly formal context
pPairpT q,U , Iq which grows quadratically w.r.t. the number of tuples in T .

Noticeably, in the PPS pU , pD,[q, δq, we can maintain the notion of pseudo-extents
for a pseudo-closed set X Ď U with X ÞÑ X˝˝.

Proposition 1. Let pU , pD,[q, δq be the PPS representation of a database, then the set
of functional dependencies:

L “ tX Ñ X˝˝ | X is a pseudo-extentu (4)

is a minimum cover.

The proof of Proposition 1 follows from Theorem 1 and the observation that there
is a bijective mapping between extents in pPairpT q,U , Iq and intents in pU , pD,[q, δq.
Moreover, for a set X P U the closure operator X ÞÑ X2 is exactly equivalent to
X ÞÑ X˝˝ and consequently, the set of pseudo-intents in pPairpT q,U , Iq is the same
as the pseudo-extents in pU , pD,[q, δq. Thus, because of Corollary 2, Proposition 1
holds.

4 Mining a Minimum Cover of FDs

We describe the mechanisms and algorithms through which we are able to implement
the ideas exposed in Section 3 to build a Minimum Cover Miner.

4.1 Identifying Pseudo-Closed Sets

Pseudo-closed sets can be identified by means of pre-closed sets. For the sake of read-
ability, we do not provide a full characterization of pre-closed sets. We simply introduce
the properties that render them useful for identifying pseudo-closed sets. A thorough
description of pre-closed sets can be found in [11].

Proposition 2. Let Q ÞÑ Q2 be a closure operator. A set Q is pre-closed if and only if
it is either a pseudo-closed set or a closed set.

Proposition 2 states that the set of pre-closed sets is composed by the union of the set
of pseudo-closed sets and the set of closed sets considering given an arbitrary closure
operator. The usefulness of this proposition is apparent since, given a mechanisms to
identify pre-closed sets, we can simply test those that are not closed sets to identify
pseudo-closed sets. Fortunately, pre-closed sets form a closure system itself and thus,
this mechanisms exists and it is described in Proposition 3.

Proposition 3. Let L “ tP Ñ P 2u be the stem base of implications, then L‚pXq is
the pre-closure of X when:

XL “ X Y
ď

tP 2 | P Ñ P 2 P L, P Ă Xu

XLL “ XL Y
ď

tP 2 | P Ñ P 2 P L, P Ă XLu

. . .

L‚pXq “ XLL...L s.t. L‚pXqL “ L‚pXq

The pre-closure of a set X corresponds to a fixed point that is iteratively calculated
using the stem base of implications. While it seems odd that in order to calculate the
stem base of implications we need it in the first place, it is important to notice that we
only need a part of the stem base, particularly those rules such that P Ă X and L‚pXq.
This is achieved by means of a lectical enumeration of the powerset of X .

4.2 Lectical Enumeration of Pre-Closures

Pre-closures are enumerated in lectical order using the PreviousClosure algorithm, a
variation of NextClosure [11, 16]. The lectical order of the powerset of U lists all the
subsets of a set X before listing X for any X Ď U . In addition, incomparable elements
w.r.t. Ď are listed in inverted to the lexicographical order ďl. Thus, the lectical order ă

between two sets X,Y Ď U is defined as:

X ă Y ðñ X Ď Y or YďlX

For example, given U “ ta, b, c, du, the lectical order of ℘pUq is:

d, c, cd, b, bd, bc, bcd, a, ad, ac, acd, ab, abd, abc, abcd

4.3 Algorithms

Algorithm 1 depicts a brief summary of PreviousClosure. It receives a partial stem base
L and a list of candidates in lectical order. For each candidate X , it calculates its pre-
closure L‚pXq using the stem-base. If the pre-closure is lexicographically greater than
the candidate, then firstly, all remaining candidates that are lectically lower than the pre-
closure are discarded for future enumerations (pruning), and secondly, the pre-closure
is returned. When no more candidates are available, the algorithm returns null.

The pruning mechanism works by removing from the candidate list elements Y
that would yield redundant pre-closures, i.e. elements X Ď Y Ď L‚pXq for which
L‚pY q “ L‚pXq. This efficient pruning mechanism is possible due to the following
proposition.

Proposition 4. Let X Ď Y and XďlY , then for all elements Z such that X ă Z ă Y
it holds that X Ď Z Ď Y .

Firstly, we show that Z ă Y and Z Ę Y implies Z ă X and secondly, that X ă Z
and X Ę Z implies that Y ă Z. Sets Z ă Y such that Z Ę Y require that YďlZ.
Since XďlY , then XďlZ and thus Z ă X . Dually, sets X ă Z such that X Ę Z
require that ZďlXďlY and thus, Y ă Z.

Algorithm 1: PreviousClosure algorithm
Input: Stem base L, candidates ordered w.r.t. ă

Output: Pre-closure L‚
pXq or null when enumeration is over, and updated list of

candidates
1 for X P candidates do
2 if X ďl L‚

pXq then
3 candidates “ tY P candidates | L‚

pXq ă Y u return L‚
pXq

4 end
5 end
6 return null

Optimizations for Algorithm 1 are not described for the sake of simplicity. However,
we mention that the set of candidates is dynamically built.

Algorithm 2 presents the mechanisms used to calculate the stem base L. The algo-
rithm receives the partition pattern structure as an input and initializes an empty stem
base and a list of lectically ordered candidates (powerset of attributes). Then, it calls the
PreviousClosure procedure defined in Algorithm 1 until a null value is returned. Once
a pre-closure is found, the algorithm tests if it is not a closure (line 5) which means that
it is a pseudo-closure. In such a case, a new implication is added to the stem base (line
6) and the algorithms iterates.

Notice that the correct calculation of pre-closures is secured by the lectical order of
the candidates and the fact that P Ď X ùñ P ă X . Thus, in Algorithm 1, we are
certain that for calculating L‚pXq, we have all P Ă X required by Proposition 3.

Algorithm 2: Stem Base Miner Algorithm
Input: Partition Pattern Structure pU , pD,[q, δq
Output: Stem base L

1 L “ H
2 candidates “ p℘pUq,ăq
3 X “ previous closurepL, candidatesq
4 while X is not null do
5 if X ‰ X˝˝ then
6 L “ LY tX Ñ X˝˝

u

7 end
8 X “ PreviousClosurepL, candidatesq
9 end

For example, consider the database in Table 1 with 5 attributes. The set of candidates
contain 25 “ 32 elements to be tested. The first candidate is e. At this point L is empty,
so L‚peq “ e is a pre-closure. Since e˝˝ “ e, no rules are added to the stem base. For
the candidate d we have that L‚pdq “ d and d˝˝ “ de, meaning that the pre-closure d
is pseudo-closed. Thus, rule d Ñ e is added to L. As an example of pruning, consider
candidate cd. Since L “ td Ñ eu, we have L‚pcdq “ cde. Line 3 of Algorithm 1
removes from the set of candidates cde and the next candidate is b.

5 Experimental Evaluation

We compare our approach to TANE [14], a state-of-the-art FD miner. TANE is a highly
optimized apriori-based algorithm that generates a canonical cover of FDs. A canonical
cover usually contains many more dependencies than those in a minimum cover such as
the one we are able to mine using our approach. Nevertheless, a canonical cover can be
reduced to a minimum cover using an algorithm that has quadratical complexity w.r.t.
its cardinality [11].

The goal of this evaluation is to study the comparative benefits of using our ap-
proach versus a traditional approach such as TANE. TANE was re-implemented for

(a) Datasets and the number
of rows and columns they
contain.

(b) Performance Comparison
when increasing tuples: FCA
vs TANE

(c) Performance Comparison
when increasing attributes:
FCA vs TANE

FCA FCA/PS TANE
Dataset # Columns # Rows # CC Deps Time [S] # MC Deps Time [S] # CC Deps Time [S]
Mushroom 8124 22 3605 28380 1509 13559.9 - -
Adult 48842 14 78 110.07 42 138.82 78 305.59
Credit 690 15 1099 3.29 253 2.40 1099 6.21
PGLW 17995 6 5 0.58 2 0.35 5 1.45
PGLW (2xA) 17995 6 38 1.53 15 1.21 38 19.55
Forest Fires 516 13 442 0.75 138 0.65 442 0.66
Forest Fires (2xT) 516 13 442 3.05 138 3.16 442 5.92
ncvoter 19 1000 775 3.01 193 2.68 775 5.06
Diagnostics 120 8 37 0.14 17 0.15 37 0.08
Abalone 4177 8 137 2.2 40 2.40 137 0.41
CMC 1473 9 1 0.85 1 0.90 1 1.02
Hughes 401 12 3 0.19 3 0.19 3 0.12
Servo 167 4 1 0.1 c1 0.11 1 0.06
Caulkins 1685 12 227 1.99 67 2.16 227 1.76

Table 4: Dataset details, Execution Times in Seconds, and Number of Mined Rules for
FCA, FCA/Pattern Structures and TANE. CC: Canonical Cover, MC: Minimum Cover.
Datasets in boldface represent those in which FCA performed better than TANE.

our experiments4. This implementation and our approach were coded in Python. The
software is freely available5.

We performed experiments over 12 datasets extracted from the UCI Machine Learn-
ing repository6, the JASA Data Archive7 and Metanome’s repeatability Web page8. De-
tails on the number of rows and columns for each dataset are provided in the first two
columns of Table 4. In addition to these datasets, we created synthetic versions by mul-
tiplying the rows or the columns of a given dataset. Experiments were run over an Intel
Core i7 running at 2.2 Ghz and equipped with 16 GB of RAM memory.

4 https://github.com/anonexp/fudep
5 https://github.com/anonexp/fd_miner
6 https://archive.ics.uci.edu/ml/index.php
7 http://lib.stat.cmu.edu/jasadata/
8 https://hpi.de/naumann/projects/repeatability/data-profiling/
fds.html

5.1 Results & Discussion

Table 4 presents the main results of applying our approach and TANE on each dataset
to mine the Minimum Cover and the Canonical Cover, respectively. The table con-
tains the execution times of each algorithm and the number of dependencies mined.
Datasets in boldface represent those for which FCA performed better than TANE. For
the Mushroom dataset, TANE was not able to obtain results before running out of mem-
ory, thus no information is provided in the table. Table 4 also reports in two synthetic
datasets, namely PGLW (2x Attributes) which contains two horizontal copies of the
PGLW dataset resulting in twice as many attributes. Forest Fires (2x Tuples) contains
two vertical copies of Forest Fires resulting in twice as many tuples. All mined Canon-
ical Covers mined by TANE have been reduced to a Minimum Cover to verify the
consistency of our approach.

Out of the 12 datasets, our approach performs better in the largest (both in rows and
columns). This is better depicted by Figure 1a where datasets are represented as points
in a rows-columns space. Circles represent datasets for which our approach performed
better while diamonds, where TANE did. Notice that the X axis is provided in logarith-
mic scale. The figure shows that most of the datasets where TANE performs better are in
the lower-left region of the figure, representing small datasets. Our approach performs
better in datasets on all other regions, including the upper-right which contains datasets
with many rows and columns.

Synthetic datasets in Table 4 show evidence that our approach scales better when
duplicating the dataset. When duplicating attributes the difference is particularly dra-
matic since TANE is over 13 times slower while our approach, only 3. To study this
further, we created two sets of 19 synthetic datasets. The first set (Vertical set) incre-
mentally multiplied vertically the Diagnostics datasets (with 8 attributes and 120 tuples)
generating versions of 240, 360, 480 tuples, and so on up to a dataset containing 2400
tuples. The second set (horizontal set) of datasets did the same in a horizontal manner
generating versions of 16, 24, 32, up to 160 attributes. Since most of the datasets of the
second set were too big for TANE, they were trunked to just 40 tuples.

Figure 1b depicts the increasing time for TANE and FCA on the vertical set, i.e.
when increasing the number of tuples. We can observe that both approaches scale lin-
early w.r.t. the number of tuples, even when our approach seems to have a much more
stable behavior. Vertical multiplication of datasets yield the same number of FDs than
the original set, since the relation between attributes remains unchanged. Thus, we can
assume that other algorithms based on TANE could achieve a similar performance than
our approach provided some optimizations.

On the other hand, this may not to be the case for the horizontal set. Figure 1c
shows that our approach remains very stable when varying the number of attributes,
while TANE’s execution time grows exponentially. Indeed, this great difference in per-
formance is due to the way in which our approach finds FDs which differs from TANE’s
strategy. Consider the synthetic dataset with many copies of a given attribute. In this
case, the pruning mechanism described in Section 4.3 quickly removes thousands of
candidates by means of the closure operator. Instead, TANE computes each attribute
combination rendering the exponential growth in the computation time.

We stress that this is not simply an extreme case from which our approach takes
advantage, but actually a very good illustration of the benefits of using a closure oper-
ator to navigate the space of FDs. Closures enable our approach to avoid unnecessary
computations not only when we have redundant attributes, but also whenever possible
in the lattice of the powerset of attributes.

6 Conclusions

We have presented a new characterization of a minimum cover of functional dependen-
cies (FDs) by means of the stem base (or Duquenne-Guigues basis) of a partition pattern
structure. We have presented the mechanisms through which this characterization can
be exploited to efficiently mine the minimum cover. Furthermore, we have described
the algorithms that implement these mechanisms and show empirical evidence that our
characterization performs better than a state-of-the-art FD miner, namely TANE, in
larger databases containing many rows and columns.

Acknowledgments. This research work has been supported by the SGR2014-890 (MACDA)
project of the Generalitat de Catalunya, and MINECO project APCOM (TIN2014-57226-P) and
partially funded by the French National Project FUI AAP 14 Tracaverre 2012-2016.

References

1. Mehwish Alam, Aleksey Buzmakov, Vı́ctor Codocedo, and Amedeo Napoli. Mining defi-
nitions from RDF annotations using formal concept analysis. In Qiang Yang and Michael
Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 823–
829. AAAI Press, 2015.

2. Jaume Baixeries, Mehdi Kaytoue, and Amedeo Napoli. Computing Functional Dependencies
with Pattern Structures. In Laszlo Szathmary and Uta Priss, editors, CLA, volume 972 of
CEUR Workshop Proceedings, pages 175–186. CEUR-WS.org, 2012.

3. Jaume Baixeries, Mehdi Kaytoue, and Amedeo Napoli. Characterizing Functional Depen-
dencies in Formal Concept Analysis with Pattern Structures. Annals of Mathematics and
Artificial Intelligence, 72(1–2):129–149, October 2014.

4. Karell Bertet and Bernard Monjardet. The multiple facets of the canonical direct unit impli-
cational basis. Theoretical Computer Science, 411(22-24):2155–2166, 2010.

5. Vı́ctor Codocedo, Jaume Baixeries, Mehdi Kaytoue, and Amedeo Napoli. Characterization
of Order-like Dependencies with Formal Concept Analysis. In Marianne Huchard and Sergei
Kuznetsov, editors, Proceedings of the Thirteenth International Conference on Concept Lat-
tices and Their Applications, Moscow, Russia, July 18-22, 2016., volume 1624 of CEUR
Workshop Proceedings, pages 123–134. CEUR-WS.org, 2016.

6. Vı́ctor Codocedo and Amedeo Napoli. Lattice-based biclustering using Partition Pattern
Structures. In Proceedings of ECAI 2014, volume 263 of Frontiers in Artificial Intelligence
and Applications, pages 213–218. IOS Press, 2014.

7. Wenfei Fan. Dependencies revisited for improving data quality. In Maurizio Lenzerini
and Domenico Lembo, editors, Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2008, June 9-11, 2008, Van-
couver, BC, Canada, pages 159–170. ACM, 2008.

8. Wenfei Fan. Data quality: From theory to practice. SIGMOD Record, 44(3):7–18, 2015.
9. Wenfei Fan and Floris Geerts. Foundations of Data Quality Management. Synthesis Lectures

on Data Management. Morgan & Claypool Publishers, 2012.
10. Andrew Gainer-Dewar and Paola Vera-Licona. The minimal hitting set generation problem:

Algorithms and computation. SIAM Journal on Discrete Mathematics, 31(1):63–100, 2017.
11. Benhard Ganter and Sergei Obiedkov. Conceptual Exploration. Springer, Berlin, 2016.
12. Benhard Ganter and Rudolph Wille. Formal Concept Analysis. Springer, Berlin, 1999.
13. Jean-Louis Guigues and Vincent Duquenne. Familles minimales d’implications informatives

résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines, 95:5–18,
1986.

14. Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An Efficient
Algorithm for Discovering Functional and Approximate Dependencies. Computer Journal,
42(2):100–111, 1999.

15. Sergei O. Kuznetsov. Galois Connections in Data Analysis: Contributions from the Soviet
Era and Modern Russian Research. In Benrhard Ganter, Gerd Stumme, and Rudolf Wille,
editors, Formal Concept Analysis, Foundations and Applications, Lecture Notes in Computer
Science 3626, pages 196–225. Springer, 2005.

16. Sergei O Kuznetsov and Sergei A Obiedkov. Comparing Performance of Algorithms for
Generating Concept Lattices. Journal of Experimental and Theoretical Artificial Intelli-
gence, 14:189–216, 2002.

17. Heikki Mannila and Kari-Jouko Räihä. The Design of Relational Databases. Addison-Wes-
ley, Reading (MA), USA, 1992.

18. Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph, Mar-
tin Schönberg, Jakob Zwiener, and Felix Naumann. Functional Dependency Discovery:
An Experimental Evaluation of Seven Algorithms. Proc. VLDB Endow., 8(10):1082–1093,
2015.

19. Uwe Ryssel, Felix Distel, and Daniel Borchmann. Fast algorithms for implication bases and
attribute exploration using proper premises. Annals of Mathematics and Artificial Intelli-
gence, 70(1):25–53, feb 2014.

20. J.D. Ullman. Principles of Database Systems and Knowledge-Based Systems, volumes 1–2.
Computer Science Press, Rockville (MD), USA, 1989.

21. Yang Yu and Jeff Heflin. Extending functional dependency to detect abnormal data in
RDF graphs. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein,
Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist, editors, The Semantic Web - ISWC
2011 - 10th International Semantic Web Conference, Bonn, Germany, October 23-27, 2011,
Proceedings, Part I, volume 7031 of Lecture Notes in Computer Science, pages 794–809.
Springer, 2011.

22. Yang Yu, Yingjie Li, and Jeff Heflin. Detecting abnormal semantic web data using semantic
dependency. In Proceedings of the 5th IEEE International Conference on Semantic Com-
puting (ICSC 2011), Palo Alto, CA, USA, September 18-21, 2011, pages 154–157. IEEE
Computer Society, 2011.

