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Feedback Enhances Simultaneous Wireless
Information and Energy Transmission in Multiple

Access Channels
Selma Belhadj Amor, Samir M. Perlaza, Ioannis Krikidis and H. Vincent Poor

Abstract—In this paper, the fundamental limits of simultaneous
information and energy transmission in the two-user Gaussian
multiple access channel (G-MAC) with and without feedback
are fully characterized. More specifically, all the achievable
information and energy transmission rates (in bits per channel
use and energy-units per channel use, respectively) are identified.
Furthermore, the fundamental limits on the individual and
sum- rates given a minimum energy rate ensured at an energy
harvester are also characterized. In the case without feedback,
an achievability scheme based on power-splitting and successive
interference cancellation is shown to be optimal. Alternatively,
in the case with feedback (G-MAC-F), a simple yet optimal
achievability scheme based on power-splitting and Ozarow’s
capacity achieving scheme is presented. Finally, the energy
transmission enhancement induced by the use of feedback is
quantified. Feedback can at most double the energy transmission
rate at high SNRs when the information transmission sum-rate
is kept fixed at the sum-capacity of the G-MAC, but it has no
effect at very low SNRs.

Index Terms—Feedback, Gaussian multiple access channel, si-
multaneous information and energy transmission, RF harvesting,
information-energy capacity region.

I. INTRODUCTION

For decades, a traditional engineering perspective was to
exclusively use radio frequency (RF) signals for information
transmission. However, a variety of modern wireless systems
suggest that RF signals can be simultaneously used for in-
formation and energy transmission [3]. Typical examples of
communications technologies already exploiting this principle
are reported in [4]. Beyond the existing applications, simulta-
neous information and energy transmission (SEIT) appears as
a promising technology for a variety of emerging applications
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including low-power short-range communication systems, sen-
sor networks, machine-to-machine networks and body-area
networks, among others [5].

When a point-to-point communication involves sending
energy along with information, it should be designed to simul-
taneously meet two goals: (i) To reliably transmit information
to a receiver at a given rate with a sufficiently small probability
of error; and (ii) To transmit energy to an energy harvester
(EH) at a given rate with a sufficiently small probability of
energy shortage. The EH might not necessarily be co-located
with the information receiver. More specifically, the EH might
possess a set of antennas (rectennas) dedicated to the energy
harvesting task, which are independent of those dedicated to
the information receiving task. In the special case in which the
receiver and the EH are co-located, that is, they share the same
antenna, a signal division via time-sharing or power-splitting
must be implemented. In the former, a fraction of time the
antenna is connected to the information receiver, whereas the
remaining time it is connected to the EH. The latter implies
a signal division in which part of the signal is sent to the
information receiver and the remaining part is sent to the EH.
This signal processing is out of the scope of this paper and the
reader is referred to [5]. In the realm of information theory,
the problem of point-to-point SEIT with a co-located EH is
cast into a problem of information transmission subject to
minimum energy constraints at the channel output [6], [7].
From this perspective, the case with a co-located EH is a
special case of the non-co-located EH case in which the input
signal to the receiver is identical to the signal input to the
EH. In this paper, the analysis of SEIT is general and focuses
on the case of non-co-located EHs. Information and energy
transmission are often conflicting tasks, and thus subject to a
trade-off between the information transmission rate (bits per
channel use) and the energy transmission rate (energy-units per
channel use). This trade-off is evidenced in finite constellation
schemes, as highlighted in Popovski et al.’s [8]. Consider the
noiseless transmission of a 4-PAM signal over a point-to-point
channel with input alphabet {−2,−1, 1, 2} and with a co-
located EH. Given that the symbols −2 and 2 (resp. −1 and 1)
deliver 4 (resp. 1) energy-units/ch.use, without any energy rate
constraint, the system conveys a maximum of 2 bits/ch.use and
5
2 energy-units/ch.use by choosing all available symbols with
equal probability. However, if the received energy rate must
be for instance at least 4 energy-units/ch.use, the maximum
information rate is 1 bit/ch.use. This is mainly because the
transmitter is forced to communicate using only the symbols
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capable of delivering the maximum energy rate. From this
simple example, it is easy to see how additional energy rate
constraints may hinder information transmission in a point-to-
point scenario.

In a multi-user scenario, the information-energy rate trade-
off is more involved. Usually, users must coordinate their
transmission strategies and cooperate so as to achieve the
energy rate requirement. Consider for instance a network in
which one single transmitter simultaneously transmits energy
to an EH and information to an information receiver. Assume
that this transmitter is required to deliver an energy rate that
is less than what it is able to deliver by only transmitting
information. In this case, such a transmitter is able to fulfill the
energy-transmission task independently of the behavior of the
other transmitters. More importantly, it can use all its available
power budget to maximize its information transmission rate
while still being able of meeting the energy rate constraint.
In this case, the minimum energy rate constraint does not
play a fundamental role. On the other hand, when the same
transmitter is requested to deliver an energy rate that is higher
than what it is able to deliver by only transmitting information,
its behavior is totally dependent on the behavior of the other
transmitters. Indeed, it depends on whether or not other trans-
mitters are transmitting signals using an average power such
that the energy rate is met. In this case, the minimum energy
rate constraint drastically affects the way that the transmitters
interact with each other. More critical scenarios are the cases
in which the requested energy rate is less than what all
transmitters are able to deliver by simultaneously transmitting
information using all the available individual power budgets.
In these cases, none of the transmitters can unilaterally ensure
reliable energy transmission at the requested rate. Hence,
transmitters must engage in a mechanism through which an en-
ergy rate that is higher than the energy delivered by exclusively
transmitting information-carrying signals is ensured at the EH.
This suggests, for instance, sending signals with correlation to
increase the received energy rates. This correlation can result
from the use of power splits in which the transmitted symbols
are formed by an information-carrying and an energy-carrying
component. The latter typically consists in signals that are
known at all devices and can be constructed such that the
energy captured at the EH is maximized.

Most of the existing studies of SEIT follow a signal-
processing or networking approach and focus mainly on the
feasibility aspects. For instance, optimization of beamforming
strategies was considered for multi-antenna broadcast channels
in [9], [10], and [11], and for multi-antenna interference
channels in [12]. SEIT was also studied in the general realm
of cellular systems in [13] as well as in multi-hop relaying
systems in [7], [14], [15], [16], [17], and [18]. Other studies
in the two-way channel are reported in [8] and in graphical
unicast and multicast networks in [19].

From an information-theoretic viewpoint, the pioneering
works by Varshney in [6] and [20], as well as Grover and Sahai
in [21] provided the fundamental limits on SEIT in point-
to-point channels with co-located EH. More specifically, the
case of the single-link point-to-point channel was discussed
in [6] while the case of parallel-links point-to-point channel

was studied in [20] and [21]. Despite the vast existing literature
on this subject, the fundamental limits of SEIT are still
unknown in most multi-user channels. Multi-hop and multi-
antenna wiretap channels under minimum received energy rate
constraints were considered in [7] and [22], respectively. In
the case of the discrete memoryless multiple access chan-
nel (DM-MAC), the trade-off between information rate and
energy rate has been studied in [7]. Therein, Fouladgar et
al. characterized the information-energy capacity region of
the two-user DM-MAC when a minimum energy rate is
required at the input of the receiver (the receiver and the
EH are co-located). An extension of the work in [7] to
the Gaussian multiple access channel (G-MAC) is far from
trivial due to the fact that the information-energy capacity
region involves an auxiliary random-variable that cannot be
eliminated as in the case without energy constraints. Moreover,
different energy rate constraints for the G-MAC have also been
investigated. For instance, Gastpar [23] considered the G-MAC
under a maximum received energy rate constraint. Under this
assumption, channel-output feedback has been shown not to
increase the information capacity region. More generally, the
use of feedback in the K-user G-MAC, even without energy
rate constraints, has been shown to be of limited impact in
terms of information sum-rate improvement. This holds even
in the case of perfect feedback. More specifically, feedback
increases the information sum-capacity in the G-MAC by at
most log2(K)

2 bits per channel use [24]. Hence, the use of
feedback is difficult to justify from the point of view of
exclusively transmitting information.

A. Contributions

This paper studies the fundamental limits of SEIT in the
two-user G-MAC with an EH, with and without feedback. It
shows that when the goal is to simultaneously transmit both
information and energy, feedback can significantly improve the
global performance of the system in terms of both information
and energy transmission rates. More specifically, the paper
provides the first full characterization of the information-
energy capacity region for the G-MAC with and without
feedback, i.e., all the achievable information and energy
transmission rates in bits per channel use and energy-units
per channel use, respectively. Furthermore, the fundamental
limits on the individual and sum- rates given a minimum
energy rate ensured at the EH are also provided. In the case
without feedback, an achievability scheme based on power-
splitting and successive interference cancellation is shown
to be optimal. Alternatively, in the case with feedback (G-
MAC-F), a simple yet optimal achievability scheme that is
based on power-splitting and Ozarow’s capacity achieving
scheme is presented. Although the proofs of achievability and
converse build upon standard information-theoretic techniques,
extending these techniques to account for the energy con-
straint involves many challenges. For instance, to derive upper
bounds on the achievable information-energy rate triplets,
there are two parts to consider: one that is related to the
information transmission for which Fano’s inequality is used,
and another that is related to the energy transmission for
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Fig. 1. Two-user memoryless G-MAC-F with an EH.
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Fig. 2. Two-user memoryless G-MAC with an EH.

which concentration inequalities are used to derive an upper
bound on the energy rate. Finally, the enhancement of the
energy transmission rate induced by the use of feedback is
quantified. It is shown that feedback can at most double the
energy transmission rate at high SNRs when the information
transmission sum-rate is kept fixed at the sum-capacity of the
G-MAC, but it has no effect at very low SNRs.

B. Organization of the Paper

The remainder of the paper is structured as follows. Sec. II
formulates the problem of SEIT in the two-user G-MAC-
F and G-MAC with a non-co-located EH. Secs. III-VII show
the main results of this paper for the G-MAC and the G-
MAC-F with an EH. Namely, for both settings the following
fundamental limits are derived: (a) the information-energy
capacity region; and (b) the maximum information individual
rates and sum-rates that can be achieved given a targeted
energy rate. A global comparison of the fundamental limits in
terms of information transmission rates is provided in Sec. VI.
In Sec. VII, the maximum energy rate improvement that can
be obtained at the input of the EH by using feedback given a
targeted information rate is characterized as well as its low and
high SNR asymptotics. Finally, Sec. VIII concludes the paper
and discusses possible extensions. The appendices expose the
proofs of the main results.

II. GAUSSIAN MULTIPLE ACCESS CHANNEL WITH
FEEDBACK AND ENERGY HARVESTER

Consider the two-user memoryless G-MAC with an EH
with perfect channel-output-feedback (G-MAC-F) in Fig. 1

and without feedback in Fig. 2. In both channels, at each
channel use t ∈ N, X1,t and X2,t denote the real symbols
sent by transmitters 1 and 2, respectively. Let n ∈ N denote
the blocklength. The receiver observes the real channel output

Y1,t = h11X1,t + h12X2,t + Zt, (1)

and the EH observes

Y2,t = h21X1,t + h22X2,t +Qt, (2)

where h1i and h2i are the corresponding constant non-negative
real channel coefficients from transmitter i to the receiver and
the EH, respectively. The channel coefficients are assumed to
satisfy the following L2-norm condition:

∀j ∈ {1, 2}, ‖hj‖2 6 1, (3)

with hj , (hj1, hj2)T to satisfy the principle of conservation
of energy.

The noise terms Zt and Qt are realizations of two identically
distributed zero-mean unit-variance real Gaussian random vari-
ables. In the following, there is no particular assumption on
the joint distribution of Qt and Zt.

In the G-MAG-F with an EH, a perfect feedback link
from the receiver to transmitter i allows at the end of each
channel use t, the observation of the channel output Yt−d at
transmitter i, with d ∈ N the delay of the feedback channel.
Without any loss of generality, the delay is assumed to be the
same from the receiver to both transmitters and equivalent to
one channel use, i.e., d = 1.

Within this context, two main tasks are to be simultaneously
accomplished: information transmission and energy transmis-
sion.

A. Information Transmission

The goal of the communication is to convey the independent
messages M1 and M2 from transmitters 1 and 2 to the
common receiver. The messages M1 and M2 are independent
of the noise terms Z1, . . . , Zn, Q1, . . . , Qn and uniformly
distributed over the sets M1 , {1, . . . , b2nR1c} and M2 ,
{1, . . . , b2nR2c}, where R1 and R2 denote the information
transmission rates and n ∈ N the blocklength.

In the G-MAC-F with an EH, at each time t, the existence
of feedback links allows the t-th symbol of transmitter i to
be dependent on all previous channel outputs Y1, . . . , Yt−1

as well as its message index Mi and a randomly generated
index Ω ∈ {1, . . . , b2nRrc}, with Rr > 0. The index Ω is
independent of both M1 and M2 and assumed to be known
by all transmitters and the receiver. More specifically,

Xi,1 = f
(n)
i,1 (Mi,Ω) and (4a)

Xi,t = f
(n)
i,t (Mi,Ω, Y1,1, . . . , Y1,t−1), t ∈ {2, . . . , n}, (4b)

for some encoding functions

f
(n)
i,1 : Mi × N→ R and (5)

f
(n)
i,t : Mi × N× Rt−1 → R. (6)
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In the G-MAC with an EH, at each time t, the t-th symbol
of transmitter i is

Xi,t = g
(n)
i,t (Mi,Ω), t ∈ {1, . . . , n}, (7a)

where g(n)
i,t : Mi × N→ R is the encoding function.

In the G-MAC-F and in the G-MAC with an EH, for all
i ∈ {1, 2}, transmitter i’s channel inputs Xi,1, . . . , Xi,n satisfy
an expected average input power constraint

1

n

n∑
t=1

E
[
X2
i,t

]
6 Pi, (8)

where Pi denotes the average transmit power of transmitter i
in energy-units per channel use and where the expectation is
over the message indices, the random index, and the noise
realizations prior to channel use t. The dependence of Xi,t on
Y1,1, . . . , Y1,t−1 (and thus on Z1, . . . , Zt−1) is shown by (4).

The G-MAC-F and G-MAC with an EH are fully described
by the signal to noise ratios (SNRs): SNRji, with ∀(i, j) ∈
{1, 2}2. These SNRs are defined as follows

SNRji , |hji|2Pi, (9)

given the normalization over the noise powers.
The receiver produces an estimate (M̂

(n)
1 , M̂

(n)
2 ) =

Φ(n)(Y1,1, . . . , Y1,n,Ω) of the message-pair (M1,M2) via a
decoding function Φ(n) : Rn×N→M1×M2, and the average
probability of error is

P (n)
error(R1, R2) , Pr

{
(M̂

(n)
1 , M̂

(n)
2 ) 6= (M1,M2)

}
. (10)

B. Energy Transmission

Let b > 0 denote the minimum energy rate that must be
guaranteed at the input of the EH in the G-MAC-F. This rate
b (in energy-units per channel use) must satisfy

0 6 b 6 1 + SNR21 + SNR22 + 2
√

SNR21SNR22, (11)

for the problem to be feasible. In fact, 1 + SNR21 + SNR22 +
2
√

SNR21SNR22 is the maximum energy rate that can be
achieved at the input of the EH given the input power con-
straints in (8). This rate can be achieved when the transmitters
use all their power budgets to send fully correlated channel
inputs.

The empirical energy transmission rate (in energy-units per
channel use) induced by the sequence (Y2,1, . . . , Y2,n) at the
input of the EH is

B(n) ,
1

n

n∑
t=1

Y 2
2,t. (12)

The goal of the energy transmission is to guarantee that the
empirical energy rate B(n) is not less than a given operational
energy transmission rate B that must satisfy

b 6 B 6 1 + SNR21 + SNR22 + 2
√

SNR21SNR22. (13)

Hence, the probability of energy outage is defined as follows:

P
(n)
outage(B) , Pr

{
B(n) < B − ε

}
, (14)

for some ε > 0 arbitrarily small.

Note that b denotes the minimum tolerable energy rate,
whereas B denotes the operating energy rate.

In the sequel, for ease of notation, the acronyms G-MAC-
F(b) and G-MAC(b) refer to the G-MAC-F and the G-
MAC with an EH depicted in Fig. 1 and Fig. 2, respectively,
with fixed SNRs: SNR11, SNR12, SNR21, and SNR22, and
minimum energy rate constraint b at the input of the EH.

C. Simultaneous Information and Energy Transmission (SEIT)

The G-MAC-F(b) (and G-MAC(b), respectively) is
said to operate at the information-energy rate triplet
(R1, R2, B) ∈ [0,∞)×[0,∞)×[b,∞) when both transmitters
and the receiver use a transmit-receive configuration such that:
(i) reliable communication at information rates R1 and R2 is
ensured; and (ii) the empirical energy transmission rate in (12)
at the input of the EH during the entire blocklength is not lower
than B. A formal definition is given below.

Definition 1 (Achievable Rates). The triplet
(R1, R2, B) ∈ [0,∞) × [0,∞) × [b,∞) is achievable
in the G-MAC-F(b) (and G-MAC(b), resp.) if there
exists a sequence of encoding and decoding functions{
{f (n)

1,t }nt=1, {f (n)
2,t }nt=1,Φ

(n)
}∞
n=1

(and
{
{g(n)

1,t }nt=1,

{g(n)
2,t }nt=1,Φ

(n)
}∞
n=1

, resp.) such that both the average
error probability and the energy-outage probability tend to
zero as the blocklength n tends to infinity. That is,

lim sup
n→∞

P (n)
error(R1, R2)=0, (15)

lim sup
n→∞

P
(n)
outage(B) =0 for any ε > 0. (16)

Often, increasing the energy transmission rate implies de-
creasing the information transmission rates and vice-versa.
This trade-off is accurately captured by the notion of
information-energy capacity region.

Definition 2 (Information-Energy Capacity Re-
gion). The information-energy capacity region
of the G-MAC-F(b) (and G-MAC(b), resp.),
denoted by EFB

b (SNR11,SNR12,SNR21,SNR22)
(Eb(SNR11,SNR12,SNR21,SNR22), resp.) is the closure
of all achievable information-energy rate triplets (R1, R2, B).

III. INFORMATION-ENERGY CAPACITY REGION

For any non-negative SNRs: SNR11, SNR12, SNR21, and
SNR22, and for any minimum energy rate constraint b satisfy-
ing (11), the main results presented in this paper are provided
in terms of the information-energy capacity region (Def. 2).
The results for the G-MAC(b) are a particularization of the
results for the G-MAC-F(b). The interest of presenting these
results separately stems from the need for comparing both
cases.

A. Case With Feedback

The information-energy capacity region of the G-MAC-
F(b) is fully characterized by the following theorem.

Theorem 1 (Information-Energy Capacity Region of
the G-MAC-F(b)). The information-energy capacity region
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EFB
b (SNR11,SNR12,SNR21,SNR22) of the G-MAC-F(b) is

the set of information-energy rate triplets (R1, R2, B) that
satisfy

06 R1 6
1

2
log2

(
1 + β1 SNR11

(
1− ρ2

))
, (17a)

06 R2 6
1

2
log2

(
1 + β2 SNR12

(
1− ρ2

))
, (17b)

06R1 +R26
1

2
log2

(
1 + β1 SNR11 + β2 SNR12

+2ρ
√
β1SNR11β2SNR12

)
, (17c)

b6 B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21β2SNR22

+2
√

(1− β1)SNR21 (1− β2)SNR22, (17d)

with (ρ, β1, β2) ∈ [0, 1]
3.

Proof: The proof of Theorem 1 is presented in Ap-
pendix A.

B. Case Without Feedback

The information-energy capacity region of the G-MAC(b) is
fully characterized by the following theorem.

Theorem 2 (Information-Energy Capacity Region of
the G-MAC(b)). The information-energy capacity region
Eb (SNR11,SNR12,SNR21,SNR22) of the G-MAC(b) is the
set of all information-energy rate triplets (R1, R2, B) that
satisfy

06 R1 6
1

2
log2 (1 + β1 SNR11) , (18a)

06 R2 6
1

2
log2 (1 + β2 SNR12) , (18b)

06R1 +R26
1

2
log2

(
1 + β1 SNR11 + β2 SNR12

)
, (18c)

b6 B 61 + SNR21 + SNR22

+2
√

(1− β1)SNR21(1− β2)SNR22, (18d)

with (β1, β2) ∈ [0, 1]
2.

Proof: The proof of Theorem 2 is presented in Ap-
pendix B.

Remark 1. For any non-negative SNR11, SNR12, SNR21,
and SNR22, and for any b satisfying (11), the information-
energy capacity region of the G-MAC(b) is included in the
information-energy capacity region of the G-MAC-F(b), i.e.,

Eb (SNR11,SNR12,SNR21,SNR22)

⊆ EFB
b (SNR11,SNR12,SNR21,SNR22) . (19)

Note that this inclusion can be strict. For instance, any rate
triplet (R1, R2, B) that is achievable in the G-MAC-F(b),
for a given minimum energy constraint b, and for which
R1 + R2 equals the perfect feedback sum-capacity cannot
be achieved in the G-MAC(b). Note also that if b = 1 +
SNR21 + SNR22 + 2

√
SNR21SNR21, then both information-

energy capacity regions are equal as they only contain the
point (0, 0, b).

The remainder of this section highlights some important
observations on the achievability and converse proofs of Theo-
rem 1 and Theorem 2. The corresponding proofs are presented
in Appendix A and Appendix B, respectively.

C. Comments on the Achievability

The achievability scheme in the proof of Theorem 1 is
based on power-splitting and Ozarow’s capacity-achieving
scheme [25]. From an achievability standpoint, the param-
eters β1 and β2 in Theorem 1 might be interpreted as the
fractions of average power that transmitters 1 and 2 allocate
for information transmission. More specifically, transmitter
i generates two signals: an information-carrying (IC) signal
with average power βiPi energy-units per channel use; and a
no-information-carrying (NIC) signal with power (1 − βi)Pi
energy-units per channel use. The IC signal is constructed
using Ozarow’s scheme [25]. The role of the NIC signal is
to exclusively transmit energy from the transmitter to the EH.
Conversely, the role of the IC signal is twofold: information
transmission from the transmitter to the receiver and energy
transmission from the transmitter to the EH.

The parameter ρ is the average Pearson correlation co-
efficient between the IC signals sent by both transmitters.
This parameter plays a fundamental role in both information
transmission and energy transmission. Note for instance that
the upper-bounds on the information sum-rate (17c) and on the
energy harvested per unit-time (17d) monotonically increase
with ρ, whereas the upper-bounds on the individual rates (17a)
and (17b) monotonically decrease with ρ. If β1 6= 0 and
β2 6= 0, let ρ?(β1, β2) be the unique solution in (0, 1) to
the following equation in ρ:

1 + β1 SNR11 + β2 SNR12 + 2ρ
√
β1SNR11β2SNR12

=
(
1 + β1 SNR11(1− ρ2)

) (
1 + β2 SNR12(1− ρ2)

)
, (20)

otherwise, let ρ?(β1, β2) = 0. When ρ = ρ?(β1, β2), the sum
of (17a) and (17b) is equal to (17c) giving the maximum infor-
mation sum-rate which can be achieved when the transmitters
are using powers β1P1 and β2P2 for transmitting information,
i.e., ρ?(β1, β2) is the information sum-rate optimal correlation
coefficient.

Existence and Uniqueness of ρ?(β1, β2): For a fixed
power-splitting (β1, β2) ∈ (0, 1]2, let the function ϕβ1,β2

:
[0, 1] → R denote the difference between the right-hand-side
and the left-hand-side of (20), i.e.,

ϕβ1,β2(ρ) ,

1 + β1 SNR11 + β2 SNR12 + 2ρ
√
β1SNR11β2SNR12

−
(
1 + β1 SNR11(1− ρ2)

) (
1 + β2 SNR12(1− ρ2)

)
. (21)

The function ϕβ1,β2
(ρ) is continuous in ρ on the closed inter-

val [0, 1] and is such that ϕβ1,β2
(0) < 0 and ϕβ1,β2

(1) > 0,
and thus there exists at least one ρ0 ∈ (0, 1) such that
ϕβ1,β2(ρ0) = 0 [26, Bolzano’s Intermediate Value Theorem
(Theorem 5.2.1)]. Furthermore, this solution ρ0 is unique
because ϕβ1,β2

(ρ) is strictly monotonic on [0, 1]. This unique
solution is ρ?(β1, β2).

Note also that the Pearson correlation factor between the
NIC signals of both transmitters does not appear in Theorem 1.
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This is mainly because maximum energy transmission occurs
using NIC signals that are fully correlated, and thus the
corresponding Pearson correlation coefficient is one. Simi-
larly, the Pearson correlation factor between the NIC signal
of transmitter i and the IC signal of transmitter j, with
j ∈ {1, 2} and j 6= i, does not appear in Theorem 1 either.
This observation stems from the fact that, without loss of
optimality, NIC signals can be chosen to be independent of
the message indices and the noise terms. NIC signals can
also be assumed to be known by both the receiver and the
transmitters. Hence, the interference they create at the receiver
can easily be eliminated using successive decoding. Under this
assumption, a power-splitting (β1, β2) ∈ [0, 1]2 guarantees the
achievability of non-negative rate pairs (R1, R2) satisfying
(17a)-(17c) by simply using Ozarow’s capacity achieving
scheme. At the EH, both the IC and NIC signals contribute
to the total harvested energy (12). The IC signal is able to
convey at most β1SNR21+β2SNR22+2ρ

√
β1SNR21β2SNR22

energy-units per channel use, while the NIC signal is able
to convey at most (1 − β1)SNR21 + (1 − β2)SNR22 +
2
√

(1− β1)SNR21(1− β2)SNR22 energy-units per channel
use. The sum of these two contributions as well as the
contribution of the noise at the EH justifies the upper-bound
on the energy transmission rate in (17d).

The information-energy capacity region without feedback
described by Theorem 2 is identical to the information-energy
capacity region described by Theorem 1 in the case in which
channel inputs are chosen to be mutually independent, i.e.,
ρ = 0. To prove the achievability of the region presented
in Theorem 2, Ozarow’s scheme is replaced by the scheme
proposed independently by Cover [27] and Wyner [28], in
which the channel inputs are independent Gaussian variables.

D. Comments on the Converse
The proof of the converse to Theorem 1 presented

in Appendix A is in two steps. First, it is shown
that any information-energy rate triplet (R1, R2, B) ∈
EFB
b (SNR11,SNR12,SNR21,SNR22) must satisfy

nR1 6
n∑
t=1

I(X1,t;Y1,t|X2,t) + ε
(n)
1 , (22a)

nR2 6
n∑
t=1

I(X2,t;Y1,t|X1,t) + ε
(n)
2 , (22b)

n(R1 +R2) 6
n∑
t=1

I(X1,tX2,t;Y1,t) + ε
(n)
12 , (22c)

B 6 E
[
B(n)

]
+ δ(n), (22d)

B > b, (22e)

where ε
(n)
1

n ,
ε
(n)
2

n , ε
(n)
1

n , and δ(n) tend to zero as n tends to in-
finity. Second, these bounds are evaluated for a general choice
of jointly distributed pair of inputs (X1,t, X2,t) such that
E[Xi,t] = µi,t, Var(Xi,t) = σ2

i,t, and Cov[X1,t, X2,t] = λt,
∀i ∈ {1, 2} and ∀t ∈ {1, . . . , n}.

The converse to Theorem 2 follows the same lines as in the
case with feedback, with the assumption that X1,t and X2,t

are independent (i.e., ∀t ∈ {1, . . . , n}, λt = 0).

E. Example
Fig. 3 shows the information-energy capacity region of the

G-MAC-F(b) and the G-MAC(b), respectively, with SNR11 =
SNR12 = SNR21 = SNR22 = 10 and b = 0.

Therein, in each case, the figure in the center is a 3-
D representation of the information-energy capacity region,
whereas left and right figures represent a bi-dimensional
view in the R1-R2 and B-R2 planes, respectively. The
triplet Q1 with the highest energy transmission rate is
Q1 =

(
0, 0, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22

)
. The

triplets Q2, Q′2, Q4 and Q5 are coplanar and they sat-
isfy B = 1 + SNR21 + SNR22. More specifically, Q4 =(

1
2 log2 (1 + SNR11) , 0, 1 + SNR21 + SNR22

)
and Q5 =(

1
2 log2 (1 + SNR11) , 1

2 log2

(
1 + SNR11

1+SNR12

)
, 1 + SNR21 +

SNR22

)
are achievable with and without feedback. In Fig. 3,

the triplets Q2, Q3 and Q6 guarantee information transmis-
sion at the perfect feedback sum-capacity, i.e., R1 + R2 =
1
2 log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
. In

the G-MAC(0), the triplets Q2, Q3, and Q5 guarantee informa-
tion transmission at the sum-capacity without feedback, i.e.,
R1 +R2 = 1

2 log2 (1 + SNR11 + SNR12).
A global comparison of the shape of these two regions is

provided in Sec. VI. This comparison is based on extreme
information transmission points, i.e., maximum information
individual and sum rates, given a minimum energy rate. The
exact values of these extreme points are derived in Sec. IV
and Sec. V.

IV. MAXIMUM INDIVIDUAL RATES GIVEN A MINIMUM
ENERGY RATE CONSTRAINT

In this section, for any fixed non-negative SNRs: SNR11,
SNR12, SNR21, and SNR22, and for any energy rate constraint
b at the input of the EH satisfying (11), the maximum
individual information rates of transmitters 1 and 2 in the G-
MAC-F(b) and G-MAC(b) are identified.

Let ξ : R+ → [0, 1] be defined as follows:

ξ(b) ,
(b− (1 + SNR21 + SNR22))

+

2
√

SNR21SNR22

. (23)

Note that ξ(b) is the minimum correlation of the channel inputs
that is required to achieve the target energy rate b. That is, ξ(b)
is the solution in [0, 1] to

b = 1 + SNR21 + SNR22 + 2x
√

SNR21SNR22. (24)

A. Case With Feedback
The maximum individual information rate of transmitter i,

with i ∈ {1, 2}, denoted by RFB
i (b), in the G-MAC-F(b) is

the solution to an optimization problem of the form

RFB
i (b) = max

(R1,R2,B)∈EFB
b (SNR11,SNR12,SNR21,SNR22)

Ri. (25)

The solution to (25) is given by the following proposition.

Proposition 1 (Maximum Individual Information Rates of the
G-MAC-F(b)). The maximum individual information rate of
transmitter i in a G-MAC-F(b) is given by

RFB
i (b)=

1

2
log2

(
1 +

(
1− ξ(b)2

)
SNR1i

)
, i ∈ {1, 2}, (26)
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Fig. 3. 3-D representation of the information-energy capacity region of the G-MAC-F(b) (top figures) and G-MAC(b) (bottom figures), EFB
0 (10, 10, 10, 10)

and E0 (10, 10, 10, 10), respectively, with b = 0, in the coordinate system (R1, R2, B). In each case, the figure in the center is a 3-D repre-
sentation of the information-energy capacity region, whereas left and right figures represent a bi-dimensional view in the R1-R2 and B-R2 planes,
respectively. Note that Q1 =

(
0, 0, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22

)
. Points Q1, Q2, Q3, Q6, Q′

2, and Q′
3 are coplanar and satisfy

R1 = R2. Points Q′
2 and Q′

3 satisfy R1 = R2 = 1
4
log2 (1 + SNR11 + SNR12). Points Q2, Q3, and Q6 are collinear and satisfy R1 + R2 =

1
2
log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
. The points Q2, Q′

2, Q4, and Q5 are coplanar and they satisfy B = 1 + SNR21 + SNR22. In

particular, Q4 =
(
1
2
log2 (1 + SNR11) , 0, 1 + SNR21 + SNR22

)
and Q5 =

(
1
2
log2 (1 + SNR11) ,

1
2
log2

(
1 + SNR11

1+SNR12

)
, 1 + SNR21 + SNR22

)
.

with ξ(b) ∈ [0, 1] defined in (23).

Proof: The proof of Proposition 1 is provided in Ap-
pendix C.

B. Case Without Feedback

The maximum individual information rate of transmitter i
in the G-MAC(b), with i ∈ {1, 2}, denoted by RNF

i (b), is the
solution to an optimization problem of the form

RNF
i (b) = max

(R1,R2,B)∈Eb(SNR11,SNR12,SNR21,SNR22)
Ri. (27)

The solution to (27) is given by the following proposition.

Proposition 2 (Maximum Individual Information Rates of
the G-MAC(b)). The maximum individual information rate of
transmitter i in a G-MAC(b) is given by

RNF
i (b)=RFB

i (b), i ∈ {1, 2}. (28)

Proof: The proof of Proposition 2 is presented in Ap-
pendix D.

That is, the maximum individual information rates in the
G-MAC-F(b) and in the G-MAC(b) coincide.

V. MAXIMUM INFORMATION SUM-RATE GIVEN A
MINIMUM ENERGY RATE CONSTRAINT

In this section, for any fixed non-negative SNR11, SNR12,
SNR21, and SNR22, and for any b satisfying (11), the informa-
tion sum-capacity (i.e., the maximum information sum-rate) is
identified in the G-MAC-F(b) and in the G-MAC(b).

A. Case With Feedback

The perfect feedback information sum-capacity RFB
sum(b) of

the G-MAC-F(b) is the solution to an optimization problem
of the form

RFB
sum(b) = max

(R1,R2,B)∈EFB
b (SNR11,SNR12,SNR21,SNR22)

R1 +R2. (29)

The solution to (29) is given by the following proposition.

Proposition 3 (Information Sum-Capacity of the
G-MAC-F(b)). The information sum-capacity of the
G-MAC-F(b) is
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1) ∀b ∈
[
0,1+SNR21 +SNR22 +2ρ?(1,1)

√
SNR21SNR22

]
,

RFB
sum(b) =

1

2
log2(1+SNR11+SNR12+2ρ?(1, 1)

√
SNR11SNR12); (30)

2) ∀b ∈
(
1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22,

1 + SNR21 + SNR22 + 2
√

SNR21SNR22

)
,

RFB
sum(b)=

1

2
log2(1 + (1− ξ(b)2)SNR11)

+
1

2
log2(1 + (1− ξ(b)2)SNR12); (31)

3) ∀b ∈
[
1 + SNR21 + SNR22 + 2

√
SNR21SNR22,∞],

RFB
sum(b) = 0, (32)

where ρ?(1, 1) denotes the unique solution in (0, 1) to (20)
with β1 = β2 = 1 and the function ξ(b) is defined in (23).

Proof: The proof of Proposition 3 is presented in Ap-
pendix E.

B. Case Without Feedback

The information sum-capacity RNF
sum(b) of the G-MAC(b) is

the solution to an optimization problem of the form

RNF
sum(b) = max

(R1,R2,B)∈Eb(SNR11,SNR12,SNR21,SNR22)
R1 +R2. (33)

The solution to (33) is given by the following proposition.

Proposition 4 (Information Sum-Capacity of the G-MAC(b)).
The information sum-capacity of the G-MAC(b) is

1) ∀b ∈
[
0, 1 + SNR21 + SNR22 +

2
√

SNR21SNR22 min
{√

SNR12

SNR11
,
√

SNR11

SNR12

}]
RNF

sum(b) =
1

2
log2

(
1+SNR11 +SNR12−2ξ(b)

√
SNR11SNR12

)
,(34)

2) ∀b ∈
(

1 + SNR21 + SNR22 +

2
√

SNR21SNR22 min
{√

SNR12

SNR11
,
√

SNR11

SNR12

}
, 1 +

SNR21 + SNR22 + 2
√

SNR21SNR22

]
RNF

sum(b) =
1

2
log2

(
1 +

(
1− ξ(b)2

)
SNR1i

)
, (35)

with i = argmax
k∈{1,2}

SNR1k,

3) ∀b ∈
[
1 + SNR21 + SNR22 + 2

√
SNR21SNR22,∞

]
RNF

sum(b) = 0, (36)

with the function ξ(b) defined in (23).

Proof: The proof is presented in Appendix F.
From Propositions 3 and 4, it can be seen that in the

case with feedback, both users might transmit information and
energy simultaneously as feedback creates signal correlation,
which allows the system to meet the minimum energy rate.
That is, the correlation induced by the use of the feedback is
beneficial to both information transmission and energy trans-
mission. Alternatively, in the case without feedback, artificial

correlation via common randomness is required to meet the en-
ergy rate constraint. Such a correlation only benefits the energy
transmission task and comes at the expense of the information
transmission task as the information sum-rate is necessarily
reduced. For instance, one way of achieving (35) is when the
transmitter with the lowest SNR uses common randomness at
its maximum power (transmits only energy), while the other
transmitter transmits both energy and information.

Remark 2. Optimally alternating transmission of energy and
information does not always achieve information sum-capacity
of the G-MAC(b) for a given minimum received energy rate
constraint b.

To verify Remark 2, consider the sum-rate optimization
problem proposed in [7] in which both users alternate between
information and energy transmission. Specifically, during a
fraction of time λ ∈ [0, 1], transmitter i sends an IC signal
with power P ′i and during the remaining fraction of time
it sends an NIC signal with power P ′′i . Thus, the sum-rate
optimal time-sharing parameter λ and power control vector
(P ′1, P

′
2, P

′′
1 , P

′′
2 ) are solutions to the optimization problem

max
(λ,P ′1,P

′′
1 ,P

′
2,P
′′
2 )∈[0,1]×R4

+

λ

2
log2

(
1 + h2

11P
′
1 + h2

12P
′
2

)
(37a)

subject to :

λP ′i + (1− λ)P ′′i 6 Pi, i ∈ {1, 2} (37b)

1+λ(h2
21P

′
1+h

2
22P

′
2)+(1− λ)(h21

√
P ′′1 +h22

√
P ′′2 )2> b,(37c)

where Pi is the total power budget of transmitter i.
For any feasible choice of (λ, P ′1, P

′′
1 , P

′
2, P

′′
2 ), by the

concavity of the logarithm, it follows that:

λ

2
log2(1+h

2
11P
′
1+h

2
12P

′
2)6

1

2
log2

(
1+λ

(
h2

11P
′
1 +h2

12P
′
2

))
. (38)

Note that for λ 6= 1, the inequality in (38) is strict and
the rate 1

2 log2

(
1 + λ

(
h2

11P
′
1 + h2

12P
′
2

))
is always achievable

by a power-splitting scheme in which βi = λ
P ′i
Pi

, with
i ∈ {1, 2}, for any optimal tuple (λ, P ′1, P

′′
1 , P

′
2, P

′′
2 ) in (37).

This shows that the maximum information sum-rate achieved
via alternating energy and information transmission is always
bounded away from the information sum-capacity (Proposition
4). When λ = 1, exclusively transmitting information satisfies
the energy rate constraint, i.e., b ∈ [0, 1 + SNR21 + SNR22].

VI. COMMENTS ON THE SHAPE OF THE
INFORMATION-ENERGY CAPACITY REGION

In this section, observations on the shape of the
volumes EFB

0 (SNR11,SNR12,SNR21,SNR22) and
E0 (SNR11,SNR12,SNR21,SNR22) are presented.

For a given k ∈ N, let B(bk) ⊂ R2
+ be a two-dimensional

set of the form

B(bk) =
{

(R1, R2) ∈ R2
+ :

Ri 6
1

2
log2

(
1 +

(
1− ξ(bk)2

)
SNR1i

)
, i ∈ {1, 2}

}
. (39)
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A. Case With Feedback

Fig. 4 shows a general example of the intersection of the
volume EFB

0 (SNR11,SNR12,SNR21,SNR22), in the Carte-
sian coordinates (R1, R2, B), with the planes B = bk,
with k ∈ {0, 1, 2, 3}, such that b0 ∈

[
0, 1 + SNR21 +

SNR22

]
, b1 ∈

[
1 + SNR21 + SNR22, 1 + SNR21 +

SNR22 + 2ρ?(1, 1)
√

SNR21SNR22

]
, b2 = 1 + SNR21 +

SNR22 + 2ρ?(1, 1)
√

SNR21SNR22, and b3 ∈
[
1 + SNR21 +

SNR22 + 2ρ?(1, 1)
√

SNR21SNR22, 1 + SNR21 + SNR22 +
2
√

SNR21SNR22

]
.

Case 1: b0 ∈ [0,1 + SNR21 + SNR22]. In
this case, any intersection of the volume
EFB

0 (SNR11,SNR12,SNR21,SNR22), in the Cartesian
coordinates (R1, R2, B), with a plane B = b0 corresponds
to the set of triplets (R1, R2, b0), in which the corresponding
pairs (R1, R2) form a set that is identical to the information
capacity region of the G-MAC-F (without EH), denoted
by CFB(SNR11,SNR12). Note that this intersection
is the base of the information-energy capacity region
EFB
b0

(SNR11,SNR12,SNR21,SNR22) of the G-MAC-F(b0).
In this case, ξ(b0) = 0, and thus from Proposition 1 and
Proposition 3, the energy constraint does not add any
additional bound on the individual rates and sum-rate
other than (17a), (17b), and (17c). That is, the minimum
energy transmission rate requirement can always be met by
exclusively transmitting information.

Case 2: b1 ∈
(
1 + SNR21 + SNR22,1 + SNR21 + SNR22

+2ρ?(1,1)
√

SNR21SNR22

]
. In this case, any intersection

of the volume EFB
0 (SNR11,SNR12,SNR21,SNR22)

with a plane B = b1 is a set of triplets (R1, R2, b1)
for which the corresponding pairs (R1, R2) satisfy
(R1, R2) ∈ B(b1) ∩ CFB(SNR11,SNR12), which forms
a strict subset of CFB(SNR11,SNR12). This intersection
coincides with the base of the information-energy capacity
region EFB

b1
(SNR11,SNR12,SNR21,SNR22) of the G-MAC-

F(b1). Note that ξ(b1) > 0, and thus from Proposition 1,
the energy constraint limits the individual rates. That is,
transmitter i’s individual information rate is bounded away
from 1

2 log2 (1 + SNR1i). Nevertheless, it is important to
highlight that in this case, ξ(b1) 6 ρ?(1, 1), and thus the
individual rates R1 = 1

2 log2

(
1 +

(
1− (ρ?(1, 1))

2
)

SNR11

)
and R2 = 1

2 log2

(
1 +

(
1− (ρ?(1, 1))

2
)

SNR12

)
are

always achievable. Hence, this intersection always
includes the triplet (R1, R2, b1), with R1 + R2 =
1
2 log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
=

RFB
sum(b1) = RFB

sum(0). That is, the power-split β1 = β2 = 1
is always feasible. Note that the intersection of the volume
EFB

0 (SNR11,SNR12,SNR21,SNR22) with the plane B = b2
is a particular case of this regime.

Case 3: b3∈
(
1+SNR21+SNR22+2ρ?(1,1)

√
SNR21SNR22,

1 + SNR21 + SNR22 + 2
√

SNR21SNR22

]
. In

this case, any intersection of the volume
EFB

0 (SNR11,SNR12,SNR21,SNR22) with a plane
B = b3 is a set of triplets (R1, R2, b3) for
which the corresponding pairs (R1, R2) satisfy
(R1, R2) ∈ B(b3) = B(b3) ∩ CFB(SNR11,SNR12),
which is a strict subset of CFB(SNR11,SNR12). This

intersection coincides with the base of the information-energy
capacity region EFB

b3
(SNR11,SNR12,SNR21,SNR22) of

the G-MAC-F(b3). Note that ρ?(1, 1) < ξ(b3) 6 1, and
thus from Proposition 1, the individual information rates
are limited by Ri 6 1

2 log2

(
1 +

(
1− ξ(b3)2

)
SNR1i

)
<

1
2 log2

(
1 +

(
1− (ρ?(1, 1))

2
)

SNR1i

)
. For any

b3 > 1 + SNR21 + SNR22 + 2ρ?(1, 1)
√

SNR21SNR22, the
set B(b3) monotonically shrinks with b3. Consequently,
for these values of b3, there exists a loss of sum-
rate and RFB

sum(0) is not achievable. Nonetheless, note
that RFB

sum(b3) is a continuous function in b3. When
b3 = 1 + SNR21 + SNR22 + 2(ρ?(1, 1) + ε)

√
SNR21SNR22,

for some ε > 0, it holds that ξ(b3) = ρ?(1, 1)+ε. Substituting
this into (31) and taking the limit when ε tends to 0, by
the definition of ρ?(1, 1), the resulting value is given by
(30). Clearly, the maximum energy rate is achieved when
β1 = β2 = 0, which implies that no information is conveyed
from the transmitters to the receiver.

B. Case Without Feedback

Fig. 5 shows a general example of the intersection of the
volume E0 (SNR11,SNR12,SNR21,SNR22), in the Cartesian
coordinates (R1, R2, B), with the planes B = bk, with
k ∈ {0, 1, 2}, such that b0 ∈ [0, 1 + SNR21 + SNR22],
b1 ∈

(
1 + SNR21 + SNR22, 1 + SNR21 +

SNR22 + 2
√

SNR21SNR22 min
{√

SNR12

SNR11
,
√

SNR11

SNR12

}]
,

and b2 ∈
(

1 + SNR21 + SNR22 +

2
√

SNR21SNR22 min
{√

SNR12

SNR11
,
√

SNR11

SNR12

}
, 1 + SNR21 +

SNR22 + 2
√

SNR21SNR22

]
.

Case 1: b0 ∈ [0,1 + SNR21 + SNR22]. In
this case, any intersection of the volume
E0 (SNR11,SNR12,SNR21,SNR22), in the Cartesian
coordinates (R1, R2, B), with a plane B = b0 corresponds
to the set of triplets (R1, R2, b0), in which the corresponding
pairs (R1, R2) form a set that is identical to the
information capacity region of the G-MAC (without
EH), denoted by C(SNR11,SNR12). This intersection
is the base of the information-energy capacity region
Eb0 (SNR11,SNR12,SNR21,SNR22) of the G-MAC(b0). Note
that ξ(b0) = 0, and thus from Proposition 2 and Proposition 4,
it holds that RNF

i (b0) = 1
2 log2 (1 + SNR1i), for i ∈ {1, 2},

and RNF
sum(b0) = 1

2 log2 (1 + SNR11 + SNR12). Hence,
exclusively transmitting information is enough for satisfying
the energy rate constraint b0.

Case 2: b1 ∈
(
1 + SNR21 + SNR22,1 + SNR21 + SNR22

+2
√

SNR21SNR22 min
{√

SNR12

SNR11
,
√

SNR11

SNR12

}]
.

In this case, any intersection of the volume
E0 (SNR11,SNR12,SNR21,SNR22), in the Cartesian
coordinates (R1, R2, B), with a plane B = b1 corresponds to
the set of triplets (R1, R2, b1) in which the corresponding pairs
(R1, R2) form a set that is equivalent to a strict subset of the
information capacity region of the G-MAC C(SNR11,SNR12).
This intersection is the base of the information-energy
capacity region Eb1 (SNR11,SNR12,SNR21,SNR22) of the
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Fig. 4. Intersection of the the information-energy capacity region of the G-MAC-F(O), EFB
0 (SNR11, SNR12, SNR21, SNR22), with the planes B = b0, B =

b1, B = b2 and B = b3 where b0 ∈ [0, 1 + SNR21 + SNR22], b1 ∈
[
1 + SNR21 + SNR22, 1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22

]
, b2 =

1+SNR21+SNR22+2ρ?(1, 1)
√

SNR21SNR22, and b3 ∈
[
1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22

]
.
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Fig. 5. Intersection of the information-energy capacity region of the G-MAC(0), E0 (SNR11, SNR12, SNR21, SNR22), with the planes B = b0, B = b1,
and B = b2, where b0 ∈ [0, 1 + SNR21 + SNR22], b1 ∈

(
1 + SNR21 + SNR22, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22 min

{√
SNR12
SNR11

,
√

SNR11
SNR12

}]
,

and b2 ∈
(
1 + SNR21 + SNR22 + 2

√
SNR21SNR22 min

{√
SNR12
SNR11

,
√

SNR11
SNR12

}
, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22

]
.

G-MAC(b1). Note that ξ(b1) > 0, and thus from Proposition 2
and Proposition 4, RNF

i (b1) and RNF
sum(b1) decrease with b1.

This is mainly due to the fact that part of each transmitter’s
power budget is dedicated to the transmission of energy.
Furthermore, the information sum-rate optimal strategy
involves information transmission at both users since the
sum-capacity is strictly larger than the maximum individual
rate of the user with the highest SNR.

Case 3: b2∈
(
1 + SNR21 + SNR22+

2
√

SNR21SNR22 min
{√

SNR12

SNR11
,
√

SNR11

SNR12

}
,1+SNR21+SNR22

+2
√

SNR21SNR22

]
. In this case, any intersection

of the volume E0 (SNR11,SNR12,SNR21,SNR22), in
the Cartesian coordinates (R1, R2, B), with a plane
B = b2 corresponds to the set of triplets (R1, R2, b2)

in which the corresponding pairs (R1, R2) form a set
that is equivalent to a strict subset of the information
capacity region of the G-MAC, C(SNR11,SNR12). This
intersection is the base of the information-energy capacity
Eb2 (SNR11,SNR12,SNR21,SNR22) region of the G-
MAC(b2). The information sum-capacity corresponds to the
maximum individual rate (Proposition 2) of the transmitter
with the highest SNR. That is, in order to maximize the
information sum-rate, it is optimal to have information
transmission exclusively at the stronger user with the highest
SNR. The transmitter with the weakest SNR uses all its
power budget to exclusively transmit energy. Note that when
the receiver and the EH are co-located and when the channel
is symmetric, this is not observed.
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Fig. 6. Information sum-capacity of the symmetric two-user memoryless G-
MAC-F(0) (thick red line) and G-MAC(0) (thin blue line), with co-located
receiver and EH, with SNR11 = SNR12 = SNR21 = SNR22 = SNR, as
a function of B. Red (big) circles represent the pairs (B1, RFB

sum(B1)) in
which RFB

sum(B1) is the information sum-capacity with feedback when only
information transmission is performed and B1 , 1 + 2(1 + ρ?(1, 1))SNR
represents the corresponding maximum energy rate that can be guaran-
teed at the EH. Blue triangles represent the pairs (BNF, R

NF
sum(BNF)) in

which RNF
sum(BNF) is the information sum-capacity without feedback and

BNF , 1 + 2SNR is the corresponding maximum energy rate that can be
guaranteed at the EH without feedback. Orange squares represent the pairs
(BFB, R

NF
sum(BF)) in which BFB is the corresponding maximum energy

rate that can be guaranteed at the EH with feedback. Black (small) circles
represent the pairs (Bmax, 0) in which Bmax , 1+ 4SNR is the maximum
energy rate at the EH.

VII. ENERGY TRANSMISSION ENHANCEMENT WITH
FEEDBACK

In this section, the enhancement on the energy transmission
rate due to the use of feedback is quantified when the infor-
mation sum-rate is RNF

sum(0) (see the blue triangles and orange
squares in Fig. 6).

Denote by BNF = 1+SNR21+SNR22 the maximum energy
rate that can be guaranteed at the EH in the G-MAC(0) when
the information sum-rate is RNF

sum(0). Denote also by BFB the
maximum energy rate that can be guaranteed at the EH in the
G-MAC-F(0) when the information sum-rate is RNF

sum(0). The
exact value of BFB is the solution to an optimization problem
of the form

BFB = max B

subject to: RFB
sum(B) = RNF

sum(0). (40)

The solution to (40) is given by the following theorem.

Theorem 3. The maximum energy rate BFB that can be guar-
anteed at the EH in the G-MAC-F(0) when the information
sum-rate is RNF

sum(0) is

BFB = 1+SNR21 +SNR22 +2
√

(1− γ)SNR21SNR22, (41)

with γ ∈ (0, 1) defined as follows:

γ,
SNR11 + SNR12

2SNR11SNR12

[√
1 +

4SNR11SNR12

SNR11 + SNR12
− 1

]
. (42)

Proof: The proof of Theorem 3 is presented in Ap-
pendix G.

To quantify the energy rate enhancement induced by feed-
back, it is of interest to consider the ratio BFB

BNF
given by

BFB

BNF
= 1 +

2
√

(1− γ)SNR21SNR22

1 + SNR21 + SNR22
. (43)

Note that the impact of the SNRs in the information transmis-
sion branch (SNR11 and SNR12) are captured by γ.

Let νi , SNR1i

SNR1j
∈ R+ and ηi , SNR2i

SNR2j
∈ R+, with (i, j) ∈

{1, 2}2 and i 6= j measure the asymmetry in the channel from
the transmitters to the receiver and to the EH, respectively. Let
also ψi , SNR2i

SNR1i
∈ R+ capture the strength ratio between the

information and the energy channels of transmitter i.
With these parameters, γ in (42) can be rewritten as

γ =
1 + νi

2νiSNR1j

[√
1 +

4νiSNR1j

1 + νi
− 1

]
, (44)

with (i, j) ∈ {1, 2}2 and i 6= j.
Note that, for all (i, j) ∈ {1, 2}2 with i 6= j, when

SNR1j → 0 while the ratio νi remains constant, from (44), it
follows that

lim
SNR1j→0

γ = 1. (45)

Thus, when the SNRs in the information branch (SNR11 and
SNR12) are very low, the improvement on the energy trans-
mission rate due to feedback is inexistent. This observation
is independent of the SNRs in the EH branch (SNR21 and
SNR22).

Alternatively, when SNR1j →∞ while the ratio νi remains
constant, it follows that

lim
SNR1j→∞

γ = 0. (46)

Thus, when the SNRs in the information branch (SNR11

and SNR12) are very high, the improvement on the energy
transmission rate due to feedback is given by

lim
SNR1j→∞

BFB

BNF
= 1 +

2
√

SNR21SNR22

1 + SNR21 + SNR22
. (47)

More generally, using the above parameters, the ratio BFB

BNF

in (43) can be written as

BFB

BNF
=1+

2ψjSNR1j

√
ηi

(
1−
(

1+νi
2νiSNR1j

(√
1+

4νiSNR1j

1+νi
−1

)))
1 + (1 + ηi)ψjSNR1j

.

(48)
Based on (48), the following corollary evaluates the very

low SNR asymptotic energy enhancement with feedback.

Corollary 1. For all (i, j) ∈ {1, 2}2 with i 6= j, when
SNR1j → 0 while the ratios νi, ηi, and ψi remain constant, it
holds that

lim
SNR1j→0

BFB

BNF
= 1, (49)

and thus feedback does not enhance energy transmission at
very low SNR.
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Fig. 7. The ratio BFB
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and its high-SNR limit as a function of SNR when
the receiver and the EH are co-located and SNR11 = SNR21 = SNR1 and
SNR12 = SNR22 = SNR2. The solid line is the high-SNR limit in (50); the
dash-dotted line, the dashed line and the dotted line are the exact values of the
ratio BFB

BNF
in (48) when SNR1 = SNR2 = SNR; SNR1

2
= SNR2 = SNR;

and SNR1
10

= SNR2 = SNR, respectively.

In the very high SNR regime, the asymptotic energy en-
hancement with feedback is given by the following corollary
that is also based on (48).

Corollary 2. For all (i, j) ∈ {1, 2}2 with i 6= j, when
SNR1j →∞ while the ratios νi, ηi, and ψi remain constant,
the maximum energy rate improvement with feedback is given
by

lim
SNR1j→∞

BFB

BNF
= 1 +

2
√
ηi

1 + ηi
. (50)

From Corollary 1 and Corollary 2, it holds that:

Corollary 3. Feedback can at most double the energy trans-
mission rate:

1 6
BFB

BNF
6 2, (51)

where the upper-bound holds with equality when ηi = 1, i.e.,
SNR21 = SNR22.

Fig. 7 compares the exact value of the ratio BFB

BNF
in (48)

to the high-SNR limit in (50) as a function of the SNRs in
the special case in which the receiver and the EH are co-
located. This implies that the channel coefficients between the
transmitters and the receiver are identical to those between the
transmitters and the EH., i.e., SNR11 = SNR21 = SNR1 and
SNR12 = SNR22 = SNR2. Note that in the symmetric case,
i.e., SNR1 = SNR2 = SNR, the upper-bound in (50) is tight
since the ratio BFB

BNF
becomes arbitrarily close to two as SNR

tends to infinity. In the non-symmetric cases SNR1 6= SNR2,
this bound is loose.

VIII. CONCLUSION AND EXTENSIONS

This paper has characterized the information-energy capac-
ity region of the two-user G-MAC with an EH, with and
without feedback, and has determined the energy transmission
enhancement induced by the use of feedback. An important
conclusion of this work is that SEIT requires additional
transmitter cooperation/coordination. From this viewpoint, any
technique that allows transmitter cooperation (i.e., feedback,
conferencing, etc.) is likely to provide performance gains in

SEIT in general multi-user networks. The results on the energy
transmission enhancement induced by feedback in the two-
user G-MAC-F can be extended to the K-user G-MAC-F with
EH for arbitrary K > 3.

APPENDIX A
PROOF OF THEOREM 1

The proof is divided into two parts: achievability and
converse parts.

A. Proof of Achievability

The proof of achievability uses a very simple power-splitting
technique in which a fraction βi ∈ [0, 1] of the power is used
for information transmission and the remaining fraction (1−
βi) for energy transmission. The information transmission is
made following Ozarow’s perfect feedback capacity-achieving
scheme in [25]. The energy transmission is accomplished by
random symbols that are known at both transmitters and the
receiver. Despite a great deal of similarity with the scheme
in [25], the complete proof is fully described hereunder for
the sake of completeness.

Codebook generation: At the beginning of the transmis-
sion, each message Mi is mapped into the real-valued message
point

Θi(Mi) , −(Mi − 1)∆i +
√
Pi, (52)

where

∆i ,
2
√
Pi

b2nRic . (53)

Encoding: The first three channel uses are part of an initial-
ization procedure during which there is no energy transmission
and the channel inputs are

t = −2 : X1,−2 = 0 and X2,−2 = Θ2(M2), (54a)
t = −1 : X1,−1 = Θ1(M1) and X2,−1 = 0, (54b)
t = 0 : X1,0 = 0 and X2,0 = 0. (54c)

Through the feedback links, transmitter 1 observes
(Z−1, Z0) and transmitter 2 observes (Z−2, Z0). After the
initialization phase, each transmitter i ∈ {1, 2} can thus
compute

Ξi ,
√

1− ρ?(β1, β2) · Z−i +
√
ρ?(β1, β2) · Z0, (55)

where ρ?(β1, β2) is the unique solution in (0, 1) to (20).
During the remaining channel uses 1, . . . , n, for i ∈ {1, 2},

instead of repeating the message-point Θi(Mi), transmitter i
simultaneously describes Ξi to the receiver and transmits
energy to the EH. Let βi, with i ∈ {1, 2} be the power-
splitting coefficient of transmitter i. More specifically, at each
time t ∈ {1, . . . , n}, transmitter i sends

Xi,t = Ui,t +
√

(1− βi)PiWt, i ∈ {1, 2}. (56)

Here (W1, . . . ,Wn) is an independent and identically dis-
tributed (i.i.d.) sequence drawn according to a zero-mean
unit-variance Gaussian distribution. This sequence is known
non-causally to the transmitters and to the receiver and is
independent of the messages and the noise sequences. The
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symbol Ui,t is a zero-mean Gaussian random variable with
variance βiPi and is chosen as follows:

Ui,1 =
√
βiPi Ξi, (57a)

Ui,t = γi,t

(
Ξi − Ξ̂

(t−1)
i

)
, t ∈ {2, . . . , n}, (57b)

where the parameter γi,t is chosen to satisfy E
[
U2
i,t

]
= βiPi

and Ξ̂
(t−1)
i is explained below.

For each t ∈ {1, . . . , n}, upon receiving the channel output
Y1,t, the receiver subtracts the signal induced by the common
randomness to form the observation Y ′1,t as follows:

Y ′1,t , Y1,t −
(
h11

√
(1− β1)P1 + h12

√
(1− β2)P2

)
Wt.

(58)
The receiver then calculates the minimum mean square error
(MMSE) estimate Ξ̂

(t−1)
i = E

[
Ξi|Y ′1,1, . . . , Y ′1,t−1

]
of Ξi

given the prior observations Y ′1,1, . . . , Y
′
1,t−1.

Remark 3. Note that by the orthogonality principle of
MMSE estimation [29], (U1,t, U2,t, Zt) are independent of
the observations Y ′1,1, . . . , Y

′
1,t−1 and thus of Y1,1, . . . , Y1,t−1.

Furthermore, since (W1, . . . ,Wn) are i.i.d., it holds that, for
any i ∈ {1, 2} and for any t ∈ {1, . . . , n}, Yi,t is independent
of Yi,1, . . . , Yi,t−1.

Remark 4. Let ρt denote the correlation coefficient between
U1,t and U2,t, i.e., ρt , E[U1,tU2,t]√

E[U2
1,t]

√
E[U2

2,t]
. In [30, Lemma

17.1], it is proved that for all t ∈ {1, . . . , n}, ρt = ρ?(β1, β2),
and thus ρ?(β1, β2) is the steady-state correlation coefficient.

After reception of the output symbols Y1,−2, . . . , Y1,n, the
receiver forms Ξ̂

(n)
i , E

[
Ξi|Y ′1,1, . . . , Y ′1,n

]
, for i ∈ {1, 2}.

Then, it forms an estimate Θ̂
(n)
i of the message point Θi(Mi)

as follows:

Θ̂
(n)
i ,

1

h1i

(
Y1,−i+

√
ρ?(β1, β2)

1− ρ?(β1, β2)
Y1,0

− 1√
1− ρ?(β1, β2)

Ξ̂
(n)
i

)
= Θi(Mi) +

1

h1i

√
1− ρ?(β1, β2)

(
Ξi − Ξ̂

(n)
i

)
.(59)

Finally, the message index estimate Mi is obtained using
nearest-neighbor decoding based on the value Θ̂

(n)
i , as follows:

M̂
(n)
i = argmin

mi∈{1,...,b2nRic}

∣∣Θi(mi)− Θ̂
(n)
i

∣∣. (60)

Analysis of the probability of error:
An error occurs whenever the receiver is not able to recover

one of the messages, i.e., (M1,M2) 6= (M̂
(n)
1 , M̂

(n)
2 ) or if

the received energy rate is below the desired minimum rate
B(n) < B.

First, consider the probability of a decoding error. Note that
for i ∈ {1, 2}, M̂ (n)

i = Mi, if

|Ξi − Ξ̂
(n)
i | 6

h1i

√
1− ρ?(β1, β2)∆i

2
. (61)

Since the difference Ξi−Ξ̂
(n)
i is a centered Gaussian random

variable, by the definition of ∆i in (53), the error probability
P

(n)
e,i while decoding message index Mi can be bounded as

P
(n)
e,i 6 2Q

√SNR1i

√
1− ρ?(β1, β2)

b2nRic
√

(σ
(n)
i )2

 , (62)

where Q(x) = 1√
2π

∫∞
x

exp
(
−u2

2

)
du is the tail of the unit

Gaussian distribution evaluated at x and where

(σ
(n)
i )2 , E

[
|Ξi − Ξ̂

(n)
i |2

]
, i ∈ {1, 2}. (63)

Note that

I(Ξi;Y
′
1) = h(Ξi)− h(Ξi|Y′1)

(a)
= h(Ξi)− h(Ξi − Ξ̂

(n)
i |Y′1)

(b)
= h(Ξi)− h(Ξi − Ξ̂

(n)
i )

= −1

2
log2

(
(σ

(n)
i )2

)
, (64)

where (a) holds because by the joint Gaussianity of Ξi and
Y′1, the MMSE estimate Ξ̂

(n)
i is a linear function of Y′1 (see,

e.g., [31]); (b) follows because by the orthogonality principle,
the error Ξi − Ξ̂

(n)
i is independent of the observations Y′1.

Equation (64) can equivalently be rewritten as√
(σ

(n)
i )2 = 2−I(Ξi;Y

′
1). (65)

Combining (62) with (65) yields that the probability of error
of message Mi tends to 0 as n→∞, if the rate Ri satisfies

Ri 6 lim inf
n→∞

1

n
I(Ξi;Y

′
1), i ∈ {1, 2}. (66)

On the other hand, as proved in [30, Sec. 17.2.4],

I(Ξi;Y
′
1) =

n∑
t=1

I(Ui,t;Y
′
1,t) (67)

and irrespective of n and t ∈ {1, . . . , n}, it holds that

I(Ui,t;Y
′
1,t) =

1

2
log2

(
1 + βiSNR1i(1− (ρ?(β1, β2))2)

)
. (68)

Hence, for i ∈ {1, 2} it holds that

lim inf
n→∞

1

n
I(Ξi;Y

′
1)

=
1

2
log2

(
1 + βiSNR1i(1− (ρ?(β1, β2))2)

)
. (69)

Combining (66) and (69) yields that when n → ∞, this
scheme can achieve all non-negative rate-pairs (R1, R2) that
satisfy

R1 6
1

2
log2

(
1 + β1SNR11(1− ρ?(β1, β2)

2
)
)
, (70a)

R2 6
1

2
log2

(
1 + β2SNR12(1− ρ?(β1, β2)

2
)
)
. (70b)

Hence, combined with (20), it automatically yields

R1 +R2 6
1

2
log2

(
1 + β1 SNR11 + β2 SNR12

+ 2ρ?(β1, β2)
√
β1SNR11β2SNR12

)
. (70c)
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Furthermore, the total consumed power at transmitter i for
i ∈ {1, 2} over the n + 3 channel uses is upper bounded
by (n + 1)Pi, hence, this scheme satisfies the input-power
constraints.

Average received energy rate:
The average received energy rate is given by

B(n) , 1
n

∑n
t=1 Y

2
2,t.

By the memoryless property of the channel and by the
choice of the inputs, the sequence Y2,1, . . . , Y2,n is i.i.d. and
each Y2,t follows a zero-mean Gaussian distribution with
variance B̄ given by

B̄,E
[
Y 2

2,t

]
=1 + SNR21 + SNR22 + 2

√
β1SNR21β2SNR22ρ

?(β1, β2)

+2
√

(1− β1)SNR21(1− β2)SNR22, (71)

where the correlation among the IC components is in the
steady state.

By the weak law of large numbers, it holds that ∀ε > 0,

lim
n→∞

Pr
(
|B(n) − B̄| > ε

)
= 0. (72)

Consequently,

lim
n→∞

Pr
(
B(n) > B̄ + ε

)
= 0, and (73a)

lim
n→∞

Pr
(
B(n) < B̄ − ε

)
= 0. (73b)

From (73b), it holds that for any energy rate B which satisfies
0 < B 6 B̄, it holds that

lim
n→∞

Pr
(
B(n) < B − ε

)
= 0. (74)

To sum up, any information-energy rate triplet (R1, R2, B)
that satisfies

R1 6
1

2
log2

(
1 + β1SNR11(1− (ρ?(β1, β2))

2
)
)

(75a)

R2 6
1

2
log2

(
1 + β2SNR12(1− (ρ?(β1, β2))

2
)
)

(75b)

R1 +R2 6
1

2
log2

(
1 + β1SNR11 + β2SNR12

+2ρ?(β1, β2)
√
β1 SNR11 · β2 SNR12

)
(75c)

B 6 1 + SNR21 + SNR22 + 2
(√

β1β2ρ
?(β1, β2)

+
√

(1− β1)(1− β2)
)√

SNR21SNR22 (75d)

is achievable.
To achieve other points in the information-energy capacity

region, transmitter 1 can split its message M1 into two
independent submessages (M1,0,M1,1) ∈ {1, . . . , b2nR1,0c}×
{1, . . . , b2nR1,1c} such that R1,0, R1,1 ≥ 0 and R1,0 +R1,1 =
R1. It uses a power fraction α1 ∈ [0, 1] of its available
information-dedicated power β1P1 to transmit M1,0 using a
non-feedback Gaussian random code and uses the remaining
power (1 − α1)β1P1 to send M1,1 using the sum-capacity-
achieving feedback scheme while treating M1,0 as noise.
Transmitter 2 sends its message M2 using the sum-capacity-
achieving feedback scheme.

Transmitter 1’s IC-input is U1,t , U1,0,t + U1,1,t

where U1,1,t is defined as in (57) but with reduced power

(1− α1)β1P1, and U1,0,t is an independent zero-mean Gaus-
sian random variable with variance α1β1P1. Transmitter 2’s
IC-input is defined as in (57).

The receiver first subtracts the common randomness and
then decodes (M1,1,M2) treating the signal encoding M1,0 as
noise. Successful decoding is possible if

R1,16
1

2
log2

(
1 +

(1− α1)β1SNR11(1− ρα1
(β1, β2)

2
)

1 + α1β1SNR11

)
(76a)

R26
1

2
log2

(
1 +

β2SNR12(1− ρα1
(β1, β2)

2
)

1 + α1β1SNR11

)
, (76b)

where ρα1
(β1, β2) is defined as follows. When β1 6= 0, β2 6=

0, and α1 6= 1, ρα1
(β1, β2) is the unique solution in (0, 1) to

the following equation in x:

1+
(1−α1)β1SNR11+β2SNR12+2x

√
β1β2(1−α1)SNR11SNR12

1 + α1β1SNR11

=

(
1+

(1−α1)β1SNR11

1+α1β1SNR11
(1− x2)

)(
1+

β2SNR12

1+α1β1SNR11
(1−x2)

)
,

(77)

In this case, the existence and the uniqueness of ρα1(β1, β2)
follow a similar argument as the existence and uniqueness of
a solution to (20). When α1 = 1, ρα1

(β1, β2) = ρ?(β1, β2).
When either β1 = 0 or β2 = 0, regardless of the value of α1,
ρα1

(β1, β2) = 0.
Then, using successive interference cancellation, the re-

ceiver recovers M1,0 successfully if

R1,0 6
1

2
log2 (1 + α1β1SNR11) . (78)

By substituting R1 = R1,0 + R1,1, it can be seen that
successful decoding of (M1,M2) is possible with arbitrarily
small probability of error if the rates (R1, R2) satisfy

R1 6
1

2
log2

(
1 +

(1− α1)β1SNR11

(
1− (ρα1(β1, β2))

2)
1 + α1β1SNR11

)
+

1

2
log2 (1 + α1β1SNR11) (79a)

R2 6
1

2
log2

(
1 +

β2SNR12

(
1− (ρα1(β1, β2))

2)
1 + α1β1SNR11

)
. (79b)

Now, the average received energy rate of this scheme is
analyzed. The sequence Y2,1, . . . , Y2,n is i.i.d. and each Y2,t

for t ∈ {1, . . . , n} follows a zero-mean Gaussian distribution
with variance B given by

B = E
[
Y 2

2,t

]
= 1 + SNR21 + SNR22

+ 2
√

1− α1 ρα1(β1, β2)
√
β1SNR21β2SNR22

+ 2
√

(1− β1)SNR21(1− β2)SNR22

)
. (80)

Here also the weak law of large numbers implies that

lim
n→∞

Pr
(
B(n) < b− ε

)
= 0 (81)

for any b ∈ [0, B].
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Now if ρ replaces
√

1− α1 ρα1
(β1, β2) with α1 ∈ [0, 1] in

constraints (79) and (80), then any non-negative information-
energy rate triplet (R1, R2, B) satisfying

R1 6
1

2
log2

(
1+β1SNR11

(
1− ρ2

))
, (82a)

R2 6
1

2
log2

(
1+β1SNR11+β2SNR12+2ρ

√
β1SNR11β2SNR12

)
−1

2
log2

(
1+β1SNR11

(
1− ρ2

))
, (82b)

B 6 1+SNR21+SNR22+

2
(
ρ
√
β1β2+

√
(1− β1)(1− β2)

)√
SNR21SNR22, (82c)

where ρ ∈ [0, ρ?(β1, β2)] and ρ?(β1, β2) is the unique solution
to (20), is achievable.

If the roles of transmitters 1 and 2 are reversed, it can be
shown that any non-negative information-energy rate triplet
(R1, R2, B) such that

R16
1

2
log2

(
1+β1SNR11+β2SNR12+2ρ

√
β1SNR11β2SNR12

)
−1

2
log2

(
1 + β2SNR12(1− ρ2)

)
, (83a)

R26
1

2
log2

(
1 + β2SNR12(1− ρ2)

)
, (83b)

B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21β2SNR22

+2
√

(1− β1)SNR21(1− β2)SNR22, (83c)

for any ρ ∈ [0, ρ?(β1, β2)], is achievable.
Time-sharing between all information-energy rate triplets in

the union of the two regions described by the constraints (82)
and (83) concludes the proof of achievability of the region.
This yields

R1 6
1

2
log2

(
1 + β1SNR11

(
1− ρ2

))
, (84a)

R2 6
1

2
log2

(
1 + β2SNR12

(
1− ρ2

))
, (84b)

R1 +R26
1

2
log2

(
1 + β1SNR11 + β2SNR12

+2ρ
√
β1SNR11 β2SNR12

)
, (84c)

B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21β2SNR22

+2
√

(1− β1)SNR21(1− β2)SNR22, (84d)

for any ρ ∈ [0, ρ?(β1, β2)].
Note that for any ρ > ρ?(β1, β2), the sum of (84a) and

(84b) is strictly smaller than (84c). The resulting information
region is a rectangle that is strictly contained in the rectangle
obtained for ρ = ρ?(β1, β2). In other words, there is no gain
in terms of information rates. In terms of energy rates, for any
ρ > ρ?(β1, β2), there always exists a pair (β′1, β

′
2) such that

ρ =
√
β′1β

′
2ρ
?(β′1, β

′
2) +

√
(1− β′1)(1− β′2).

This choice achieves any information rate pair (R1, R2) sat-
isfying

Ri 6
1

2
log2

(
1 + β′iSNR1i(1− ρ?(β′1, β′2)2)

)
. (85)

In particular, it achieves

Ri 6
1

2
log2

(
1 + β′iSNR1i(1− ρ2)

)
, i ∈ {1, 2}, (86)

since ρ > ρ?(1, 1) = max
(β1,β2)∈[0,1]2

ρ?(β1, β2). This completes

the proof of the achievability part of Theorem 1.

B. Proof of Converse

Fix an information-energy rate triplet (R1, R2, B) ∈
EFB
b (SNR11,SNR12,SNR21,SNR22). For this information-

energy rate triplet and for each blocklength n, encoding and
decoding functions are chosen such that

lim sup
n→∞

P (n)
error =0, (87a)

lim sup
n→∞

P
(n)
outage=0 for any ε > 0, (87b)

B >b, (87c)

subject to the input power constraint (8).
Using assumption (87a), applying Fano’s inequality and

following similar steps as in [25], it can be shown that the
rate-pair (R1, R2) must satisfy

nR1 6
n∑
t=1

I (X1,t;Y1,t|X2,t) + ε
(n)
1 , (88a)

nR2 6
n∑
t=1

I (X2,t;Y1,t|X1,t) + ε
(n)
2 , (88b)

n(R1 +R2) 6
n∑
t=1

I (X1,tX2,t;Y1,t) + ε
(n)
12 , (88c)

where ε
(n)
1

n ,
ε
(n)
2

n , and ε
(n)
1

n tend to zero as n tends to infinity.
Using assumption (87b), for a given ε(n) > 0, for any η > 0

there exists n0(η) such that for any n ≥ n0(η) it holds that

Pr
(
B(n) < B − ε(n)

)
< η. (89)

Equivalently,

Pr
(
B(n) > B − ε(n)

)
> 1− η (90)

Using Markov’s inequality [32], the probability in (90) can
be upper-bounded as follows:

(B − ε(n)) Pr
(
B(n) > B − ε(n)

)
6 E

[
B(n)

]
. (91)

Combining (90) and (91) yields

(B − ε(n))(1− η) 6 E
[
B(n)

]
(92)

which can be written as

(B − δ(n)) 6 E
[
B(n)

]
(93)

for some δ(n) > ε(n) (for sufficiently large n). Hence, (88)
and (93) are an upper-bound for any (R1, R2, B) satisfying
(87a) and (87b).

In the following, the bounds in (88), (93), and (87c) are
evaluated for the G-MAC-F(b). For this purpose, assume that
X1,t and X2,t are arbitrary correlated random variables with

µi,t , E[Xi,t] , (94)
σ2
i,t , Var(Xi,t) , (95)

λt , Cov[X1,t, X2,t] , (96)
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for t ∈ {1, . . . , n} and for i ∈ {1, 2}.
The input sequence must satisfy the input power con-

straint (8) which can be written, for i ∈ {1, 2}, as

1

n

n∑
t=1

E
[
X2
i,t

]
=

(
1

n

n∑
t=1

σ2
i,t

)
+

(
1

n

n∑
t=1

µ2
i,t

)
6 Pi. (97)

Note that from (1), for each t ∈ {1, . . . , n}, it holds that

h(Y1,t|X1,t, X2,t) = h(Zt) =
1

2
log2 (2πe) , (98)

from the assumption that Zt follows a zero-mean unit-variance
Gaussian distribution. Note also that for any random variable
X with variance σ2

X , it holds that h(X) 6 1
2 log2

(
2πeσ2

X

)
,

with equality when X follows a Gaussian distribution [33].
Finally, it is useful to highlight that for any a ∈ R, it holds
that h(X + a) = h(X). Using these elements, the right-hand
side terms in (88) can be upper-bounded as follows:

I(X1,t, X2,t;Y1,t)

= h(Y1,t)− h(Zt)

6
1

2
log2 (2πeVar(Y1,t))−

1

2
log2 (2πe)

=
1

2
log2

(
h2

11σ
2
1,t + h2

12σ
2
2,t + 2h11h12λt + 1

)
,

I(X1,t;Y1,t|X2,t)

= h(Y1,t|X2,t)− h(Y1,t|X1,t, X2,t)

6
1

2
log2 (2πe(Var(Y1,t|X2,t)))−

1

2
log2 (2πe)

=
1

2
log2

(
1 + h2

11σ
2
1,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
,

I(X2,t;Y1,t|X1,t)

=
1

2
log2

(
1 + h2

12σ
2
2,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
.

Finally, the bounds in (88) can be rewritten as follows:

nR1 6
n∑
t=1

1

2
log2

(
1+h2

11σ
2
1,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
+ε

(n)
1 , (99a)

nR2 6
n∑
t=1

1

2
log2

(
1+h2

12σ
2
2,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
+ε

(n)
2 , (99b)

n(R1 +R2)6
n∑
t=1

1

2
log2

(
1+h2

11σ
2
1,t+h

2
12σ

2
2,t+2h11h12λt

)
+ε

(n)
12 . (99c)

The expectation of the average received energy rate is given
by

E
[
B(n)

]
= E

[
1

n

n∑
t=1

Y 2
2,t

]

= 1 + h2
21

(
1

n

n∑
t=1

(σ2
1,t + µ2

1,t)

)

+h2
22

(
1

n

n∑
t=1

(σ2
2,t + µ2

2,t)

)

+2h21h22

(
1

n

n∑
t=1

(λt + µ1,tµ2,t)

)
. (100)

Using the Cauchy-Schwarz inequality, the energy rate in (100)
can be upper-bounded as follows:

E
[
B(n)

]
61+h2

21

(
1

n

n∑
t=1

(σ2
1,t + µ2

1,t)

)
+h2

22

(
1

n

n∑
t=1

(σ2
2,t+µ

2
2,t)

)

+2h21h22

∣∣∣∣∣1n
n∑
t=1

λt

∣∣∣∣∣+
(

1

n

n∑
t=1

µ2
1,t

)1/2(
1

n

n∑
t=1

µ2
2,t

)1/2.
(101)

Combining (93) and (101) yields the following upper-bound
on the energy rate B:

B61+h2
21

(
1

n

n∑
t=1

(σ2
1,t + µ2

1,t)

)
+h2

22

(
1

n

n∑
t=1

(σ2
2,t + µ2

2,t)

)
+

2h21h22

∣∣∣∣∣ 1n
n∑
t=1

λt

∣∣∣∣∣+
(

1

n

n∑
t=1

µ2
1,t

)1/2(
1

n

n∑
t=1

µ2
2,t

)1/2+δ(n).

(102)

In order to obtain a single-letterization of the upper-bound
given by constraints (99) and (102), define also

µ2
i ,

1

n

n∑
t=1

µ2
i,t, i ∈ {1, 2}, (103)

σ2
i ,

1

n

n∑
t=1

σ2
i,t, i ∈ {1, 2}, (104)

ρ ,

(
1

n

n∑
t=1

λt

)
(|σ1| |σ2|)−1

. (105)

With these notations, the input power constraint in (97) can
be rewritten as

σ2
i + µ2

i 6 Pi, i ∈ {1, 2}. (106)

By the concavity of the logarithm, applying Jensen’s in-
equality [33] in the bounds (99) yields, in the limit when
n→∞,

R1 6
1

2
log2

(
1 + h2

11σ
2
1

(
1− ρ2

))
, (107a)

R2 6
1

2
log2

(
1 + h2

12σ
2
2

(
1− ρ2

))
, (107b)

R1 +R2 6
1

2
log2

(
1 + h2

11σ
2
1 + h2

12σ
2
2 + 2

√
h2

11σ
2
1h

2
12σ

2
2ρ

)
,

(107c)

and the upper-bound on the energy rate (102) yields

B 6 1 + h2
21(σ2

1 + µ2
1) + h2

22(σ2
2 + µ2

2)

+2h21h22 (|ρ| |σ1||σ2|+ |µ1||µ2|) . (107d)

Let Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ) denote the set of information-
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energy rate triplets (R1, R2, B) satisfying:

R1 6
1

2
log2

(
1 + h2

11σ
2
1(1− ρ2)

)
, (108a)

R2 6
1

2
log2

(
1 + h2

12σ
2
2(1− ρ2)

)
, (108b)

R1 +R26
1

2
log2

(
1+h2

11σ
2
1 +h2

12σ
2
2 +2

√
h2

11h
2
12σ

2
1σ

2
2ρ

)
,

(108c)
B 61 + h2

21(σ2
1 + µ2

1) + h2
22(σ2

2 + µ2
2)

+2h21h22(|ρ| |σ1||σ2|+ |µ1||µ2|), (108d)
B > b, (108e)

for some σ2
1 , σ2

2 , µ1, µ2 such that (106) is true and for some
ρ ∈ [−1, 1].

To sum up, it has been shown so far that, in the limit
when n tends to infinity, any information-energy rate triplet
(R1, R2, B) ∈ EFB

b (SNR11,SNR12,SNR21,SNR22) can be
bounded by the constraints in (108) for some σ2

1 , σ2
2 , µ1, µ2

satisfying (106) and for some ρ ∈ [−1, 1]. Thus, it holds that

EFB
b (SNR11,SNR12,SNR21,SNR22)

⊆
⋃

06σ2
1+µ2

16P1

06σ2
2+µ2

26P2

−16ρ61

Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ). (109)

In this union, it suffices to consider 0 6 ρ 6 1
because for any −1 6 ρ 6 1, Rb(σ2

1 , σ
2
2 , µ

2
1, µ

2
2, ρ) ⊆

Rb(σ2
1 , σ

2
2 , µ

2
1, µ

2
2, |ρ|). Furthermore, for 0 6 ρ 6 1, it

suffices to consider µ1 > 0, µ2 > 0, and σ2
1 , σ2

2 , µ2
1, and µ2

2

that saturate the input power constraint (i.e., (106) holds with
equality). Thus,

EFB
b (SNR11,SNR12,SNR21,SNR22)

⊆
⋃

06σ2
1+µ2

16P1

06σ2
2+µ2

26P2

−16ρ61

Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ)

⊆
⋃

σ2
1+µ2

1=P1

σ2
2+µ2

2=P2

06ρ61

Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ). (110)

Let βi ∈ [0, 1] be defined as follows:

βi ,
σ2
i

Pi
=
Pi − µ2

i

Pi
, i ∈ {1, 2}. (111)

With this notation, any region Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ) in the

union over σ2
1 + µ2

1 = P1, σ2
2 + µ2

2 = P2 and 0 6 ρ 6 1,

can be rewritten as follows:

R1 6
1

2
log2

(
1 + h2

11β1P1

(
1− ρ2

))
, (112a)

R2 6
1

2
log2

(
1 + h2

12β2P2

(
1− ρ2

))
, (112b)

R1 +R26
1

2
log2

(
1+h2

11β1P1 +h2
12β2P2 (112c)

+2
√
h2

11h
2
12β1P1β2P2ρ

)
, (112d)

B 61 + h2
21P1 + h2

22P2

+2h21h22(ρ
√
β1P1β2P2

+
√

(1− β1)P1(1− β2)P2), (112e)
B > b, (112f)

for some (β1, β2) ∈ [0, 1]2 and ρ ∈ [0, 1]. Hence, using
(9), such a region contains all information-energy rate triplets
(R1, R2, B) satisfying constraints (17) which completes the
proof of the converse.

APPENDIX B
PROOF OF THEOREM 2

Consider that each transmitter i, with i ∈ {1, 2}, uses a frac-
tion βi ∈ [0, 1] of its available power to transmit information
and uses the remaining fraction of power (1− βi) to transmit
energy. Given a power-split (β1, β2) ∈ [0, 1]2, the achievability
of information rate pairs satisfying (18a)-(18c) follows by the
coding scheme proposed independently by Cover [27] and
Wyner [28] with powers β1P1 and β2P2. Additionally, in order
to satisfy the received energy constraint (18d), transmitters
send common randomness that is known to both transmitters
and the receiver using all their remaining power. This common
randomness does not carry any information and does not
produce any interference to the IC signals. More specifically,
at each time t, transmitter i’s channel input can be written as:

Xi,t =
√

(1− βi)PiWt + Ui,t, i ∈ {1, 2}, (113)

for some independent zero-mean Gaussian IC symbols U1,t

and U2,t with variances β1P1 and β2P2, respectively, and
independent thereof Wt is a zero-mean unit-variance Gaussian
NIC symbol known non-causally to all terminals.

The receiver subtracts the common randomness and then
performs successive decoding to recover the messages M1 and
M2. Note that this strategy achieves the corner points of the
information rate-region at a given energy rate. Time-sharing
between the corner points and the points on the axes is needed
to achieve the remaining points.

The converse and the analysis of the average received energy
rate follow along the lines of the case with feedback described
in Appendix A when the IC channel input components are
assumed to be independent.

APPENDIX C
PROOF OF PROPOSITION 1

For a given energy transmission rate of b energy-units per
channel use, a power-split (β1, β2) is feasible if there exists
at least one ρ ∈ [0, 1] that satisfies

gFB(βi, βj , ρ) > b, (114)
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with

gFB(βi, βj , ρ)

, 1 + SNR2i + SNR2j + 2
√

(1− βi)SNR2i(1− βj)SNR2j

+2ρ
√
βiSNR2i βjSNR2j . (115)

Using a Fourier-Motzkin elimination in the
constraints (17a)-(17c) to eliminate Rj , it can be shown
that transmitter i’s individual rate maximization problem (25)
is equivalent to

RFB
i (b) = max

(βi,βj ,ρ)∈[0,1]3
fFB
i (βi, βj , ρ), (116a)

subject to: gFB(βi, βj , ρ) > b, (116b)

with

fFB
i (βi, βj , ρ) , min

{
1

2
log2

(
1 + βi SNR1i

(
1− ρ2

))
,

1

2
log2

(
1 + βiSNR1i + βjSNR1j + 2ρ

√
βiSNR1iβjSNR1j

)}
.

(117)

For a given triplet (βi, βj , ρ), there are two cases: either it
satisfies

−ρ2βi SNR1i > βjSNR1j + 2ρ
√
βiSNR1iβjSNR1j , (118)

which implies that

fFB
i (βi, βj , ρ)

=
1

2
log2

(
1 + βiSNR1i + βjSNR1j + 2ρ

√
βiSNR1iβjSNR1j

)
;

(119)

or it satisfies

−ρ2βi SNR1i 6 βjSNR1j + 2ρ
√
βiSNR1iβjSNR1j , (120)

and in this case

fFB
i (βi, βj , ρ) =

1

2
log2

(
1 + βi SNR1i

(
1− ρ2

))
. (121)

In the first case, condition (118) cannot be true for any
triplet (βi, βj , ρ) ∈ [0, 1]3 and this case should be excluded.

In the second case, the function fFB
i (βi, βj , ρ) is decreasing

in ρ and does not depend on βj , thus, it holds that

fFB
i (βi, βj , ρ) ≤ fFB

i (βi, 0, 0), (122)

and the triplet (βi, 0, 0) is feasible if and only if
gFB(βi, 0, 0) > b. Under these assumptions, transmitter i
is able to achieve its maximum individual rate if it uses a
power-split in which the fraction βi is maximized and its
energy transmission is made at the minimum rate to meet
the energy rate constraint. In this case, the maximization
problem (116) reduces to the maximization problem in (128)
in the proof of Proposition 2. Thus, it can be shown that
the individual rates with feedback are limited by Ri 6
1
2 log2

(
1 + (1− ξ(b)2)SNR1i

)
where ξ(b) is given by (23).

APPENDIX D
PROOF OF PROPOSITION 2

From the assumptions of Proposition 2 it follows that an
energy transmission rate of b energy-units per channel use
must be guaranteed at the input of the EH. Then, the set of
power-splits (βi, βj) that satisfy this constraint must satisfy

g0(βi, βj) > b, (123)

with

g0(βi, βj) , 1 + SNR21 + SNR22

+2
√

(1− βi)SNR2i(1− βj)SNR2j . (124)

These power-splits are referred to as feasible power-splits.
Using a Fourier-Motzkin elimination in the

constraints (18a)-(18c) to eliminate Rj , it can be shown
that transmitter i’s individual rate maximization problem in
(27) can be written as

RNF
i (b) = max

(βi,βj)∈[0,1]2
fi(βi, βj), (125a)

subject to: g0(βi, βj) > b, (125b)

with

fi(βi, βj),min

{
1

2
log2 (1 + βiSNR1i)) ,

1

2
log2 (1 + βiSNR1i + βjSNR1j)

}
(126)

and g0(β1, β2) is defined in (124).
For any feasible power-split (βi, βj), it holds that

fi(βi, βj) =
1

2
log2 (1 + βiSNR1i) . (127)

The target function fi(βi, βj) is increasing in βi and is inde-
pendent of βj . Since the constraint function is monotonically
decreasing in (βi, βj), in order to maximize transmitter i’s
individual rate, the optimal power-split should be a feasible
power-split in which βi is maximized while βj is forced to
0. Thus, the maximization problem in (27) can be written as
follows:

RNF
i (b) = max

βi∈[0,1]

1

2
log2(1 + βiSNR1i), (128a)

subject to: g0(βi, 0) > b. (128b)

Transmitter i’s achievable information rate is increasing in
βi and the energy rate constraint is decreasing in βi. Hence,
transmitter i is able to achieve the maximum individual rate
if the energy transmission of transmitter i is made at the
minimum rate to meet the energy rate constraint, i.e., if
there is equality in (123). In this configuration, transmitter i
can use a power-split in which βi = 1 − ξ(b)2, with ξ(b)
defined in (23) which yields the maximum individual rate
Ri(b) = 1

2 log2

(
1 +

(
1− ξ(b)2

)
SNR1i

)
.
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APPENDIX E
PROOF OF PROPOSITION 3

For fixed SNR11, SNR12, SNR21, and SNR22 and fixed
minimum received energy rate b > 0 satisfying (11), the
information sum-rate maximization problem in (29) can be
written as

RFB
sum(b) = max

(β1,β2,ρ)∈[0,1]3
f(β1, β2, ρ) (129a)

subject to: g(β1, β2, ρ) > b, (129b)

where the functions f and g are defined as follows

f(β1, β2, ρ) , min

{
1

2
log2

(
1 + β1SNR11 + β2SNR12 + 2ρ

√
β1SNR11β2SNR12

)
,

1

2
log2

( (
1 + β1SNR11(1− ρ2)

) (
1 + β2SNR12(1− ρ2)

))}
,

(130)

and

g(β1, β2, ρ) , 1 + SNR21 + SNR22+

2
(√

β1β2ρ+
√

(1− β1)(1− β2)
)√

SNR21 SNR22. (131)

Let also

ρmin(β1, β2) , min

(
1,(

b−
(
1+SNR21+SNR22+2

√
(1−β1)SNR21(1−β2)SNR22

))+
2
√
β1SNR21β2SNR22

)
(132)

be the value of ρ ∈ [0, 1] for which g(β1, β2, ρ) = b, with
β1 6= 0 and β2 6= 0. Note that ρ?(β1, β2), initially defined in
(20), can be alternatively defined as

ρ?(β1, β2) , argmax
ρ∈[0,1]

f(β1, β2, ρ). (133)

when β1 6= 0 and β2 6= 0. When either β1 = 0 or β2 = 0 then
ρ?(β1, β2) = 0.

Using this notation, the proof of Proposition 3 is based on
the following two lemmas.

Lemma 1. Let (β1, β2, ρ) ∈ [0, 1]3 be a solution to (129).
Then,

ρ = max
{
ρmin(β1, β2), ρ?(β1, β2)

}
. (134)

Proof:
Let (β1, β2) ∈ (0, 1]2 be fixed. A necessary condition

for (β1, β2, ρ) to be feasible, i.e, g(β1, β2, ρ) > b, is ρ ∈
[ρmin(β1, β2), 1], with ρmin(β1, β2) defined in (132).

Let ρ̄(β1, β2) be the solution to the following optimization
problem:

max
ρ∈[ρmin(β1,β2),1]

f(β1, β2, ρ). (135)

Assume that

ρmin(β1, β2) 6 ρ?(β1, β2). (136)

In this case, it follows that (β1, β2, ρ
?(β1, β2)) is feasible.

From (133), it holds that ∀ρ ∈ [ρmin(β1, β2), 1],

f(β1, β2, ρ) 6 f(β1, β2, ρ
?(β1, β2)). (137)

Hence, under condition (136), ρ̄(β1, β2) = ρ?(β1, β2).
Assume now that

ρmin(β1, β2) > ρ?(β1, β2). (138)

In this case, for any ρ ∈ [ρmin(β1, β2), 1], it holds that

f(β1, β2, ρ)=
1

2
log2

(
1 + β1SNR11(1− ρ2)

)
+

1

2
log2

(
1 + β2SNR12(1− ρ2)

)
. (139)

Hence, f is monotonically decreasing in ρ, and thus
ρ̄(β1, β2) = ρmin(β1, β2).

Given that the statements above hold for any pair (β1, β2),
then for any solution (β1, β2, ρ) to (129), it follows that ρ =
ρ̄(β1, β2). This completes the proof.

Lemma 2. The unique solution to (129) in [0, 1]3 is (1, 1, ρ̄)
with

ρ̄ , max
{
ρmin(1, 1), ρ?(1, 1)

}
. (140)

Proof: Assume that there exists another solution
(β′1, β

′
2, ρ
′) to (129) different from (1, 1, ρ̄). Thus, for any

(β1, β2, ρ) ∈ [0, 1]3 it holds that

f(β1, β2, ρ) 6 f(β′1, β
′
2, ρ
′). (141)

Note that for a fixed ρ′ ∈ [0, 1], f(β1, β2, ρ
′) is strictly

increasing in (β1, β2). Hence, for any (β1, β2) ∈ [0, 1)2,

f(β1, β2, ρ
′) < f(1, 1, ρ′) (142)
6 f(1, 1, ρ̄), (143)

where the second inequality follows by Lemma 1. Moreover,
since ρ̄ > ρmin(1, 1), the following inequality also holds:

g(1, 1, ρ̄) > b. (144)

In particular, if (β1, β2) = (β′1, β
′
2) in (142), it follows that

f(β′1, β
′
2, ρ
′) < f(1, 1, ρ̄), (145)

which contradicts the initial assumption that there exists
a solution other than (1, 1, ρ̄). This establishes a proof of
Lemma 2.

Finally, the proof of Proposition 3 follows from the follow-
ing equality:

RFB
sum(b) = f(1, 1, ρ̄). (146)

Note that when b ∈ [0, 1 + SNR21 + SNR22 +
2ρ?(1, 1)

√
SNR21SNR22], ρ̄ = ρ?(1, 1) and

RFB
sum(b) =

1

2
log2

(
1+SNR11+SNR12+2ρ?(1, 1)

√
SNR11SNR12

)
. (147)

When b ∈ [1+SNR21+SNR22+2ρ?(1, 1)
√

SNR21SNR22, 1+
SNR21 + SNR22 + 2

√
SNR21SNR22], ρ̄ = ρmin(1, 1) and

RFB
sum(b)=

1

2
log2(1 + (1− ξ(b)2)SNR11)

+
1

2
log2(1 + (1− ξ(b)2)SNR12), (148)

and this completes the proof.
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PROOF OF PROPOSITION 4

The sum-rate maximization problem in (33) can be written
as follows:

RNF
sum(b) = max

(β1,β2)∈[0,1]2
f0(β1, β2) (149a)

subject to: g0(β1, β2) > b, (149b)

where the functions f0 and g0 are defined as

f0(β1, β2) ,

min

{
1

2
log2(1 + β1SNR11 + β2SNR12),

1

2
log2(1 + β1SNR11) +

1

2
log2(1 + β2SNR12)

}
(150)

and g0(β1, β2) defined as in (124).
For any nonnegative β1 and β2 it can be shown that

f0(β1, β2) =
1

2
log2(1 + β1SNR11 + β2SNR12), (151)

and thus the function f0 is monotonically increasing in
(β1, β2). The function g0 is monotonically decreasing in
(β1, β2).

Lemma 3. A necessary condition for (β∗1 , β
∗
2) to be a solution

to the optimization problem in (149) is to satisfy

g0(β∗1 , β
∗
2) = b, (152)

when 1 + SNR21 + SNR22 < b 6 1 + SNR21 + SNR22 +
2
√

SNR21SNR22, and

β∗1 = β∗2 = 1 (153)

when 0 6 b 6 1 + SNR21 + SNR22.

Proof: Let (β∗1 , β
∗
2) be a solution to the optimization

problem in (149).
Assume that 1 + SNR21 + SNR22 < b 6 1 + SNR21 +

SNR22 + 2
√

SNR21SNR22 and g0(β∗1 , β
∗
2) > b. Without loss

of generality, consider transmitter 1. Since g0 is monotonically
decreasing in β1 whereas f0 is monotonically increasing in β1,
there always exists a β1 > β∗1 such that g0(β1, β

∗
2) = b and

f0(β1, β
∗
2) > f0(β∗1 , β

∗
2), which contradicts the assumption of

the lemma.
Assume 0 6 b 6 1 + SNR21 + SNR22 and assume

without loss of generality that transmitter 1 uses a power-split
β∗1 < 1. From the initial assumption, the pair (1, β∗2) satisfies
g0(1, β∗2) ≥ b and f0(1, β∗2) > f0(β∗1 , β

∗
2) which contradicts

the assumption of the lemma and completes the proof.
From Lemma 3, the optimization problem in (149) is

equivalent to

RNF
sum(b) = max

(β1,β2)∈[0,1]2
f0(β1, β2) (154a)

subject to: g0(β1, β2) = b, (154b)

Assume that 0 6 b 6 1 + SNR21 + SNR22. Then, from
Lemma 3, it follows that the solution to the optimization
problem in (149) is β∗1 = β∗2 = 1.

Assume now that

1+SNR21 +SNR22 < b 6 1+SNR21 +SNR22+

2
√

SNR21SNR22 min

{√
SNR12

SNR11
,

√
SNR11

SNR12

}
.

(155)

Note that for any energy rate constraint b satisfying (155),
it holds that

0 < ξ(b) 6 min

{√
SNR11

SNR12
,

√
SNR12

SNR11

}
. (156)

Let (β∗1 , β
∗
2) be a feasible pair, i.e., g0(β∗1 , β

∗
2) = b. This

can be rewritten in terms of ξ(b) as follows:

(1− β∗1)(1− β∗2) = ξ(b)2, (157)

with ξ(b) defined in (23).
Note also that any solution to (157), must satisfy that β1 6

1− ξ(b)2 and β2 6 1− ξ(b)2. Hence, to obtain the solution of
the optimization problem in (149), it suffices to perform the
maximization over all (β1, β2) ∈ [0, 1− ξ(b)2].

Let β∗2 ∈ [0, 1 − ξ(b)2] be fixed. Then, there is a unique
feasible choice of β∗1 to satisfy (157), given by

β∗1 = 1− ξ(b)2

1− β∗2
. (158)

The corresponding sum-rate is given by

κ(β∗2),f0(β∗1 , β
∗
2)

=
1

2
log2

(
1+

(
1− ξ(b)2

1− β∗2

)
SNR11+β

∗
2SNR12

)
, (159)

which is a concave function of β∗2 . Hence, given a fixed β∗1 ,
the unique optimal β∗2 must be a solution to dκ(β∗2 )

dβ∗2
= 0. That

is,

(1− β∗2)2 = ξ(b)2 SNR11

SNR12
. (160)

The equality in (160) admits a solution in [0, 1− ξ(b)2] if and
only if (156) is satisfied. This unique solution is given by

β̄∗2 = 1− ξ(b)
√

SNR11

SNR12
(161)

and the corresponding β̄∗1 is given by

β̄∗1 = 1− ξ(b)
√

SNR12

SNR11
. (162)

In this case, the sum-rate is

R̄s=f0(β̄∗1 , β̄
∗
2)

=
1

2
log2

(
1+SNR11 +SNR12−2ξ(b)

√
SNR11SNR12

)
. (163)

Assume now that

1+SNR21+SNR22+2
√

SNR21SNR22min

{√
SNR12

SNR11
,

√
SNR11

SNR12

}
< b 6 1 + SNR21 + SNR22 + 2

√
SNR21SNR22. (164)
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This is equivalent to

min

{√
SNR12

SNR11
,

√
SNR11

SNR12

}
6 ξ(b) 6 1. (165)

Under this condition, the only feasible pairs, i.e., solutions to
g0(β1, β2) = b, are (0, 1 − ξ(b)2) and (1 − ξ(b)2, 0). Hence,
for all i ∈ {1, 2} satisfying i = argmax

k∈{1,2}
SNR1,k and j ∈

{1, 2} \ {i}, it follows that the solution to (149) is given by
β∗i = 1− ξ(b)2 and β∗j = 0 and this completes the proof.

APPENDIX G
PROOF OF THEOREM 3

From Proposition 3, for any B ∈ [0, 1 + SNR21 + SNR22 +
2ρ?(1, 1)

√
SNR21SNR22], RFB

sum(B) > RNF
sum(0), and thus any

B ∈ [0, 1 + SNR21 + SNR22 + 2ρ?(1, 1)
√

SNR21SNR22]
cannot be a solution to the optimization problem in (40).
Hence, a necessary condition for B to be a solution to the
optimization problem in (40) is to satisfy B ∈ (1 + SNR21 +
SNR22 + 2ρ?(1, 1)

√
SNR21SNR22, 1 + SNR21 + SNR22 +

2
√

SNR21SNR22]. Thus, from Proposition 3, the optimization
problem in (40) can be rewritten as follows:

BFB = max
B∈(b1,b2]

B

subject to :
1

2
log2(1+SNR11 +SNR12)=

1

2
log2

(
1+
(
1−ξ(B)2

)
SNR11

)
+

1

2
log2

(
1+
(
1− ξ(B)2

)
SNR12

)
. (166)

where b1 = 1+SNR21+SNR22+2ρ?(1, 1)
√

SNR21SNR22 and
b2 = 1 + SNR21 + SNR22 + 2

√
SNR21SNR22. The constraint

of the problem (166) induces a unique value for
(
1− ξ(B)2

)
within [0, 1] for each B, and thus, the optimization is vacuous.
This implies that the unique solution BFB satisfies(
1− ξ(BFB)2

)
=

SNR11+SNR12

2SNR11SNR12

[√
1+

4SNR11SNR12

SNR11 + SNR12
−1

]
.

(167)

Following the definition of ξ in (23) and solving for BFB in
(167) yields (41). This completes the proof of Theorem 3.
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and Université Joseph Fourier (UJF), Grenoble, France. She received the
Ph.D. degree in electrical engineering in 2015 from Télécom ParisTech, Paris,
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