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STATE ESTIMATORS FOR SOME EPIDEMIOLOGICAL SYSTEMS∗

A. IGGIDR1 AND M.O. SOUZA2,+

Abstract. We consider a class of epidemiological models that includes most well-
known dynamics for directly transmitted diseases, and some reduced models for indi-
rectly transmitted diseases. We then propose a simple observer that can be applied to
models in this class. The error analysis of this observer leads to a non-autonomous er-
ror equation, and a new bound for fundamental matrices is also presented. We analyse
and implement this observer in two examples: the classical SIR model, and a reduced
Bailey-Dietz model for vector-borne diseases. In both cases we obtain arbitrary expo-
nential convergence of the observer. For the latter model, we also applied the observer
to recover the number of susceptible using dengue infection data from a district in the
city of Rio de Janeiro.

1. Introduction

1.1. Background. From the early work by Ross and McDonald (Ross, 1911; Kermack
and McKendrick, 1927; Smith et al., 2012) to more recent texts (Anderson and May,
1991; Capasso and Capasso, 1993; Diekmann and Heesterbeek, 2000; Hethcote, 2000)
compartmental models have been enjoying a long and successful history in mathematical
epidemiology—for instance different models have been used to assess ongoing outbreaks
as in the recent Ebola epidemics (Fisman et al., 2014; Towers et al., 2014). Thus it is not
surprising that this area has seen an increasing development of models—e.g. see Reiner
et al. (2013) for a survey on models for vector-borne diseases. These models range from
the classical ones—SI/SIS models (Susceptible-Infective); SIR (with a Removed class);
or even SEIR (with an exposed class) to more complex multigroup or multipatch models
(Lajmanovich and Yorke, 1976; Arino and van den Driessche, 2003; Guo et al., 2006,
2008; Iggidr et al., 2012, 2016), and models with age-structure (Pongsumpun and Tang,
2003; Inaba, 1990; Kuniya, 2011) to name only models for directly transmitted diseases.
When dealing with vector-borne diseases a classical model is the SIR-SI (SIR for the
hosts, and SI for the vectors) also known as the Bailey-Dietz model (Bailey, 1975; Dietz,
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2 STATE ESTIMATORS FOR SOME EPIDEMIOLOGICAL SYSTEMS∗

1975) which, besides its simplicity, was only completely mathematically analysed 23
years later—cf. Esteva and Vargas (1998).

Besides the various modelling assumptions underlying their derivation, practical use of
such models rely also on two other independent assumptions: (i) the model parameters
are known (ii) an appropriate initial condition or alternatively the current state of the
population is known. In both cases, knowledge of these quantities is expected to be
within a given degree of certainty. Identifying these quantities from field data is an
important issue, and leads to two (not necessarily independent) problems: (i) calibration
of the models (or alternatively an estimation of their parameters); (ii) estimation of the
current population state. Both problems are known to epidemiologists (Bjørnstad et al.,
2002; Cauchemez et al., 2004; Cauchemez and Ferguson, 2008; Lloyd, 2001), but the
modelling community seems to be more aware of (i) rather than (ii).

Problem (i) is certainly important, but it will not be addressed here—see for instance
Toni et al. (2009); Jacquez et al. (1985); Jacquez and Greif (1985); Audoly et al. (1998).
In this work, we will assume that all model parameters are known, that we have a good
estimate of the total population N(t), and that we have an estimate of the current num-
ber of infective individuals in the population—the I compartment—with a reasonable
degree of certainty. Concerning these assumptions, we notice the following: (a) the first
one is a simplifying working assumption, so that we can concentrate on problem (ii); (b)
rather detailed estimates of population size are usually available in many countries from
their periodic census; (c) while this data is usually available through the public health
authorities, its quality can be widely variable: notification delays, under or over notifi-
cation, irreversible data aggregation, lack of transparency of the public health authority
are some of the usual problems, only to name a few. In most situations, the available
information is the number of new cases, and hence this data needs to be treated in order
to yield the required estimate.

Once a model is selected, under the above assumptions, one can proceed to identify
the current population state. In most classical models the total population is conserved
and this yields an estimate of one of the compartments in terms of estimates of the
remaining ones. Therefore, for the simplest SI/SIS models with only two compartments
one immediately obtains the current population state. For the also classical SIR model,
this further information only yields S + R. To obtain the missing estimates, there are
a number of approaches (Cauchemez and Ferguson, 2008; Becker, 1989). From a more
practical point of view, a possibility is to perform serological tests in the population
in order to estimate the S and R fraction of the population—cf. Joseph et al. (1995);
Drakeley et al. (2005); Gérardin et al. (2008).

1.2. State observers. An alternative approach comes from automatic and control the-
ory: the use of so-called state observers or state estimators. In the present context,
an observer can be viewed as an auxiliary dynamical system Σ̂ designed to provide
estimates of the complete state of another system Σ—in this case the epidemiological
model of interest—using the information given by partial measurements of the state of
Σ. Naturally a sine qua non condition for an observer is to converge to the true state
for large time. However, in epidemiological applications such convergence should be also
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fast—ideally within a couple of weeks—see the discussion below. From a mathematical
point of view, this usually means that the observer has an exponential convergence. For
a more comprehensive treatment of the subject we refer to Iggidr (2004) ( a short survey
of observability and observers with applications to various life-support-systems exam-
ples), Besançon (2007) (a comprehensive text that gives a general overview of observer
tools for non-linear systems). See also Luenberger (1971); Gauthier et al. (1992) and the
discussion in Section 2.3.

Although the literature on observer design for various dynamical systems is vast, there
are fewer works on the construction of observers for epidemiological systems. Earlier
work using observers in an epidemiological context dates back at least to the works of
Velasco-Hernandez and collaborators (Alvarez-Ramirez et al., 2000; Velasco-Hernández
et al., 2002, for an HIV model); since 2012 there is a growing interest in the literature,
and more recent work includes: Bichara et al. (2014) (for a malaria’s intra-host model),
Tami et al. (2013); Abdelhedi et al. (2014, 2016); De la Sen et al. (2011) (for some SEIR
models), Tami et al. (2014) (for a SI-SI Dengue epidemic model), Diaby et al. (2015)
(for a schistosomiasis infection model), Bliman and D’Avila Barros (2017); Aronna and
Bliman (2018); Bliman et al. (2018) (interval-observer for uncertain SIR and SIR-SI
models) and De la Sen et al. (2011); Alonso-Quesada et al. (2012); Ibeas et al. (2015)
(for SEIR models with vaccination in discrete and continuous time with vaccination)
.

From a practical point of view, the ideal observer ought to have two important features:
(i) it should be easily implementable; (ii) it should be an efficient observer. The former
feature is important if this tool is to become widely used by epidemiologists. The latter
means that it converges fast, typically exponentially fast, such that one does not need a
exceedingly large time series to estimate the population state. The available observers
so far seems to lack either one or both of these features. Our goal in this work is to
derive a simple observer that can be used for a large class of epidemiological systems,
and which has exponential convergence.

1.3. Outline. In Section 2 we introduce a class of epidemiological models that includes
most of systems found in the literature for directly transmitted diseases, and some re-
duced models for indirectly transmitted ones. For these models, we assume that the
fraction of infected individuals is a measurable output of the system. We also present
some examples in such class, and recall the precise definition of an observer. In Section 3,
we discuss the construction of a number of observers for the generalised SIR model. Mo-
tivated by the simplest observer studied in the previous section, we introduce and analyse
a specific class of observers in Section 4. This class leads to a non-autonomous error
equation, which we treat using a novel bound for fundamental matrices. The theory is
then applied to the observer for the generalised SIR model yielding arbitrary exponential
convergence based on a tuning parameter. Section 5.2 illustrates the use of the proposed
observer constructed for a reduced dengue model to have a dynamical estimate of the
proportion of susceptible individuals using real data from the district of Jacarepaguá in
the city of Rio de Janeiro. A discussion of the results is given in Section 6.
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2. Epidemiological models and observers

Throughout this section, x will denote the population state, and y the measurable in-
formation of this state. We will also write Mm,n(IR) for the set of m× n matrices with
real entries, and Mn(IR) =Mn,n(IR).

The introduction of y is due to the fact that usually we do not have access to the whole
state: we can observe or measure only a part of the actual state of the system.

For epidemiological models, the information that is typically available is the number of
new cases, and this can be usually converted in an estimate about the number of infected
individuals in the population.

2.1. A class of epidemiological models. We consider population models of the
form

(1)

{
ẋ = Ax+ b+G(y)x,
y = C x,

where x ∈ IRn is the population state and y ∈ IRm, with m ≤ n, is the measurable output
of System (1). In addition, A ∈Mn(IR), b ∈ IRn, and C ∈Mm,n(IR) are constant, while
G : IRm →Mn(R) is smooth.

2.2. Examples. The class described by System (1) includes most epidemiological mod-
els for directly transmitted diseases with or without a latent or exposed class. In partic-
ular, it includes the classical epidemiological models as the S* and S*S models, where *
can be I, EI, IR or EIR—together with their multigroup counterparts. In these models
we will assume that the measured output is the infected class.

As an example, let us consider the multigroup SIR and SEIR models studied in Guo
et al. (2006) and Guo et al. (2008), respectively. The latter is given by

Ṡk = Λk − dSk Sk −
n∑
j=1

βkjSk Ij ,

Ėk =
n∑
j=1

βkjSk Ij − (dEk + γk)Ek,

İk = γk Ek − (dIk + rk) Ik,

Ṙk = rk Ik − dRk Rk.

If we write y = I = (I1, . . . , In)T ∈ IRn, and x ∈ IR4n. In this case we can take

A =


−diag(dS) 0 0 0

0 −diag(dE + γ) 0 0
0 0 −diag(dI + r) 0
0 0 0 −diag(dR)

 ,
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bt = (Λ1, . . . ,Λn, 0, . . . , 0), G(y) =


G̃(y) 0 0 0

−G̃(y) 0 0 0
0 0 0 0
0 0 0 0

 ,

and G̃(y) is a diagonal matrix with

Gkk =
n∑
j=1

βkjyj , k = 1, . . . , n.

Finally, we have

C =
(
0 In 0 0

)
, where In is the n× n identity matrix.

This class also includes some reduced models for indirectly transmitted diseases. As
an example, we can mention the fast-vector regime of the Bailey-Dietz model discussed
in Souza (2014) —but see also the discussion in Keeling and Rohani (2008) — given
by

(2)

{
ẋ1 = µh(1− x1)− f(x2)x1

ẋ2 = −(γ + µh)x2 + f(x2)x1

=

(
F1(x)

F2(x)

)
,

with f(s) =
δ σ s

µv + σs
. Here, x1 is the fraction of susceptible in the host population, while

x2 = y is the fraction of infectious, assumed measurable, in the same population.

For System (2):

A =

(
−µh 0

0 −(γ + µh)

)
, G(y) =

(
−f(y) 0
f(y) 0

)
, bT = (µh, 0), and C =

(
0 1

)
.

2.3. Epidemiological observers. An observer for (1) is a dynamical system

(3)

{
ż(t) = F̂ (z(t), y(t)),

x̂(t) = L(z(t), y(t)),

whose solutions satisfy |x̂(t)− x(t)| goes to zero as t → ∞ for any initial conditions x0

and z0. When the convergence of x̂(t) towards x(t) is exponential, the system (3) is an
”exponential observer”. More precisely, system (3) is an exponential observer for system
(1) if there exists λ > 0 such that, for all t ≥ 0 and for all initial conditions (x(0), z(0)),
the corresponding solutions of (1)-(3) satisfy

|x̂(t)− x(t)| ≤ e−λ t |x̂(0)− x(0)| .

In order to obtain the observer (3), one needs to specify the vector field F̂ and the map
L.

We must point out that the initial state x0 of (1) is unknown while the initial state z0

of the observer can be assigned arbitrarily.
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3. The SIR model as an example

3.1. The SIR model with generalised incidence. The standard SIR (Susceptible-
Infectious-Removed) model considers a homogeneous population which is divided into
three classes S, I and R according to the health state of its individuals. Let S(t), I(t)
and R(t) denote the number of individuals in the corresponding class at time t.

The disease dynamics is given by

(4)


Ṡ = µ(N − S)− g(I)S,

İ = g(I)S − (µ+ γ)I,

Ṙ = γI − µR,

with g assumed to be at least C1, with g(0) = 0 and g′(0) > 0 — hence, by Hadamard
Lemma, we can write g(I) = Iĝ(I), with ĝ(0) > 0.

For simplicity, we will assume that the system is at its carrying capacity, i.e. S + I +
R = N , and hence if we let x1 = S/N , x2 = I/N , and abuse language by writing
g(x2) = g(Nx2), we arrive at

(5)

{
ẋ1 = µ(1− x1)− g(x2)x1,
ẋ2 = g(x2)x1 − (µ+ γ)x2.

The choice g(x2) = βx2 in System (5) leads to the standard SIR model, while choosing

g(x2) =
σδx2

µv + σx2
recovers the reduced Bailey-Dietz model (2).

In particular, System (5) belongs to the class of systems described by (1), if we assume
that the measurable output is y = x2. The question we pose now is how to use the
measurable output y(t) together with System (5) in order to obtain an estimate of the
value of x1(t). In what follows, we will now describe a number of possible observers for
this system that might accomplish this task.

3.2. High-gain observer. A well known construction method in non-linear systems
is the high-gain method, which is based on the use of a suitable non-linear coordinate
change.

The phase space for System (5) is given by:

Ω = {0 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 1}.

Let

φ(x1, x2) =

(
x2

x1g(x2)− (µh + γ)x2

)
.

The Jacobian of φ is:

Dφ =

(
0 1

g(x2) g′(x2)x1 − µh − γ

)
.
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Let us introduce the following coordinates change:

w = φ(x1, x2) i.e.,

w1 = y = x2,

w2 = ẏ = x1g(x2)− (µh + γ)x2,

x1 =
µhw1 + γ w1 + w2

g(w1)
,

x2 = w1.

Let ε > 0 and Ωε = {0 < x1 < 1, ε < x2 < 1, x1 + x2 ≤ 1}. φ is a diffeomorphism from
Ωε to φ(Ωε). It can be proved that there exists ε > 0 such that Ωε is positively invariant.
System (2) is globally Lipschitz on Ωε.

With the new coordinates, system (2) is given by:

(6)


ẇ1 = w2,

ẇ2 = ψ(w),

y = w1,

with

ψ(w) =
µg(w1) + [(µ+ γ)w1 + w2] [g′(w1)w2 − µg(w1)]

g(w1)
− g2(w1)− (µ+ γ)w2.

For the particular case of the reduced Bailey-System model given by Equation (2), we
have (replacing µ by µh) that:

ψ(w) =
−(γµhµv + w1γ(δ + µh)σ + µh((w1 − 1)δσ + µh(µv + w1σ)))w2

1

w1(µv + w1σ)

+
−w2(µhµv + w1(γ + δ + 2µh)σ)w1 + w2

2µv
w1(µv + w1σ)

= δµh − (γδ + γµh + δµh + µ2
h)w1 − (γ + δ + 2µh)w2

+
µvw

2
2 + (−δµhµv + (γµv + δµv + µhµv)w2)w1 + (γδµv + δµhµv)w

2
1

w1(µv + w1σ)
.

It is, at least theoretically, possible to use a high-gain observer since system (6) has
the ”good” form. The high-gain observer is given by (see, for instance, Gauthier et al.,
1992):

(7)


˙̂w1 = ŵ2 − 2θ(ŵ1 − y),

˙̂w2 = ψ(ŵ)− θ2(ŵ1 − y),

x̂(t) = φ−1(w(t)),
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where θ is the tuning gain of the observer. It has been proved in (Gauthier et al., 1992)
that system (7) is an exponential observer for system (6) if ψ is globally Lipschitz on
IR2 and θ large enough. Moreover the error convergence rate can be chosen arbitrary
fast by increasing the value of θ.

The function ψ is globally Lipschitz on φ(Ωε). The domain φ(Ωε) is positively invariant
for system (6) but it is not positively invariant for the candidate observer (7).

Therefore, one needs to extend F (or ψ) as well as the diffeomorphism φ to the whole
IR2 such that the respective prolongations are globally Lipschitz. It is known that these
prolongations do exist but the problem is that the observer construction involves their
explicit form. It is not a difficult problem to find the prolongation of the vector field F .
However, it is rather a hard task to construct explicitly a globally Lipschitz prolongation
for the diffeomorphism φ.

In the original coordinates, the high-gain observer (7) is given by:

(8)


ż1 = F1(z)− θ(µv + σz2)

δσz2

(
θ + 2

(
γ + µh −

δµvσz1

(µv + σz2)2

))
(z2 − y),

ż2 = F2(z)− 2θ(z2 − y),

x̂(t) = z(t).

Unlike system (2) for which one can ensure that x2(t) > ε, nothing guarantee that
z2(t) > ε. Hence, system (8) could be not well defined. The same remark can be
done for the high-gain observer (7) : ŵ1(t) can vanish and hence ψ(ŵ(t)) is not defined
nor φ−1(ŵ(t)). That’s why it is necessary to extend the vector field as well as the
diffeomorphism to the whole IR2 before constructing the high-gain observer for our model.
An example showing that the high-gain observer may fail to converge, when the Lipschitz
extension is not used, is given in Guiro et al. (2009).

3.3. A first alternative observer. System (5) can be written

(9)


ẋ1 = µh(1− x1)− g(y)x1,
ẋ2 = −(γ + µh)x2 + g(y)x1,

y = x2.

The first proposed ”simple” observer is:

(10)


ż1 = µh(1− z1)− g(y) z1 −

1

k1 + g(y)
(z2 − y),

ż2 = −(γ + µh)z2 + g(y) z1 − k2 (z2 − y).

The observer tuning parameters are k1 and k2 and will be chosen later to ensure the
convergence.
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The estimation error is e = z − x. It satisfies the following equation:

(11)


ė1 = −µh e1 − g(y) e1 −

1

k1 + g(y)
e2,

ė2 = −(γ + µh) e2 + g(y) e1 − k2 e2.

We take as a candidate Lyapunov function:

V =
1

2

(
e2

1 + e2
2

)
.

Its time derivative is:

V̇ = − (µh + g(y)) e2
1 +

(
g(y)− 1

k1 + g(y)

)
e1 e2 − (γ + µh + k2) e2

2

= − (µh + g(y))

e1 −
g(y)− 1

k1 + g(y)

2(µh + g(y))
e2


2

−

γ + µh + k2 −

(
g(y)− 1

k1 + g(y)

)2

4(µh + g(y))

 e2
2.

Thus V̇ < 0 if k2 can be chosen in such a way that:

γ + µh + k2 −

(
g(y)− 1

k1 + g(y)

)2

4(µh + g(y))
> 0 for all y ∈ (0, 1).

Notice that under our assumptions, g is positive and bounded in (0, 1).

Indeed, assume that k1 > 0, and letM(k1) be the maximum value of

(
g(y)− 1

k1 + g(y)

)2

4(µh + g(y))
in [0, 1]. Then choose k2 such that k2 > M(k1)− (γ + µh).

Then, we have V̇ < 0. Hence, since V ≥ 0, we have that there exists L ≥ 0 such
that

lim
t→∞

V (e1(t), e2(t)) = L.

In addition, we have also that

lim
t→∞

V̇ (t) = 0.

From the computed functional form of V̇ , we then have that

lim
t→∞

(µh + g(y))

(
e1 −

g(y)− 1
k1+g(y)

2(µh + γ)
e2

)2

= 0,

lim
t→∞

γ + µh + k2 −

(
g(y)− 1

k1 + g(y)

)2

4(µh + g(y))

 e2
2 = 0,
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bearing in mind that y, e1 and e2 are functions of t. Hence, from the second limit above,
we have that

lim
t→∞

e2(t) = 0,

and from this, and the first equation above, we also have that

lim
t→∞

e1(t) = 0.

However, it does not follow immediately that the convergence of this observer will be
exponential. We thus turn our attention to an even simpler observer.

3.4. A second observer. Simply:

(12)


ż1 = µh(1− z1)− g(y) z1 − k1(z2 − y),

ż2 = −(γ + µh)z2 + g(y) z1 − k2 (z2 − y).

The observer tuning parameters are k1 and k2 and will be chosen later to ensure the
convergence. The estimation error is e = z−x. It satisfies the following equation:

(13)


ė1 = −µh e1 − g(y) e1 − k1 e2,

ė2 = −(γ + µh) e2 + g(y) e1 − k2 e2.

We take as a candidate Lyapunov function:

V =
1

2

(
e2

1 + e2
2

)
.

Its time derivative is:

V̇ = − (µh + f(y)) e2
1 + (g(y)− k1) e1 e2 − (γ + µh + k2) e2

2

= − (µh + g(y))

(
e1 −

(g(y)− k1)

2(µh + g(y))
e2

)2

−

(
γ + µh + k2 −

(g(y)− k1)2

4(µh + g(y))

)
e2

2.

A similar argument shows that the error converges to zero, using a suitable choice of k1

and k2. However, once again, since both the error equation and V̇ are non-autonomous
it is not an easy task to obtain uniform exponential convergence.

4. Observers for epidemiological systems

4.1. A simple and effective observer class. Motivated by the second alternative
observer, we introduce a candidate observer (or state estimator) for models in the class
described by (1) as follows:

(14)

{
ż = Az + b+G(y) z −K(y) (C z − y),
x̂(t) = z(t),

and the corresponding error equation is given by

(15) ė =
(
A+G(y)−K(y)C

)
e = M(y) e.
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In order to discuss the performance of the candidate observer (14), we need to recall
some definitions and classical results from Control Theory.

Definition 1 (Kalman observability rank condition (Wonham, 1979)). Let Ã be a n×
n matrix and C̃ be a q × n matrix. The pair (Ã, C̃) is said to satisfy the Kalman
observability rank condition if the matrix:

O(C̃,Ã) =



C̃

C̃Ã

C̃Ã2

...

C̃Ãn−1


is of rank n.

Theorem 1 (Pole-Shifting Theorem (Wonham, 1979, page 61)). If the pair (Ã, C̃)
satisfies the Kalman observability rank condition then for any given set S = {α1, . . . αn}
of n complex numbers satisfying z ∈ S ⇒ z̄ ∈ S, it is possible to find a matrix K in such
a way that the spectrum of Ã −KC̃ is σ(Ã −KC̃) = S. In particular it is possible to

find a matrix K in such a way that the eigenvalues of the matrix Ã −KC̃ are all with
negative real part.

If the pair (Ã, C̃) satisfies the Kalman observability rank condition then the associated
autonomous system

(16)

 ẋ = Ãx,

y = C̃x

is observable and an exponential observer is simply given by the Luenberger observer
(Luenberger, 1971) ż = Ãz − K(C̃z − y) since the error e = z − x is governed by

ė = (Ã − KC̃)e for which the zero-solution can be made globally exponentially stable

by choosing the matrix K in such a way that the eigenvalues of the matrix Ã−KC̃ are
all with negative real part.

Definition 2. We will say that System (1) is parametrically linearly observable if
for any y > 0, the pair (A+G(y), C) satisfies the Kalman observability rank condition
— this means that the linear system obtained by fixing y as a parameter is observable.

Under the extra condition that System (1) satisfies Definition 2, we will provide a method
that can be used to establish, in many cases, the exponential convergence of the observer
given by System (14).

The observer (14) is quite simple to construct (it is a Luenberger like observer). Moreover
it does not involve any non-linear coordinates change.

For fixed y, it is well-known that the Kalman condition as given in Definition 1 is
sufficient to show that the origin is a globally asymptotically stable equilibrium for
Equation (15). In this case, Theorem 1 combined with Lyapunov’s Theorem allows one
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to conclude that there exists a symmetric positive definite P (y) such that L = 〈P (y)e, e〉
is a Lyapunov function for System (15) (with y fixed). Indeed, P (y) can be chosen such
that

L̇ = 〈P (y)M(y)e, e〉+ 〈P (y)e,M(y)e〉
= 〈(P (y)M(y) +M(y)TP (y)e, e〉
= −〈e, e〉.

However, since y does depend on t, this argument is not sufficient to show that L is indeed
a Lyapunov function. Nevertheless, a slight adaptation of the classical results proves the
following: Let P be a symmetric positive-definite matrix and let us define

S(y) = PM(y) +M(y)TP.

If, for an appropriate choice of gain K(y), we have that S(y) is negative defined for all
y in some suitable domain, then L = 〈Pe, e〉 is a Lyapunov function for System (15).
Inasmuch as the existence of such a y-independent P is not guaranteed, we shall use
the ”machinery” developed below to prove exponential convergence of the estimation
error (15).

For exponential convergence, notice that if Φ(t; t0) is a fundamental matrix of (15), then
we need a bound of the type

‖Φ(t; t0)‖ ≤ C(t)eα(t−t0),

where ‖ · ‖ is some matrix norm, C is a function that grows at most polynomially, and
α < 0.

4.2. A bound for fundamental matrices. We will denote the set of real n×nmatrices
byMn. Let M : I →Mn be a matrix function that is Holder continuous of degree r, and
let H be its Holder constant. We will denote by σ(M) the spectrum of M (i.e., the set
of all eigenvalues of M) and by α(M) the spectral abscissa (also known as the stability
modulus) of the matrix M , i.e., the maximum among the real part of the eigenvalues of
M — cf. Smith (1995, page 60). In symbols, α(M) = max{Re(λ), λ ∈ σ(M)}.

Let Φ(t) denote the fundamental matrix associated to M(t). Then, we have

Theorem 2. Assume that the spectral abscissa of M(τ) is bounded by a constant α—i.e
that α(M(τ)) ≤ α, τ ∈ IR. Let κ(t) be an appropriate non-decreasing function, with at
most polynomial growth, and with κ(0) = 1, such that

‖etM(τ)‖2 ≤ κ(t)eαt.

Let

ξ0 = lim
t→0+

log κ(t)

t
≥ 0.

Then, we have two possibilities:

ξ0 = 0: in this case, for any η > 0, there exists δ > 0 such that

‖Φ(t)‖2 ≤ κ(δ) exp ((α+ η)t) ;
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ξ0 > 0: then, there exists δ̄ > 0, such that

(17) ‖Φ(t)‖2 ≤ κ(δ) exp ((α+ ρ)t) ,

with

ρ =
log κ(δ̄)

δ̄
+Hκ(δ̄)

δ̄r

2r(r + 1)
,

and the bound is optimal.

Proof. We first observe that by writing M(t) = M(s) +M(t)−M(s), for some fixed s,
we have that

Φ(t) = etM(s)Φ(0) +

∫ t

0
e(t−τ)M(s)(M(τ)−M(s))Φ(τ) dτ.

Hence

‖Φ(t)‖2 ≤ κ(t)eαt‖Φ(0)‖2 +

∫ t

0
‖e(t−τ)M(s)‖2 ‖M(τ)−M(s)‖2‖Φ(τ)‖2 dτ

≤ κ(t)eαt‖Φ(0)‖2 +

∫ t

0
κ(t− τ)eα(t−τ)‖M(τ)−M(s)‖2‖Φ(τ)‖2 dτ.

Since κ is non-decreasing we have that

‖Φ(t)‖2 ≤ κ(t)eαt‖Φ(0)‖2 +

∫ t

0
κ(t)eα(t−τ)‖M(τ)−M(s)‖2‖Φ(τ)‖2 dτ,

i.e.

e−αt‖Φ(t)‖2 ≤ κ(t)‖Φ(0)‖2 + κ(t)

∫ t

0
‖M(τ)−M(s)‖2 e−ατ‖Φ(τ)‖2 dτ.

By Gronwall’s inequality

e−αt‖Φ(t)‖2 ≤ κ(t)‖Φ(0)‖2 eκ(t)
∫ t
0 ‖M(τ)−M(s)‖2 dτ ,

and hence it follows that

‖Φ(t)‖2 ≤ eαt κ(t)‖Φ(0)‖2 eκ(t)
∫ t
0 ‖M(τ)−M(s)‖2 dτ .

By using the Holder condition of M(t), and choosing s = t/2, we find

‖Φ(t)‖2 ≤ eαt κ(t)‖Φ(0)‖2 eHκ(t)
∫ t
0 |τ−t/2|

r dτ .

and on noting that
∫ t

0 |τ − t/2|
r dτ =

tr+1

2r(r + 1)
, we may rewrite it as

‖Φ(t)‖2 ≤ κ(t) eαt e
Hκ(t)

tr+1

2r(r + 1) ‖Φ(0)‖2.
For 0 ≤ t ≤ δ, we have

eαt e
Hκ(t)

tr+1

2r(r + 1) ≤ eαt e
Hκ(δ)

δr

2r(r + 1)
t

;
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hence, we get

(18) ‖Φ(t)‖2 ≤ κ(δ) eαt e
Hκ(δ)

δr

2r(r + 1)
t

. ‖Φ(0)‖2
Let

g1(δ) =
log κ(δ)

δ
and g2(δ) = Hκ(δ)

δr

2r(r + 1)
.

Then,

‖Φ(t)‖2 ≤ κ(δ) e(α+g2(δ))t ‖Φ(0)‖2
For mδ ≤ t ≤ (m+ 1)δ, we get

‖Φ(t)‖2 ≤ κ(δ)m+1 e(α+g2(δ))t ‖Φ(0)‖2
= κ(δ) eg1(δ)mδ+(α+g2(δ))t ‖Φ(0)‖2
≤ κ(δ) e(α+g1(δ)+g2(δ))t ‖Φ(0)‖2.

If ξ0 = 0, then we have

lim
δ→0+

g1(δ) + g2(δ) = 0 and lim
δ→∞

g1(δ) + g2(δ) =∞.

Thus, given η > 0, there exists δ > 0 such that g1(δ) + g2(δ) = η, and the first claim
follows.

If ξ0 > 0, let h(δ) = g1(δ) − g2(δ), for δ > 0 and h(0) = ξ0; then h is continuous,
and we have h(0) > 0, and limδ→∞ h(δ) = −∞. Hence there exists δ∗ > 0 such that
g1(δ∗) = g2(δ∗); then let

δ̄ = arg min
δ∈[0,δ∗]

g1(δ) + g2(δ), ρ = g1(δ̄) + g2(δ̄),

and we obtain the second case.

�

Remark 1. The proof of Theorem 2 shows that in the second, and more common case,
we can always take ρ(δ) = 2 max{g1(δ), g2(δ))}, which is usually easier to compute, but
does not yield an optimal bound.

Remark 2. Theorem 2 generalizes the corresponding result in Coppel (1978, Proposi-
tion 4, page 5) in two ways: by allowing M(t) to be less regular—Holder of degree r
instead of Lipschitz—and by allowing the pre-factor in the exponential to be an arbitrary
continuous function of t with at most polynomial growth.

4.3. Bounds for matrix exponential. In order to apply Theorem 2, we need a bound
on the exponential of M with the coefficients frozen in time. If the spectral abscissa of
M is known, then it remains to obtain a good estimate for κ(t) to complete the bound.
For general matrices, a particular set of inequalities can be found in K̊agström (1977),
where the spectral norm is used. For 2×2 or 3×3 matrices, the following bounds provide
better estimates:
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Proposition 1. Let M ∈M2(IR), such that σ(M) = {λ1, λ2} ⊂ IR, with λ1 ≥ λ2. Then

‖etM‖2 ≤ eλ1t (1 + F (t)‖M − λ1I‖F ) .

with

F (t) =

 1− e(λ2−λ1)t

λ1 − λ2
, λ1 6= λ2;

t, λ1 = λ2;

where d = λ2 − λ1.

Proof. The bound follows from the expression

etM = a(t)M + b(t)I, a(t) =
eλ1t − eλ2t

λ1 − λ2
, b(t) = eλ1t − a(t)λ1.

�

A very similar proof yields also the following result:

Proposition 2. Let M ∈ M3(IR), such that σ(M) = {λ1, λ2, λ3} ⊂ IR, with λ1 > λ2 >
λ3. Then

‖etM‖2 ≤ eλ1t
(

1 +
√

2
(
b(t)‖N‖F + a(t)‖N2‖F

))
,

where

N = M − λ1I, a(t) =
G1(t)−G2(t)

d2 − d1
, b(t) = G1(t) + d1a(t);

with d1 = λ1 − λ2, d2 = λ1 − λ3, and also:

G1(t) =
1− e−d1t

d1
and G2(t) =

1− e−d2t

d2
.

4.4. Revisiting generalised SIR. Recall that System (5) is of the type described by
Equation (1), in particular we have that

A =

(
−µh 0

0 −(γ + µh)

)
, G(y) =

(
−g(y) 0
g(y) 0

)
, bT = (µh, 0), and C =

(
0 1

)
.

Therefore, since the second alternative observer is in class described by System (14), the
error equation is given by

ė = M(y)e, M(y) =

(
−µh − g(y) −k1

g(y) −(γ + µh)− k2

)
.

It is easy to check that System 5 is parametrically linearly observable.

We will now verify that we can achieve arbitrary exponential convergence of the ob-
server.
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In order to do so, we first observe that, since System (5) is parametrically linearly
observable, we are able to choose K(y) such that the spectra of M(y) is prescribed. In
particular, if we set

(19) k1(y) =
c2φ1(φ1 + φ2)

yĝ(y)
and k2(y) = c(2φ1 + φ2) + g(y)− γ,

with φ1, φ2 > 0, and where ĝ(y) =
g(y)

y
, then we obtain that σ(M(y)) = {−µh − g(y)−

cφ1,−µh − g(y)− c(φ1 + φ2)}. In this case, Proposition 1 yields for fixed y > 0:

‖etM‖2 ≤ e−(µh+g(y)+cφ1)tκ(t), κ(t) = 1+
1− e−cφ2t

cφ2
N , N = ‖M+(µh+cφ1+g(y))I‖F .

By Theorem 2, there exists δ such that ‖Φ(t)‖2 ≤ κ(δ) exp ((α+ ρ)t) with ρ = log κ(δ)
δ +

H
4
δ κ(δ). Here α = −(µh + g(y) + cφ1).

In addition, if cφ2 � 1, we also have

N =
c2φ1(φ1 + φ2)

yĝ
+

(
φ2

1 + (φ1 + φ2)2
)

2φ1(φ1 + φ2)
yĝ +O

(
c−2
)
.

In what follows, we now take φ2 = 1, and 0 < φ1 ≤ 1, just for the sake of simplicity.
Assuming δc� 1, we then find

δκ(δ) = δ

[
1 +

(
1− e−cδ

) N
c

]
≤ δ

(
1 +
N
c

)
= δ

c+N
c

.

and

log κ(δ)

δ
= δ−1 log

[
1 +

(
1− e−cδ

) N
c

]
≤ δ−1 log

(
1 +
N
c

)
.

Then
H
4
δκ(δ) and δ−1 log κ(δ) will balance if we choose

δ =
2

H1/2

(
c

c+N
log

(
1 +
N
c

))1/2

.
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In this case, since 0 < φ1 ≤ 1, we obtain

ρ(δ) ≤ δκ(δ) + δ−1 log δ

≤ H1/2

[(
1 +
N
c

)
log

(
1 +
N
c

)]1/2

≤ H1/2

(
2φ1

yĝ(y)

)1/2

c1/2

(
log c+ log

2φ1

yĝ(y)

)1/2

+O

((
log c

c

)1/2
)

≤ H1/2

(
2

ĝ(y)

)1/2

c1/2

(
log c+ log

2φ1

yĝ(y)

)
.

In the typical applications, we have that System (5) is uniformly persistent, and hence

we can assume that 0 < ȳ ≤ y ≤ 1, together with
φ1

y
≤ 1

ȳ
. Hence

−cφ1 + ρ(δ) ≤ −cφ1

(
1−H1/2

(
2

g(y)

)1/2

c−1/2

(
log c+ log

2φ1

yĝ(y)

))

≤− cφ1

(
1−

(
2H
m

)1/2

c−1/2

(
log c+ log

2

ȳm′

))
.

where m = miny∈[ȳ,1] yg(y) > 0 and m′ = miny∈[ȳ,1] ĝ(y) > 0.

Therefore, we have −cφ1 + ρ(δ) < 0 provided c is sufficiently large.

More precisely, let

Λ = −
( m

8H

)1/2
exp

(
− 1

ȳm′

)
.

Then, we have that −cφ1 + ρ(δ) < 0, provided that we have both

c > exp (−2Wk (Λ)) , k =

{
0 Λ ≥ 1,
−1 Λ ≤ 1;

c�M
9ȳ√

2
, M = max ĝ(y),

and where W0 and W−1 are the principal and secondary branches, respectively, of the
W-Lambert function.

4.5. Some experiments. In order to test the efficiency of our proposed observer (12)
we performed a batch of numerical experiments. Numerical simulations showing the
performance of the observer given by (12) can be seen in Figure 1 and in Figure 2—in
the latter, the output y(t) is corrupted by white noise. Convergence of the estimator
was quite fast and the estimation was quite robust to the addition of noise.

The corresponding simulations for the high-gain observer (8)—with the same initial
conditions and the same noise—are given in Figure 3. It can be noticed that the high-
gain observer converges faster than the observer (12) but it is more sensitive to noisy
data.
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Figure 1. Simulation of system (2) and its estimator (12) where k1 and
k2 are given by (19) with φ2 = 1, and φ1 = y(t): the solid curve displays
the evolution of x1(t) (proportion of susceptible individuals), while the
dashed curve displays its estimate x̂1(t) delivered by the observer (12).
Convergence of x̂1(t) towards x1(t) is quite fast as expected.
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Figure 2. Simulation of system (2) and its estimator (12) where k1 and
k2 are given by (19) with φ2 = 1, and φ1 = y(t), the output y(t) is
corrupted by white noise: the solid curve displays the evolution of x1(t)
(proportion of susceptible individuals), while the dashed curve displays
its estimate x̂1(t) delivered by the observer (12). Convergence of x̂1(t)
towards x1(t) is quite fast as expected.
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x1(t)

x1(t)
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-0.2
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Figure 3. Simulation of system (2) and the high-gain observer (8), the
output y(t) is corrupted by white noise: the solid curve displays the evolu-
tion of x1(t), while the dashed curve displays its estimate x̂1(t) delivered
by the observer (12). Convergence of x̂1(t) towards x1(t) is quite fast as
expected but this estimator is quite sensitive to noisy measurements

5. An application to a reduced arbovirus model

5.1. The reduced Bailey-Dietz arboviruse model. The classical Bailey-Dietz (Bai-
ley, 1975; Dietz, 1975) model in adimensional variables—cf. Souza (2014); Esteva and
Vargas (1998)—is given by

ẋ1 = µh(1− x1)− δx1x3

ẋ2 = δx1x3 − (µh + γ)x2

ẋ3 = σx2(1− x3)− µvx3

Here x1 represents the fraction of susceptible hosts, x2 the fraction of infected hosts,
and x3 the fraction of infected vectors. The basic reproduction number is given by

R2
0 =

δ σ

(γ + µh)µv
. This model has been extensively used to describe dengue dynamics—

e.g. Nishiura (2006); Esteva and Vargas (1998). Under reasonable hypothesis—see
the discussion in Souza (2014)—we can consider the so-called fast vector regime by
assuming that σ = ε−1σ̄ and µv = ε−1µ̄v—but see also Rocha et al. (2013) for alternative
scalings.

It can be reduced to the 2 × 2 model (2) mentioned in Section 2 by means of a multi-
scaling argument—cf. Souza (2014), but see also a more informal derivation on Keeling
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and Rohani (2008). For convenience, we recall that it is given by

(20)


ẋ1 = µh(1− x1)− f(x2)x1,

ẋ2 = −(γ + µh)x2 + f(x2)x1

x3 = f(x2)

with f(x) =
δ σ x

µv + σx
. A noticeable fact is that the R0 for the reduced system is the

same as the on for the full system.

We have assumed that the measurable output was y = x2. However, as we shall see
below, in typical applications this assumption is not quite correct, and the raw data
should be processed before it can be feed into the observer.

5.2. Measuring the output. For the numerical experiments we use dengue data from
the city of Rio de Janeiro (Brazil) from the years 2000 through 2008—more precisely the
data series starts on the January 2000 and goes until June 2008. This data was taken
from the database of notified dengue cases in the district of Jacarepaguá, in the city of
Rio de Janeiro and an excerpt of it can be found in Table 1 in Appendix A.

For this dataset, the only available information is the number of reported cases over a
month. This needs to be converted to the number of infectives which was the output
assumed to be available. This is will be done by augmenting the data as follows: First we
recall that, under the reduced Bailey-Dietz model, infectives arise at a rate of f(x2)x1.
Hence, the new cases are given by

NC(t; t+ T ) =

∫ t+T

t
f(x2(s))x1(s) ds.

On the other hand, let us write F (t) = f(x2(t))x1(t), and on using the second equation
in System (20) we obtain

x2(t) = x2(t0)e−(µh+γ)(t−t0) +

∫ t

t0

e−(µh+γ)(t−s)F (s) ds.

In the absence of further information, we then assume the time of infection to be uni-
formly distributed over the observation period. This amounts to chose F constant over
each such a period, and if we write ∆t to denote the length of the observation period we
obtain:

NC(t; t+ ∆t) = F (t)∆t.

For the sake of simplicity, let us assume uniform observation periods, and write tk =
t0 + k∆t for the observation dates. In this case, if t ∈ [tk, tk+1), we then arrive at

x2(t) = x2(t0)e−(µh+γ)(t−t0) +
e(µh+γ)∆t − 1

(µh + γ)∆t

k−1∑
j=0

NC(tj ; tj+1)e−(µh+γ)(t−tj)+

NC(tk; tk+1)

(µh + γ)∆t

(
1− e−(µh+γ)(t−tk)

)
.
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The above expression provides a simple, yet effective estimate of the infective population
for the dataset considered. For alternative approaches see Cauchemez and Ferguson
(2008); Finkenstädt and Grenfell (2000).

In the inset of Figure 4 we can see a subset of this data, together with the corresponding
estimated number of infected individuals indicated by the continuous black curve.

Figure 4. Notified cases per month from Jan 2000 through June 2008
in the district of Jacarepaguá, in the city of Rio de Janeiro. Inset: Zoom
view of the period from November 2001 to May 2002, where there has
been on of the greatest epidemics of dengue in Rio. The bars are centred
in the middle of the corresponding month reported. The continuous black
curve indicate the number of infective individuals obtained using the
estimation procedure described in Section 5.2.
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Figure 5. Number of infective individuals obtained from the available
data on the number of new cases, along the time period of the dataset
considered.

5.3. The observer in action. We have then applied the observer described in Section 4
to the System (20) in order to estimate the proportion of susceptible population. For
the results presented here, we used the following gains:

k1(y) =

(
c

max(y, ε)
− ĝ(y)

)(
d+

(
c

max(y, ε)
− ˆ(g)(y)

)
y

)
1

ĝ(y)

k2(y) = d+ 2
cy

max(y, ε)
− g(y)− γ,

(21)

where c, d and ε are positive constants — for the results shown typical choices were
c = 3, d = 1 and ε = 10−4. The gains given above in (21) provided a faster convergence
than the ones given in (19) for this data set. In general, for a given set of data, different
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variations might yield faster convergence although numerical experiments suggest that
the gains in (19) always yield a reasonably fast convergence.

The proportion of susceptible individuals is shown in Figure 6. In order to understand
the difference between the two pictures, we introduce the following definition: an initial
condition for the observer given by Equation (14) is consistent, if y(0) is the same as
the one used for reconstructing y from the data; otherwise we will say that it is incon-
sistent. Thus, in Figure 6 show estimates for three initial conditions for the proportion
of susceptible, with different choices of initial conditions for the proportion of infective:
In Figure 6(A) we see the trajectory of the estimation of the susceptible class for a
set of consistent initial conditions, while in Figure 6(B) we see trajectories with incon-
sistent initial conditions. Notice that even when the initial condition is inconsistent,
the observer eventually converges to the correct behaviour within a time frame of two
months. Notice, however, that convergence is much faster when the initial condition is
consistent.

The complete trajectory for one consistent choice of initial condition can be seen in
Figure 7:

Convergence of the observer is confirmed in Figure 8, where the trajectory of the observer
for a consistent initial condition is shown together with the corresponding data estimated
trajectory for the measured input:

Finally, Figure 9 display the complete picture. Notice that the result obtained from the
estimation strongly suggests that the population in this region has been already exposed
to the dengue virus before.
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(a)

(b)

Figure 6. Estimates of the proportion of susceptible individuals for
three different choices of initial conditions for the proportion of suscep-
tible and with (A) consistent initial conditions for the proportion of in-
fective; and (B) non-consistent initial conditions. Insets: Zoom showing
earlier times of the trajectories.
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Figure 7. Estimate of the susceptible proportion of individuals over the
considered time-frame.
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Figure 8. Proportion of infective individuals obtained from field data —
as discussed in Section 5.2 — and the corresponding observer estimates.
As expected, convergence of the estimator is quite fast, and the observer
trajectory tracks the discrete data quite accurately.
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Figure 9. The full picture: in the main figure we have estimates for the
susceptible and removed classes. In the inset, we show the estimate for the
infective class — which is in a much smaller scale. This picture suggests
that the population of the district of Jacarépaguá has been exposed to
the dengue virus and it should be mainly seropositive.
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6. Discussion

In this work we considered the class of epidemiological models of the form given in
Equation 1, which includes most of the well known epidemiological models for directly
transmitted diseases. For this class, we have proposed a simple and easy implementable
observer given by Equation (14). This proposed observer leads to a non-autonomous er-
ror equation, and this renders the error analysis considerably more difficult. We overcame
this problem by obtaining a novel bound for fundamental matrices—a slight generalisa-
tion of the classical bound by Coppel (1978), which nevertheless turns out to be crucial
for such bound to be usable for the error analysis.

Optimal bounds, within the framework of Theorem 2, can be obtained numerically, but
suboptimal bounds can be obtained analytically. Using such bounds, we were able to
show that, when the observer is applied to the generalised SIR model, we can obtain
arbitrarily exponential convergence by choosing the tuning gains (here k1 and k2) to be
sufficiently large.

We then considered the reduced Bailey-Dietz model studied in Souza (2014), which is
a special case of the generalised SIR model, and constructed the proposed observer for
this reduced system. This observer was applied with real data coming from the district
of Jacarepaguá in the city of Rio de Janeiro to estimate the susceptible population in
this area and, as indicated by the analysis in Section 4, the estimate converges very
fast towards the population state — this can also be seen graphically in Figure 6(B),
where simulations with three different arbitrary initial conditions are displayed, and
the corresponding estimates become visually indistinguishable after a short time. The
typical values of the tuning gains that yielded such an exponential convergence were
usually somewhat smaller that the values obtained from the theory — which is to be
expected, given that suboptimal bounds were used in the analysis.

Although not presented here, the approach can be extended to other models. For in-
stance, when immunity to the disease is temporary, an appropriate alternative model is
SIRS, and is given by

(22)


Ṡ = µ(N − S)− g(I)S + ξR

İ = g(I)S − (µ+ γ)I

Ṙ = γI − (µ+ ξ)R

Recall that for the generalised SIR, the decay estimate has the form

(23) − cȳ
(

1− C1c
−1/2 (log c+ logC2)1/2

)
,

where c is a parameter that can be taken arbitrarily large, and hence arbitrary expo-
nential convergence can be attained, at least theoretically. If we apply the observer
assuming only that the infectious individuals are measured, and perform an analogous
analysis—but now using Proposition 2—we obtain an estimate of the form:

−cȳ
(

1− C1 (log c+ logC2)1/2
)
,

which is not sufficient to yield the same behaviour. There are a number of ways to
circumvent this issue: (i) use a judicious choice of gains to obtain exponential convergence
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of order µ + ξ, which will be fine if ξ is not small; (ii) estimate the number of removed
individuals from raw data — using a similar approach to that was used to estimate the
number of infectious in Section 5.2—and rework the analysis performed in Section 4.4
taking into account that C is now a 2 × 3 matrix, and that gain matrix K(y) is now
3×2; in this case, the extra freedom in K(y) allow us to recover an estimate of the form
given in Equation (23), and hence exponential convergence is retained.

We hope that such an easily implementable observer might contribute to an increasing
use of such tools in epidemiology. The possible applications are countless and range
from estimation of the susceptible population to model calibration. From the practical
point of view, one rather interesting feature of the observer proposed here, and of the
companion error analysis, is that both can be applied to non-autonomous models. In
the future, we hope to obtain a more systematic tuning of the observers for different
models.
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Appendix A. A glimpse at the data
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Date (month) Number of new cases Proportion of new cases

0 129 0.0000222
1 127 0.0000219
2 273 0.0000471
3 501 0.0000864
4 683 0.0001178
5 265 0.0000457
6 88 0.0000152
7 31 0.0000053
8 26 0.0000045
9 25 0.0000043
10 24 0.0000041
11 26 0.0000045
12 500 0.0000862
13 1144 0.0001972
14 2234 0.0003852
15 6731 0.0011605
16 7364 0.0012697
17 3613 0.0006229
18 1115 0.0001922
19 430 0.0000741
20 278 0.0000479
21 398 0.0000686
22 497 0.0000857
23 1552 0.0002676
24 25966 0.0044769
25 41101 0.0070864
26 52032 0.0089710
27 9942 0.0017141
28 1368 0.0002359
29 195 0.0000336
30 87 0.0000150

...
...

...

92 461 0.0000795
93 672 0.0001159
94 1519 0.0002619
95 2307 0.0003978
96 11445 0.0019733
97 15131 0.0026088
98 40485 0.0069802
99 32534 0.0056093
100 4619 0.0007964
101 401 0.0000691

Table 1. Number of reported in the district of Jacarepaguá, together
with the corresponding proportion — the population of this district was
taken from the Brazilian census of 2000 as 540000.
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