
HAL Id: hal-01859599
https://hal.inria.fr/hal-01859599

Submitted on 22 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Availability-aware SFC placement Algorithm for
Fat-Tree Data Centers

Ghada Moualla, Thierry Turletti, Damien Saucez

To cite this version:
Ghada Moualla, Thierry Turletti, Damien Saucez. An Availability-aware SFC placement Algorithm
for Fat-Tree Data Centers. [Research Report] Inria. 2018. �hal-01859599�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163029444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01859599
https://hal.archives-ouvertes.fr

An Availability-aware SFC placement Algorithm for Fat-Tree Data Centers

Ghada Moualla, Thierry Turletti, Damien Saucez
Université Côte d’Azur, Inria, France

Abstract—Complex inter-connections of virtual functions
form the so-called Service Function Chains (SFCs) deployed
in the Cloud. Such service chains are used for critical
services like e-health or autonomous transportation sys-
tems and thus require high availability. Respecting some
availability level is hard in general, but it becomes even
harder if the operator of the service is not aware of the
physical infrastructure that will support the service, which
is the case when SFCs are deployed in multi-tenant data
centers. In this paper, we propose an algorithm to solve
the placement of topology-oblivious SFC demands such that
placed SFCs respect availability constraints imposed by the
tenant. The algorithm leverages Fat-Tree properties to be
computationally doable in an online manner. The simulation
results show that it is able to satisfy as many demands as
possible by spreading the load between the replicas and
enhancing the network resources utilization.

Keywords-SFC, Availability, Cloud, Data Center, Place-
ment.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] virtualizes
network functions and places them into commodity net-
work hardware, such as a Data Center (DC). Since a
single VNF cannot provide a full service, multiple VNFs
are combined together in a specific order, called Service
Function Chains (SFCs) [2]. SFCs determine the sequence
of NFs that packets must follow and optimization tech-
niques are used to map the SFCs in the network without
overloading it and to provide availability guarantees.

Replication mechanisms have been proposed in the
literature (e.g., [3], [4], [5]) to improve the required
service availability based on VNF redundancy, which
allow configurations in Active-Backup or Active-Active
modes. However, some propositions [6] focus on replicat-
ing the SFCs in multi-tenant data centers where the tenant
demands are oblivious to the actual physical infrastructure
of the Data Center. Such an environment is particularly
challenging as the demand is not known in advance and
cannot be controlled. For the data center operator, it is
therefore important to limit the number of replications to
its minimum, yet respecting the level of service agreed
with its tenants.

In this paper, we propose a placement algorithm for
SFCs in Data Centers relying on Fat-Tree topologies. The
algorithm is run by the network hypervisor and guarantees

that Service Level Agreements (SLAs) with the tenants
are respected, given the availability properties of the hard-
ware deployed in the data center. Our proposition is based
on an iterative linear program that solves the placement
of SFCs in an online manner without prior knowledge on
placement demand distribution. The algorithm is made
computationally doable by leveraging symmetry proper-
ties of Fat-Tree topologies. Our evaluation on a very
large simulated network topology (i.e., 27,648 servers and
2,880 switches) shows that the algorithm is fast enough
for being used in production environments.

The rest of the paper is organized as follows. Sec-
tion II presents the related work. Section III describes
the problem statement. Section IV formulates the opti-
mization model.. Section V proposes an availability-aware
placement algorithm. Finally, Section VI evaluates the
performance of our solution and Section VII concludes
the paper.

II. RELATED WORK

Multiple works tackle the problem of robust VM
placement by deploying them on different physical nodes
using specified availability constraints [7], [8], [9]. Zhang
et al. [9] and Sampaio et al. [10] consider the MTBF of
DC components to propose high availability placements
of virtual functions in DCs. However, none of these works
consider the benefits of using redundancy to ensure relia-
bility. Rabbani et al. [11] solve the problem of availability-
aware Virtual Data-Centers (VDC) embedding by taking
into account components’ failure rates when planning the
number and the place of redundant virtual nodes but they
do not consider the case of service chains.

In Herker et al. work [12], SFC requests are mapped
to the physical network to build a primary chain, and
backup chains are decided based on that primary chain.
Engelmann et al. [13] propose to split service flows into
multiple parallel smaller sub-flows sharing the load and
providing only one backup flow for reliability guarantee.
Our work follows the same principle as these two proposi-
tion but uses an active-active approach such that resources
are not wasted for backup.

In our previous work [14], we proposed a deterministic
solution for when SFCs are directly deployed by the DC
owner and that requires to know in advance the minimum

number of replicas. In this paper, we propose a stochastic
approach for the case where SFCs are requested by tenants
oblivious to the physical DC network and that only have
to provide the SFC they want to place and the required
availability.

III. PROBLEM STATEMENT

This section defines the problem of placing SFCs in
Data Centers under availability constraints.

Without any loss of generality, and inspired by
works ([12], [15]), we only consider server and switch
failures and ignore link failures. We also consider that
all equipments of a same type have the same level of
availability. More details are provided in Section VI-A.

A. Detailed description of the problem

This work develops an availability-oriented algorithm
for resilient placement of VNF service chains in Fat-Tree
based DCs where component failures are common [12].

The Fat-Tree topology is modeled as a graph where the
vertices represent switching nodes and servers, while the
edges represent the network links between them. Further-
more, SFC provides a chain of network functions with a
traffic flow that need to traverse them in a specific order.
We only consider acyclic SFCs. As we are in a multi-
tenant scenario, functions are deployed independently and
cannot be aggregated (i.e., function instances are not
shared between SFC instances or tenants).

Each function is considered as a single point of failure.
Thus, to guarantee the availability of a chain we use
scaled replicas: we replicate the chain multiple times and
equally spread the load between the replicas.

Upon independent failures, the total availability for the
whole placed SFC replicas will be computed using Eq. (1)
(availability for parallel systems).

availability = 1−
∏

i∈n replicas

(1− avasci) , (1)

where avasci is the availability of replica i of service
chain sc and n replicas is the number of scaled replicas
for this service chain. The availability of each service
chain replica avasci is defined by

avasci =
∏
f∈F

Af ,∀i ∈ n replicas (2)

where Af is the availability of a service chain function
f , which corresponds to the availability of the physical
node that hosts this function ([6], [4]).

In Fat-Tree network topologies (Fig. 1), the availability
of a system composed of multiple functions depends on its
placement in the topology. For example, the availability
of a SFC for the three scenarios for SFCs placement pre-
sented in Fig. 1 is calculated as follows: (i) Scenario

h1

Aggregation

Core

Edge

Pod1

Ahost

AToR

f1 f2

Pod2

f1 f2

Pod3

f1 f2

Pod4

AAgg

ACore

SC1 SC2 SC3

h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

Figure 1. Fat-Tree topology example.

1, where service chain (SC1) is mapped to only one
physical host, the availability of SC1 is equal to the
availability of its host node (h1) while (ii) in Scenario
2, SC2 is placed on 2 different hosts under the same ToR
switch, so the availability of this service is equal to the
availability of all participating host nodes in addition to
the availability of their parent ToR switch as follows:

ASC2 = Ah5.Ah6.AToR. (3)

However, in Scenario3 where the chain SC3 is placed
on different hosts connected to different ToR switches
within the same pod, the availability is given by:

ASC3 = Ah9.Ah11. (AToR)
2
.
[
1− (1−AAgg)2

]
. (4)

In the general case of a k-ary Fat-Tree, each host
is connected to one ToR switch (edge switch) which is
directly connected to k/2 switch in aggregation layer and
each switch in the aggregation layer is then connected
to k/2 switches in the core layer. The generalized
availability equation becomes:

ASC3 = (Ahost)
n h.(AToR)n ToRs.

[
1− (1−AAgg)k/2

]
,

(5)
where n h refers to the total number of used hosts and
n ToRs refers to the total number of ToRs involved in
the placement.

IV. MODEL DESCRIPTION AND
FORMALIZATION

A. Model Variables

We present here the variables used in our model
formulation to place one particular service chain:
• p ∈ P : pod Id, t ∈ ToRs: ToR Id, h ∈ Hosts: host

Id and F is a sequence of NFs id f of the SFC.
• πp: Binary variable, equals to 1 if the pod p is used,

and 0 otherwise.
• τα: Availability for the mapped service chain.
• R ∈ [0, 1]: SFC requested availability in the SLA.

• ϑp,t,h,f : Binary variable, equals to 1 if the function
f is mapped to a specific physical host identified by
its pod p, its ToR t, and its Id h, and 0 otherwise.

• ξh,p,t: Binary variable, equals to 1 if the host h under
the ToR t of the pod p is used, and 0 otherwise.

• ρt,p: Binary variable, equals to 1 if the ToR t on the
pod p is used, and 0 otherwise.

• δf,p: A binary variable that equals 1 if the function
f is mapped to the pod p, and 0 otherwise.

• εp: Total number of used hosts under the pod p.
• σp: Total number of used ToRs under the pod p.
• Cf : Required CPU resources for function f .
• Ch: Total available CPU resources on host h.
• Ah, As: Availability of host h and switch node s,

respectively.

B. Model Formulation

The optimization objective is to minimize the number
of scaled replicas (i.e. number of used pods as each replica
is placed in a different pod). This translates into:

Obj : Min
∑
p∈P

πp. (6)

Subject to the following constraints:

τα >= R (7)

∀h∈H,p∈P,t∈T : ξh,p,t = 1 if
∑
f∈F

ϑp,t,h,f ≥ 1 (8)

∀t∈T,p∈P : ρt,p = 1 if
∑
h∈H

∑
f∈F

ϑp,t,h,f ≥ 1 (9)

∀f∈F,p∈P : δf,p = 1 if
∑
t∈T

∑
h∈H

ϑp,t,h,f ≥ 1 (10)

∀p∈P : πp = 1 if
∑
t∈T

∑
h∈H

∑
f∈F

ϑp,t,h,f ≥ 1 (11)

∀p∈P , ∀f∈F ∀f ′∈F,f ′>f : δf,p ≤ δf ′ ,p (12)

∀f∈F ,∀p∈P :
∑
t∈T

∑
h∈H

ϑp,t,h,f ≤ 1 (13)

∀p∈P : εp =
∑
t∈T

∑
h∈H

ξh,p,t (14)

∀p∈P : σp =
∑
t∈T

ρt,p (15)

∀p∈P : αp =

0, if εp = 0.

Ah, if εp = 1.

A
εp
h .As, if εp > 1 and σp = 1.

A
εp
h .A

σp
s .(1− (1−As)

k
2), if σp > 1.

(16)

τα = 1−
∏
p∈P

(1− αp) (17)

∀h∈H
∑
p∈P

∑
t∈T

∑
f∈F

ϑp,t,h,f Cf ≤ Ch. (18)

Constraint (7) ensures that the placement offers an
availability at least as high as the one required in the SLA.
Constraint (8) (resp. (9)) marks that the host (resp. ToR)
is used if at least one NF is deployed on it (resp. on a
host connected to it). Similarly, Constraint (11) indicates
whether or not a specific pod is used. Constraint (10)
indicates that a function f is placed on a specific pod p.

Constraint (12) ensures that if one function of a scaled
service replica is placed in one pod p then all other
functions of this replica are placed in this same pod.
Constraint (13) ensures that two replicas of the same
function are never placed in the same pod.

Equation (14) computes the total number of used hosts
under each pod p, while Equation (15) counts the total
number of used ToRs under each pod p in order to use
them in Equation (16) to compute the availability of each
scaled SFC replica. The latter takes one of four possible
values based on the values we get from Equations (14) and
(15). Finally, Constraint (18) ensures that the functions
placed on a physical host node cannot use more CPU
resources than its host resource capacity.

Constraints (16) and (17) are non-linear; we show how
to linearize them in Appendix A. In our evaluation section,
we used the linearized version of the model.

V. SFC PLACEMENT ALGORITHM

Directly solving the model of Sec. IV for a large DC
topology is impractical. Instead we apply the model on a
(small) subset of the topology, more precisely, only in one
fault domain (pod), for the new model: equations (7, 17)
will be removed, and the new objective is to maximize
the placement availability over that fault domain :

Obj : Max(αp). (19)

Our algorithm is called each time a request to install an
SFC is received. Specifically, for a required availability
R, the algorithm determines how many scaled replicas to
create for that SFC and where to deploy them; taking into
account the availability of network elements (servers and

switches) without impairing the availability guarantees of
the chains already deployed. To guarantee the isolation be-
tween scaled replicas, each replica of a chain is deployed
in a different fault domain.

Algorithm 1 presents the pseudo-code of our algo-
rithm where scale_down(C, n) is a function that
computes the scaled replica scheme, i.e., an annotated
graph representing the scaled down chain, for a chain
C if it is equally distributed over n scaled replicas
and where solve_placement(S, G, n) solves the
problem of placing n replicas S on the network topology
G. The solution of a placement is a set of mappings
associating replica functions and the compute nodes on
which they have to be deployed. The solution is empty if
no placement can be found.

Our algorithm starts with one replica of a service
request and first checks that no function is requesting
more resources than what the pod can offer.

In the case it is not possible to find a placement with
one replica, the algorithm scales down the chain S by
adding one more replica and tries to find a placement
for each one of these replicas in different fault domains.
Otherwise, the algorithm tries to find a placement for it
under one fault domain of the network (the fault domain
is chosen randomly to spread the load over the entire DC)
using solve_placement(S, G, n) function; if no
placement is found in the current fault domain, we check
the another fault domain, otherwise we compute the total
availability for the current placement.

This strategy continues until a termination condition is
met: (i) if the requested availability is reached then the
service can be deployed with (deploy(placement)); (ii)
if the maximum acceptable time for finding a placement
is reached then no solution is found; (iii) if the number of
created scaled replicas reached the maximum number of
replicas (i.e., maximum number of fault domains), then no
solution is found. The compute_ava function computes
the availability of a chain placement according to Sec. III.

A. Scale down function

When multiple replicas are used, each one gets a frac-
tion of the load and their individual resource requirements
is lower than the one needed if there is only one chain
instance. The resources depend on the availability of the
other replicas and can be upper-bounded by:

R̂f,n =

⌈
Rf
n

+ (n− 1) · Cf
n
· (1−Avaf)

⌉
, (20)

where R̂f,n is an upper-bound on the average amount
of resources that would require a replica of a function
f if it is replicated n times while Rf is the number of
resources required by f in case it is not replicated at all,

Algorithm 1: Availability-aware placement
Input: Physical network Graph: G

chain ∈ Chains
Scaled chain replica graph: replica scheme
Required availability: R

T = max time; n = 1; tot ava = 0; tot time = 0;
placement = φ; replica scheme = chain
while tot ava<R and tot time<T and n<max n do

if max req > max ava then
n = n+ 1
replica scheme = scale_down(chain, n)

else
placement = solve_placement(
replica scheme, G, n)
n = n+ 1
if not placement then

replica scheme = scale_down(chain,
n)

else
tot ava = compute_ava(placement)

tot time.update()

if tot ava ≥ R then
deploy (placement)

and Avaf is the availability of the least available replica
among the n replicas.

B. Solve placement function

The solve_placement(S, G, n) function con-
siders two graphs: the DC topology graph G and the scale
replica graph S. The purpose of this function is to project
the scaled replica graph S on the topology graph G with
respect to the physical and chain constraints.

For each fault domain, solve_placement(S, G,
n) tries to find a solution for the linear problem defined
earlier that aims at finding a placement for the scale
replica graph in one fault domain while maximizing the
availability of the replica placement.

VI. EVALUATION

In the following we evaluate the Availability-aware
placement algorithm introduced in the previous section.

A. Simulation Environment

We have implemented a discrete event simulator
in Python interfaced with the Gurobi Optimizer 8.0
solver [16]. All simulations have been run on a Intel i7-
4800MQ CPU at 2.70GHz and 32GB of RAM running

0.95 0.99 0.999 0.9999 0.99999
SLA

0.6

0.7

0.8

0.9

1.0

Ac
ce

pt
an

ce
 R
at
io

Figure 2. Comparing acceptance ratio for
these different SLA values: 0.95, 0.99, 0.999,
0.9999, 0.99999.

0 1 2 3 4 5 6

Number of scaled replicas

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

0.95

0.99

0.999

0.9999

0.99999

Figure 3. The ECDF for the number of created replicas
with 5 different SLA with 48-Fat-Tree topology, TIA =
0.01 and S = 100.

0.2 0.4 0.6 0.8 1.0
Host Utilization Percentage %

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

0.95
0.99

0.999
0.9999

0.99999

Figure 4. The ECDF for the host core utilization
for different SLAs with 48-Fat-Tree topology,
TIA = 0.01 and S = 100.

GNU/Linux Fedora core 21.1

In the evaluation, requests to deploy SFCs are indepen-
dent and follow an exponential distribution of mean inter-
arrival time TIA (measured in arbitrary time units). SFCs
have a service time of S time units, i.e., the time the SFC
remains in the system is randomly selected following an
exponential distribution of mean S. If an SFC cannot be
deployed in the network, it will be rejected. In total, our
synthetic workload for the simulations contains 2,000 SFC
request arrivals made of 20 random SFCs. As we are only
interested in the steady state of the system, the servers are
preloaded with service chains. All experiments presented
here were repeated 5 times (5 different workloads of 2,000
SFC requests).

Furthermore, all SFCs are linear, i.e., they are formed
of functions put in sequence between exactly one start
point and one destination point. The number of NFs be-
tween the two endpoints is selected uniformly between 2
and 5, based on typical use cases of networks chains [17],
and the requirements of each function in terms of cores
is 1, 2, 4, or 8 inspired by the common Amazon EC2
instance types [18]. Simulations are performed on a 48-
Fat-Tree topology with 48 pods having each 576 hosts
for a total of 27,648 hosts. Every host has 4 cores. The
availability of the physical devices in the Data Center
are assigned accordingly to the statistical study of these
works ([12], [15]), namely 0.99 for servers, 0.9999 for
ToR and aggregation switches, 0.99999 for core switches,
and 1.0 for links.

In the evaluation each SFC requires the same SLA
even though the algorithm does not enforce it. In practice,
placements must be computed in reasonable time so we
limited the computation time to at most 6s per request,
above that requests are rejected (the acceptable time for
finding a placement must be at most of the same order of
magnitude as the deployment of the VMs themselves to

1All the data and scripts used in this paper are available on
https://team.inria.fr/diana/robstdc/.

not impact the deployment time of a service).

B. Acceptance Ratio

The required availability level has an impact on the
ability of a network to accept or not SFC requests.
To study this impact, we consider the acceptance ratio
defined as the number of accepted SFC requests over the
total number of requests.

Figure 2 shows the evolution of the acceptance ratio
w.r.t. the 5 different SLA levels. We can notice that the
acceptance ratio decreases when the required availability
level increases as each chain must reserve more resources
than for lower availability levels as the physical topology
is kept untouched. This can be explained by the fact that
when increasing the required availability of a chain, it
is necessary to replicate it further and then to consume
more resources as at least one core is attributed to each
function, replicated or not.

C. Level of Replication

To complete the acceptance ratio study, Figure 3
provides the Empirical Cumulative Distribution Function
(ECDF) of the number of scaled replicas created for
accepted SFCs for the different studied SLAs. It is clear
that for the lowest required availability (0.95), 80% of
SFCs were satisfied with exactly one replica as the
availability of network elements are higher than this SLA
level. However, when a SFC request needs more resources
than the available resources in the network, it is split (20%
of service were split for SLA=0.95) and, as the required
availability increases, the required number of replicas are
increased to satisfy the SFC SLA. Interestingly, as in
practice the availability of the infrastructure is high we
can observe than even for an aggressive SLA of 0.9999,
90% of SFC requests can be satisfied with no more than 3
replicas. Figure 3 shows that the number of replicas tops
to 5 even though in theory it would be possible to observe

up to 48 replicas in a 48-Fat-Tree topology as there are
48 pods. We can explain this, as the computation time of
our optimization is restricted to be less than 6 seconds.

Nevertheless, we can observe that a general increase
of availability requirement increases the required number
of replicas, which explains why the acceptance ratio
decreases when the availability requirements increase.

D. Servers utilization

Figure 4 shows the ECDF of the server core utilization
where the host utilization is the ratio between the total
consumed CPU time and the total CPU time offered by the
server. For example, for an experiment that lasts 2 units
of time, if a server has 4 cores, the total CPU time offered
by the server is 8. If during the experiment 3 functions are
installed on the server and each function lasts 1.1 units of
time and requires 2 cores, the total consumed CPU time
is 3 · 2 · 1.1 = 6.6, which means that the server is utilized
at 82.5% of its capacity (6.68 = 82.5%).

In all scenarios, more than 40% of the servers are
fully occupied. However as the required level increases,
more servers CPU resources are used which explains why
when the required availability increases, the overall load
of the servers increases. When the required availability
is as high as 0.99999, more than 80% of servers are more
than 80% occupied. Nevertheless, even is highly loaded
infrastructures, our algorithm can allocate resources in
order to satisfy as much demands as possible.

VII. CONCLUSION

In this paper, we propose an online algorithm for
SFC placement in data centers that leverages the Fat-Tree
properties and respects the SFC availability constraints
dictated by the tenant, taking into account the network
components availability. The simulation results show that
our algorithm is fast enough for being used in production
environments and is able to satisfy as many demands as
possible by spreading the load between the replicas while
improving the network servers CPU utilization at the same
time. For future work, we plan to extend our solution to
consider other data center topologies, such as Leaf-and-
Spine and BCube.

REFERENCES

[1] ETSI, “Network Function Virtualisation (NFV); Architec-
tural Framework,” NFV 001, 2013.

[2] J. M. Halpern and C. Pignataro, “Service Function Chain-
ing (SFC) Architecture,” 2015.

[3] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual
machine placement for fault-tolerant consolidated server
clusters,” in IEEE NOMS, 2010.

[4] J. Fan, C. Guan, K. Ren, and C. Qiao, “Guaranteeing avail-
ability for network function virtualization with geographic
redundancy deployment,” Tech. Rep., 2015.

[5] F. Carpio, W. Bziuk, and A. Jukan, “Replication of virtual
network functions: Optimizing link utilization and resource
costs,” 2017.

[6] F. Carpio and A. Jukan, “Improving reliability of service
function chains with combined vnf migrations and repli-
cations,” arXiv preprint arXiv:1711.08965, 2017.

[7] M. Mihailescu, A. Rodriguez, and C. Amza, “Enhanc-
ing application robustness in Infrastructure-as-a-Service
clouds,” in IEEE/IFIP DSN Conference, pp. 146–151.

[8] D. Jayasinghe, C. Pu et al., “Improving performance
and availability of services hosted on IAAS clouds with
structural constraint-aware virtual machine placement,” in
IEEE SCC Conference, 2011.

[9] Q. Zhang et al., “Venice: Reliable virtual data center
embedding in clouds,” in IEEE INFOCOM, 2014.

[10] A. M. Sampaio et al., “Towards high-available and energy-
efficient virtual computing environments in the cloud,”
Future Gener Comput Syst, 2014.

[11] M. G. Rabbani et al., “On achieving high survivability in
virtualized data centers,” IEICE T COMMUN, 2014.

[12] S. Herker et al., “Data-center architecture impacts on
virtualized network functions service chain embedding
with high availability requirements,” 2015.

[13] A. Engelmann et al., “A reliability study of parallelized
vnf chaining,” arXiv preprint arXiv:1711.08417, 2017.

[14] G. Moualla, T. Turletti, and D. Saucez, “Robust place-
ment of service chains in data center topologies,”
https://team.inria.fr/diana/robstdc/, 2018.

[15] P. Gill et al., “Understanding network failures in data
centers: measurement, analysis, and implications,” 2011.

[16] G. Optimization, “Gurobi optimizer 5.0,” Gurobi:
http://www.gurobi.com, 2013.

[17] W. Liu et al., “Service function chaining (SFC) general
use cases,” IETF I-D draft-liu-sfc-use-cases-08, 2014.

[18] “Amazon ec2 instance types.” [Online]. Available: https:
//aws.amazon.com/ec2/instance-types/

[19] B. Huo et al., “Complete solution to a problem on the
maximal energy of unicyclic bipartite graphs,” Linear
Algebra and its Applications, 2011.

APPENDIX

A. Linearization of the Nonlinear Constraints

Here we show how to linearize Constraints (16) and
(17). For constraint (16) we introduce auxiliary binary

variables εp,i for i ∈ [0, n] where n is the maximum
number of host nodes in one pod and σp,j for j ∈ [0,m]
where m is the maximum number of ToRs in a pod. εp,i
refers to each possible number of used hosts under each
pod, and σp,i refers to each possible number of used ToRs
under each pod. ∀p ∈ P :

εp,i = 1 if εp = i, else εp,i = 0, (21)

σp,j = 1 if σp = j, else σp,j = 0. (22)

Constraint (21) ensures that this variable equals to 1 when
the total number of used host is equal to i else it is equal to
0. Then, Constraint (22) ensures that this variable equals
to 1 when the total number of used ToR is equal to j else
it is equal to 0.

n∑
i=0

εp,i = 1 (23)

m∑
j=0

σp,j = 1 (24)

Constraints (23, 25) and Constraints (24, 26) ensure
that exactly one of εp,i / σp,i binary variables is equal to
1 respectively.

εp =

n∑
i=0

i · εp,i (25)

σp =

m∑
j=0

j · σp,j (26)

Now, we rewrite Constraint (16) as:

∀p∈P : αp = εp,1.Ah + σp,1.As.Σ
n
i>1εp,i.A

i
h+

Σni>1εp,i.A
i
h.Σ

m
j>1σp,j .A

j
s.(1− (1−As)

k
2).

(27)

Regarding the other nonlinear constraint (i.e., Equa-
tion (17)), the following procedure will be considered
to overcome the problem. Firstly, Equation (17) can be
written as follows:

ln(1− τα) =
∑
p∈P

ln(1− αp). (28)

It is well known that for any real number x > −1, [19]:

ln(1 + x) ≤ x. (29)

Inequality (29) is also held for any function of the form
z(x) = ax + b, which is a tangent linear function.
Therefore, this inequality can now be written as:

ln(1 + x) ≤ ax+ b, (30)

where the functions z(x) = ax + b and ln(1 + x)
have intersection at a certain point x0. Note that a and
b are constant, and they are calculated later. Based on
Equation (30), we can write:

ln(1− αp) ≤ −apαp + bp (31)

or ∑
p∈P

ln(1− αp) ≤
∑
p∈P

(−apαp + bp) (32)

From Equation (28) and Inequality (29), we find that:

ln(1− τα) ≤
∑
p∈P

(−apαp + bp) . (33)

However, we need to make sure that τα ≥ R, which
translates into:

ln(1− τα) ≤ ln(1−R) (34)

Inequalities (33) and (34) do not guarantee whether ln(1−
R) ≤

∑
p∈P (−apαp + bp) or the contrary.

But if we guarantee that the inequality∑
p∈P (−apαp + bp) ≤ ln(1−R) is met, Inequality (34)

is then met, and consequently:∑
p∈P

(−apαp + bp) ≤ ln(1−R). (35)

As the function z(x) is the tangent line, the constant
a can be easily calculated by taking the differentiation of
the function ln(1 + x) at a certain point x0:

a =
d

dx

∣∣∣∣
x=x0

z(x) =
1

1 + x0
. (36)

The other constant b can be calculated by taking the value
of the two functions at the point x0, and thus:

ln(1 + x0) = ax0 + b (37)

or
b = −ax0 + ln(1 + x0). (38)

As our interest is to find whether τα ≥ R, we need
to intersect the tangent line with the logarithmic function
at the point x0 = −R, and thus ap = 1

1−R and bp =
R

1−R + ln(1−R).
Finally, in the formal model (IV-B), we replace Con-

straint (16) by the new Constraints (21, 22, 23, 24, 25,
26 and 27). While Constraints (17) and (7) are replaced
by the new Constraint (35).

