
A Practical Implementation of an Agriculture Field
Monitoring using Wireless Sensor Networks and

IoT Enabled
Edmond Nurellari† and Saket Srivastava†

† School of Engineering, University of Lincoln, United Kingdom
Enurellari@lincoln.ac.uk, Ssrivastava@lincoln.ac.uk

Abstract—In this work, we consider the problem of designing
a state of the art energy − efficient wireless sensor network
(WSN) practically deployed in a large field. The sensor nodes
(SNs) are tasked to monitor a large region of interest (ROI) and
report their test statistics to the fusion center (FC) over a wireless
fading channel. To maximize the lifetime of the WSN and enable
long range communication with minimal transmit power, the long
range wide area network (LoRaWAN) communication protocol
is adopted. Each of the SN is designed and enabled with several
state of the art sensors in order to estimate different and diverse
parameters of interest (e.g., soil moisture, soil temperature, and
salinity at different soil depth; barometric pressure, ambient
humidity, leaf wetness, and etc.). The core feature of the proposed
solution is that the SNs learn and adopt over the sensing time.
This is very important in extending the operational lifetime of
the WSN. The proposed system is validated through the in-
field experiments using few concept devices. Experimental results
show that the proposed WSN features an effective large ROI
monitoring with minimal number of SNs, a significantly reduced
SN transmission power required and thus an extended WSN
operational lifetime.

Index Terms—Wireless sensor network, IoT for agriculture,
LoRaWAN, fading, energy efficiency.

I. INTRODUCTION

Defined as one of the most important emerging tech-
nologies, wireless sensor networks (WSNs), together with
Internet of Things (IoT) [1] will revolutionize the world. In
fact, the core component of the IoT paradigm is the WSN.
Monitoring a region of interest (ROI) is one of the most
important applications of WSNs [2]–[4]. We have witnessed
their deployment in the last 10 years in several sectors such as
health-care, building infrastructure, environment monitoring,
agriculture and military [5]–[11]. Very recently, WSN have
been designed to add intelligence to the agriculture sector
and hence enable smart IoT based farming [12]. In such ap-
plication, monitoring different environmental parameters such
as temperature, humidity, weather station data, leaf wetness,
soil temperature/humidity and many other parameters are of
particular interest. The monitoring of these parameters not only
allows time and cost minimization but also enables agriculture
productivity to be maximized. For example, since the mid-
1990s, increases in UK wheat yields on-farm have stalled,
while oil-seed rape farm yields have fluctuated wildly since the
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1980s with yields now little different to those of thirty years
ago. This is despite genetic yield gain continuing to deliver
progress at more than 0.5% per year for winter wheat and 2%
for oil-seed rape [13]. Management intensity is considered one
avenue to pursue to overcome existing limitations.

Generally, the local sensing process is orientated towards
estimating some different parameters of interest which can
then be optimally combined to arrive at an informed decision.
This decision can then be relayed in a pre-specified manner
or can be employed for on-field actuation (e.g., in the context
of agriculture this can be irrigation switches control, crop
harvesting decision time, actuation of self-autonomous vehicle
operating in-field, and etc.). We note that the unattended,
reliable and continued operation of a WSN over many years
is often desirable. Furthermore, designing intelligent WSNs
that efficiently utilize the on-board limited energy resources
and cope with the impairments in a wireless communication
channel is very important.

While there are some theoretical studies and considerations
of WSNs applied to farming [14]–[16] to name but just a few,
there is still limited practical work done towards designing
and enabling WSNs for agriculture purposes. Reference [17]
deals with efficiency of feedback control method in greenhouse
crop irrigation and advocates the water saving by this means.
Authors in [18] consider developing SNs that can measure
parameters which affect crop growth and quality and design
a visualization platform to output the data. Some preliminary
initiatives towards developing practical IoT enabled agriculture
solution can be found in [19].

Now, the existing work either deal with a single SN de-
ployment with limited number of equipped and low resolution
sensors or provide some basic data collection algorithms
without any insight into the problem. Furthermore, none of the
previous work deal with energy − efficiency and the ROI
coverage maximization constraint to a fixed given number of
SNs.

This work contributes in designing a private energy-efficient
WSN to be practically deployed in an agriculture field to
monitor a large ROI (see Fig. 2). Being geographically dis-
persed to cover large areas, the SNs are constrained in both
bandwidth and power. We design state of the art LoRaWAN
enabled SNs that feature low power consumption and long
range communication equipped with several state of the art
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agriculture sensors (see details later in Section III-B). We pro-
pose a learn and adapt algorithm to extend the operational
lifetime of the WSN and to deal with the imbalanced load
among the SNs. The communication links (SNs-to-FC) are
tested for communication channels experiencing shadowing
and multipath fading. We show that the proposed system
effectively deals with the energy imbalance in a WSN.

II. DESIGN CHALLENGES IN WSNS

While there are several design issues and challenges in
WSNs, here we briefly discuss the three most important
issues that are related to bandwidth/energy-constrained WSNs
deployed across the agriculture sector.

1) Low Power Hardware: Clearly, the biggest design
constraint in WSNs still remains the power consumption.
Even-though the SNs are being designed using low-
power micro controllers, their power dissipation is still
orders of magnitude too high. For a survey on hardware
systems for WSNs, we refer the reader to [25] and see
references therein.

2) Resource Constraints: Because the SNs are battery
operated devices with limited on-board energy, both the
system lifetime and communication bandwidth (BW) are
restricted. While designing the algorithms to be used by
the SNs, both the signal processing and communication
should be carefully designed to consume minimal energy
in order to extend the lifetime and improve the overall
reliability of the WSN. In this work, we consider several
distributed estimation parameters with SNs intelligently
reporting their local observations to the FC when it is
necessary to do so.

3) Network Security: Being geographically dispersed
to cover large areas, the SNs are usually unattended
and this makes them vulnerable to different types of
attacks or hardware malfunctioning. The overall sensing
and estimation performance strongly depends on the
reliability of these SNs in the network. While fusing
the data received by the spatially deployed SNs allows
the FC to make a reliable decision regarding the soil
moisture mapping, it is possible that one or more SNs
malfunctioning (compromised by an attacker) are sens-
ing noisy (deliberately falsify their) local observations
to degrade the overall FC detection performance. While
there are many types of security threats, these are out of
this work scope. For further details on network security
we refer the reader to [22] and references therein.

For other design issues such as SN localization, medium ac-
cess control (MAC) protocols, time synchronization, hardware
design and routing protocols in an energy constrained WSN,
we refer the reader to [6].

III. SYSTEM MODEL

Consider the problem of monitoring a large agriculture ROI
by a WSN consisting of a gateway, a FC, and M spatially dis-
tributed SNs all equipped with a single antenna and report to
the FC via a dedicated point-to-point communication link. The
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Fig. 1. System components and hierarchical organization of information
flow from peripheral sensor nodes to fusion center, and finally to the end
user.

wireless channels SNs-to-FC are set to experience shadowing
as well as small scale fading1. The case where the spatially
distributed SNs report to the FC via a dedicated parallel access
channel (PAC) is investigated in e.g., [3], [20].

Next, we discuss the local deployed SN and its features.

A. Sensor Node

In this work, we have considered deploying 9 homogeneous
SNs across a 9 hectares field. Each of the SN is equipped
with 6600 mAh rechargeable battery and designed to have
solar energy harvesting capabilities such that in-field post
innervation is none (or minimal). The encapsulated box is
robust waterproof IP65 enclosure and hence can be seam-
lessly deployed in any harsh environment. The SNs feature
an internal secure digital (SD) card, FAT32 file system is
used that can store a capacity of approximately 70 million
measurements. To extend the operational lifetime of the SN
and enable long range communication such that a large ROI is
efficiently monitored, the LoRaWAN communication protocol
is adopted. This technology effectiveness will be practically
tested against the communication channels (i.e., SN-to-FC)
experiencing multipath fading and shadowing due to close
by forest and big animals in-field. In the experimental result,
for the chosen scenario, we will experiment and show the
minimum receiver sensitivity (the maximum distance) such
that an effective communication can be still maintained. A
core feature of the SN is that it can service up to 8 different
low-power sensors simultaneously (e.g., ambient temperature
sensor, soil moisture sensor, leaf wetness sensor, and etc.).
This enables cost-effective monitoring of a large set of local
parameters using a single master unit and hence its suitability
in agriculture monitoring where cheap and reliable solutions
are vital in this sector.

Next, we discuss the sensing process and sensors integrated
in this proposed solution.

1The small scale fading is assumed to be time-variant over a coherence
time τ .
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Fig. 2. Schematic communication architecture among peripheral active SNs
and FC. The ith active SN generates a test statistic (Ti) and communicates
this to the FC directly. There are two categories of non-active SNs: a) non
active due to malfunctioning; b) non-active due to FC control.

B. Local Sensing and Sensors

For this initial feasibility study and proof of concept, we
have chosen a grass field that from our preliminary analysis
is estimated to have some soil variations across the field. We
will be deploying uniformly 9 state of the art (both from the
agriculture and electronic perspective) soil moisture probes
across this 9 hectares field to try and establish an accurate
soil moisture map at different depths. This capacitive soil
moisture probe [21] (see Fig. 3), enabling near continuous
measurements, is 30 cm in length and with sensors (soil
moisture, soil temperature, and salinity) placed at 10 cm apart.
Based on the initial results obtained, we then would be able
to re-deploy the units in an informed manner in an attempt to
further improve the soil moisture mapping.

Now, we would like to make it clear that while the above
soil measurement probe shown in Fig. 3 yields superior results
from agriculture perspective, it was not IoT enabled (i.e., did
not integrate with the state of the art low power SNs and micro-
controllers (e.g., [24])). In this work, we have integrated this
soil moisture probe with the low power hardware [24] such
that a state of the art IoT solution is obtained. Finally, some
of the probe’s parameters can be found in [21] and are also
depicted here in Table I.

Finally, to enable a minimal post-innervation in practical
WSNs and increase the operational life time of the WSN, the
energy resources have to be constantly monitored. Each local
SN monitors its battery level, sense and stores the solar energy
harvested such that an energy budget profile can be built. Using
both the current battery level and this budget profile (built
overtime), each SN decides on how frequently to sample the

Cable to SN

Sensors at 10 cm

Sensors at 20 cm

Sensors at 30 cm

Fig. 3. Actual probe deployment inside the ground for in-field soil
monitoring.

TABLE I
DRILL & DROP SOIL MEASUREMENT PROBE SPECIFICATIONS.

Types of Sensors (at each depth) Moisture Temperature Salinity
Resolution 1:10000 1:6000 0.3oC

Moisture Precision ± 0.03 % vol. x x
Temperature Accuracy x ±2oC @ 25oC x
Operating Temperature −20oC-60oC −20oC-60oC −20oC-60oC

field (i.e., local sampling rate). This adaptive rating enables an
effective way of resources management and an increase of the
WSN operational lifetime. We note again that a continuous
and reliable operational WSN is highly desirable in practice.

The SNs, depending on how are deployed and used, can
vary from being extremely tiny devices [23] to relatively
large embedded platforms [24]. In general, a SN consists
of limited signal processing capabilities, sensing device(s), a
transceiver, limited memory capacity, and on-board power [6].
These devices have wireless communications capability that
makes them suitable in a variety of applications as described
above. However, there are a numerous challenging problems
in designing WSNs that we describe next in Section II.

Next, we discuss the communication architecture and data
collection scheme.

C. Communication Architecture and Data Collection

There are different WSNs architectures depending on how
the SNs take decision and exchange information with other
SNs in the network or with the fusion center (FC) [22]
(see Fig. 2). We briefly mention here three of the different
architectures and focus in more details to the one that we will
be using in this work; 1) The Centralized Architecture
(we consider this here), where there are mainly spatially
distributed SNs that report to the FC. There is no inter-sensors
collaboration. 2) The Distributed Architecture, where there



is no FC and the SNs collaborate with each other in achieving
the common goal. 3) The Hybrid Architecture, where there
is a FC and there is also inter-sensor nodes collaboration.

For other design issues such as resource allocations, fusion
rules, and network security in an energy constrained WSN, we
refer the reader to [22].

In this work, as stated above, we adopt the
Centralized Architecture where each of the local SN
report its data to the FC where further processing is
performed. Every SN in the network decides in transmitting
the local data to the FC by performing a two− step decision
algorithm:
(i) FIRST STEP: Every SN in the network compares
the current data with the previous sensed data. For e.g.,
consider the current temperature sensor data obtained at an
instantaneous discrete time n = t

∆s
, at each SN (si(n)), is

further corrupted by AWGN (wi(n) ∼ N (0, σi
2)):

yi (n) = si (n) + wi (n) (1)

Similarly, at discrete time n+1, the temperature at the ith SN
will be:

yi (n+ 1) = si (n+ 1) + wi (n+ 1) (2)

Now, the ith SN performs the decision at discrete time n based
on the following condition:

if |yi (n)− yi (n+ 1)| ≥ Λf , go to SECOND STEP

if |yi (n)− yi (n+ 1)| < Λf , do not transmit to FC

}
(3)

where Λf is the decision threshold and it is a design parameter
in general.
(ii) SECOND STEP: All the SNs with positive transmission
decision in (3) and step 1 perform now the local decision on
the battery level at discrete time n as follows:

if βj (n) ≥ τf , transmit to FC

if βj (n) < τf , go to deep sleep

}
(4)

where j is the first step positive transmission SN index (i.e.,
of those SNs that with decision rule in (3) are set to transmit
to FC), βj(n) represents the jth SN’s battery level at discrete
time n, and τf is the battery level decision threshold (also a
design parameter).

Clearly, from the above, a SN is set to transmit to the FC if
both |yi (n)− yi (n+ 1)| ≥ Λf and βj (n) ≥ τf are satisfied.
Otherwise, the SN is set to stay in sleeping mode for a defined
period of time.

Now, the energy − efficient algorithm (with two− step
decision rule (3) and (4) can be summarized in Algorithm1.

IV. EXPERIMENTAL RESULTS

We evaluate experimentally the performance of our pro-
posed energy − efficient low power WSN solution. We
consider a WSN deployed in a 300 m× 300 m ROI (i.e., the
grass field) with M = 9 SNs and square type SN geometry.
The FC is located at a distance of 950 m non line of sight

Algorithm1: Energy Efficient Two-Step Transmission
Decision Algorithm

STEP 1: Choose Λf and evaluate (3), ∀i;

if |yi (n)− yi (n+ 1)| ≥ Λf , go to STEP 2
if |yi (n)− yi (n+ 1)| < Λf , go to STEP 3

STEP 2: Choose τf and perform the decision (4), ∀j, to estimate the
transmission mode on/off;

if βj (n) ≥ τf , go to STEP 4
if βj (n) < τf , go to STEP 3

STEP 3: Go to a deep sleep mode for 30 minutes and then go to
STEP 1;

STEP 4: Transmit all the data packets to the FC, then go to STEP 3;

(NLOS) from the center of the ROI and the distances between
the SNs are chosen large enough such that the machines can
service the field as normally without any intervention (e.g., the
grass cutter machine). This spatial configuration is shown in
Fig. 4. Because the grass field is frequently visited by big
animals and cattle, each of the SN unit is protected by a
physical fencing system with an area of 1 m2.
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Fig. 4. Spatial configuration of the WSN where the SNs are represented
with green and the red dashed circle represent the physical fencing system.

In Fig. 5, we show the data rate for SN 2 against the received
signal strength indication (RSSI) recorded for a period of time
from 23rd of April until 2nd of July. As expected, SN data
rate increases with improving RSSI. This adaptive data rate
transmission is very important in not only receiving the data
packets without error but also saving the SN’s energy. For
example, for the cases where the communication channel is
experiencing deep fading and shadowing, the SN does not
transmit any data to the FC in order to conserve energy.

Now, to further validate our system set up and the SN’s
in-field spatial deployment, in Fig. 6 we observe the RSSI
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for three arbitrary chosen SNs. Clearly, all the SNs are
experiencing deep fading and/or path loss at some particular
time instant. For example, SN 9 is experiencing the worst
communication channel on 19th of June at 15:29, on 23rd of
June at 09:02, and on 2nd of July at 14:42. However, most
of the time, the signal strength is high such that a reliable
communication with the FC is maintained. Similar observation
can be seen for SN 3 and SN 4. Few spikes are observe at
some time instant indicating challenging channel conditions.
This is as expected since the communication path between the
SNs and the FC is affected by the high trees and big animals
in the field. However, note that the receiver sensitivity adapted
in this system is down to -136 dBm.

In Fig. 7, for an arbitrary chosen SN (i.e., SN 3), we plot
the soil temperature at three different depths. As expected,
the biggest variation is observed among the soil temperature
measured at 3 inch and 10 inch.

Finally, to demonstrate the reliability of the proposed system
on the soil moisture monitoring and mapping, in Fig. 8, for
some arbitrary chosen SNs (i.e., SN 4, SN 7, SN 8, and SN
9), we plot the soil moisture profiles at 3 inch depth sampled
across the field. Clearly, a variation between the selected SNs’
measurements is observed. For example, the biggest variation
is observed for the SNs far apart from each other (e.g., SN 4
and SN 9). This is as expected since the soil content at these
locations will be much more different.

V. CONCLUSIONS

In this paper, we propose an energy − efficient WSN
for soil moisture monitoring and mapping. To further extend
the WSN operational lifetime, we have proposed a simple but
efficient algorithm such that the SN transmit power can be
significantly reduced. Finally, we have also shown that the
proposed WSN results in a reliable and operational system
even in the worst fading communication channel case. Future
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work will further investigate the analysis of the soil moisture
mapping by considering the data at 3 different depths such as
soil temperature, salinity, and soil moisture. Future work will
also investigate the minimum SNs number required such that
the obtained results are within the acceptable accuracy range
(a design parameter). This analysis is important from practical
perspective as by reducing the SNs number so does the overall
cost of WSN.
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