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Abstract— Autonomous vehicle navigation around human
pedestrians remains a challenge due to the potential for complex
interactions and feedback loops between the agents. As a small
step towards better understanding of these interactions, this
Methods Paper presents a new empirical protocol based on
tracking real humans in a controlled lab environment, which
is able to make inferences about the human’s preferences for
interaction (how they trade off the cost of their time against the
cost of a collision). Knowledge of such preferences if collected
in more realistic environments could then be used by future
AVs to predict and control for pedestrian behaviour. This
study is intended as a work-in-progress report on methods
working towards real-time and less controlled experiments,
demonstrating sucessful use of several key components required
by such systems, but in its more controlled setting. This suggests
that these components could be extended to more realistic
situations and results in an ongoing research programme.

I. INTRODUCTION

The potential future deployment of full Autonomous Vehicles
(AVs) is currently creating much enthusiasm, as such vehicles
would change our daily life through making transportation more
efficient. Huge improvements have been made on robotic localisa-
tion and mapping problems using Simultaneous Localisation And
Mapping (SLAM) algorithms [26], [5] together with new, cheap
sensors and computation technologies [15] [30]. ‘Self-driving’ cars
can navigate safely on roads, promising a future society with a
better mobility system with less accidents and traffic in cities.

But before the fully autonomous driving (SAE Level 5) revolu-
tion happens, AVs must share space with and will be challenged
by human drivers and pedestrians, who are much harder to model
and act upon than passive environments. Decades’ of research in
the fields of Transport Psychology and Human Factors have not
yet been translated into robotic control systems, and leave many
questions still unanswered. For safety and legal reasons, pedestrians
are considered as obstacles, such that the vehicle always stops for
them, in most current ‘self-driving’ systems. Recent on-road studies
have shown that pedestrians may then take advantage over AVs
due this predictable behaviour [22] [20] [13] [8] [4], pushing in
front of them for priority eventually in every negotiation such that
the vehicles can then make no progress. This has become known
as the ‘Freezing Robot Problem (FRP)’. Real human driving is
massively more complex than simply mapping, localising and path
planning. It is considered an art form by advanced practitioners
such as members of the Institute for Advanced Motorists and other
advanced drivers such as high-speed police and ambulance drivers.
In their training, these practitioners generally emphasise the human
psychological processes involved in predicting the behaviours of
other road users as the most important skill of human drivers. Can
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you tell if a pedestrian is assertive enough to risk stepping out
in front of you from their body language, their facial expressions,
even their clothes and demographics? Road users have different
utility functions, ranging from timid pedestrians likely to give
way to all oncoming traffic, though to business-people late for a
meeting or patients for an urgent medical appointment becoming
much more assertive and risk-taking. Drivers must also consider
the psychological effects of their own actions. Speeding up and
slowing down are not just ways to control one’s progress but also
send information about our own personality and risk preferences to
pedestrians engaged in such negotiations for priority, along with
other possible signals including lateral road positing, and more
conventional signals such as flashing indicator lights and headlights,
and driver face and arm expressions.

Fig. 1: Two agents negotiating for priority at an intersection

The new EU H2020 interACT project has been created with a
consortium of European partners [14] to investigate the role of in-
teraction in future deployment of AVs in mixed traffic environments
with human drivers, cyclists and pedestrians. The project will aim
to understand the behaviour of other road users, and how AVs could
interact with them in a safe and efficient manner, and propose eHMI
solutions that could facilitate the communication between AVs and
people.

As first steps towards these goals, we recently proposed [10]
and solved a very simple game-theoretical mathematical model
of the unsigned road-crossing scenarios represented in figs. 1 and
2, based on the famous game of ‘chicken’ and called ‘sequential
chicken’. In this simplest-possible model, two agents (which may
be pedestrians and/or vehicles) compete for space at an unsigned
intersection, using only their positions to signal information to one
another. Time, space and actions are discretized and it is assumed
that both players have equal utility functions and know this to be the
case. The model leaves open free parameters specifying the utility
function for human players. We proposed [10] only as a mathe-
matical model but suggested that its parameters could be found via
human experiments. In [6], we experimented the model with human
participants and asked them to play the sequential chicken game as
a board game to measure their behavioral parameters.

The present study extends this idea to present a new protocol
using physical subjects’ bodies in a semi-structured interaction
scenario together with person tracking and Gaussian Process Re-
gression analysis, to infer their preferences in a slightly more
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realistic setting. As such it respresents additional progress moving
the model closer to the real world, though of course there are many
more needed in the future as the work progresses, until we reach
a real-time continuous version suibable for use in AVs. First, it
makes use of pedestrian tracking to estimate the trajectories of
the agents involved in semi-structured human-human interactions
while playing the sequential chicken model. Second, it computes
the optimal strategies using a meta-strategy convergence method
[10]. Lastly, it infers the parameters of the interactions using
Gaussian Process Regression. To our knowledge there is no previous
work fitting tracking-based semi-structured game-theoretic models
to human motions and to infer behaviour parameters.

A. Related work
The problem of self-driving cars interacting with other road

users is raising interest in both the Robotics and Transport Studies
communities. Game Theory offers a framework to model conflict
and cooperation between rational decision-makers. It was developed
in the 1940s by von Neumann and Morgenstern. Its core concept
is (Nash) equilibrium which is the pair of strategies (probability
distributions over actions to be played) such that none of the
players would change their strategy if they knew the other’s strategy.
Previous work in Transport Studies and highway design has applied
game theory to several driver behaviour modelling tasks as reviewed
in [9]. [16] and [21] developed game theoretic methods for lane
changing manoeuvres. In [16] for example, a mixed-motive game
theory model is used for deciding the strategy made by two AVs
equipped with Adaptive Cruise Control (ACC). Their simulation
has shown that game theory provides better results as payoffs
obtained are larger and the differences smaller for the two cars.
Similar to our work, the model in [19] computed Nash equilibria
using Fictitious Play. Their method differs from ours that not only
their model takes into account pedestrians’ position from a single
image but also some visual features from their appareance as part
of the utility function to improve their trajectory predicition. [1]
presents an algorithm for intersection management involving up to
four self-driving cars communicating with each other. Two motions
choices are available for each player (move forward or stop) and
an optimised solution using game theory to solve the discrete
intersection problem is presented. [2] makes use of game theory
model such as the Prisoner’s Dilemma to propose a decision making
system for AVs in a roundabout. Alternative variants of the game
of chicken are proposed in [22], [24] and [7] to solve conflicts
between agents at intersections. A cellular automata-based approach
is implemented in [24] and [7] to represent the conflict between
two agents. [22] focuses on the interaction between an AV and a
pedestrian. [23] proposes a game theory approach for intersection
conflicts management with reactive agents (the automated vehicles)
equipped with Adaptive Cruise Control systems and a manager
agent is used to decide the optimal strategy that increases the overall
performance of all the agents. This approach prevents from a crash
to occur and it also minimises the time delay in the intersection.
[29] and [28] proposed a non-cooperative game theoretic approach
to human collision avoidance. Their method differs from ours that
they used a motion capture system to record human motions, a
Bootstrap algorithm to compute the confidence intervals and applied
a Dynamic Time Warping (DTW) algorithm to measure similarity
between the trajectories. Gaussian proccess models of continuous
trajectories have been applied to pedestrian path modelling and FRP
in [27].

When multiple equilibria are present in games, standard game
theory does not specify how the players should choose the best
one. In the above studies, no method is proposed for players to
select which equilibrium to use. Typically this is because Transport
Studies seeks to describe macroscopic flows of traffic rather than
prescribe actions for individual vehicles, and considers that any
possible equilibrium is a good description of observed data. For
example in [22] the choice for the best solution depends on

‘local social norms’ which assumes that drivers should have prior
knowledge of local customs. Unusually, [10] proposed a novel
approach for optimal strategy prescription, called meta-strategy
convergence. This method begins by choosing an equal-weighted
mixture of strategies from all rational equilibria (after removing
dominated and asymmetric equilibria where possible). The resulting
strategies do not in general form an equilibrium themselves, but by
applying fictitious play until convergence, a single equilibrium is
obtained upon which it is argued that two rational players should
agree without communication. Most of the game theory models
reviewed above outperform non-game theoretic predictive models
[29], [7], [19], [23].

Pedestrian tracking plays an important role in many commercial
applications. Several tracking approaches are described in [12] [11].
Tracking is still a challenge for computer vision systems because
of the multiple uncertainties (e.g. occlusions) due to complex
environments. Tracking of pedestrians requires the estimation of
non-linear, non-Gaussian problems due to human motion, pedes-
trian scales, and posture changes. Monte-Carlo methods such as
particle filtered-based approaches draw a set of samples assigned
to a target and perform the data association for multiple targets
using probabilistic techniques such as Nearest Neighbor (NN),
Multi-Hypothesis-Tracking (MHT), JPDAF and PHD-filter [18].
Pedestrian tracking is composed of two steps: (i) a prediction step to
determine the expected position and motion state and (ii) an update
step to refine the prediction using sensor observations.

Tracking has been often combined with game theory for prob-
lems of multi-robot system coordination. [25] used the approach
of non-cooperative games to control a team of mobile robots for
a target tracking. When multiple equilibria are present, an arbiter
module based on the min-max method is used to fairly distributes
the costs among the robots. [17] applies cooperative game theory to
improve tracking performance for a group of robots. Their method
allows communication between the robots in order to minimise
tracking costs and maximise the interests of the overall system of
robots. [32] proposes a cooperative nonzero sum game approach
for the problem of multi-target tracking for a multi-robot system in
a dynamic environment.

II. METHODS

The present study shows how to fit parameters of the Sequen-
tial Chicken model to human behaviour collected from a semi-
structured experimental environment. This environment is designed
to enable the simplest possible mapping of physical human motions
onto the model, as a step towards more naturalistic interaction
modelling based on extensions of the model.

A. Sequential chicken model
In Sequential Chicken, two agents (e.g. pedestrian and/or human

or autonomous driver) called Y and X are driving straight towards
each other at an unmarked intersection as in fig. 1. In the model
this process occurs over discrete space as in fig. 2 and discrete
times (‘turns’) during which the agents can adjust their discrete
speeds, simultaneously selecting speeds of either 1 square per turn
or 2 squares per turn, at each turn. Both agents want to pass the
intersection as soon as possible to avoid travel delays, but if they
collide, they are both bigger losers as they both receive a negative
utility Ucrash. Otherwise if the players pass the intersection, each
receives a time delay penalty −TUtime, where T is the time from
the start of the game and Utime represents the value of saving
one turn of travel time. The model assumes that the two players
choose their actions (speeds) aY ,aX ∈ {1,2} simultaneously then
implement them simultaneously, at each of several discrete-time
turns. There is no lateral motion (positioning within the lanes of
the roads) or communication between the agents other than via
their visible positions. The game is symmetric, as both players
are assumed to know that they have the same utility functions



Fig. 2: Sequential Chicken Game

(Ucrash,Utime), hence they both have the same optimal strategies.
These optimal strategies are derivable from game theory together
with meta-strategy convergence, via recursion. Sequential Chicken
can be viewed as a sequence of one-shot sub-games, whose payoffs
are the expected values of new games resulting from the actions,
and are solvable by standard game theory.

The (discretized) locations of the players can be represented by
(y,x, t) at turn t and their actions aY ,aX ∈ {1,2} for speed selection.
The new state at turn t + 1 is given by (y + aY ,x + aX , t + 1).
Define vy,x,t = (vY

y,x,t ,v
X
y,x,t) as the value (expected utility, assuming

all players play optimally) of the game for state (y,x, t). As in
standard game theory the value of each 2× 2 payoff matrix can
then be written as,

vy,x,t = v(
[

v(y−1,x−1, t +1) v(y−1,x−2, t +1)
v(y−2,x−1, t +1) v(y−2,x−2, t +1)

]
), (1)

which can be solved using dynamic programming assuming meta-
strategy convergence equilibrium selection. Under some approxima-
tions based on the temporal gauge invariance described in [10], we
may remove the dependencies on the time t in our implementation
so that only the locations (y,x) are required in computation of vy,x
and optimal strategy selection.

In the sequential chicken model, if the two players play opti-
mally, then there must exist a non-zero probability for a collision
to occur. Intuitively, if we consider an AV to be one player that
always yields, it will make no progress as the other player will
always take advantage over it, hence there must be some threats of
collision.

B. Human experiment

Eighteen human volunteer subjects (University of Lincoln Com-
puter Science staff and students) were divided into 9 pairs, one
designated as player Y and the other as player X . Each pair was
asked to play a physical version of the Sequential Chicken game
on a plus-maze shaped playing area drawn on an indoor floor as
0.4m grid squares as shown in fig. 2. Player Y was starting from
y = 10 and player X from x = 10 such that they were both starting
10 squares away from the intersection. Players were instructed that
their objective was to pass the intersection as soon as possible,
‘as if they were trying to reach their office entrance in a busy
pedestrian area’. Each pair played 5 games. In each game, the
players were each given two cards containing the numbers 1 and 2.
To prevent cheating, they were instructed that at each turn, called
by the experimenter about every 2 seconds, they should select one
card in secret, then both hold them up together (as in the game
‘scissors, paper, stone’) then both move together by that number of
squares towards or beyond the intersection.

The players’ motions were recorded using a Velodyne 3D lidar
while an experimenter called the turns. Fig. 5 shows examples of
the lidar output during the games.

Fig. 3: Approaching Phase

Fig. 4: Crossing Phase

(a) Approaching phase

(b) Crossing phase

Fig. 5: 3D lidar output in approaching (a) and crossing (b)
phases

C. 3D lidar-based pedestrian tracking
Pedestrian positions and velocities are provided by a ro-

bust Bayesian multi-target tracking systems based on 3D lidar
detections[33], suitable for real-time, long-range tracking of mul-
tiple people in dynamic scenarios. Non-overlapping clusters of
adjacent points are extracted based on their 3D Euclidean distance.
An adaptive threshold accounts for the variation in shape and size of
the human body in 3D LiDAR point clouds, which is a function of
the person’s distance from the sensor. Finally, clusters too large or
too small to be humans are discarded by the detector, which outputs
the distance and bearing of the cluster’s centroid projected on the
floor. The information from the detector is processed by a multi-
target tracker, including an efficient implementation of Unscented



(a) Before filtering

(b) After filtering

Fig. 6: Pedestrian trajectories extracted from the 3D lidar
before (a) and after (b) filtering

Kalman Filter (UKF) and Nearest Neighbour (NN) data association
to deal with multiple detections simultaneously [3]. The tracker
estimates the 2D coordinates and velocities of each pedestrian using
a standard prediction-update recursive algorithm. The prediction
step is based on the following constant velocity model,

xk = xk−1 +∆t ẋk−1
ẋk = ẋk−1
yk = yk−1 +∆t ẏk−1
ẏk = ẏk−1

(2)

where xk and yk are the Cartesian coordinates of the target at
time tk, ẋk and ẏk are the respective velocities, and ∆t = tk− tk−1.
(The variables x,y, t in this section measure the same quantities
in the game theory model, but here take continuous values while
the game theory model uses quantised values.) The update step of
the estimation use a 2D polar observation model to represent the
position of a detected cluster,{

φk = tan−1(yk/xk)

γk =
√

x2
k + y2

k
(3)

where φk and γk are, respectively, the bearing and the distance
of the cluster’s centroid with respect to the sensor. For sake of
simplicity, noises and coordinate transformations are omitted in the
above equations. Tracks set were then filtered to locate the two
longest tracks in the game grid area as shown in fig. 6. More details
can be found in [3], [33]. Discrete player positions (grid squares)
were then extracted from the tracks for each turn.

D. Gaussian Process parameter posterior analysis
We use Gaussian Processes Regression [31] to fit the pos-

terior belief over the behavioural parameters of interest, θ =

(Ucrash,Utime) from the observed data, D. Under the Sequential
Chicken model, M, these are,

P(θ |M,D) =
P(D|θ ,M)P(θ |M)

∑θ ′ P(D|θ ′,M)P(θ ′|M)
. (4)

We assume a flat prior over θ so that,

P(θ |M,D) ∝ P(D|θ ,M), (5)

which is the data likelihood, given by,

P(D|θ ,M) = ∏
game

∏
turn

P(dgame,turn
Y |y,x,θ ,M′)P(dgame,turn

X |y,x,θ ,M′), (6)

where dgame,turn
player are the observed action choices, and y and x are

the observed player locations at each turn of each game. Here M′ is
a noisy version of the optimal Sequential Chicken model M, which
plays actions from M with probability (1−s) and maximum entropy
random actions (0.5 probability of each speed) with probability
s. This modification is necessary to allow the model to fit data
where human players have made deviations from optimal strategies
which would otherwise occur in the data with probability zero. Real
humans are unlikely to be perfectly optimal at anything as they
may make mistakes of perception and decision making. This is a
common method to weaken psychological models to allow non-zero
probabilities for such mistakes if present.
For a given values of θ we may compute the optimal strat-
egy for the game by dynamic programming as in Algorithm 1.
Optimal strategies are in general probabilistic, and prescribe the
P(dgame,turn

Y |y,x,θ ,M),P(dgame,turn
X |y,x,θ ,M) terms to compute the

above data likelihood. We then use a Gaussian Process with a Radial
Basis Function (RBF) kernel to smooth the likelihood function
over all values of θ beyond a sample whose values are computed
explicitly. In practice this is performed in the log domain to
avoid numerical computation problems with small probabilities. The
resulting Gaussian Process is then read as the (un-normalized, log)
posterior belief over the behavioural parameters θ = {Utime,Ucrash}
of interest.

Algorithm 1 Optimal solution computation

for Ucrash in range(Umin
crash, Umax

crash) do
2: for Utime in range(Umin

time, Umax
time) do

S← strategy matrix (NY*NX*2) for P(player X chooses speed 2|y,x)

4: loglik = 0
for each game in data do

6: for each turn in game do
loglik = ∏

game
∏
turn

(1− s)P(dgame,turn
Y |y,x,θ ,M)P(dgame,turn

X |y,x,θ ,M)+ s(
1
2
)

8: end for
end for

10: Store loglik(Ucrash, Utime)
end for

12: end for
maxloglik ← max of loglik(Ucrash, Utime)

III. RESULTS

After applying Gaussian Process Regression and optimising s
to maximise the likelihood at the Maximum A Posteriori (MAP)
point of θ , the posterior distribution over θ = {Ucrash,Utime} is
shown in fig. 7. The MAP estimate of the parameters is then around
Ucrash =−30,Utime = 45, at s = 0.11. The -2:3 ratio in the utilities
means that assuming the noisy model M′ the subjects value a 2/3
turn time delay equally to a crash, and the s value means that the
subjects make mistakes from optimal behaviour in 11% of actions.
Significance of the results can be seen by inspection of the thin



standard deviation widths of 1D slices through the 2D posterior as
in fig. 8.

Fig. 7: Gaussian Process log-posterior over behavioural pa-
rameters. (Un-normalized)

Fig. 8: Slices through the Gaussian Process showing 1
standard deviation log-posterior confidence.

The low (for Psychology models) deviation rate from optimal
behavior, s = 11%, suggests that the model is a good fit to
what human pedestrians actually do in priority negotiations. The
behavioral parameter results then show that in the semi-structured
scenario the participants have a preference for time saving rather
than collision avoidance. This was unexpected – in real life, a
collision is intuitively much worse than almost any time delay to
almost everyone. While the game was structured as a sequence of
discrete turns to simplify model fitting, it was designed to closely
resemble a real-world interaction in continuous time as much as
possible. This high-risk appetite of the pedestrians is perhaps best
explained by: (1) the high safety of the environment – the players
know the study is set up in a laboratory environment operating under
health and safety policies, and that all the other subjects are also
just playing a game, so they are less concerned about colliding than
they would be with strangers in a real public place such as an office
corridor intersection; (2) the environment of the experiment may
lead some players to view it as a zero-sum competion (a race) rather
than attempting to maximise only their own utility; and (3) the
utility of colliding with other experimental subjects is less bad than
colliding with real strangers or with robots or autonomous vehicles,
which is also harder to emulate in a safe laboratory environment
that symetric pedestrian-pedestrian interactions.

IV. CONCLUSION

Despite showing an unexpected and unrealistic result as a
consequence of the lab enviromnet used, this Methods Paper
has demonstrated sucessful use of a new Method for elucidating
pedestrian preferences in the Sequential Chicken model from a
real-world scenario and empirical data. It was conducted in a
deliberately simplified, semi-structured environment, designed to
simplify and test model-fitting whilst still demonstrating all the

essential components required for future more realistic experiments:
protocol, tracking, parameter fitting, and posterior parameter analy-
sis. Building on the components from this protocol demonstration,
future experiments could now take further steps towards elucidation
for realistic environments, including replacing the semi-structured
discrete turn-taking with unstructured, continuous time and space
movements but also using signalling methods (gestures, sounds
etc.). They should also move away from the simplifying assumption
of shared known and symetric utility functions, for example by
using augmented reality to safely simulate interactions with heavy
vehicles (e.g in 3D driving simulations) whose damage in a collision
is less to themselves than to the pedestrian. This current model
would not be affected by conflicts related to driving conventions
(such as left- and right-hand driving) as only one single driving
convention can run at a time in a precise location. The proposed
approach could be easily extended to multi-lane roads and it would
become a multi-target traking problem for the AV. Future work
should consider less computational optimization methods than the
gaussian process (GP) regression for the real-time behavioural
parameter fitting.
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